高中物理人船模型 应用动量守恒处理问题
动量守恒定律的应用之“人船模型”
动量守恒定律的应用之“人船模型”1.模型的适用条件物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0.2.模型特点(1)遵从动量守恒定律,如图所示.(2)两物体的位移满足: m x 人t -M x 船t=0 x 人+x 船=L即x 人=M M +m L ,x 船=m M +mL mv 人-Mv 船=03.利用人船模型解题需注意两点(1)条件①系统的总动量守恒或某一方向上的动量守恒。
①构成系统的两物体原来静止,因相互作用而反向运动。
①x 1、x 2均为沿动量方向相对于同一参考系的位移。
(2)解题关键是画出草图确定初、末位置和各物体位移关系。
【题型1】质量为m 的人站在质量为M 、长为L 的静止小船的右端,小船的左端靠在岸边(如图所示),当他向左走到船的左端时,船左端离岸的距离是( )A .LB .L m M +C .ML m M +D .mL m M+ 【题型2】气球质量200 kg 载有质量为50 kg 的人,静止在空中距地面20 m 高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长?【题型3】如图所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A .2LM M +mB .2Lm M +mC .ML M +mD .mL M +m【题型4】如图所示,一辆质量为M =3 kg 的小车A 静止在光滑的水平面上,小车上有一质量为m =1 kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6 J ,小球与小车右壁距离为L ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:(1)小球脱离弹簧时小球和小车各自的速度大小;(2)在整个过程中,小车移动的距离。
高中物理教研论文巧解人船模型问题(最全)word资料
高中物理教研论文巧解人船模型问题(最全)word资料巧解人船模型问题——平均动量守恒定律的应用1.平均动量守恒定律当系统在全过程中动量守恒时,则这一系统在全过程中的平均动量也守恒。
在符合动量守恒的条件下,如果物体做变速运动,为了求解位移,可用平均动量及其守恒规律来处理。
2. 人船模型如果系统是由两(或多)个物体组成的,合外力为零,且相互作用前合动量为零,我们称为人船模型。
(1)一人一船模型:如图1所示人由左端走到右端的过程中, 由动量守恒定律,得 02211=-v m v m由于在全过程动量都守恒,所以有 0211=---v m v m同乘以时间t ,得 0211=---t v m t v m即 2211s m s m =此为一人一船模型的平均动量守恒方程,且知位移与质量成反比。
又由图知 L s s =+21,解得两物体位移分别为L m m m s 2121+= Lm m m s 2112+=(2)二人一船模型:如图2所示,a 、b 两人交换位置过程中,设船c 向左运动,同理可得平均动量守恒定律的方程c c b b a a s m s m s m +=3.一题三法求解人船模型例题 如图2所示,a 、b 两人质量分别为a m 和b m ,船c 的质量为c m ,船长为L ,现在a 、b 交换位置,求船c 在该过程的位移?法1 由二人一船模型得 c c b b a a s m s m s m +=位移关系 L s s c a =+ L s s c b =-联立解得Lm m m m m s cb a ba c ++-=此解法作图较简单,但位移关系和解方程都较复杂。
法2 如图3所示,先令b 不动,a 走到右端,由一人一船模型,得 Lm m m m s cb a ac ++=1再令a 不动,让b 走到左端,在该过程中同理可得L m m m m s cb a bc ++=2由图知L m m m m m s s s cb a ba c c c ++-=-=21此解法把问题化为两个一人一船模型,根据位移和质量的反比关系可直得到结果。
高中物理反冲习题课 人船模型
人船模型与反冲运动知识目标一、人船模型1.若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。
在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。
如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。
相互作用后运动,则由0=m 11v +m 22v 得推论0=m 1s 1+m 2s 2,但使用时要明确s 1、s 2必须是相对地面的位移。
2、人船模型的应用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零.二、反冲运动1、指在系统内力作用下,系统内一部分物体向某发生动量变化时,系统内其余部分物体向相反方向发生动量变化的现象2.研究反冲运动的目的是找反冲速度的规律,求反冲速度的关键是确定相互作用的物体系统和其中各物体对地的运动状态.教学过程规律方法1、人船模型及其应用【例1】如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?解析:当人从船头走到船尾的过程中,人和船组成的系统在水平方向上不受力的作用,故系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则mv 2-Mv 1=0,即v 2/v 1=M/m.在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t=0,即ms 2-Ms 1=0,而s 1+s 2=L所以1,m s L M m =+2M s L M m=+【例2】载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长?解析:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒,人着地时,绳梯至少应触及地面,因为人下滑过程中,人和气球任意时刻的动量大小都相等,所以整个过程中系统平均动量守恒.若设绳梯长为l ,人沿绳梯滑至地面的时间为 t ,由图4—15可看出,气球对地移动的平均速度为(l -h )/t ,人对地移动的平均速度为-h/t (以向上为正方向).由动量守恒定律,有M (l -h )/t -m h/t=0.解得 l=M m M +h . 答案:Mm M +h 说明:(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解.(2)画出反映位移关系的草图,对求解此类题目会有很大的帮助.(3)解此类的题目,注意速度必须相对同一参照物.【例3】如图所示,一质量为m l 的半圆槽体A ,A 槽内外皆光滑,将A 置于光滑水平面上,槽半径为R.现有一质量为m 2的光滑小球B 由静止沿槽顶滑下,设A 和B 均为弹性体,且不计空气阻力,求槽体A 向一侧滑动的最大距离.解析:系统在水平方向上动量守恒,当小球运动到糟的最右端时,糟向左运动的最大距离设为s 1,则m 1s 1=m 2s 2,又因为s 1+s 2=2R,所以21122m s R m m =+ 思考:(1)在槽、小球运动的过程中,系统的动量守恒吗?(2)当小球运动到槽的最右端时,槽是否静止?小球能否运动到最高点?(3)s1+S2为什么等于2R,而不是πR?【例4】某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n 颗子弹,每颗子弹的质量为m ,枪口到靶的距离为L ,子弹水平射出枪口相对于地的速度为v 0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n 颗子弹时,小船后退的距离为()()()0;;;11mnl nml mnl A B C D M n m M nm M n m⋅⋅⋅⋅+-+++ 解析:设n 颗子弹发射的总时间为t,取n 颗子弹为整体,由动量守恒得nmv 0=Mv 1,即nmv 0t=Mv 1t;设子弹相对于地面移动的距离为s 1,小船后退的距离为s 2,则有: s 1=v 0t, s 2= v 1t;且s 1+s 2=L 解得:2nml s M nm=+.