【精品】高三数学第一次月考考试文科
黑龙江省哈尔滨2019届高三第一次月考文科数学试卷(含答案)
2018-2019年度高三学年上学期第一次月考数学试题(文科)考试时间:120分钟试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.5sin3π=1.2A -1.2B .2C-2D 2.已知集合{}1A x x =<,{}31x B x =<,则.A {|0}A B x x =< .B A B =R .C {|1}A B x x => .D A B =∅ 3.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =.11A .5B .11C -.8D -4.下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是.A y x =.2x B y =.lg C y x=.D y =5.已知1sin 23α=,则2cos ()4πα-=1.3A 4.9B 2.3C 8.9D 6.函数2()ln(43)f x x x =-+的单调递增区间是.(,1)A -∞.(,2)B -∞.(2,)C +∞.(3,)D +∞7.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a .12A -.10B -.10C .12D 8.已知03x π=是函数()sin(2)f x x =+ϕ的一个极大值点,则()f x 的一个单调递减区间是2.(,)63A ππ5.(,)36B ππ.(,)2C ππ2.(,)3D ππ9.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=.7A .5B .5C -.7D -10.将函数sin(2)6y x π=-的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是.12A x π=.6B x π=.3C x π=.12D x π=-11.已知函数(),2x x e e f x x R --=∈,若对(0,]2π∀θ∈,都有(sin )(1)0f f m θ+->成立,则实数m 的取值范围是.(0,1)A .(0,2)B .(,1)C -∞.(,1]D -∞12.已知()ln xf x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是1.(0,)A e .(0,)B e 1.(,)C e e.(,)D e -∞二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{}n a 满足111n n a a +=-,112a =,则2019a =_________14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则n a =_________15.ABC 的内角,,A B C 的对边分别为,,abc ,若4cos 5A =,5cos 13C =,1a =,则b =______16.已知函数()2cos sin 2f x x x =+,则()f x 的最小值是________三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知sin sin sin sin c A B b a A C+=-+.(1)求角B 的大小;(2)若b =,3a c +=,求ABC 的面积.18.(本题满分12分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π.(1)求ω的值;(2)求函数()f x 在区间2π03⎡⎤⎢⎣⎦,上的取值范围.19.(本题满分12分)设数列{}n a 的前n 项和为n S ,点(,)n S n n N n *∈均在函数2y x =+的图像上.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m .20.(本题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 经过点221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点.(1)求椭圆C 的方程;(2)已知直线l 与圆3222=+y x 相切,求证:OB OA ⊥(O 为坐标原点).21.(本题满分12分)已知函数()()ln R f x ax x a =-∈.(1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点12,x x ,证明:12112ln ln x x +>.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为312()12x t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=-.(1)求圆C 的圆心到直线l 的距离;(2)已知(1,0)P ,若直线l 与圆C 交于,A B 两点,求11PA PB+的值.23.(本题满分10分)选修4-5:不等式选讲已知函数()22f x x =-+,()()g x m x m R =∈.(1)解关于x 的不等式()5f x >;(2)若不等式()()f x g x ≥对任意x R ∈恒成立,求m 的取值范围.2018-2019年度高三学年上学期第一次月考数学试卷(文科)答案一.选择题1-6CACDCD7-12BBDADA 二.填空题13.1-14.12n --15.211316.三.解答题17.(1)c a b b a a c+=-+ 2222cos a c b ac ac B ∴+-=-=1cos 2B ∴=-120B ∴=︒(2)22222cos ()22cos b a c ac B a c ac ac B =+-=+-- 1ac ∴=1sin 24S ac B ∴==18.(Ⅰ)1cos2()sin 222x f x x ωω-=+11sin 2cos2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>,所以2ππ2ω=,解得1ω=.(Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为2π03x ≤≤,所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.19.2n S n n=+ 22n S n n ∴=+1(1)2,21n n n n a S S n -≥=-=+1(2)1,3n a ==,适合上式21n a n ∴=+1111(2)((21)(23)22123n b n n n n ==-++++11111111111((23557212323236n T n n n ∴=-+-++-=-<+++ 1102063m m ∴≥∴≥m Z ∈ min 4m ∴=20.(1)因为22c e a == ,222a b c =+222a b ∴=∴椭圆方程为222212x y b b∴+=2(1,2在椭圆上221,2b a ∴==∴椭圆方程为2212x y +=(2)因为直线l 与圆2223x y +=3=即223220m k --=由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=.设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412km x x k +=-+,21222212m x x k -=+,()()()2222121212122212m k y y kx m kx m k x x km x x m k -∴⋅=++=+++=+2222212122222223220121212m m k m k OA OB x x y y k k k ----∴⋅=+=+==+++ OA OB∴⊥21.