线性系统的时域分析方法
线性系统的时域分析法
1
即 100Kh
0.1
3,
得
K h 0.3
• 解题关键:化闭环传递函数为标准形式。
30
3-3 二阶系统的时域分析
• 本节主要内容:
• • 二阶系统的数学模型 • • 二阶系统的单位阶跃响应 • • 欠阻尼二阶系统的动态过程分析 • • 过阻尼二阶系统的动态过程分析 • • 二阶系统性能的改善
33
3-3–2 二阶系统的单位阶跃响应
- ξ>ζ 1>1
S1,2=
ξω ω√ ±j 1
1
n T2
T1
n ξ2
-
1ζ
=1
0
jj 00
= - hξ=(t)1
t
t
+ + 1 e = 过TTS阻211,尼21T1
ξωTe1 n=T12 -ωn T2
h(t)= 1临-(1界+阻ω尼nt)0je-ωnt
0<0<ξ<ζ 1<1 S1,2= -ξ ωn ±jj ωn√1-ξζ2 =0
来 一阶系统的参数与标准式的参数之间有 • 着对的应0.1的倍,关且保系证。原放求大出倍数标不准变,形试式确定的参动数 态Ko 和性K能H 的指取值。
标与其参数间的关系,便可求得任何一阶系 统的性能指标。
10KO
10KO
(s) KOG(S) 0.2s 1 1 K HG(s) 1 10K H
11
性能指标图解
超调量σp
延迟时
间td
上升时
间tr
峰值时
间tp
调整时
间ts
12
其它性能指标
• 振荡次数N:在0≤t≤ts时间内,过渡过程c(t) 穿越其稳态值c(∞)次数的一半。
自动控制原理-线性系统的时域分析----典型环节的时域响应
四、线路示图
模拟电路构成:如图2. 1-2 所示。
系统的开环增益为K=500KΩ/R,开环传递函数为:
五、内容步骤
1.绘制根轨迹图:实验前根据对象传函画出对象的根轨迹图,对其稳定性及暂态性能做出理论上的判断。并确定各种状态下系统开环增益K 的取值及相应的电阻值R 。
六、数据处理
1、根轨迹图,如图2.1-3所示:
2、按模拟电路图2.1-2 接线并对每个
环节整定后,用示波器观察输入端与输出端
的时域响应曲线:
(1)调节R值,当系统等幅振荡时(如图
2.1-4所示),测得R的值为157.6kΩ,此时系统达临界稳定。
(2)调节R值,当R小于157.6kΩ时,系统发散的振荡,不稳定(如图2.1-5所示,R=135kΩ)。
3 .按模拟电路图2.1-2 接线,并且要求对系统每个环节进行整定;将2中的方波信号加至输入端。
4 .改变对象的开环增益,即改变电阻R 的值,用示波器的“CH1”和“CH2”表笔分别测量输入端和输出端,观察对象的时域响应曲线,应该和理论分析吻合。
注意:此次实验中对象须严格整定,否则可能会导致和理论值相差较大。
实 验 报 告
实验名称线性系统的时域分析----典型环节的时域响应
系
专业
班
姓名
学号
授课老师
预定时间
实验时间
实验台号
一、目的要求
1、根据对象的开环传函,做出根轨迹图。
2、掌握用根轨迹法分析系统的稳定性。
3、通过实际实验,来验证根轨迹方法。
二、原理简述
实验对象的结构框图:如图2. 1-1 所示。
三、仪器设备
线性系统的时域分析法
得:
=1-
e-ζ ωnt
1-ζ 2
[sinβ
cosω d t+cosβ
sinω dt]
稳态分量
=1-
e-ζ ωnt
1-ζ 2
sin(ω
d
t+β
)
瞬态分量
第三节 二阶系统的时域分析
2. ζ=0 无/零阻尼 s1.2 =ζ- ω n±ω n ζ 2 -1
C注(意s)=:(sd2+=2ζωnωnn2s2+-ω1n2
状态到最终状态的响应过程。
(2)稳态过程 系统在典型信号输入下,当时间t趋于无穷时,
系统输出量的表现方式。
第一节 系统时间响应的性能指标
四、动态性能与稳态性能 (1)动态性能
定义:稳定的系统在单位阶跃函数作用下,动 态过程随时间t的变化状况的指标。
动态性能指标如下图:
第一节 系统时间响应的性能指标
)
•
1 s
=±ωj n
当= (s2ω+dωn2n2 )1• s1n
=
d
将s1 -不(s复2+存ωs n在2 )
单位阶跃响应曲线 c(t) ζ=0
单位阶跃响应: 1
c(t)=1-cosω nt
0
t
无阻尼振荡频率
第三节 二阶系统的时域分析
3.ζ=1 临界阻尼 s1.2 =ζ- ω n±ω n ζ 2 -1=-ωn
f
(
t
)
=
t
.