答案C【例5】如图所示,质量为m 、半径为R 的小球,放在半径为2R,质量为2m 的大空心球内.大球开始静止在光滑的水平面上,当小球从图示位置无初速度地沿大球壁滚到最低点时,大球移动的距离是多少?解析:设小球相对于地面移动的距离为s 1,大球相对于地面移动的距离为s 2.下落时间为t,则由动量守恒定律得12122;s s m m s s R t t =+=;解得213s R =【例6】如图所示,长20 m 的木板AB 的一端固定一竖立的木桩,木桩与木板的总质量为10kg ,将木板放在动摩擦因数为μ=0. 2的粗糙水平面上,一质量为40kg 的人从静止开始以a 1=4 m/s 2的加速度从B 端向A 端跑去,到达A 端后在极短时间内抱住木桩(木桩的粗细不计),求:(1)人刚到达A 端时木板移动的距离.(2)人抱住木桩后木板向哪个方向运动,移动的最大距离是多少?(g 取10 m/s 2)解析:(1)由于人与木板组成的系统在水平方向上受的合力不为零,故不遵守动量守恒.设人对地的位移为s 1,木板对地的速度为s 2,木板移动的加速度为a 2,人与木板的摩擦力为F,由牛顿定律得:F=Ma 1=160N;()22160500.210 6.0/10F M m g a m s m μ-+-⨯⨯===设人从B端运动到A端所用的时间为t,则s1=½a1t, s2=½a2t; s1+s2=20m由以上各式解得t=2.0s,s2=12m(2)解法一:设人运动到A端时速度为v1,木板移动的速度为v2,则v1=a1t=8.0m/s, v2=a2t=12.0m/s,由于人抱住木桩的时间极短,在水平方向系统动量守恒,取人的方向为正方向,则Mv1-mv2=(M+m)v,得v=4.0m/s.由此断定人抱住木桩后,木板将向左运动.由动能定理得(M+m)μgs=½(M+m)v2解得s=4.0m.解法二:对木板受力分析,木板受到地面的摩擦力向左,故产生向左的冲量,因此,人抱住木桩后,系统将向左运动.由系统动量定理得(M+m)μgt=(M+m)v,解得v=4.0m/s由动能定理得(M+m)μgs=½(M+m)v2解得s=4.0m.2、反冲运动的研究【例7】如图所示,在光滑水平面上质量为M的玩具炮.以射角α发射一颗质量为m的炮弹,炮弹离开炮口时的对地速度为v0。
0衡水中学物理最经典-物理建模系列(十) 人船模型问题
物理建模系列(十) 人船模型问题1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键:(1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m 1v 1-m 2v 2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0.(2)画出各物体的位移关系图,找出它们相对地面的位移的关系.4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题.例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少?【思路点拨】【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,根据动量守恒得m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系,由图还可看出: x 1+x 2=L ③联立②③两式得⎩⎨⎧x 1=M M +mLx 2=mM +m L【答案】M M +m L mM +mL[高考真题]1.(2017·课标卷Ⅰ,14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【解析】 由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒.燃气的动量p 1=m v =0.05×600 kg·m/s =30 kg·m/s , 则火箭的动量p 2=p 1=30 kg·m/s ,选项A 正确. 【答案】 A2.(2017·课标卷Ⅲ,20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零【解析】 A 对:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s.B 对:t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s.C 错:物块在2~4 s 内做匀减速直线运动,加速度的大小a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1)m/s =1.5 m/s ,动量大小p 3=m v 3=3 kg·m/s.D 错:t =4 s 时物块的速度v 4=v 2-a 2t 4=(2-0.5×2)m/s =1 m/s. 【答案】 AB3.(2017·天津卷,4)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点时,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变【解析】 A 错:摩天轮转动过程中,乘客的动能不变,重力势能不断变化,故乘客的机械能不断变化.B 对:乘客在最高点时,具有向下的加速度,处于失重状态.C 错:根据I =Ft 知,重力的冲量不为0.D 错:根据P =mg v cos θ,θ为力方向与速度方向之间的夹角,摩天轮转动过程中,θ不断变化,重力的瞬时功率不断变化.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)如图所示,曲线是某质点只在一恒力作用下的部分运动轨迹.质点从M点出发经P点到达N点,已知质点从M点到P点的路程大于从P点到N点的路程,质点由M点运动到P点与由P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在M、N间的运动不是匀变速运动C.质点在这两段时间内的动量变化量大小相等,方向相同D.质点在这两段时间内的动量变化量大小不相等,但方向相同【解析】质点在恒力作用下从M到N的过程速度减小,确定是匀变速运动,故A、B均错;由动量定理F·Δt=Δp可知,质点在这两段时间内动量变化量大小相等,方向相同,C对,D错.【答案】 C5.(2018·山东烟台高三上学期期中)A、B两物体的质量之比m A∶m B=2∶1,它们以相同的初速度v0在水平面上在摩擦阻力的作用下做匀减速直线运动,直到停止.则在此过程中,A、B两物体所受摩擦力的冲量之比I A∶I B与A、B两物体克服摩擦力做的功之比W A∶W B分别为()A.4∶12∶1 B.2∶14∶1C.2∶12∶1 D.1∶21∶4【解析】由动量定理可知I=m v,再由动能和动量的关系可知,E k=I22m,所以W A∶W B=(I A∶I B)2·(m B∶m A)=2∶1,故C正确.【答案】 C6.(2018·山东潍坊高三上学期期中)质量为m的子弹,以水平速度v0射入静止在光滑水平面上质量为M的木块,并留在其中.在子弹进入木块过程中,下列说法正确的是() A.子弹动能减少量等于木块动能增加量B.子弹动量减少量等于木块动量增加量C.子弹动能减少量等于子弹和木块内能增加量D.子弹对木块的冲量大于木块对子弹的冲量【解析】子弹动能的减少量一部分转化为系统内能,一部分转化为木块动能,A、C 均错;由动量守恒可知,子弹动量减少量等于木块动量的增加量,B对;力的作用是相互的,故子弹对木块的冲量等于木块对子弹的冲量,D 错.【答案】 B课时作业(十八) [基础小题练]1.如图所示,质量为m 的物体(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在B 点需给物体的瞬时冲量最小应是( )A .2m ghB .m gh C.m gh 2D .4m gh【解析】 物体从A 到B 的过程,根据动能定理,有mgh -W f =0,物体从B 返回A 的过程,根据动能定理,有-mgh -W f =0-12m v 2,联立解得v =2gh ,在B 点需给物体的瞬时冲量等于动量的增加量,故I =m v =2m gh ,故A 正确,B 、C 、D 错误.