(1)()()110ax f x a x x x-=-=>'当0a ≤时,()0f x '<,所以()f x 在()0,+∞上单调递减;当0a >时,()0f x '=,得1x a =10,x a ⎛⎫∀∈ ⎪⎝⎭都有()0f x '<,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减;1,x a ⎛⎫∀∈+∞ ⎪⎝⎭都有()0f x '>,()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上:当0a ≤时,()f x 在()0,+∞上单调递减,无单调递增区间;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减,()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(2)函数()f x 有两个零点分别为12,x x ,不妨设12x x <则11ln 0x ax -=,22ln 0x ax -=,()2121ln ln x x a x x -=-要证:12112ln ln x x +>只需证:12112a x x +>只需证:12122x x a x x +>只需证:12211221ln ln 2x x x x x x x x +->-只需证:22212121ln 2x x x x x x ->只需证:2211121ln 2x x x x x x ⎛⎫<- ⎪⎝⎭令211x t x =>,即证11ln 2t t t ⎛⎫<- ⎪⎝⎭设()11ln 2t t t t φ⎛⎫=-- ⎪⎝⎭,则()222102t t t t φ'--=<,即函数()t φ在()1,+∞单调递减,则()()10t φφ<=,即得12112ln ln x x +>22.解:(1)由直线l的参数方程为12()12x t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数消去参数t ,可得:10x -=圆C 的极坐标方程为4cos ρθ=-,即24cos ρρθ=-.所以圆C 的普通坐标方程为2240x y x ++=则(2,0)C -.所以圆心(2,0)C -到直线l 的距离21322d --==(2)已知(1,0)P ,点P 在直线l 上,直线l 与圆C 交于,A B 两点,将312()12x t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数代入圆C 的普通坐标方程2240x y x ++=得:250t ++=设,A B 对应参数为12,t t,则12t t +=-,125t t =因为120t t >,12,t t 是同号.所以1212121111335t t PA PB t t t t ++=+==.23.(1)由()5f x >,得23x ->,即23x -<-或23x ->,1x ∴<-或5x >.故原不等式的解集为{}15x x x <->或(2)由()()f x g x ≥,得2+2≥-x m x 对任意x R ∈恒成立,当0x =时,不等式2+2≥-x m x 成立,当0x ≠时,问题等价于22x m x -+≤对任意非零实数恒成立,22221 , 1x x m x x -+-+=∴ ≥≤,即m 的取值范围是( , 1]-∞.。
河北省大名县第一中学2022届高三(实验班)上学期第一次月考数学(文)试题 Word版含答案
高三文科数学月考试题学校:姓名:班级:考号:评卷人得分一、选择题1. [2021·吉大附中高三四模(文)]已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于()A. (0,1]B. [1,+∞)C.(0,2] D.2. [2021·哈三中一模(文)]已知f(x)是定义在R上的偶函数,周期为2,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. [2021·哈三中一模]下列结论中正确的个数是()①“x=”是“”的充分不必要条件;②若a>b,则am2>bm2;③命题“∀x∈R,sin x≤1”的否定是“∀x∈R,sin x>1”;④函数f(x )=-cos x在[0,+∞)内有且仅有两个零点.A. 1B. 2C. 3D. 44. [2021·吉林长春普高高三二模]下列函数中,既是奇函数又在(0,+∞)上单调递增的函数是() A. y=e x+e-x B. y=ln(|x|+1) C.y= D. y=x-5. [2021·吉大附中高三四模(文)]设函数f(x)=ln(1+x2)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A. B. C.D.6. [2021·吉林市普高高三第三次调研]若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=则此函数的“友好点对”有()A. 3对B. 2对C. 1对 D. 0对7. [2021·河北唐山高三摸底月考]设函数,“是偶函数”是“的图象关于原点对称”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. [2021·吉林长春高三二模(文)]关于函数y=2sin+1,下列叙述有误..的是()A. 其图象关于直线x=-对称B. 其图象可由y=2sin+1图象上全部点的横坐标变为原来的倍得到C. 其图象关于点对称D. 其值域为[-1,3]9. [2022·甘肃省高考诊断(二)(文)]已知△ABC的外接圆半径为1,圆心为O,且=0,则△ABC 的面积为()A. 1+B.C.1+ D.10. [2022·哈尔滨市第六中学高三一模(文)]已知向量a=(cosθ,-sinθ),b=(-cos2θ,sin2θ)(θ∈(π,2π)),若向量a,b的夹角为φ,则有()A. φ=θB. φ=π-θC.φ=θ-π D. φ=θ-2π11. [2021·河北武邑中学高二入学考试]已知数列,都是公差为1的等差数列,是正整数,若,则( )A. 81B. 99C. 108D. 11712. [2021·河南南阳一中高三第三次月考]已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )A. B. C.D.评卷人得分二、填空题13. [2021·河北五个一名校联盟高三一模(文)]设△的内角,,所对的边长分别为,若,则的值为.14. [2021·河南南阳方城一中高二开学考试]设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C= . 15. [2021·河南许昌五校高二第一次联考]已知在中,,,,,,则的值为.16. [2010·高考辽宁卷,16]已知数列{a n}满足a1=33,a n+1-a n=2n,则的最小值为.评卷人得分三、解答题17. [2021·吉林市普高高三第三次调研]已知函数f(x)=cos 2x+2sin2x+2sin x.(1)将函数f(2x)的图象向右平移个单位得到函数g(x)的图象,若x∈,求函数g(x)的值域;(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)=+1,A∈,a=2,b=2,求△ABC的面积.18. [2021·吉林长春高三二模(文)]已知数列{a n}满足a1=,a n+1=3a n-1(n∈N*).(1)若数列{b n}满足b n=a n-,求证:{b n}是等比数列;(2)求数列{a n}的前n项和S n.19. [2021·河南八市重点高中高二第一次月考(文)]正项数列满足.(1)求数列的通项公式;(2)令,求数列的前项和为.20. [2021·吉林长春高三二模(文)]已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB中点,求点A到平面CED的距离.21. [2021·湖南长沙长郡中学高三入学考试]已知椭圆的两个焦点分别为,以椭圆短轴为直径的圆经过点.