1(
t
)
=
t
0
t 0 t<0
其拉氏变换为:
L[ f ( t )] = F ( s ) = t
0
第3章 线性系统的时域分析与校正
第3章线性系统的时域分析与校正3.1 概述系统的数学模型建立后,便可对系统进行分析和校正。
分析和校正是自动控制原理课程的两大任务。
系统分析是由已知的系统模型确定系统的性能指标;校正是根据需要在系统中加入一些机构和装置并确定相应的参数,用以改善系统性能,使其满足所要求的性能指标。
系统分析的目的在于“认识”系统,系统校正的目的在于“改造”系统。
系统的分析校正方法一般有时域法、根轨迹法和频域法,本章介绍时域法。
3.1.1 时域法的作用和特点时域法是一种直接在时间域中对系统进行分析校正的方法,具有直观,准确的优点,它可以提供系统时间响应的全部信息,但在研究系统参数改变引起系统性能指标变化的趋势这一类问题,以及对系统进行校正设计时,时域法不是非常方便。
时域法是最基本的分析方法,该方法引出的概念、方法和结论是以后学习复域法、频域法等其他方法的基础。
3.1.2 时域法常用的典型输入信号要确定系统性能的优劣,就要在同样的输入条件激励下比较系统的行为。
为了在符合实际情况的基础上便于实现和分析计算,时域分析法中一般采用如表3-1中的典型输入信号。
3.1.3 系统的时域性能指标如第一章所述,对控制系统的一般要求归纳为稳、准、快。
工程上为了定量评价系统性能好坏,必须给出控制系统的性能指标的准确定义和定量计算方法。
稳定是控制系统正常运行的基本条件。
系统稳定,其响应过程才能收敛,研究系统的性能(包括动态性能和稳态性能)才有意义。
实际物理系统都存在惯性,输出量的改变是与系统所储有的能量有关的。
系统所储有的能量的改变需要有一个过程。
在外作用激励下系统从一种稳定状态转换到另一种稳定状态需要一定的时间。
一个稳定系统的典型阶跃响应如图3-1所示。
响应过程分为动态过程(也称为过渡过程)和稳态过程,系统的动态性能指标和稳态性能指标就是分别针对这两个阶段定义的。
表3-1 时域分析法中的典型输入信号名称)(tr时域关系时域图形)(sR复域关系例单位脉冲函数⎩⎨⎧≠=∞=)(tttδ⎰=1)(dttδdtd1s⨯撞击作用后坐力电脉冲单位阶跃函数⎩⎨⎧<≥=1)(1ttts1开关输入单位斜坡函数⎩⎨⎧<≤=)(ttttf21s等速跟踪信号单位加速度函数⎪⎩⎪⎨⎧<≥=21)(2ttttf31s1 动态性能系统动态性能是以系统阶跃响应为基础来衡量的。
线性系统的时域分析法二阶系统
04
二阶系统的稳定性分析稳定性定义平衡状态
线性系统在平衡状态下的输出称为平衡状态输出。
稳定性
如果一个系统的平衡状态输出对于所有初始条件和输入都是稳定的,则称该系统是稳定 的。
稳定性判据
劳斯-赫尔维茨判据
数值法
数值法是通过数值计算来求解二阶系 统的方法。它通过将时间轴离散化, 将微分方程转化为差分方程,然后使 用迭代或直接计算的方法求解。
数值法具有简单易行和适用性广的优 点,适用于各种类型的二阶系统。但 是,对于某些特殊类型的系统,数值 法可能存在精度和稳定性问题。
实验法
实验法是通过实际实验来测试二阶系统的方法。它通过在系统中输入激励信号,然后测量系统的输出 响应,从而得到系统的性能参数。
线性系统的时域分析 法二阶系统
目录
CONTENTS
• 线性系统的时域分析法概述 • 二阶系统的基本概念 • 二阶系统的时域分析方法 • 二阶系统的稳定性分析 • 二阶系统的性能指标分析 • 二阶系统的应用实例
01
线性系统的时域分
析法概述
定义与特点
定义
时域分析法是一种通过在时间域 内对系统进行直接分析的方法, 用于研究系统的动态性能和响应 特性。
通过计算系统特征方程的根来判断系统 的稳定性。如果所有根都位于复平面的 左半部分,则系统稳定;如果有根位于 右半部分,则系统不稳定。
VS
Nyquist稳定判据
通过绘制系统的开环传递函数的Nyquist 曲线,判断曲线是否不穿越复平面的右半 部分,从而判断系统的稳定性。
稳定性分析方法
直接法
线性系统的时域分析法
三、动态性Leabharlann 和稳态性能动态性能:通常在阶跃函数作用下,测定或计算系统的动
态性能。一般认为阶跃输入对系统来说是最严峻的工作状态。
描述稳定的系统在阶跃函数作用下,动态过程随时间的
变化状况的指标称为动态性能指标。通常包括:
延迟时间 td :指响应曲线第一次到达稳态值一半所需的时间。
上升时间 tr :指响应第一次 h(t) % 误差带
洛比特法则
lim lim
(s pi )N (s)
(s pi )N (s) N (s) N ( pi )
s pi
D(s)
s pi
D(s)
D( pi )
f (t) L1
F (s)
L1
n i1
Ai s pi
n i 1
Aie pi t
② 具有多重极点的有理函数的反变换
F (s)
误差平方积分(ISE,Integral of Square Error)
ISE e2 (t)dt 0
( e(t)是输入输出之间存在的误差)
时间乘误差平方积分(ITSE,Integral of Timed Square Error)
ITSE te2 (t)dt 0
误差绝对值积分(IAE,Integral of Absoluted Error)
(s a
j)F (s) sa j
N (s) D(s)
sa j
k1
e j
思考:为何 k1,k2 必为共轭复数?
