28.1锐角三角函数(2)PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
More You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
cos
A
A的邻边 斜边
b c
斜边c
B 对边a
A 邻边b C
★我们把锐角A的对边与邻边的比叫做∠A的
正切(tangent),记作tanA, 即
tan
A
A的对边 A的邻边
a b
注意
▪ cosA,tanA是一个完整的符号,它表示 ∠A的余弦、正切,记号里习惯省去角的符 号“∠”;
▪ cosA,tanA没有单位,它表示一个比值, 即直角三角形中∠A的邻边与斜边的比、对 边与邻边的比;
c
a
ba
A
b
C
cb
2、当锐角A确定时,∠A的邻边与斜边的比, ∠A 的对边与邻边的比也随之确定吗?为什么?交流并 说出理由。
方法一:从特殊到一般,仿照正弦的研究过程;
方法二:根据相似三角形的性质来说明。
如图,在Rt△ABC中,∠C=90°,
★我们把锐角A的邻边与斜边的比叫做∠A的
余弦(cosine),记作cosA, 即
锐角A的正弦、余弦、 正切都叫做∠A的锐角三 角函数.
rldmm8989889
例1 如图,在Rt△ABC中,∠C=90°,
BC=6,sin A 3 ,求cosA和tanB的值. B
5
6
解:sin A BC , AB
A
C
AB BC 6 5 10. sin A 3
又AC AB2 BC 2 102 62 8,
▪ cosA不表示“cos”乘以“A”, tanA不表 示“tan”乘以“A”
rldmm8989889
sin
A
A的对边 斜边
a c
cos
A
A的邻边 斜边
b c
tan
A
A的对边 A的邻边
a b
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
同样地, cosA, tanA也是A的函数。
AB 3
AB 3
AC 5 5
sin B AC 5 ,cos B BC 2,tan B AC 5 .
AB 3
AB 3
BC 2
延伸:由上面的计算,你能猜想∠A,∠B的正弦、余弦值 有什么规律吗?
结论:一个锐角的正弦等于它余角的余弦,或一个锐角的 余弦等于它余角的正弦。
rldmm8989889
练习
▪ 课本P78 练习1,2,3. ▪ 补充练习
1、在等腰△ABC中,AB=AC=5,BC=6, 求sinB,cosB,tanB.
A
B
rldmm8989889
C D
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The
cos A AC 4,tan B AC 4 .
AB 5
BC 3
rldmm8989889
例2 如图,在Rt△ABC中,∠C=90°,BC=2,
AB=3,求∠A,∠B的正弦、余弦、正切值. B
解:在RtABC中,
3
2
AC AB2 BC 2 32 22 5,
A
Fra Baidu bibliotek
C
sin A BC 2,cos A AC 5 ,tan A BC 2 2 5 .
28.1锐角三角函数(2)
——正弦 正切
复习与探究:
在 RtABC中, C 90
B 1.锐角正弦的定义
c
a ∠A的正弦: sinA A的对边 BC a
斜边 AB c
A
b
C
2、当锐角A确定时,∠A的对边与斜边的比就随之 确定。此时,其他边之间的比是否也随之确定?为 什么?
新知探索: 1、你能将“其他边之比”用比例的 B 式子表示出来吗?这样的比有多少?
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
cos
A
A的邻边 斜边
b c
斜边c
B 对边a
A 邻边b C
★我们把锐角A的对边与邻边的比叫做∠A的
正切(tangent),记作tanA, 即
tan
A
A的对边 A的邻边
a b
注意
▪ cosA,tanA是一个完整的符号,它表示 ∠A的余弦、正切,记号里习惯省去角的符 号“∠”;
▪ cosA,tanA没有单位,它表示一个比值, 即直角三角形中∠A的邻边与斜边的比、对 边与邻边的比;
c
a
ba
A
b
C
cb
2、当锐角A确定时,∠A的邻边与斜边的比, ∠A 的对边与邻边的比也随之确定吗?为什么?交流并 说出理由。
方法一:从特殊到一般,仿照正弦的研究过程;
方法二:根据相似三角形的性质来说明。
如图,在Rt△ABC中,∠C=90°,
★我们把锐角A的邻边与斜边的比叫做∠A的
余弦(cosine),记作cosA, 即
锐角A的正弦、余弦、 正切都叫做∠A的锐角三 角函数.
rldmm8989889
例1 如图,在Rt△ABC中,∠C=90°,
BC=6,sin A 3 ,求cosA和tanB的值. B
5
6
解:sin A BC , AB
A
C
AB BC 6 5 10. sin A 3
又AC AB2 BC 2 102 62 8,
▪ cosA不表示“cos”乘以“A”, tanA不表 示“tan”乘以“A”
rldmm8989889
sin
A
A的对边 斜边
a c
cos
A
A的邻边 斜边
b c
tan
A
A的对边 A的邻边
a b
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
同样地, cosA, tanA也是A的函数。
AB 3
AB 3
AC 5 5
sin B AC 5 ,cos B BC 2,tan B AC 5 .
AB 3
AB 3
BC 2
延伸:由上面的计算,你能猜想∠A,∠B的正弦、余弦值 有什么规律吗?
结论:一个锐角的正弦等于它余角的余弦,或一个锐角的 余弦等于它余角的正弦。
rldmm8989889
练习
▪ 课本P78 练习1,2,3. ▪ 补充练习
1、在等腰△ABC中,AB=AC=5,BC=6, 求sinB,cosB,tanB.
A
B
rldmm8989889
C D
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The
cos A AC 4,tan B AC 4 .
AB 5
BC 3
rldmm8989889
例2 如图,在Rt△ABC中,∠C=90°,BC=2,
AB=3,求∠A,∠B的正弦、余弦、正切值. B
解:在RtABC中,
3
2
AC AB2 BC 2 32 22 5,
A
Fra Baidu bibliotek
C
sin A BC 2,cos A AC 5 ,tan A BC 2 2 5 .
28.1锐角三角函数(2)
——正弦 正切
复习与探究:
在 RtABC中, C 90
B 1.锐角正弦的定义
c
a ∠A的正弦: sinA A的对边 BC a
斜边 AB c
A
b
C
2、当锐角A确定时,∠A的对边与斜边的比就随之 确定。此时,其他边之间的比是否也随之确定?为 什么?
新知探索: 1、你能将“其他边之比”用比例的 B 式子表示出来吗?这样的比有多少?