【答案】 A2.下列四幅图所反映的物理过程中,系统动量守恒的是( )【解析】 A 中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B 中在弹簧恢复原长过程中,系统在水平方向始终受到墙的作用力,系统动量不守恒;C 中剪断细线后,以整体为研究对象,木球与铁球的系统所受合外力为零,系统动量守恒;D 中木块下滑过程中,斜面始终受挡板作用力,系统动量不守恒.【答案】 AC3.(2018·山东潍坊高三上学期期中)在光滑水平地面上有两个完全相同的弹性小球a 、b ,质量均为m .现b 球静止,a 球向b 球运动,发生弹性正碰.当碰撞过程中达到最大弹性势能E p 时,a 球的速度等于( )A. E pm B . E p2m C .2E p mD .22E pm【解析】 设碰前a 球速度为v 0,弹性势能最大时刻即为两球共速之时,设共同速度为v ,则由动量守恒和能量守恒得:m v 0=(m +m )v ① 12m v 20=12(m +m )v 2+E p ② 由①②两式解得v = E pm,故A 正确. 【答案】 A4.在光滑的水平面上,有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【解析】 由动量守恒定律得m a v a =m a v a ′+m b v b ′,由于v a ′<0,则b 球获得的动量大于a 球最初的动量.若m a =m b ,则两球交换速度,与图象不符;由E k =p 22m 知,若m a>m b ,则b 球的动能将会大于a 球最初的动能,违背能量守恒定律,则必然满足m a <m b .【答案】 B5.小船相对于静止的湖水以速度v 向东航行.某人将船上两个质量相同的沙袋,以相对于湖水相同的速率v 先后从船上水平向东、向西抛出船外.那么当两个沙袋都被抛出后,小船的速度将( )A .仍为vB .大于vC .小于vD .可能反向【解析】 以两沙袋和船为系统,抛沙袋的过程系统满足动量守恒定律的条件,即(M +2m )v =m v -m v +M v ′,解得v ′=M +2mMv >v ,故B 正确.【答案】 B6.如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M =4 kg.质量m =2 kg 的小铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好到达木板的左端并与木板保持相对静止.在上述过程中弹簧具有的最大弹性势能为( )A .9 JB .12 JC .3 JD .24 J【解析】 当弹簧压缩至最短时,E p 最大,m v 0=(M +m )v ,v =2 m/s ,全程摩擦力做功W f =12m v 20-12(M +m )v 2=24 J ,E p =12m v 20-12(M +m )v 2-W f2=12 J. 【答案】 B[创新导向练]7.动量定理的实际应用——打篮球时的传球技巧篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量【解析】 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确. 【答案】 B8.动量守恒定律在航天科技中的实际应用一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A.v 2-v 0v 1MB .v 2v 2+v 1MC.v 2-v 0v 2+v 1M D .v 2-v 0v 2-v 1M【解析】 规定航天器的速度方向为正方向,由动量守恒定律可得M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故C 正确.【答案】 C9.应用动量守恒定律分析碰撞中的实际问题某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16【解析】 根据s -t 图象的斜率等于速度,可知碰前滑块Ⅰ的速度v 1=-2 m/s ,滑块Ⅱ的速度v 2=0.8 m/s ,则碰前速度大小之比为5∶2,故A 错误;碰撞前后系统动量守恒,碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前总动量也为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,故B 错误;碰撞后的共同速度为v =0.4 m/s ,根据动量守恒定律,有m 1v 1+m 2v 2=(m 1+m 2)v ,解得m 2=6m 1,由动能的表达式可知,12m 1v 21>12m 2v 22,故C 错误,D 正确.【答案】 D10.应用动量定理分析安全带受力问题质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来.已知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .600 NC .1 100 ND .100 N【解析】 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s.受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-m v ),则F =m vt+mg =1 100 N ,C 正确.【答案】 C[综合提升练]11.(2018·山东潍坊高三上学期期中)如图所示,质量为M 的轨道由上表面粗糙的水平轨道和竖直平面内的半径为R 的14光滑圆弧轨道紧密连接组成,置于光滑水平面上.一质量为m 的小物块以水平初速度v 0由左端滑上轨道,恰能到达圆弧轨道最高点.已知M ∶m =3∶1,物块与水平轨道之间的动摩擦因数为μ.求:(1)小物块到达圆弧轨道最高点时的速度; (2)水平轨道的长度.【解析】 设小物块到达圆弧轨道最高点时速度为v 1(1)从小物块滑上轨道到到达最高点的过程中,由动量守恒定律得m v 0=(M +m )v 1① 联立解得:v 1=14v 0.②(2)由能量守恒定律得:μmgL +mgR +12(m +M )v 21=12m v 20③ 由②③联立得:L =3v 208μg -R μ.④【答案】 (1)14v 0 (2)3v 208μg -R μ12.(2018·山东淄博一中高三上学期期中)如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的14固定圆弧轨道,两轨道恰好相切于B 点.质量为M 的小木块静止在O 点,一颗质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C (木块和子弹均看作质点).(1)求子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有一颗相同的子弹射入小木块,并留在其中,则当第17颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【解析】 (1)由子弹射入木块过程动量守恒有m v 0=(m +M )v 1 木块和子弹滑到点C 处的过程中机械能守恒,有 12(m +M )v 21=(m +M )gR 联立两式解得 v 0=M +m m2gR .(2)以后当偶数子弹射中木块时,木块与子弹恰好静止,奇数子弹射中木块时,向右运动.第17颗子弹射中时,由动量守恒定律可知 (M +17m )v =m v 0射入17颗子弹后的木块滑到最高点的过程中机械能守恒,有 12(M +17m )v 2=(M +17m )gH 由以上两式解得 H =(M +m )2(M +17m )2R .【答案】 (1)M +m m 2gR (2)(M +m )2(M +17m )2R。
人船模型(教案)
动量守恒定律应用----“人船模型”【学习目标】1.知道“人船模型”指什么,知道“人船模型”的实质是反冲运动。