f
(t)
L1 F (s)
L1
s
A1 p1
k1 sa
j
k2 sa
j
A1e p1t
k1e(a j)t
线性系统的时域分析实验报告
线性系统的时域分析实验报告线性系统的时域分析实验报告引言:线性系统是控制理论中的重要概念,它在工程领域中有广泛的应用。
时域分析是研究线性系统的一种方法,通过对系统输入和输出的时域信号进行观察和分析,可以得到系统的动态特性。
本实验旨在通过对线性系统进行时域分析,探究系统的稳定性、阶数和频率响应等特性。
实验一:稳定性分析稳定性是线性系统的基本性质之一,它描述了系统对于不同输入的响应是否趋于有界。
在本实验中,我们选取了一个简单的一阶系统进行稳定性分析。
首先,我们搭建了一个一阶系统,其传递函数为H(s) = 1/(s+1),其中s为复变量。
然后,我们输入了一个单位阶跃信号,观察系统的输出。
实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后稳定在一个有限的值上,没有出现发散的情况。
因此,我们可以判断该系统是稳定的。
实验二:阶数分析阶数是线性系统的另一个重要特性,它描述了系统的动态响应所需的最小延迟时间。
在本实验中,我们选取了一个二阶系统进行阶数分析。
我们搭建了一个二阶系统,其传递函数为H(s) = 1/(s^2+2s+1)。
然后,我们输入了一个正弦信号,观察系统的输出。
实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后才稳定下来。
通过进一步分析,我们发现系统的输出波形具有两个振荡周期,这表明系统是一个二阶系统。
实验三:频率响应分析频率响应是线性系统的另一个重要特性,它描述了系统对于不同频率输入信号的响应情况。
在本实验中,我们选取了一个低通滤波器进行频率响应分析。
我们搭建了一个低通滤波器,其传递函数为H(s) = 1/(s+1),其中s为复变量。
然后,我们输入了一系列不同频率的正弦信号,观察系统的输出。
实验结果显示,随着输入信号频率的增加,系统的输出幅值逐渐减小,表明系统对高频信号有较强的抑制作用。
这一结果与低通滤波器的特性相吻合。
结论:通过以上实验,我们对线性系统的时域分析方法有了更深入的了解。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
线性系统的时域分析法
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 系统时间响应的性能指标1. 典型输入2. 性能指标∙稳→基本要求 ∙准→稳态要求↓ss e :∙快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=s p t h h t h %)()()(%σ§3.2 一阶系统的时域分析设系统结构图如右所示 开环传递函数sK s G =)(闭环传递函数)1(11111)(T Ts T s T Ks K s K s Ks -=+=+=+=+=Φλ:)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c e t c tTTc eT t c tT 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-st T s e t h05.095.011=-=-st T e305.0ln 1-==-s t TT t s 3=∴一阶系统特征根1s T=-分布与时域响应的关系:21110 ()().(). ()s C s s R s h t t s s s∙==Φ===时 11 () ()1()ata s a C s h t e s s a ss a∙===-+=-+--时例1 已知系统结构图如右 其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
11012.0)101(10 1012.01012.010112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s K s K s G K s G K HH HH H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H 例2 已知某单位反馈系统的单位阶跃响应为atet h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
自动控制原理-胡寿松-第三章-线性系统时域分析法
课前提问
3-3 二阶系统的时域分析(非常重点、难点)
二阶系统定义:能够用二阶微分方程描述的系统称为二阶系统。 本节内容
0. 预备知识 1. 二阶系统的数学模型 2. 二阶系统的单位阶跃响应 3. 欠阻尼二阶系统的动态过程分析 4. 过阻尼二阶系统的动态过程分析 5. 二阶系统的单位斜坡响应 6. 二阶系统性能的改善 7. 非零初始条件下二阶系统的响应过程
超调量 % :
显然 h(tp) hmax
若 h(tp) h() 则响应无超调
实际中,常用的动态性能指标
tr
tp
评价系统起始段的响应速度;
ts
评价系统整个过渡过程的响应速度,是响应速度和阻尼程度的综合指标。
%
评价系统的阻尼程度;
思考:稳态误差从图中怎么看?