(1)求椭圆的方程;(2)过点的直线与椭圆相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.22. [2021·广东省仲元中学、中山一中等七校高三联考(一)]在中,角所对的边分别为,且.(1)求的大小;(2)设的平分线交于,求的值.参考答案1. 【答案】A【解析】本题考查集合的基本运算、解一元二次不等式及求指数函数的值域,属于基础题.由于x2+x-2≤0,所以-2≤x≤1,依据指数函数的性质知y=2x>0,所以集合A =,B =,则A∩B =,故选A.2. 【答案】D【解析】本题考查充分条件与必要条件,函数的奇偶性与周期性,属于中档题.函数在上递增,利用偶函数得函数在上递减,利用周期得函数在上递减,故充分性成立;函数在上递减,利用周期得函数在上递减,利用偶函数得函数在上递增,必要性成立,综上,充分性与必要性均成立,故选D.3. 【答案】A【解析】本题考查充分必要条件、不等式性质、命题的否定及命题真假的判定,属于中档题.对于①,当x=时,sin ,充分性成立;当sin 时,x ++2kπ或x ++2kπ,k∈Z,得x=-+2kπ或x=+2kπ,k∈Z,故必要性不成立,故①正确;对于②,当m=0时,若a>b,am2>bm2不成立,故②不正确;对于③,命题“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”,故③不正确;对于④,函数y =与y=cos x的图象有且只有一个交点,故函数f(x )=-cos x 在内有且仅有一个零点,故④不正确.综上,正确的只有一个,故选A.4. 【答案】D【解析】本题考查函数的单调性与奇偶性学问,属于基础题.A,B选项中的函数为偶函数,排解,C选项中的函数是奇函数,但在(0,+∞)上不是单调递增函数.故选D.5. 【答案】A【解析】本题考查函数的奇偶性及导数在争辩函数中的应用,解一元二次不等式、确定值不等式,属于难题.∵f(-x )= ln =ln =f(x),∴函数f(x)为偶函数.当x≥0时,f(x)=ln (1+x2),求导得f'(x )=恒为正,即函数f(x)在单调递增,∵f(x)是偶函数,∴f(x)在(-∞,0)上单调递减,则f(x)>f(2x-1)等价于f(|x|)>f(|2x-1|),即|x|>|2x-1|,平方得3x2-4x+1<0,解得<x<1,故选A.6. 【答案】C【解析】本题考查新概念和函数的图象与性质,考查了数形结合的数学思想,属于中档题.设f(x )=(x>0)图象上任一点为A(x,y)(x>0,y>0),点A关于原点的对称点A'(-x,-y)在y=x+1上,所以-y=-x+1,即y=x-1,得“友好点对”的个数就是方程组的根的个数,而y=x-1(x>0)的图象与y的图象有且只有一个交点,∴“友好点对”共1对,故选C.7. 【答案】B【解析】本题考查函数的奇偶性,考查图象的对称性.若是偶函数,而不肯定是奇函数,故的图象不肯定关于原点对称;当的图象关于原点对称时,函数是奇函数,则是偶函数,因此“是偶函数”是“的图象关于原点对称”的必要不充分条件.故选B.8. 【答案】C【解析】本题考查三角函数的性质、图象变换,属于中档题.关于函数y =2sin+1,令x=-,求得y=-1,为函数的最小值,故A正确;由y =2sin+1图象上全部点的横坐标变为原来的倍,可得y =2sin+1的图象,故B正确;令x =π,求得y=1,可得函数的图象关于点对称,故C错误;函数的值域为[-1,3],故D正确.故选C.9. 【答案】D【解析】本题考查向量的运算.由=0得=-,两边平方可得·=0,则∠AOB =90°;由=0得=-,两边平方可得·=,则∠AOC=135°;同理可得∠BOC=135°,则△ABC的面积为S△AOB+S△BOC+S△AOC =,故选D.10. 【答案】C【解析】本题考查向量的夹角、向量的坐标运算、二倍角、同角三角函数的基本关系、诱导公式.由题意知cosφ==- () =-cosθ=cos(θ-π).由于θ∈(π,2π),所以θ-π∈(0,π),而φ∈[0,π],所以φ=θ-π,故选C.11. 【答案】D【解析】本题考查等差数列的通项公式与数列求和,考查计算力量.,.故选D. 12. 【答案】A【解析】本题考查分段函数导函数的应用,函数与方程的关系.=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.13. 【答案】4【解析】本题考查正弦定理与余弦定理、两角和与差公式,考查计算力量.由正弦定理可得=,又由于==,所以=,即, 所以.14. 【答案】【解析】本题考查正弦定理及余弦定理.由正弦定理得, 5b=3a,又b+c=2a,则,由余弦定理得,,又,所以.15. 【答案】【解析】本题主要考查平面对量的线性运算及平面对量数量积.在中,,建立直角坐标系,,,,依题意有D,E(2,0)得,得,故填. 16. 【答案】【解析】由已知可得a n-a n-1=2(n-1),a n-1-a n-2=2(n-2),…,a3-a2=2×2,a2-a1=2×1,左右两边分别相加可得a n-a1=2(1+2+3+…+(n-1)]=n(n-1),∴a n=n2-n+33.=n+-1,令F(n)=n+-1,n≤5时为减函数,n≥6时为增函数且F(5)>F(6),∴F(n)≥F(6)=,故的最小值为.17.(1) 【答案】f(x)=cos 2x+2sin2x+2sin x=cos2x-sin2x+2sin2x+2sin x=cos2x+sin2x+2sin x=1+2sin x,所以f(2x)=1+2sin2x.由于函数f(2x)的图象向右平移个单位得到函数g(x)的图象,所以g(x )=2sin+1,即g(x )=2sin+1.由于x ∈,所以2x ∈所以sin ∈,所以g(x)∈[0,3],所以函数g(x)的值域为[0,3].(2) 【答案】由于f(A )=+1,所以sin A =,由于A ∈,所以cos A=.又cos A =,a =2,b=2,所以c=4.所以△ABC面积S△ABC=bc sin A =2.18.(1) 【答案】由题可知a n+1=3(n∈N*),从而有b n+1=3b n,b1=a1-=1,所以{b n}是以1为首项,3为公比的等比数列.(2) 【答案】由第1问知b n=3n-1,从而a n=3n-1+,有S n=30++3++…+3n-1+=30+31+32+…+3n-1+×n =.19.(1) 【答案】由,得,由于数列是正项数列,所以.(2) 【答案】由第1问得,,所以.20.(1) 【答案】由于AD⊥平面BCD,BC⊂平面BCD,所以AD⊥BC,又由于AC⊥BC,AC∩AD=A, 所以BC⊥平面ACD,BC⊂平面ABC,所以平面ABC⊥平面ACD.(2) 【答案】由已知可得CD =,取CD中点为F,连接EF,由于ED=EC=AB =,所以△ECD为等腰三角形,从而EF =,S△ECD =,由第1问知BC⊥平面ACD,所以E到平面ACD的距离为1,S△ACD =,令A到平面CED的距离为d,由V A-ECD=·S△ECD·d=V E-ACD=·S△ACD·1,解得d =.所以点A到平面CED 的距离为21.(1) 【答案】由题意得,,, 解得,所以椭圆的方程为.(2) 【答案】①当直线的斜率不存在时,由, 解得,设,则.②当直线的斜率存在时,设直线的方程为,代入整理化简,得,依题意,直线与椭圆必相交于两点,设,则, 又,所以====.综上所述,为定值2.(说明:若假设直线为,按相应步骤给分)22.(1) 【答案】,,,,.(2) 【答案】在中,由正弦定理:,得,,.。
2021届江西省临川第一中学暨临川一中实验学校高三第一次月考数学(文)试题(解析版)