2.能用动量守恒定律分析解决“人船模型”问题。
【重点难点】1、“人船模型”的基本原理。
2、动量守恒定律应用。
【学法指导】“人船模型”不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.利用“人船模型”及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷,有时甚至一眼就看出结果来了.通过本节学习,能比较容易的解决这类问题。
课前预习复习动量守恒定律(1)内容:(2)常用的表达形式(3)常见守恒形式及成立条件新课学习一、想一想1、如图1所示,长为L、质量为M的船停在静水中,一个质量为m的人立在船头,若不计水的阻力,在人从船头走到船尾的过程中,小船相对于湖面移动的距离是多少?2、如图所示,质量为M=200kg,长为b=10m的平板车静止在光滑的水平面上,车上有一个质量为m=50kg的人,人由静止开始从平板车左端走到右端,求此过程中,车相对地面的位移大小?二、试一试1、若将此题中的人换成相同质量,长度为a= 2米的小车(如图所示),结果又如何?2、如图所示,质量均为M的甲、乙两车静止在光滑的水平地面上,两车相距为L,乙车上站立一个质量为m的人,他通过一条轻绳拉甲车,甲乙两车最后相接触,下列说法中错误的是()A、该过程中甲、乙两车移动的距离之比为B、该过程中甲、乙两车移动的速度之比为C、该过程中甲车移动的距离为D、该过程中乙车移动的距离为三、做一做1、载人气球原来静止在空中(如图所示),质量为M,下面拖一条质量不计的软梯,质量为m的人(可视为质点)站在软梯上端距地面高度为H,若人要沿轻绳梯返回地面,则绳梯的长度L至少为多长?2、一个质量为M,底面边长为b 的劈静止在光滑的水平面上,见左图,有一质量为m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是S2多少?3、如图所示,一滑块B静止在光滑水平面上,其上一部分为半径是R的1/4光滑圆轨道,此滑块总质量为m2,一个质量为m1的小球A(可视为质点)由静止从最高点释放,当小球从最低点水平飞出时,小球和滑块对地的位移S1,S2分别为多大?4、如图所示,质量为3m,半径为R的大空心球B(内壁光滑)静止在光滑水平面上,有一质量为m 的小球A(可视为质点)从与大球球心等高处开始无初速下滑,滚到另一侧相同高度时,大球移动的距离为()A、RB、R/2C、R/3D、R/4四、人船模型总结1、判断构成相互作用的系统是否动量守恒,或是在某一方向上动量守恒。
“人船”模型及应用
“人船”模型及应用重庆市 垫江中学(408300) 张 雄“人船”模型,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一。
利用“人船”模型及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷,有时甚至一眼就看出结果。
一、“人船”模型原理——质心运动守恒 一个质点系的动量等于质点系的总质量与质心速度之积,方向与质心速度方向一致。
所以,当系统不受外力或所受合外力为零时,质心的动量守恒——质心将保持原来的匀速直线运动状态或静止状态,即当0F =或0F =∑时0υ=或υ=恒量二、“人船”模型的基本公式和适用条件 如图1所示,长为L 、质量为M 的船停在静水中,一个质量为m 的人站立在船头。
设船的质心在O 处,距船头、船尾分别为1L 和2L 。
当人在船头时,人、船系统的质心在1O 处,距离O 为1l ;当人走到船尾时,人、船系统的质心在2O 处,距离O 为2l 。
若不计水的粘滞阻力,在人丛船头走到船尾的过程中,系统在水平方向不受外力作用,动量守恒,即水平方向的总动量始终为零——系统的质心位置不变。
所以,当人向右相对船移动距离L ,引起系统的质心向右移动(12l l +)时,船将向左移动同样的距离,即12l l l =+船根据人和船的质量与到质心距离之积相等,有111()m L l Ml -=222()m L l Ml -=将两式相加,可得1212()m m l l L L L M m M m +=+=++所以,当人对船的位移为L 时,船对地的位移为m l L M m=+船 ①人对地的位移为Ml L l L M m=-=+人船 ②若人相对船以水平初速度υ跳出,可以认为在极短的时间t 内,人相对于船的位移为L 。
根据①②式和速度的定义Ltυ=,所以船和人对地的速度分别为mM m υυ=+船 ③MM mυυ=+人 ④这就是“人船”模型的四个基本公式,其物理意义和适用条件如下1、人、船对地的位移与其相对位移和对方的质量之积成正比,与系统的总质量成反比,而与运动性质无关。
高中物理在四种常见模型中应用动量守恒定律及参考答案
在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL二、反冲和爆炸模型1.对反冲现象的三点说明(1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理。
(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总机械能增加。
「高中生物理培优难点突破」专题29动量守恒定律之人船模型
「高中生物理培优难点突破」专题29动量守恒定律之人船模
型
【专题概述】
“人船模型”类习题,是利用动量守恒定律解决位移问题的例子,在这类问题中,尽管人从船头走向船尾的具体运动形式未知,但人船系统在任何时刻动量都守恒,故可以用平均动量守恒来求解,则当符合动量守恒定律的条件,而又涉及位移而不涉及速度时,通常可用平均动量求解。
解此类题一定要画出反映位移关系的草图。
【总结提升】
“人船模型”的问题针对的时初状态静止状态,所以当人在船上运动时,由于整个装置不受外力的作用,所以这个装置的重心不会动,并且用了平均速度代替瞬时速度,从而推导出来位移之间的关系式子。
高中物理选择性必修一 第一章 第四节 第2课时 反冲运动及人船模型
D错误.
三、反冲运动的应用——“人船模型”
1.“人船模型”问题 两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动 量守恒. 2.“人船模型”的特点 (1)两物体满足动量守恒定律:m1 v 1-m2 v 2=0. (2)运动特点:人动船动,人停船停,人快船快,人慢船慢,人左船右, 人、船位移比等于它们质量的反比,即ss12=mm21.
第一章 第四节 动量守恒定律的应用
第2课时 反冲运动及人船模型
【学习目标】
1.知道反冲运动的原理,会应用动量守恒定律解决有关反冲 运动的问题.
2.知道火箭的原理及其应用.
【内容索引】
梳理教材 夯实基础
探究重点 提升素养
随堂演练 逐点落实
课时 对点练
梳理教材 夯实基础
SHULIJIAOCAI HANGSHIJICHU
返回
随堂演练 逐点落实
SUITANGYANLIAN ZHUDIANLUOSHI
1.(反冲运动的理解)关于反冲运动的说法中,正确的是 A.抛出部分的质量m1要小于剩下部分的质量m2才能获得反冲 B.若抛出部分的质量m1大于剩下部分的质量m2,则m2的反冲力大于m1
所受的力 C.反冲运动中,牛顿第三定律适用,但牛顿第二定律不适用
√C.影响火箭速度大小的因素包括喷气的质量与火箭本身质量之比
D.喷出气流对火箭的冲量与火箭对喷出气流的冲量相同
解析 火箭发射过程中动能和重力势能均增加,则机械能不守恒,A错误; 设喷出气流质量为 m,火箭质量为 M,则根据动量守恒定律有 mv=Mv′, 解得 v′=Mmv,故影响火箭速度大小的因素是喷气速度和质量比,B 错误, C 正确;
动量守恒定律的应用人船模型
解:取人和气球为对象,系统开 始静止且同时开始运动,人下到 L 地面时,人相对地的位移为h, 设气球对地位移L,则根据推论 有 ML = mh H m L h h 得: M 因此绳的长度至少为H
地面
( M m) H Lh h M
例3、劈和物块
一个质量为M,底 面边长为 b 的劈静止 在光滑的水平面上, 见左图,有一质量为 m 的物块(可视为质点) 由斜面顶部无初速滑 到底部时,劈移动的 距离是多少?