3-2 一阶系统的时域分析
一阶系统定义:能够用一阶微分方程描述的系统称为一阶系统。
第三章 线性系统的时域分析法
系统的数序模型确定后,便可以用多种不同的方 法去分析控制系统的动态性能和稳态性能。
在经典控制理论中
时域分析的一般思路:
时域分析法 根轨迹法 频域分析法
数数数数
数数数数数数数 求解微分方程
数数数数
数数数数
优点:直接在时间域对系统进行分析,具有直观、准确的 优点,并可以提供系统时间响应的全部信息。
本章内容
▪ 3-1 系统时间响应的性能指标 ▪ 3-2 一阶系统的时域分析 ▪ 3-3 二阶系统的时域分析 ▪ 3-4 高阶系统的时域分析 ▪ 3-5 线性系统的稳定性分析 ▪ 3-6 线性系统的稳态误差计算 ▪ 3-7 控制系统时域设计
自动控制原理_线性系统时域响应分析
自动控制原理_线性系统时域响应分析1.线性系统时域响应概念线性系统是指其输入与输出之间存在线性关系的系统。
时域响应是指系统在时域上对不同输入信号的响应情况。
时域响应可以用系统的微分方程表示,也可以通过系统的冲激响应来表示。
2.常见的线性系统时域响应方法2.1零状态响应零状态响应是指系统在无初始条件下对输入信号的响应。
常用的分析方法有拉氏变换和复频域分析法。
拉氏变换法可以将微分方程转化为代数方程,从而得到系统的传递函数。
复频域分析法通过将时间域信号变换到复频域,进而进行频域分析。
2.2零输入响应零输入响应是指系统在只有初始条件而没有输入信号的情况下的响应。
常用分析方法有状态方程法和拉氏变换法。
状态方程法将系统表示为一组一阶微分方程的形式,通过求解状态方程可以得到系统的零输入响应。
拉氏变换法可以将初始条件转化为代数方程进行求解。
2.3总响应总响应是指系统在有输入信号和初始条件的情况下的响应。
常用分析方法有零输入响应法和零状态响应法。
零输入响应法通过去除输入信号的影响,只考虑系统的初始条件来求解系统的响应。
零状态响应法则相反,通过去除初始条件的影响,只考虑输入信号来求解系统的响应。
最后,将两者相加得到系统的总响应。
3.线性系统时域响应的应用线性系统时域响应的分析方法可以应用于各种实际工程问题中。
例如,可以通过时域响应分析来评估系统的稳定性、性能和抗干扰能力。
此外,时域响应分析也可以用于设计控制器和参数优化。
通过对系统的时域响应进行分析和改进,可以使得系统更加可靠、稳定和高效。
4.总结线性系统时域响应分析是自动控制原理中的重要内容,可以应用于各种实际工程问题中。
本文介绍了线性系统时域响应的概念、方法和应用。
时域响应的分析方法包括零状态响应、零输入响应和总响应分析,分别适用于不同的问题和要求。
了解和掌握线性系统时域响应分析方法对于设计和优化控制系统具有重要意义。
线性系统的时域分析法
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 系统时间响应的性能指标1. 典型输入2. 性能指标•稳→基本要求 •准→稳态要求↓ss e :•快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=sp t h h t h %)()()(%σ§3.2 一阶系统的时域分析设系统结构图如右所示 开环传递函数sK s G =)(闭环传递函数)1(11111)(T Ts Ts T K s K s K s K s -=+=+=+=+=Φλ :)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c e t c t TTc e T t c t T 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-s t Ts et h05.095.011=-=-s t Te305.0ln 1-==-s t TT t s 3=∴一阶系统特征根1s T=-分布与时域响应的关系:21110 ()().(). ()s C s s R s h t t s s s •==Φ===时11() ()1()at a s a C s h t e s s a s s a•===-+=-+--时例1已知系统结构图如右其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
11012.0)101(10 1012.01012.010112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s K s K s G K s G K HH H H H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H 例2已知某单位反馈系统的单位阶跃响应为at e t h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