2021届江西省临川第一中学暨临川一中实验学校高三第一次月考数学(文)试题一、单选题1.若集合{P x N x =∈≤,a = )A .aP B .{}a P ∈C .{}a P ⊆D .a P ∉【答案】D【解析】由a N =,结合元素与集合、集合与集合的关系即可得解. 【详解】因为a N =,集合{P x N x =∈≤,所以a P ∉,{}a P ⊆/. 故选:D. 【点睛】本题考查了元素与集合、集合与集合关系的判断,属于基础题.2. 设x ∈R ,则“38x >”是“2x ” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.详解:求解不等式38x >可得2x >, 求解绝对值不等式2x可得2x >或2x <-,据此可知:“38x >”是“||2x >” 的充分而不必要条件. 本题选择A 选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力. 3.已知1275a -⎛⎫= ⎪⎝⎭,1357b ⎛⎫= ⎪⎝⎭,25log 7c =,则a 、b 、c 的大小关系是( ). A .b a c << B .c b a <<C .c a b <<D .b c a <<【答案】C【解析】先与0比较,c 小于0,再a 与b 比较,即可判断大小. 【详解】12125757a -⎛⎫=⎛⎫= ⎝⎭⎪⎭⎪⎝<135()7b =,因此c a b << 故选:C. 【点睛】本题考查比较大小、指数函数单调性、对数函数单调性,考查基本分析判断能力,属基础题.4.已知集合{}0M x x a =-=,{}10N x ax =-=,若M N N =,则实数a 的值是( ) A .1 B .1-C .1或1-D .以上答案都不对 【答案】D 【解析】由M N N =,转化为N M ,分N =∅和 N ≠∅两种情况讨论求解.【详解】已知集合{}{}0M x x a a =-==,{}10N x ax =-=, 因为MN N =,所以N M ,当N =∅时,0a =,符合题意; 当N ≠∅时,{}110N x ax a ⎧⎫=-==⎨⎬⎩⎭,则1a a=,解得1a =±, 综上:实数a 的值是0或1或-1 故选:D 【点睛】本题主要考查集合的基本运算和集合的基本关系的应用,还考查了转化求解问题的能力,属于基础题.5.若函数()f x 是定义在R 上的奇函数,且()()2f x f x -=-,则()6f -=( ) A .0B .1-C .1D .2【答案】A【解析】本题先根据题意判断函数是周期为4的周期函数,再根据奇函数求解即可. 【详解】解:∵()f x 是R 上的奇函数,∴()00f =, ∵()()2f x f x -=-,∴()()(4)(2)22(())()f x f x f x f x f x -=--=--=--=, ∴函数()f x 的周期为4, ∴()()()6200f f f -=-=-=. 故选:A . 【点睛】本题考查函数的奇偶性与函数的周期性,是基础题.6.平面向量a 与b 的夹角为60︒,()2,0,1a b ==,则2+a b 等于( ) A .22 B .23C .12D .10【答案】B【解析】因为||2,||1a b ==,a 与b 的夹角为60︒,故||||cos 601a b a b ⋅=⋅=,则244423a b +=++=,应选答案B .7.高为H ,满缸水量为V 的鱼缸的轴截面如图所示,若鱼缸水深为h 时水的体积为v ,则函数()v f h =的大致图像是( )A .B .C .D .【答案】B【解析】由函数的自变量为水深h ,函数值为水的体积,得到水深h 越大,水的体积v 就越大,而且增的速度先慢后快再慢的,即可求解. 【详解】由图可知水深h 越大,水的体积v 就越大,故函数()v f h =是个增函数,故排除A ,C 项,由鱼缸形状可知,下面细中间粗,上面较细,所以随着水深的增加,体积的变化的速度是先慢后快再慢的,所以B 正确. 故选:B 【点睛】本题主要考查了函数的应用问题,重点考查分析问题和解决问题的能力.8.已知直线l 过点(0,2)-,当直线l 与圆222x y y +=相交时,其斜率k 的取值范围是( ) A.(-B.(,)-∞-⋃+∞C.44⎛- ⎝⎭D.,44⎛⎛⎫-∞-⋃+∞⎪⎝⎭⎝⎭【答案】B【解析】由圆的方程可得圆的圆心和半径,再由直线与圆相交的性质即可得1d =<,即可得解.【详解】圆222x y y +=的方程可变为()2211x y +-=,圆心为()0,1,半径为1,因为直线l 过点(0,2)-,且斜率为k ,所以直线l 的方程为2y kx +=即20kx y --=, 若要使直线l 与圆相交,则圆心到直线l的距离1d =<,解得((),k ∈-∞-⋃+∞. 故选:B. 【点睛】本题考查了直线与圆位置关系的应用,考查了运算求解能力,属于基础题.9.已知函数25(1)()(1)x ax x f x a x x⎧---⎪=⎨>⎪⎩,,是R 上的增函数,则a 的取值范围是( )A .30a -<B .32a --C .2a -D .以上答案都不对 【答案】B【解析】设2()5(1)g x x ax x =---,()(1)ah x x x =>,由25(1)()(1)x ax x f x a x x⎧---⎪=⎨>⎪⎩,,在R 上是增函数,则()g x 在1x ≤时单调递增,()h x 在()1,+∞上递增,且()(1)1g h ≤,从而可求. 【详解】函数25,(1)(),(1)x ax x f x a x x⎧---⎪=⎨>⎪⎩是R 上的增函数,设2()5(1)g x x ax x =---,,()(1)ah x x x=>,, 由分段函数的性质可知,函数2()5g x x ax =---在(],1-∞单调递增,函数()a h x x=在(1,)+∞单调递增,且()(1)1g h ≤,∴1206a a a a⎧-⎪⎪<⎨⎪--⎪⎩,∴203a a a -⎧⎪<⎨⎪-⎩解得32a -- 故选:B. 【点睛】考查分段函数在R 上的单调性,既需要分段考虑,又需要整体考虑,基础题. 10.定义在R 上的函数()y f x =,恒有()(2)f x f x =-成立,且()(1)0f x x '⋅->,对任意的12x x <,则()()12f x f x <成立的充要条件是( ). A .211x x >≥ B .122x x +>C .122x x +≤D .2112x x >≥【答案】B【解析】根据题中条件,先得到()f x 关于1x =对称;判定函数单调性,分别讨论11x ≥,11<x 两种情况,结合充分条件和必要条件的概念,即可得出结果.【详解】由()(2)f x f x =-,得函数()f x 关于1x =对称, 由()(1)0f x x '⋅->得,当1x >时,()0f x '>,此时函数()f x 为增函数, 当1x <时,()0f x '<,此时函数()f x 为减函数, 因为12x x <,若11x ≥时,函数()f x 在1x >上为增函数,满足对任意的12x x <,()()12f x f x <,此时122x x +>;若11<x ,∵函数()f x 关于1x =对称,则()()112f x f x =-,则121x ->,由()()12f x f x <得()()()1212f x f x f x =-<,此时122x x -<,即122x x +>;即对任意的12x x <,()()12f x f x <得122x x +>; 反之也成立,所以对任意的12x x <,则()()12f x f x <成立的充要条件为“122x x +>”. 故选:B. 【点睛】本题主要考查充分条件和必要条件的判断,根据条件判断函数的对称性和单调性之间的关系,利用条件进行转化是解决本题的关键,属于常考题型.11的直线l 与椭圆22221x y a b +=(0a b >>)交于不同的两点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为( ) A.3B .12C.2D .13【答案】A【解析】由题意,2b ac =,得)22ac a c =-,20e +=,所以2e =, 故选C .点睛:由椭圆的对称性可知,两个焦点关于原点对称,则直线l 是过原点的直线,且其交点投影恰好是椭圆焦点,由垂径的交点坐标为2,b c a ⎛⎫⎪⎝⎭,则有22b ac =,整理后同除以2a20e +=,求出离心率.12.函数2()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称.据此可推测,对任意的非零实数,,,,,a b c m n p ,关于x 的方程2[()]()0m f x nf x p ++=的解集都不可能是( ) A .{1,6}- B .{2,4} C .{2,5,4,7} D .