m M
s1
b
s2
解:由推论知:mS1=MS2 而 S1+S2=b ∴ S2=mb/(M+m)
① ②
练习 一质量为M的船,静止于湖水中,船身
长为L,船的两端分别站立质量为和的人, 且m1>m2。当两人交换位置后,船的位移 是多少? 解析:设想把质量大的人看成两个人,其中一个人 的质量也为m2,则另一个人的质量为m=m1-m2,显 然当两个质量为的人互换位置后,船在原地不动。 由此题便可将本题转化为上题的物理模型。 设:船对地移动的距离为s1,质量为(m1-m2) 的人对地移动的距离为s2,则根据“人船模型”有: (M+2m2)s1=(m1_m2)s2 ① . s1+s2=L ② . . ∴ S =(m _m )L/(M+m +m )
则 ∴ ms1=Ms2
. _Ms /t 0=ms1/t 2
平均动量守恒的特点
1. 若系统在全过程中动量守恒(包括单 方向动量守恒),则这一系统在全过 程中平均动量也必定守恒。 2. 如果系统是由两个物体组成,且相 互作用前均静止,相互作用后均发 生运动, 则0=m1v1m2v2 (v1、v2是平 均速度大小)
再 见
高考经典物理模型:人船模型(一)
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:m v=Mu由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小uν和也应满足相似的关系,即mν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该m系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
物理建模系列(十) 人船模型问题
物理建模系列(十) 人船模型问题1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键:(1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m 1v 1-m 2v 2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0.(2)画出各物体的位移关系图,找出它们相对地面的位移的关系.4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题.例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少?【思路点拨】【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,根据动量守恒得m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系,由图还可看出: x 1+x 2=L ③联立②③两式得⎩⎨⎧x 1=M M +mLx 2=mM +m L【答案】M M +m L mM +mL[高考真题]1.(2017·课标卷Ⅰ,14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【解析】 由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒.燃气的动量p 1=m v =0.05×600 kg·m/s =30 kg·m/s , 则火箭的动量p 2=p 1=30 kg·m/s ,选项A 正确. 【答案】 A2.(2017·课标卷Ⅲ,20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零【解析】 A 对:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s.B 对:t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s.C 错:物块在2~4 s 内做匀减速直线运动,加速度的大小a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1)m/s =1.5 m/s ,动量大小p 3=m v 3=3 kg·m/s.D 错:t =4 s 时物块的速度v 4=v 2-a 2t 4=(2-0.5×2)m/s =1 m/s. 【答案】 AB3.(2017·天津卷,4)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点时,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变【解析】 A 错:摩天轮转动过程中,乘客的动能不变,重力势能不断变化,故乘客的机械能不断变化.B 对:乘客在最高点时,具有向下的加速度,处于失重状态.C 错:根据I =Ft 知,重力的冲量不为0.D 错:根据P =mg v cos θ,θ为力方向与速度方向之间的夹角,摩天轮转动过程中,θ不断变化,重力的瞬时功率不断变化.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)如图所示,曲线是某质点只在一恒力作用下的部分运动轨迹.质点从M点出发经P点到达N点,已知质点从M点到P点的路程大于从P点到N点的路程,质点由M点运动到P点与由P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在M、N间的运动不是匀变速运动C.质点在这两段时间内的动量变化量大小相等,方向相同D.质点在这两段时间内的动量变化量大小不相等,但方向相同【解析】质点在恒力作用下从M到N的过程速度减小,确定是匀变速运动,故A、B均错;由动量定理F·Δt=Δp可知,质点在这两段时间内动量变化量大小相等,方向相同,C对,D错.【答案】 C5.(2018·山东烟台高三上学期期中)A、B两物体的质量之比m A∶m B=2∶1,它们以相同的初速度v0在水平面上在摩擦阻力的作用下做匀减速直线运动,直到停止.则在此过程中,A、B两物体所受摩擦力的冲量之比I A∶I B与A、B两物体克服摩擦力做的功之比W A∶W B分别为()A.4∶12∶1 B.2∶14∶1C.2∶12∶1 D.1∶21∶4【解析】由动量定理可知I=m v,再由动能和动量的关系可知,E k=I22m,所以W A∶W B=(I A∶I B)2·(m B∶m A)=2∶1,故C正确.【答案】 C6.(2018·山东潍坊高三上学期期中)质量为m的子弹,以水平速度v0射入静止在光滑水平面上质量为M的木块,并留在其中.在子弹进入木块过程中,下列说法正确的是() A.子弹动能减少量等于木块动能增加量B.子弹动量减少量等于木块动量增加量C.子弹动能减少量等于子弹和木块内能增加量D.子弹对木块的冲量大于木块对子弹的冲量【解析】子弹动能的减少量一部分转化为系统内能,一部分转化为木块动能,A、C 均错;由动量守恒可知,子弹动量减少量等于木块动量的增加量,B对;力的作用是相互的,故子弹对木块的冲量等于木块对子弹的冲量,D 错.【答案】 B课时作业(十八) [基础小题练]1.如图所示,质量为m 的物体(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在B 点需给物体的瞬时冲量最小应是( )A .2m ghB .m gh C.m gh 2D .4m gh【解析】 物体从A 到B 的过程,根据动能定理,有mgh -W f =0,物体从B 返回A 的过程,根据动能定理,有-mgh -W f =0-12m v 2,联立解得v =2gh ,在B 点需给物体的瞬时冲量等于动量的增加量,故I =m v =2m gh ,故A 正确,B 、C 、D 错误.【答案】 A2.下列四幅图所反映的物理过程中,系统动量守恒的是( )【解析】 A 中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B 中在弹簧恢复原长过程中,系统在水平方向始终受到墙的作用力,系统动量不守恒;C 中剪断细线后,以整体为研究对象,木球与铁球的系统所受合外力为零,系统动量守恒;D 中木块下滑过程中,斜面始终受挡板作用力,系统动量不守恒.