线性系统时域分析实验报告
线性系统时域分析实验报告1. 实验目的本实验旨在通过对线性系统的时域分析,加深对线性系统特性的理解和掌握。
2. 实验原理线性系统是指满足叠加性和比例性质的系统。
时域分析是通过观察系统对不同输入信号的响应来研究系统的特性。
在本实验中,我们将研究线性时不变系统(LTI)在时域上的特性,包括冲激响应和单位阶跃响应。
3. 实验步骤3.1 实验准备准备如下实验设备和材料:•示波器•函数发生器•电阻、电容等元件•连接线3.2 实验步骤1.搭建线性系统电路。
根据实验要求选择合适的电路结构,包括电阻、电容等元件。
将信号源(函数发生器)连接到输入端,示波器连接到输出端。
2.设置函数发生器和示波器。
根据实验要求,设置函数发生器以产生不同类型的输入信号,如方波、正弦波等。
调整示波器的时间和电压刻度,以便能够清晰地观察到输出信号的变化。
3.测量冲激响应。
将函数发生器的输出设置为冲激信号,并观察示波器上输出信号的变化。
记录下输出信号的波形和参数,如幅度、延迟等。
4.测量单位阶跃响应。
将函数发生器的输出设置为单位阶跃信号,并观察示波器上输出信号的变化。
记录下输出信号的波形和参数,如幅度、上升时间等。
5.分析实验结果。
根据测量的波形和参数,进一步分析线性系统的特性。
比较不同输入信号对输出信号的影响,讨论线性系统的时域特性。
4. 实验结果分析根据实验测量的波形和参数,我们可以得出以下结论:1.冲激响应:冲激响应是指系统对一个冲激信号的响应。
通过观察冲激响应的波形,我们可以了解系统的频率响应特性。
例如,当系统为低通滤波器时,冲激响应的幅度在低频时较大,在高频时逐渐减小。
2.单位阶跃响应:单位阶跃响应是指系统对一个单位阶跃信号的响应。
通过观察单位阶跃响应的波形,我们可以了解系统的稳定性和响应速度。
例如,当系统为一阶惯性系统时,单位阶跃响应的上升时间较长,而当系统为二阶系统时,单位阶跃响应的上升时间较短。
5. 实验总结通过本实验,我们深入了解了线性系统时域分析的方法和步骤。
线性系统的时域分析实验报告
线性系统的时域分析实验报告《线性系统的时域分析实验报告》在工程和科学领域中,线性系统的时域分析是非常重要的一部分。
通过对系统在时域内的响应进行分析,可以更好地了解系统的性能和特性。
本实验报告将介绍线性系统的时域分析实验,并对实验结果进行详细的分析和讨论。
实验目的:本实验旨在通过对线性系统在时域内的响应进行测量和分析,掌握线性系统的时域特性,包括阶跃响应、脉冲响应和频率响应等,并通过实验数据验证线性系统的性质和特性。
实验装置:1. 线性系统模拟器2. 示波器3. 信号发生器4. 计算机及数据采集卡实验步骤:1. 将线性系统模拟器连接至示波器和信号发生器,并设置合适的参数。
2. 通过信号发生器输入不同的信号波形,如阶跃信号和脉冲信号,观察系统的响应并记录数据。
3. 使用计算机及数据采集卡对系统的频率响应进行测量,并记录实验数据。
4. 对实验数据进行分析和处理,得出系统的时域特性和频率响应曲线。
实验结果:通过实验测量和数据分析,我们得出了线性系统的阶跃响应曲线、脉冲响应曲线和频率响应曲线。
通过对这些曲线的分析,我们可以得出线性系统的时间常数、阻尼比、共振频率等重要参数,进而了解系统的动态特性和稳定性。
实验讨论:在实验中,我们发现线性系统的阶跃响应曲线呈现出指数衰减的特性,脉冲响应曲线表现出系统的冲击响应能力,而频率响应曲线则展现了系统对不同频率信号的传输特性。
通过对这些曲线的分析,我们可以更好地了解系统的性能和特性,为系统的设计和优化提供重要参考。
结论:通过本次实验,我们深入了解了线性系统的时域分析方法和技术,掌握了线性系统的时域特性和频率响应特性的测量和分析方法。
这些知识和技术对于工程和科学领域中的系统设计和控制具有重要的意义,为我们进一步深入研究和应用线性系统提供了重要的基础和支持。
通过本篇文章,我们对线性系统的时域分析实验进行了详细的介绍和分析,希望能够为读者提供有益的信息和启发,对相关领域的研究和实践有所帮助。
线性系统时域分析
线性系统时域分析一、简述线性系统时域分析,简单来说就是研究线性系统在时间变化下的表现。
你可能会觉得,这听起来有点抽象,但其实它在我们日常生活中无处不在。
想象一下你调节家里的水龙头,水流的强弱、温度的变化其实就是一个线性系统在时间上的表现。
这就是我们研究这个领域的初衷——理解现实世界中的变化。
1. 介绍线性系统时域分析的重要性及其应用领域线性系统时域分析,听起来好像很高大上,但其实它在我们生活中无处不在。
你知道吗它就像是给电子世界的“大脑”做体检。