{1,4,8,16}【答案】D【解析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2bx a =-对称.而选项D 中4811622++≠. 故选:D. 【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征. 二、填空题13.函数y =________. 【答案】[0,3]【解析】. 【详解】因为20x ≥,所以299x -≤,又要使根式有意义,则290x -≥,所以2099x ≤-≤,所以03≤≤,故函数y =[0,3]. 故答案为:[0,3]. 【点睛】本题考查了具体函数值域的求解,属于基础题.14.已知()f x 为奇函数,当0x <时,()ln()3f x x x =-+,则()y f x =的解析式为______.【答案】()ln()3,00,0ln 3,0x x x f x x x x x -+<⎧⎪==⎨⎪-+>⎩【解析】由()f x 为奇函数,可得()f x 的定义域关于原点对称,且()()f x f x =--,且当0x >时,0x -<,将x -代入()()f x f x =--可得答案. 【详解】解:由()f x 为奇函数,可得()f x 的定义域关于原点对称,且()00f =,()()f x f x =--,当0x >时,0x -<,故()(ln 3()3])[ln x f x f x x x x =--=--=++-,∴()ln()3,00,0ln 3,0x x x f x x x x x -+<⎧⎪==⎨⎪-+>⎩.故答案为:()ln()3,00,0ln 3,0x x x f x x x x x -+<⎧⎪==⎨⎪-+>⎩. 【点睛】本题主要考查利用函数的奇偶性求函数解析式,相对简单. 15.若函数()2cos()f x x m ωθ=++对任意的实数f()()99t t f t ππ+=-都有且()3,9f π=-则m =_______ .【答案】1- 或5-【解析】对任意的实数f()99t t f t 都有ππ⎛⎫+=- ⎪⎝⎭,说明函数图像的一条对称轴为9x π=,()39f π=-,则23m ±+=- ,1m =- 或5m =-.16.如图,在长方体1111ABCD A B C D -中,16,3,8AA AB AD ===, 点M 是棱AD 的中点,N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内一动点(含边界),若1C P ∥平面CMN ,则线段1C P 长度最小值是________.【解析】取11A D 的中点Q ,过点Q 在面11ADD A 作MN 的平行线交1DD 于E则易知面1//C QE 面CMN ,在1C QE ∆中作1C P QE ⊥,则1C P .三、解答题17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若223cos cos 20A A +=,且ABC 为锐角三角形,7a =,6c =,求b 的值;(2)若a =3A π=,求b c +的取值范围.【答案】(1)b =5(2)b c +∈【解析】(1)运用二倍角的余弦公式,化简整理可得cos A ,再由余弦定理,解方程可得b ;(2)运用正弦定理和两角和差的正弦公式,以及正弦函数的图象和性质,即可得到所求范围; 【详解】解:(1)22223cos cos223cos 2cos 10A A A A +=+-=,∴21cos 25A =,又A 为锐角,1cos 5A =, 而2222cos a b c bc A =+-,即2121305b b --=, 解得5b =或135b =-(舍去),5b ∴=;(2)由正弦定理可得22(sin sin )2sin sin 36b c B C B B B ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,203B π<<, ∴5666B πππ<+<, ∴1sin 126B π⎛⎫<+ ⎪⎝⎭,∴b c+∈.【点睛】本题考查三角函数的恒等变换,三角形的正弦定理和余弦定理的运用,以及运算能力,属于中档题.18.某中学高三年级有学生500人,其中男生300人,女生200人.为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,将两组的分数分成5组:[100,110),[110,120),[120,130),[130,140),[]140,150分别加以统计,得到如图所示的频率分布直方图.(1)从样本分数小于110分的学生中随机抽取2人,求两恰为一男一女的概率;(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成22⨯列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?附:随机变量22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)5;(2)列联表见解析,没有90%的把握认为“数学尖子生与性别有关”.【解析】(1)由分层抽样的概念可得抽取的100名学生中,男女生的人数,进而可得样本中分数小于110分的学生中,男女生的人数,根据列举法可得所有的基本事件数及符合要求的基本事件数,再由古典概型的概率公式即可得解;(2)由频率分布直方图可得分数不小于130分的学生中,男女生的人数,即可完成列联表,计算出2K后,与2.706比较即可得解.【详解】(1)由题意,抽取的100名学生中,男生10030060500⨯=人,女生10020040500⨯=人,所以分数小于110分的学生中,男生有600.005103⨯⨯=人,记为A,B,C,女生有400.005102⨯⨯=人,记为D ,E ,则从样本分数小于110分的学生中随机抽取2人,有基本事件为:(),A B ,(),A C ,(),A D ,(),A E ,(),B C ,(),B D ,(),B E ,(),C D ,(),C E ,(),D E ,共10种;其中恰为一男一女的基本事件为:(),A D ,(),A E ,(),B D ,(),B E ,(),C D ,(),C E ,共6种; 故所求概率63105P ==; (2)分数不小于130分的学生中,男生有()0.020.005160150+⨯⨯=人, 女生有()400.03250.0051015⨯+⨯=人, 所以可得22⨯列联表如下:所以22100(15254515)251.7862.7066040307014K ⨯⨯-⨯==≈<⨯⨯⨯,所以没有90%的把握认为“数学尖子生与性别有关”. 【点睛】本题考查了频率分布直方图的应用及古典概型概率的求解,考查了独立性检验的应用,属于中档题.19.如图,四棱锥P ABC -中,PA ⊥平面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN ∥平面PAB ; (II )求四面体N BCM -的体积.【答案】【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)由条件可知四面体N-BCM 的高,即点N 到底面的距离为棱PA 的一半,由此可顺利求得结果. 试题解析:(Ⅰ)由已知得,取的中点T ,连接,由N 为中点知,.又,故平行且等于,四边形AMNT 为平行四边形,于是.因为平面,平面,所以平面.(Ⅱ)因为平面,N 为的中点,所以N 到平面的距离为.取的中点,连结.由得,.由得到的距离为,故145252BCMS=⨯⨯=. 所以四面体的体积14532N BCM BCMPA V S -=⨯⨯=. 【考点】直线与平面间的平行与垂直关系、三棱锥的体积【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又找出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.20.