【答案】 AC3.(2018·山东潍坊高三上学期期中)在光滑水平地面上有两个完全相同的弹性小球a 、b ,质量均为m .现b 球静止,a 球向b 球运动,发生弹性正碰.当碰撞过程中达到最大弹性势能E p 时,a 球的速度等于( )A. E pm B . E p2m C .2E p mD .22E pm【解析】 设碰前a 球速度为v 0,弹性势能最大时刻即为两球共速之时,设共同速度为v ,则由动量守恒和能量守恒得:m v 0=(m +m )v ① 12m v 20=12(m +m )v 2+E p ② 由①②两式解得v = E pm,故A 正确. 【答案】 A4.在光滑的水平面上,有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【解析】 由动量守恒定律得m a v a =m a v a ′+m b v b ′,由于v a ′<0,则b 球获得的动量大于a 球最初的动量.若m a =m b ,则两球交换速度,与图象不符;由E k =p 22m 知,若m a>m b ,则b 球的动能将会大于a 球最初的动能,违背能量守恒定律,则必然满足m a <m b .【答案】 B5.小船相对于静止的湖水以速度v 向东航行.某人将船上两个质量相同的沙袋,以相对于湖水相同的速率v 先后从船上水平向东、向西抛出船外.那么当两个沙袋都被抛出后,小船的速度将( )A .仍为vB .大于vC .小于vD .可能反向【解析】 以两沙袋和船为系统,抛沙袋的过程系统满足动量守恒定律的条件,即(M +2m )v =m v -m v +M v ′,解得v ′=M +2mMv >v ,故B 正确.【答案】 B6.如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M =4 kg.质量m =2 kg 的小铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好到达木板的左端并与木板保持相对静止.在上述过程中弹簧具有的最大弹性势能为( )A .9 JB .12 JC .3 JD .24 J【解析】 当弹簧压缩至最短时,E p 最大,m v 0=(M +m )v ,v =2 m/s ,全程摩擦力做功W f =12m v 20-12(M +m )v 2=24 J ,E p =12m v 20-12(M +m )v 2-W f2=12 J. 【答案】 B[创新导向练]7.动量定理的实际应用——打篮球时的传球技巧篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量【解析】 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确. 【答案】 B8.动量守恒定律在航天科技中的实际应用一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A.v 2-v 0v 1MB .v 2v 2+v 1MC.v 2-v 0v 2+v 1M D .v 2-v 0v 2-v 1M【解析】 规定航天器的速度方向为正方向,由动量守恒定律可得M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故C 正确.【答案】 C9.应用动量守恒定律分析碰撞中的实际问题某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16【解析】 根据s -t 图象的斜率等于速度,可知碰前滑块Ⅰ的速度v 1=-2 m/s ,滑块Ⅱ的速度v 2=0.8 m/s ,则碰前速度大小之比为5∶2,故A 错误;碰撞前后系统动量守恒,碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前总动量也为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,故B 错误;碰撞后的共同速度为v =0.4 m/s ,根据动量守恒定律,有m 1v 1+m 2v 2=(m 1+m 2)v ,解得m 2=6m 1,由动能的表达式可知,12m 1v 21>12m 2v 22,故C 错误,D 正确.【答案】 D10.应用动量定理分析安全带受力问题质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来.已知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .600 NC .1 100 ND .100 N【解析】 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s.受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-m v ),则F =m vt+mg =1 100 N ,C 正确.【答案】 C[综合提升练]11.(2018·山东潍坊高三上学期期中)如图所示,质量为M 的轨道由上表面粗糙的水平轨道和竖直平面内的半径为R 的14光滑圆弧轨道紧密连接组成,置于光滑水平面上.一质量为m 的小物块以水平初速度v 0由左端滑上轨道,恰能到达圆弧轨道最高点.已知M ∶m =3∶1,物块与水平轨道之间的动摩擦因数为μ.求:(1)小物块到达圆弧轨道最高点时的速度; (2)水平轨道的长度.【解析】 设小物块到达圆弧轨道最高点时速度为v 1(1)从小物块滑上轨道到到达最高点的过程中,由动量守恒定律得m v 0=(M +m )v 1① 联立解得:v 1=14v 0.②(2)由能量守恒定律得:μmgL +mgR +12(m +M )v 21=12m v 20③ 由②③联立得:L =3v 208μg -R μ.④【答案】 (1)14v 0 (2)3v 208μg -R μ12.(2018·山东淄博一中高三上学期期中)如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的14固定圆弧轨道,两轨道恰好相切于B 点.质量为M 的小木块静止在O 点,一颗质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C (木块和子弹均看作质点).(1)求子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有一颗相同的子弹射入小木块,并留在其中,则当第17颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【解析】 (1)由子弹射入木块过程动量守恒有m v 0=(m +M )v 1 木块和子弹滑到点C 处的过程中机械能守恒,有 12(m +M )v 21=(m +M )gR 联立两式解得 v 0=M +m m2gR .(2)以后当偶数子弹射中木块时,木块与子弹恰好静止,奇数子弹射中木块时,向右运动.第17颗子弹射中时,由动量守恒定律可知 (M +17m )v =m v 0射入17颗子弹后的木块滑到最高点的过程中机械能守恒,有 12(M +17m )v 2=(M +17m )gH 由以上两式解得 H =(M +m )2(M +17m )2R .【答案】 (1)M +m m 2gR (2)(M +m )2(M +17m )2R。
浅析“人船模型”在动量守恒中的应用
浅析“人船模型”在动量守恒中的应用作者:钱志华来源:《中学物理·高中》2015年第12期动量守恒定律是自然界中最基本的守恒规律之一。
在高中物理的教学过程中,“人船模型”及其应用是动量守恒定律的典例。
应用该模型分析问题,涉及到参考系的选取、研究过程的选取与分析、研究对象的选取与转移等诸多方面,这就对学生分析问题、解决问题的能力提出了较高要求。
本文在简述“人船模型”的基础上,对其具体应用进行了分类讨论,并从中归纳总结出解决相应问题的一些思路和方法,籍此与同行交流探讨。