咱们先来聊聊它的重要性吧,想象一下当你用手机播放音乐时,音质是否清晰、流畅,很大程度上就依赖于这背后的线性系统时域分析。
再如汽车的安全系统、家电的控制电路,都需要线性系统来保证稳定可靠的工作状态。
咱们生活中的许多电子设备,离开了线性系统时域分析,可能就无法正常运行了。
那么线性系统时域分析到底应用在哪些领域呢?简单来说凡是涉及到电子信号传输、控制的地方,几乎都有它的身影。
比如通信领域,手机信号、网络信号的传输都离不开它。
还有自动化控制领域,机器的运行、调整都需要线性系统来保证精准控制。
再比如音频处理、图像处理等领域,也需要线性系统来确保信号的完整性和质量。
可以说线性系统时域分析是电子技术中不可或缺的一环,它的影响无处不在,咱们的生活都离不开它呢!2. 概述线性系统时域分析的基本概念和主要任务线性系统时域分析,听起来好像很复杂,但其实它是研究线性系统对输入信号响应的一种方法。
简单来说就是看看系统对输入的反应是怎样的,这里的“时域”,就是时间的领域,我们关心的是随着时间的推移,系统是如何响应的。
那么咱们就一起了解下这个分析的基本概念以及主要任务吧。
首先它的基本概念就是要理解一个线性系统是如何接受输入并产生输出的。
就像是你在给音响输入音乐,音响就会放出声音一样。
这里的音响系统,就是一个线性系统。
我们要探究的是,不同的输入会得到什么样的输出。
接下来主要任务是什么呢?我们要分析线性系统的特性,看看它是如何对不同的输入做出反应的。
自动控制原理-03-01
td
稳态误差(t→∞)
tr tp
t ts
6
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标 延迟时间td:响应曲线第一次达到其 终值一半所需时间。 上升时间tr:响应从终值10%上升到 终值90%所需时间; 对有振荡系统亦可定义为响应从零 第一次上升到终值所需时间。上升时间 是响应速度的度量。
3-2 一阶系统的时域分析
小结
一阶系统的典型响应与时间常数T密 切相关。只要时间常数T小,单位阶跃响 应调节时间小,单位斜坡响应稳态值滞后 时间也小。但一阶系统不能跟踪加速度函 数。 线性系统对输入信号导数的响应,等 于系统对输入信号响应的导数。
17
例: 某一阶系统如图,(1) Kh=0.1, 求调节时间ts, (2)若要求ts=0.1s,求反馈系数 Kh . R(s) E(s) (- )
ur (t )
C
uc (t )
结构图 :
R(s)
E(s) (- )
1/Ts
C(s)
10
3-2 一阶系统的时域分析
2. 一阶系统的单位阶跃响应
设一阶系统的输入信号为单位阶跃函数 r(t)=1(t) ,可得一阶系统的单位阶跃响应为
h(t ) 1 e
S平面 j
1 t T
(t 0)
P=-1/T
7
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标
峰值时间tp:响应超过其终值到达第一个峰 值所需时间。 调节时间ts:响应到达并保持在终值 ±5% 内 所需时间。 超调量%:响应的最大偏离量h(tp)与终值 h(∞)之差的百分比,即
%
h( t p ) h() h()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章线性系统的时域分析方法教学目的:通过本章学习,熟悉控制系统动态性能指标定义,掌握线性系统稳定的充要条件和劳斯判椐的应用,以及稳态误差计算方法,掌握一阶、二阶系统的时域分析方法。
教学重点:掌握系统的动态性能指标,能熟练地应用劳斯判椐判断系统稳定性,二阶系统的动态响应特性分析。
教学难点:高阶系统的的动态响应特性分析。
本章知识结构图:系统结构图闭环传递函数一阶标准式二阶标准式特征方程稳定性、稳定域代数判据误差传递函数误差象函数终值定理稳态误差开环传递函数系统型别、开环增益公式静态误差系数第九讲3.1 系统时间响应的性能指标 一、基本概念1、时域分析方法:根据系统的数学模型求出系统的时间响应来直接分析和评价系统的方法。
(1)响应函数分析方法:建立数学模型→确定输入信号→求出输出响应→ 根据输出响应→系统分析。
(2)系统测试分析方法:系统加入扰动信号→测试输出变化曲线→系统分析。
系统举例分析:举例:原料气加热炉闭环控制系统 2、分析系统的三大要点(1)动态性能(快、稳) (2)稳态性能(准) (3)稳定性(稳) 二、动态性能及稳态性能1、动态过程(过渡过程):在典型信号作用下,系统输出从初始状态到最终状态的响应过程。
(衰减、发散、等幅振荡)2、稳态过程:在典型信号作用下,当t → ∞ 系统输出量表现的方式。
表征输出量最终复现输入量的程度。
(稳态误差描述)3、动态稳态性能指标图3-1温度控制系统原理图(1)上升时间tr :从稳态值的10%上升到稳态值的90%所需要的时间。