已知椭圆()2222:10x y C a b a b +=>>过点31,2⎛⎫ ⎪ ⎪⎝⎭3 (1)求椭圆C 的标准方程;(2)若点P 与点Q 均在椭圆C 上,且,P Q 关于原点对称,问:椭圆上是否存在点M (点M 在一象限),使得PQM ∆为等边三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)2214x y +=;(2)存在,2165215M ⎝⎭. 【解析】试题分析:(1)根据已知条件,列出不等式组,求解2,1a b ==,即可求解椭圆的椭圆的方程;(2)设直线OM 的斜率为k ,则直线:OM y kx =,代入椭圆的方程,解得M 点的坐标,同理可得直线PQ 的方程,代入求解所以2165215M M x y ==,即可求解点M 的坐标.试题解析:(1)由题意222221314{a bc a a b c +===+,解得2,1a b ==,所以椭圆C 的标准方程为2214x y +=.(2)由题意知直线PQ 经过坐标原点O ,假设存在符合条件的点M ,则直线OM 的斜率存在且大于零,,OM PQ OM ⊥= ① 设直线OM 的斜率为k ,则直线:OM y kx =,联立方程组22{14y kxx y =+=,得M M x y ==所以OM =②同理可得直线PQ的方程为1,y x OP k =-=③ 将②③代入①式得= 化简得21110k-=,所以11k=所以M M x y ==,综上所述,存在符合条件的点1515M ⎛ ⎝⎭【考点】椭圆的标准方程;直线与椭圆的位置关系.【方法点晴】本题主要考查了椭圆的标准方程及直线与椭圆的位置关系的应用,其中解答中涉及到椭圆的几何性质的应用、函数与方程思想等知识点的综合考查,着重考查了学生的推理与运算能力以及转化与化归思想的应用,此类问题的解答中把直线的方程与圆锥曲线的方程联立,转化为方程的根与系数的关系、判别式和韦达定理的应用是解答的关键,试题运算量大,有一定的难度,属于难题.21.已知函数2()x f x e a =-,()x g x e b =-,且()f x 与()g x 的图象有一个斜率为1的公切线(e 为自然对数的底数). (1)求b a -;(2)设函数ln 21()()()22h x f x g x mx =--+-,讨论函数()h x 的零点个数. 【答案】(1)1ln 222b a -=-(2)见解析 【解析】(1)由()f x 与()g x 的图象有一个斜率为1的公切线,分别对()f x 与()g x 求导并求出切线方程,列出等量关系可得b a -;(2)利用换元将2()2x xh x e e m '=--转化为二次函数,分类讨论对其单调性,对图像特点进行分析,分情况讨论出函数()h x 的零点个数. 【详解】(1)2()2=1xf x e '=,可得ln 2ln 21,()222x f a =--=-. ()f x 在ln 21(,)22a --处的切线方程为1ln 2()22y a x --=+,即ln 2122y x a =++-. ()1x g x e '==,0,(0)1x g b ==-. ()g x 在(0,1)b -处的切线方程为(1)y b x --=,1y x b =+-, 故ln 21122a b +-=-, 可得1ln 222b a -=-. (2)由(1)可得22ln 21()()22xx x x h x ea eb mx e e mx =----+-=--, 2()2x x h x e e m '=--,令x t e =,则22y t t m =--,=1+8m ∆,1m 时,220t t m --=有两根,12,t t 且120t t <<,12()2()()0x x h x e t e t '=--=,得:2ln x t =,在2(ln ),t -∞上,()0h x '<,在2(ln ,)t +∞上,()0h x '>, 此时,2(ln )(0)0h t h <=.又x →-∞时,(),h x x →+∞→+∞时,()h x →+∞. 故在2(ln ),t -∞和2(ln ,)t +∞上,()h x 各有1个零点.1m =时,1()2()(1)2x x h x e e '=+-()h x 最小值为(0)0h =,故()h x 仅有1个零点.01m <<时,12()2()()x x h x e t e t '=--.其中120t t <<,同1m ,()h x 在2(ln ),t -∞与2(ln ,)t +∞上, ()h x 各有1个零点,0m =时,2()x x h x e e =-,仅在(0)0h =有1个零点, 108m -<<时,对方程220,180t t m m --=∆=+>. 方程有两个正根12,t t ,12()2()()x xh x e t e t '=--.在1(,ln )t -∞上,()0h x '>,在12(ln ,ln )t t 上,()0h x '<,在2(ln ,)t +∞,()0h x '>.由1212120t t t t ⎧+=⎪⎨⎪<<⎩,可得1211042t t <<<<,故22ln 0,(ln )(0)0t h t h <<=.11110,120,ln 0t t t -<-><,故1(ln )0h t <.故在1(,ln )t -∞上,1()(ln )0h x h t <<, 在12(ln ,ln )t t 上,()0h x <,在2(ln ,)t +∞上,()h x 有1个零点:0x =.18m ≤-时,2()20x x h x e e m '=--≥恒成立,()h x 为增函数,()h x 仅有1个零点:0x =.综上,0m ≤或1m =时,()h x 有1个零点,01m <<或1m 时,()h x 有2个零点.【点睛】本题考查导数的应用,利用导数求切线是常考点,利用导数讨论零点个数是难点,通常结合分类讨论思想进行分析解决,属于难题.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数);在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)若射线(0)l y kx x ≥:=与曲线1C ,2C 的交点分别为A B ,(A B ,异于原点),当斜率(k ∈时,求·OA OB 的取值范围. 【答案】(1)1C 的极坐标方程为2cos ρθ=;2C 的直角坐标方程为2x y =;(2)(2,.【解析】(1)由1cos sin x y αα=+⎧⎨=⎩,利用平方关系可得1C 的普通方程,再将cos sin x y ρθρθ=⎧⎨=⎩代入普通方程中化简求得极坐标方程;曲线2C 的极坐标方程2cos sin ρθθ=可化为22cos sin ρθρθ=,将cos sin x y ρθρθ=⎧⎨=⎩代入上式即可得解;(2)分别联立射线(0)l y kx x ≥:=与曲线1C ,2C 的极坐标方程,求出A B ,两点的极坐标,进而得出·OA OB 的取值范围. 【详解】(1)曲线1C 的直角坐标方程为22(1)1x y -+=,即2220x x y -+=,将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得曲线1C 的极坐标方程为2cos ρθ=,由2cos sin ρθθ=两边同时乘ρ,得22cos sin ρθρθ=,结合cos sin x y ρθρθ=⎧⎨=⎩得曲线2C 的直角坐标方程为2x y =;(2)设射线(0)l y kx x ≥:=的倾斜角为ϕ,则射线的极坐标方程为θϕ=,且(k tan ϕ=∈.联立2cos ρθθϕ=⎧⎨=⎩得2A OA cos ρϕ== ,联立2cos sin ρθθθϕ⎧=⎨=⎩得2sin cos B OB ϕρϕ==,所以(2sin ·222cos 2,A B OA OB cos tan k ϕρρϕϕϕ⋅==∈=⋅=,即·OA OB 的取值范围是(2,. 【点睛】本题考查三种方程间的互化,考查极坐标方程的应用,考查逻辑思维能力和转化能力,属于中档题.23.设命题p :实数x 满足()()30x a x a --<,其中0a >,命题q :实数x 满足302x x -≤-. (1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1)()2,3;(2)12a <≤.【解析】(1)若1a =,分别求出p ,q 成立的等价条件,利用且p q ∧为真,求实数x 的取值范围;(2)利用p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件,求实数a 的取值范围. 【详解】解:由()()30x a x a --<,其中0a >,得3a x a <<,0a >,则p :3a x a <<,0a >.由302x x -≤-解得23x <≤.即q :23x <≤.(1)若1a =,则p :13x <<,若p q ∧为真,则p ,q 同时为真,即2313x x <≤⎧⎨<<⎩,解得23x <<,∴实数x 的取值范围()2,3.(2)若p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件, ∴332a a >⎧⎨≤⎩,即12a a >⎧⎨⎩,解得12a <≤.【点睛】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将p ⌝是q ⌝的充分不必要条件,转化为q 是p 的充分不必要条件是解决本题的关键,属于基础题.。