“水平方向上的人船模型”:在平静的水面上,人和船均处于静止状态,人的质量为m1,船的质量为m2。
如图1所示。
人从船的右端向船的左端运动,不计水的阻力。
设人开始走动后的任一时刻,人的速度为v1,船的速度为v2,以向左为正方向。
对人和船组成的系统由动量守恒定律[JZ]0=m1v1-m2v2,即[JZ]m1v1=m2v2,由上式可知,由于人和船之间的相互作用,故有人动船动,人停船停,人快船快,人慢船慢;人左船右,[TP12GW129。
TIF,Y#]人右船左。
设船长为l,在人从船的右端走到左端的时间t内,人发生的对地位移为x1,船发生的对地位移为x2,如图1所示。
已知[JZ]m1v1=m2v2,在任一微小时间Δt内,上式可以表示为[JZ]m1v1·Δt=m2v2·Δt,上式两边同时对时间t求和,即有[JZ]m1∑[DD(X]t[DD)]v1·Δt=m2∑[DD(X]t[DD)]v2·Δt,也即 m1x1=m2x2(1)同时由图1可知 x1+x2=l(2)由(1)、(2)式可得[JZ]x1=[SX(]m2[]m1+m2[SX)]l,x2=[SX(]m1[]m1+m2[SX)]l。
下面将通过具体实例来展示该模型在解决和处理问题中的实际应用。
需要说明的是,下述示例中的“人”或者“船”不一定是我们上述的实际意义上的人或者船,而是泛指与上述“人船模型”中“人”或者“船”具有相同运动性质或受力性质的研究对象。
人船模型(教案)
人船模型(教案)第一篇:人船模型(教案)动量守恒定律应用----“人船模型”【学习目标】1.知道“人船模型”指什么,知道“人船模型”的实质是反冲运动。
2.能用动量守恒定律分析解决“人船模型”问题。
【重点难点】1、“人船模型”的基本原理。
2、动量守恒定律应用。
【学法指导】“人船模型”不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.利用“人船模型”及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷,有时甚至一眼就看出结果来了.通过本节学习,能比较容易的解决这类问题。
课前预习复习动量守恒定律(1)内容:(2)常用的表达形式(3)常见守恒形式及成立条件新课学习一、想一想1、如图1所示,长为L、质量为M的船停在静水中,一个质量为m的人立在船头,若不计水的阻力,在人从船头走到船尾的过程中,小船相对于湖面移动的距离是多少?2、如图所示,质量为M=200kg,长为b=10m的平板车静止在光滑的水平面上,车上有一个质量为m=50kg的人,人由静止开始从平板车左端走到右端,求此过程中,车相对地面的位移大小?二、试一试1、若将此题中的人换成相同质量,长度为a= 2米的小车(如图所示),结果又如何?2、如图所示,质量均为M的甲、乙两车静止在光滑的水平地面上,两车相距为L,乙车上站立一个质量为m的人,他通过一条轻绳拉甲车,甲乙两车最后相接触,下列说法中错误的是()A、该过程中甲、乙两车移动的距离之比为B、该过程中甲、乙两车移动的速度之比为C、该过程中甲车移动的距离为D、该过程中乙车移动的距离为三、做一做1、载人气球原来静止在空中(如图所示),质量为M,下面拖一条质量不计的软梯,质量为m的人(可视为质点)站在软梯上端距地面高度为H,若人要沿轻绳梯返回地面,则绳梯的长度L至少为多长?2、一个质量为M,底面边长为b 的劈静止在光滑的水平面上,见左图,有一质量为m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是S2多少?3、如图所示,一滑块B静止在光滑水平面上,其上一部分为半径是R的1/4光滑圆轨道,此滑块总质量为m2,一个质量为m1的小球A(可视为质点)由静止从最高点释放,当小球从最低点水平飞出时,小球和滑块对地的位移S1,S2分别为多大?4、如图所示,质量为3m,半径为R的大空心球B(内壁光滑)静止在光滑水平面上,有一质量为m 的小球A(可视为质点)从与大球球心等高处开始无初速下滑,滚到另一侧相同高度时,大球移动的距离为()A、RB、R/2C、R/3D、R/4四、人船模型总结1、判断构成相互作用的系统是否动量守恒,或是在某一方向上动量守恒。
高考物理难点解读:动量守恒在“人船模型”中的应用
难点46动量守恒在“人船模型”(反冲问题)中的应用’ 1.“反冲”模型
该模型本属于一个整体,但由于内部作用而分裂成几部分,出现各部分运动方向相反的情境,例如:人船模型等.
2.人船模型
(1)两个物体组成的系统,相互作用前均静止,物体发生相互作用时,若所受外力的矢量和为零,动量守恒.若人在船上加速行进,则船也要加速后退;若人在船上突然停下来,由于总动量为零,所以船同时也停下来;即人走船走、人停船停.
(2)在相互作用的过程中,任一时刻两物体的速度大小之比等于其质量的反比;任一段时间内,两个物体通过的对地位移大小之比也等于质量的反比,即MsM= msm.
“人船模型”结论的适用条件:
(1)相互作用的两个物体组成的系统动量守恒或某一方向动量守恒.
(2)原来两物体都处于静止状态.
另外,在解题时还必须正确找出位移间的关系,
碰撞有三种典型模型:完全弹性碰撞、非完全弹性碰撞、完全非弹性碰撞.此题
所述过程涉及完全弹性碰撞和完全非弹性碰撞,请用心体会它们的特点.。
专题38 在四种常见模型中应用动量守恒定律-2025版高三物理一轮复习多维度导学与分层专练
2025届高三物理一轮复习多维度导学与分层专练专题38在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v船t=m 人v 人t,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:m =m +m x L船人人船;m =m +m x L人船人船3.类人船模型类型一类型二类型三类型四类型五【例1】西晋史学家陈寿在《三国志》中记载:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣。
”这就是著名的曹冲称象的故事。
某同学欲挑战曹冲,利用卷尺测定大船的质量。
该同学利用卷尺测出船长为L ,然后慢速进入静止的平行于河岸的船的船头,再从船头行走至船尾,之后,慢速下船,测出船后退的距离d 与自身的质量m ,若忽略一切阻力,则船的质量为()A .L m dB .L dm L-C .L dm L+D .L dm d-【答案】D【详解】画出如图所示的草图设人走动时船的速度大小为v ,人的速度大小为v ′,船的质量为M ,人从船尾走到船头所用时间为t 。
则d v t =,L d v t'-=人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得0Mv mv -'=解得船的质量()m L d M d-=故选D 。
【例2】如图所示,质量为M 的小车静止在光滑的水平面上,小车AB 段是半径为R 的四分之一光滑圆弧轨道,BC 段是水平粗糙轨道,两段轨道相切于B 点。
高三物理人船模型用动量守恒处理问题
咐呼州鸣咏市呢岸学校人船模型用动量守恒处理问题动量守恒律的要点:1。
矢量表达式:m1v1+m2v2=m1v1/+m2v2/2。
条件:⑴系统不受合外力或系统所受合外力为零。
⑵系统在某一方向合外力为零,那么该方向动量守恒⑶系统内力远大于外力〔如爆炸过程中的重力、碰撞过程中的摩擦力〕3、各物体的速度取地为参考系4、系统在一维空间相互作用,规正方向,以确每个动量的正、负。
假设待求量的方向未知,直接代入该量的符号,所求结果为正值,那么该量的方向与规方向相同,所求结果为负值,那么该量的方向与规方向相反。
用平均动量守恒处理问题的方法假设系统在全过程中动量守恒〔包括单方向动量守恒〕,那么这一系统在全过程中的平均动量也必守恒。
如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,那么由 0=m1v1-m2v2〔其中v1、v2是平均速度〕得推论:m1s1=m2s2,使用时明确s1、s2必须是相对同一参照物体的大小。