(2)峰值时间tp :从零时刻到达第一个峰值h(tp)所用的时间。
(3)超调量δ%:最大峰值与稳态值的差与稳态值之比的百分数。
(稳)(3-1)%100)(()(%⨯∞∞-=h h t h p )δ(4)调节时间ts :输出响应到达并保持在稳态值h(∞)±5%误差带内所用的最短时间。
(快)(5)稳态误差ess :若时间t - ∞,系统理想输出值与实际输出值的偏差,即ess=输出理想值-实际输出值。
(准) 3.2 线性系统的稳定性分析 一、稳定性的概念1、稳定性:任何一个系统受到扰动作用后,会偏离原来的平衡点,而扰动消除后,经一定时间逐渐会到原来的平衡点,称系统是稳定的。
2、说明(1)稳定取决与本身系统的结构和参数,与输入信号无关。
(2)不稳定的系统受到扰动后,系统输出偏离原来的工作点,随时间的推移而发散。
二、线性系统稳定的充分必要条件1、N 阶系统的脉冲响应(3-2) (3-3) (3-4) (3-5)3、结论:系统稳定的充分必要条件是:系统特征根的实部均小于零或系统 的特征方程根均在S 平面的左半平面。
三、劳斯判据121212121211212()()()()()()()()()0()()()n m n n Nn ii n itttn s z s z s z Y(s)φ(s)R(s)s s s s s s A AA A y s s S S S s y t A eA eA eλλλλλλλλλϕλλλλ=---==------===++=----=++=∑系统的特征方程为:特征根为互不相同的单根,则在初始为零时,脉冲响应的拉氏变换由拉氏反变换,得到单位脉冲响应函数:112()lim 0i i nti i nt i t i A e y t A e λλ=→∞===∑∑、系统稳定充要条件系统稳定时应有),,2,1(0lim n i e Ai t t i ==∞→λ立,只能有为任意性,要使上式成系数1、劳斯判据特点(1)不需要计算复杂的特征方程根;(2)能判断根在S 平面的左半平面和右半平面的个数。
2、判断系统稳定的步骤建模→求特征方程→列劳斯表→判稳假定系统的特征方程为: (3-6)列劳斯表:S n a0 a2 a4 a6 ··· S n-1 a1 a3 a5 a7 ··· S n-2 b1 b2 b3 b4 ··· S n-3 c1 c2 c3 c4 : : : : : S 1 d1 d2 S 0 f13、劳斯表列写说明:(1)表中的行数与特征方程中的项数相同。
(2)表中的前两行由特征方程的系数直接构成。
第一行由特征方程的第1、3、5..系数构成,第二行由第2、4、6..构成,劳斯表中以后各行由计算得到。
(3)第三行以后通过计算得到。
系统稳定性的判定条件:劳斯表第一列的数值大于零。
正实根数目的判定:第一列各系数符号改变的次数代表特征方程正实根的数 目(S 平面右半平面根的个数)。
举例例1、设系统的特征方程为s 4+2s 3+3s 2+4s+5=0,试判断系统的稳定性。
解:若特征方程各项系数都不为零,并都是正数,则用劳斯表判稳 列劳斯表:s 4 1 3 5 s 3 2 4s 2 (2*3-1*4)/2=1 (2*5-1*0)/2=5 s 1 (1*4-2*5)/1=-6 001110=++++--n n n n a s a s a s as0(6*5-1*0)/6=5劳斯表第一列系数符号改变两次,系统不稳定,有两个正实部根。
3、劳斯判剧的特殊情况(1)劳斯表中的第一列项为零,而其余项不为零。
例2、设系统的特征方程为D(s)=s4+2s3+3s2+6s+1=0,判断系统的稳定性。
s4 1 3 1s3 2 6s2(2*3-1*6)/2=0--ε(2*1-1*0)/2=1 (用一个小正数ε代替第一列项为零的元)s1(6*ε-2*1)/ ε→∞s0 1劳斯表第一列系数符号改变两次,系统不稳定,有两个正实部根。
(2)劳斯表中出现全零行例3系统的特征方程为D(s)=s6+s5-2s4-3s3-7s2-4s-4=0,试用劳斯判剧判断系统的稳定性,并指出根的分布情况。
列劳斯表:S6 1 -2 -7 -4S5 1 -3 -4S4(-2+3)/1=1 (-7+4)/1=--3 (-4-0)/1=--4 ***[F(s)=s4-3s2-4=0]S3 4 -6s2-1.5 -4S1-1.67 0S0-4系统不稳定,符号改变一次,只有一个正实部根。
有两个大小相等符号相反的实根或一对共轭虚根,在全零上面一行的系数建立辅助方程F(s)=0,并对辅助方程s求导,用导数方程的系数取代全零行的元,继续劳斯表计算。
dF(s)/ds=4s3-6s=0小结:1、系统的动态性能指标(超调量、调节时间)2、能熟练应用劳斯判据,判断系统的稳定性。