北京市北京工业大学附属中学高三上第一次月考文科数学试题(无答案)
北京工业大学附属中学2021-2021学年度第一学期第一次月考高三年级数学学科试卷(文)(考试时间120分钟,总分150分)一、选择题(本大韪共8小题,每题5分,共40分。
在每题合出的四个选项中,只有一项为哪一项符合要求的)1.命题,,320:=≥∃x x p 那么A.320:≠∀⌝x x p ,< B.320:≠≥∀⌝x x p , C.320:≠≥∃⌝x x p , D.320:≠∃⌝x x p ,< 2.假设,,ππ,π,⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛∈220βα假设(),,97sin 31cos =+-=βαβ那么αsin 的值为 A.271 B.275 C.31 D.2723 3.函数()⎪⎭⎫ ⎝⎛++=200sin π<,>,>ϕωϕωA B x A y 的期为T,在一个周期内的图像如下图,那么正确结论是A.π,23==T AB.63π,==ϕAC.21=-=ω,BD.64ππ,-==ϕT 4、设命题p :“假设,>1x e 那么”>0x ,命题q :“假设b a >,那么”<b a 11,那么A.“q p ∧〞为真命题B.“q p ∨〞为真命题C.“p ⌝〞为真命题D.以上都不对5.△ABC 中,点E 为边AB 的中点,点F 为边AC 的中点,BF 交CE 于点G,,y x +=那么=+y x A.23 B.1 C.34 D.32 6.直线n m 、和平面α,且α⊥m ,那么“m n ⊥〞是“α∥n 〞的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如下图,其俯视图为等腰直角三角形,那么该四棱锥的体积为 A.32 B.32 C.34 D.2 8.非空集合A 、B 满足以下两个条件:(1){};,,,,,,∅==B A B A 654321 (2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中元素.那么有序集合对(A,B)的个数为A.10B.12C.14D.16二、填空题(本大题6题小题,每题5分,共30分)9.在等差数列{}n a 中,假设,2576543=++++a a a a a 那么=+82a a ______.10.两个单位向量b a 、满足,21-=•那么=a 2_______;向量b a -2与b 的夹角为θ,那么=θcos _________. 11.假设y x 、满足,⎪⎩⎪⎨⎧≥≤+≤-010x y x y x 那么y x z 2+=的最大值为_________.12.在△ABC 中,角A 、B 、C 的对边分别为,、、c b a 假设,,π,A B C c sin 2sin 33===那么=a __.13.假设()()(),,π,ππ051cos sin ∈-=+++x x x 那么.____tan ____2sin ==x x , 14.某市2021年各月平均房价同比(与上一年同月比拟)和环比(与相邻上月比拟)涨幅情况如下列图所示:根据此图考虑该市2021年各月平均房价:①同比2021年有涨有跌;②同比涨幅3月份最大,12月份最小;③1月份最高;④5月比9月高,其中正确结论的编号为________________.三、解答题15.(本小题总分值13分){}n a 是等差数列,满足,,,12341=⋯=a a 数列{}n b 满足,,20441==b b 且{}n n a b -为等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和.16.(本小题总分值13分)设函数()()(),>0cos sin 3cos ωωωωx x x x f -=()x f 的最小正周期为π. (1)求⎪⎭⎫ ⎝⎛8πf 的值; (2)求()x f 的单调增区间;(3)当⎥⎦⎤⎢⎣⎡∈20π,x 时,求函数()x f 的最大值和最小值及获得最值时x 的值。
2022-2023学年四川省内江市威远中学高三年级下册学期第一次月考数学文试题【含答案】
高三下第一次月考文科数学第I 卷(选择题)一、单选题1.已知全集,集合,则A =( ){62}U x x =-<<∣{}2230A x x x =+-<∣C U A .B .C .D .()6,2-()3,2-()()6,31,2--⋃][()6,31,2--⋃2.已知,则( )()1i 75iz +=+z =A .B .C .D .6i-6i+32i-12i-3.素数对称为孪生素数,将素数17拆分成个互不相等的素数之和,其中任选(,2)p p +n 2个数构成素数对,则为孪生素数的概率为( )A .B .C .D .151314124.《九章算术》是我国古代的数学名著,书中有如下问题:“今有女子善织,日增等尺,三日织9尺,第二日、第四日、第六日所织之和为15尺,则其七日共织尺数为几何?”大致意思是:“有一女子善于织布,每日增加相同的尺数,前三日共织布9尺,第二日、第四日、第六日所织布之和为15尺,问她前七日共织布多少尺?” ( )A .28B .32C .35D .425.设,是两个向量,则“”是“且”的.a b a b = ||a b |=|a b A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知各顶点都在球面上的正四棱锥的高度为,椎体体积为6,则该球的表面积为3( )A .B .C .D .32π16π24π20π7.某程序框图如图所示,则输出的S =( )A .8B .27C .85D .2608.已知直线的斜率为,直线的倾斜角为直线的倾斜角的一1l 2l1l半,则直线的斜率为( )A .. C D .不2l 存在9. 我国著名数学家华罗庚先生曾说,数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,经常用函数的图象研究函数的性质.已知函数的图象可能为sin ()2cos x xf x x =-A.B .C .D .10.函数的图象如图所示,将函数的图象向右平移个()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭()f x π6单位长度,得到函数的图象,则( )()g x A .B .()sin 2g x x=()cos 2g x x=C .D .()2πsin 23g x x ⎛⎫=+ ⎪⎝⎭()2πcos 23g x x ⎛⎫=+ ⎪⎝⎭11.10.设,,,则( )0.302a =.3log 4b =4log 5c =A . B . C .D .a b c <<b a c <<c a b<<a c b <<12.已知函数的定义域为R ,且满足,,()f x ()()110f x f x -+-=()()8f x f x +=,,,给出下列结论:()11f =()31f =-()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩①,;②;③当时,的解集为;1a =-3b =-()20231f =[]4,6x ∈-()0f x <()()2,02,4- ④若函数的图象与直线在y 轴右侧有3个交点,则实数m 的取值范围是()f x y mx m =-.