人船模型在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的人,开始时人和船都静止。
假设人匀速从船尾走到船头,不计水的阻力。
那么船将〔〕〔A〕后退0.5m 〔B〕后退0.6m〔C〕后退0.75m 〔D〕一直匀速后退在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的人,开始时人和船都静止。
假设人匀速从船尾走到船头,不计水的阻力。
那么船将〔 A 〕〔A〕后退0.5m 〔B〕后退0.6m 〔C〕后退0.75m 〔D〕一直匀速后退分析与解:取人和小船为对象,它们所受合外力为零,初动量 m人v人+m船v船=0 〔均静止〕根据动量守恒律 m人v人+m船v船= m人v/人+m船v/船取人的走向为正方向 0= m人v/人- m船v/船设走完时间为t 那么0= m人v/人t - m船v/船tm人S人=m船S船注意S1、s2均为相对地的位移60×〔3-S船〕=300×S船S船=0.5mS船S人=L-S船人船模型的综合发散一、人船模型〔水平方向〕二、劈和物块〔水平方向〕三、气球和人〔竖直方向〕劈和物块一个质量为M,底面边长为 b 的劈静止在光滑的水平面上,见左图,有一质量为 m 的物块由斜面顶部无初2,要沿轻绳梯返回地面,那么绳梯的长度至少为多长?解:取人和气球为对象,系统开始静止且同时开始运动,人下到地面时,人相对地的位移为h,设气球对地位移L,那么根据推论有ML=mh 得L =M m h 因此绳的长度至少为L+h=Mh m M )( 小结用平均动量守恒解题的要点 如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,那么1、表达式 0=m 1v 1-m 2v 2〔其中v 1、v 2是平均速度〕2、推论: m 1s 1=m 2s 2 3、使用时明确v 1、 v 2 、s 1、s 2必须是相对同一参照物体的大小。
人船模型
人船模型1.若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。
在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。
如果系统是由两(或多)个物体组成的,合外力为零,且相互作用前均静止。
相互作用后运动,则由0=m 11v +m 22v 得推论0=m 1s 1+m 2s 2,但使用时要明确s 1、s 2必须是相对地面的位移。
2、人船模型的应用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零.(1)一人一船模型:例1、如图所示,长为L 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?(2)二人一船模型例2、如图所示,a 、b 两人质量分别为a m 和b m ,船c 的质量为c m ,船长为L ,现在a 、b 交换位置,求船c 在该过程的位移?练习1、载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长?练习2、如图所示,一质量为m l 的半圆槽体A ,A 槽内外皆光滑,将A 置于光滑水平面上,槽半径为R.现有一质量为m 2的光滑小球B 由静止沿槽顶滑下,设A 和B 均为弹性体,且不计空气阻力,求槽体A 向一侧滑动的最大距离.练习3、某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n 颗子弹,每颗子弹的质量为m ,枪口到靶的距离为L ,子弹水平射出枪口相对于地的速度为v 0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n 颗子弹时,小船后退的距离为()()()0;;;11mnl nml mnl A B C D M n m M nm M n m⋅⋅⋅⋅+-+++ 4、如图所示,质量M =2kg 的滑块套在光滑的水平轨道上,质量m =1kg 的小球通过长L =0.5m 的轻质细杆与滑块上的光滑轴O 连接,小球和轻杆可在竖直平面内绕O 轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度V 0=4 m/s ,g 取10m/s 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人船模型应用动量守恒处理问题
动量守恒定律的要点:
1。
矢量表达式:m1v1+m2v2=m1v1/+m2v2/
2。
条件:⑴系统不受合外力或系统所受合外力为零。
⑵系统在某一方向合外力为零,则该方向动量守恒
⑶系统内力远大于外力(如爆炸过程中的重力、碰撞过程中的摩擦力等)
3、各物体的速度应取地为参考系
4、系统在一维空间相互作用,应规定正方向,以确定每个动量的正、负。
若待求量的方向未知,直接代入该量的符号,所求结果为正值,则该量的方向与规定方向相同,所求结果为负值,则该量的方向与规定方向相反。
应用平均动量守恒处理问题的方法
若系统在全过程中动量守恒(包括单方向动量守恒),则这一系统在全过程中的平均动量也必定守恒。
如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则
由0=m1v1-m2v2(其中v1、v2是平均速度)
得推论:m1s1=m2s2,使用时应明确s1、s2必须是相对同一参照物体的大小。
人船模型
在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的
人,开始时人和船都静止。
若人匀速从船尾走到船头,不计水的阻力。
则船将()(A)后退0.5m (B)后退0.6m
(C)后退0.75m (D)一直匀速后退
在静水上浮着一只长为L=3m、质量为m船=300kg的小船,船尾站着一质量m人=60kg的人,开始时人和船都静止。
若人匀速从船尾走到船头,不计水的阻力。
则船将( A )(A)后退0.5m (B)后退0.6m (C)后退0.75m (D)一直匀速后退
分析与解:取人和小船为对象,它们所受合外力为零,初动量m人v人+m船v船=0 (均静止)
根据动量守恒定律m人v人+m船v船= m人v/人+m船v/船
取人的走向为正方向0= m人v/人- m船v/船
设走完时间为t 则0= m人v/人t - m船v/船t
m人S人=m船S船
注意S1、s2均为相对地的位移60×(3-S船)=300×S船S船=0.5m
S船S人=L-S船
人船模型的综合发散
一、人船模型(水平方向)二、劈和物块(水平方向)三、气球和人(竖直方向)
劈和物块
一个质量为M,底面边长为 b 的劈静止在光滑的水平面上,见左图,有一质量为 m 的物块由斜面顶部无初速滑到底部时,劈移动的距离是多少?
m
S1S2
b
分析和解答:劈和小球组成的系统水平方向不受外力,故水平方向动量守恒,且初始时两物均静止,故由推论知ms1=Ms2,其中s1和s2是m和M 对地的位移,由上图很容易看
出:s 1=b-s 2代入上式得,m(b-s 2)=Ms 2, 所以 s 2=mb/(M+m)即为M 发生的位移。
可见,处理此类题,除熟记推论外,关键是画草图,确定位移关系。
气球和人
载人气球原来静止在空中,与地面距离为h ,已知人的质量为m ,气球质量(不含人的质量)为M 。
若人要沿轻绳梯返回地面,则绳梯的长度至少为多长?
解:取人和气球为对象,系统开始静止且同时开始运动,人下到地面时,人相对地的位移为h ,设气球对地位移L ,则根据推论有
ML=mh
得L = M m h 因此绳的长度至少为L+h=M
h m M )(
小结
应用平均动量守恒解题的要点
如果系统是由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则1、表达式0=m1v1-m2v2(其中v1、v2是平均速度)
2、推论:m1s1=m2s2
3、使用时应明确v1、v2、s1、s2必须是相对同一参照物体的大小。