第十讲四、劳斯判据的应用比例积分控制系统结构如图所示:已知参数ζ=0.2,ωn=86.6,试用劳斯稳定判据确定使闭环系统稳定的K1取值范围。
如果要求闭环系统的极点全部位于S=-1垂线之左,问K1值范围又应当取多大?闭环特征方程:322120n n n S S S K ζωωω+++=,代入ζ=0.2,ωn=86.6,得:S 3+34.6S 2+7500S+7500K 1=0 列劳斯表:S 3 1 7500 S 2 34.6 7500K 1 S 1134.67500750034.6K ⨯- 0S 0 7500K 1系统稳定必须有:1134.6750075000,7500034.6K K ⨯->>解得:0<K 1<34.6当要求闭环系统的极点全部位于S=-1垂线之左时,令S=S 1-1 代入原特征方程得:(S 1-1)3+34.6(S 1-1)2+7500(S 1-1)+7500K 1=0 整理得:32111131.67433.8(75007466.4)0S S S K ++-= 列劳斯表:312111111117433.831.675007466.431.67433.8(75007466.4)31.675007466.4S S K K S S K -⨯---列不等式:131.67433.8(75007466.4)31.6K ⨯-->0 ;175007466.4K ->0解得:1<K 1<32.3 3.3 线性系统的稳态误差计算稳态误差:在稳态条件下,输出量的期望值与实际的稳态值之间的误差,系统稳态误差应控制在某一个范围之内,工业工程中很多性能指标要求的炉温超过误差限度影响质量。
一、误差与稳态误差 1、误差定义图3-3负反馈系统框图一般定义为, 误差=被控量的期望值-被控量的实际值(1) 按输入量定义: E(S)=R(S)-B(S)=R(S)-C(S)H(S) 其中:B(S)是主反馈信号, R(S)是被控量的希望值。
(2) 按输出量定义:R(S)作为被控量的希望值。
R //()S图3-4误差系统框图()/()()()R S E S C S E S =- ()/E S 是希望输出值, 实际输出()C S ,两种误差存在以下关系,()/()()R S E S N S =,若是单位反馈系统H(S)=1,则两种定义可统一起来。
2、误差传递函数()()()()()()()()()()111()()()1()1()e R S B S C S H S C S H S E S s R S R S R S G S H S G S H S ϕ-===-=-=++ 系统的稳态误差:()()()()00lim lim 1ss s s SR S e SE S G S H S →→==+结论:(1) 稳态误差与信号输入形式有关;(2)稳态误差与系统结构参数有关, 即开环传递函数有关。
3 计算稳态误差的一般方法(1)判定系统的稳定性,不稳定求误差无意义。
(2) 求误差的传递函数 ()()()e E S s R S ϕ=()()()en E S s N S ϕ= (3)用终值定理求稳态误差 ()()()0lim ()ss e en s e S S R S S N S ϕϕ→=+⎡⎤⎣⎦ 4、举例: 系统如图已知, r(t)=n(t)=t ,求系统的稳态误差。
R图3-5 扰动误差系统框图解:(1)控制输入r(t)作用下的误差传递函数()()1(1)()(1)1(1)e E S S TS s k R S s TS Ks TS ϕ+===++++()()()()()()10000lim ()()1()()()()lim lim lim lim 11o o s o o vv ss vs s s s vG S H S kG S H S G S H S S R S SR S S R S e SE S S K G S H S S K S→+→→→→======+++ 2、在干扰n(t)作用下的误差传递函数()()()()()[]1(1)()()1(1)1(1)n n n en n K R S C S T S K S TS E S s K N S N S T S S TS K S TS ϕ-+-+===-=+++++()N S图3-6 扰动误差系统框图干扰作用下的稳态误差为:()()201lim n ssn en ens K e S N S S Kϕϕ→===-由叠加原理得:1nss ssr ssn k e e e k-=+=第十一讲二、系统类型由前述可知:系统的稳态误差与系统结构和输入信号R(S)的形式密切相关,假定系统开环传递函数 ()()111()()1mi i n vv j j K s G S H S S T S τ=-=+=+∏∏ (3-7)其中K 为系统开环增益, i τ和j T 是时间常数,V 为积分环节个数,称为系统的类别。