其中正确结论的个数为( )111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭A .4B .3C .2D .1第II 卷(非选择题)二、填空题13.若实数、满足,则的取值范围是_________.x y 430x y y x y +≤⎧⎪≤⎨⎪≥⎩23x y +14.已知定点和曲线上的动点,则线段的中点的轨迹方程为(4,2)A -224x y +=B AB P ___________.15.数列满足,其前项和为若恒成立,则{}n a 1,N (21)(23)n a n n n *=∈++n n S n S M <的最小值为________________________M 16.设函数在区间上的导函数为,在区间上的导函数为()y f x =(),a b ()f x '()f x '(),a b,若在区间上恒成立,则称函数在区间上为“凸函数”;已()f x ''(),a b ()0f x ''<()f x (),a b 知在上为“凸函数”,则实数的取值范围是_____43213()1262m f x x x x =--()1,3m 三、解答题(本大题共5小题,共60分.17题-21题各12分,解答应写出文字说明、证明过程或演算步骤)17.中,sin 2A -sin 2B -sin 2C =sin B sin C .ABC (1)求A ;(2)若BC =3,求周长的最大值.ABC 18.热心网友们调查统计了柳州市某网红景点在2022年6月至10月的旅游收入y (单位:万元),得到以下数据:月份x678910旅游收入y1012111220(1)根据表中所给数据,用相关系数r 加以判断,是否可用线性回归模型拟合y 与x 的关系?若可以,求出y 关于x 之间的线性回归方程;若不可以,请说明理由;(2)为调查游客对该景点的评价情况,网友们随机抽查了200名游客,得到如图列联表,请填写2×2列联表,并判断能否有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”喜欢不喜欢总计男100女60总计110,3.162≈注:r 与的计算结果精确到0.001.参考公式:相关系数2K r =线性回归方程:,其中,,ˆˆˆybx a =+()()()121ˆniii nii x x y y bx x ==--=-∑∑ˆˆa y bx =-.22()()()()()n ad bc K a b c d a c b d -=++++临界值表:()20P K k ≥0.0100.0050.0010 k 6.6357.87910.82819.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,,45BAD∠=1,AD AB ==是正三角形,平面平面PBD .PADPAD ⊥(1)求证:;PA BD⊥(2)求三棱锥P -BCD 的体积.20.已知椭圆C 的方程为,右焦点为.22221(0)x y a b a b +=>>F (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线与曲线相切.证明:MN 222(0)x y b x +=>M ,N ,F 三点共线的充要条件是.||MN 21.已知函数.()()21ln 2f x x a x a R =-∈(1)若,求函数在处的切线方程;2a =()f x ()()11f ,(2)若函数在上为增函数,求的取值范围;()f x ()1+∞,a (3)若,讨论方程的解的个数,并说明理由.0a ≠()0f x =四、选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.在平面直角坐标系中,曲线C 的参数方程为(为参数),以坐xOy 12cos 22sin x y αα=-+⎧⎨=+⎩α标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是.cos 2sin 40ρθρθ-+=(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知,设直线l 和曲线C 交于A ,B 两点,线段的中点为Q ,求的值.(4,0)P -AB ||PQ [选修4—5:不等式选讲]23.已知a ,b ,c 均为正数,且,证明:22243a b c ++=(1);23a b c ++≤(2)若,则.2b c =113a c +≥高2023届第六学期第一次月考试题文科数学参考答案选择题 1-5 DBBCA 6-10 BCCAA 11-12 DC1.D 因为,A=.故选:D.{}}{223031A x x x x x =+-<=-<<∣U ][()6,31,2--⋃2.B 因为,所以.故选:B.()()()()75i 1i 75i 122i6i 1i 1i 1i 2z +-+-====-++-6i z =+3.B 素数,可拆成4个互不相等的素数,在4个互不相等的素数中,任取172357=+++两个的所有情况为共6种,其中为孪生素数的情况有2{}(2,3),(2,5),(2,7),(3,5),(3,7),(5,7)种,分别是,,所以孪生素数的概率为.故选:B .{(3,5)(5,7)}2163=4.C 解:由题知,该女子每日织布的尺数构成等差数列,记为,设其每日增加的尺数{}n a 为,其前项和为,所以,,即,解得,,d n n S 123246915a a a a a a ++=⎧⎨++=⎩113393915a d a d +=⎧⎨+=⎩112d a =⎧⎨=⎩所以,她前七日共织布尺.故选:C71721142135S a d =+=+=5.A 【详解】由“”可推出“且”;但反之不成立.所以“”是“且”a b = ||||a b =a b a b = a b = a b的充分而不必要条件.选.A 6.B 设正四棱锥底面边长为,则()0a a >2136,3a a ⨯⨯==,则,解得,则球的表面积为.r ()2223r r -+=2r =24π16πr =故选:B7.C 由图可知,初始值;第一次循环,,不成2,1S k ==112,3228k S =+==⨯+=23k =>立;第二次循环,,不成立;第三次循环,213,38327k S =+==⨯+=33k =>,成立;退出循环,输出的值为.故选:C.314,327485k S =+==⨯+=43k =>S 858. C 由直线的斜率为,设其倾斜角为,则1l1θ1tan θ=由直线的倾斜角为直线的倾斜角的一半,设直线的倾斜角为,则,2l 1l 2l 2θ212θθ=,,解得212222tan tan tan 21tan θθθθ===-)(221tan 0θθ+=2tan θ=由倾斜角的取值范围为,则故选:C.[)0,p 2tan θ=2l9.A 解:由题意可得,所以函数为偶函数,排()sin()sin ()()2cos()2cos x x x xf x f x x x ---===---()f x 除B 、C 当略大于0时,,,所以,排除D 故选:A.x sin 0x x >2cos 0x ->()0f x >10.A 结合图像,易得,则,所以由得,所以,17πππ41234T =-=πT =2πT ω=2ππω=2ω=又,所以,则,又因为落在上,所以0ω>2ω=()()sin 2f x x ϕ=+7π,112⎛⎫- ⎪⎝⎭()f x ,即,所以,得7πsin 2112ϕ⎛⎫⨯+=- ⎪⎝⎭7πsin 16ϕ⎛⎫+=- ⎪⎝⎭7π3π2π,Z62k k ϕ+=+∈,ππ,Zk k ϕ=+∈23因为,所以当且仅当时,满足要求,所以,π2ϕ<0k =π3ϕ=()πsin 23f x x ⎛⎫=+ ⎪⎝⎭因为将函数的图象向右平移个单位长度,得到函数的图象,()f x π6()g x 所以.故选:A.()ππsin 2sin 263xg x x ⎡⎤⎛⎫-+= ⎪⎢⎥⎣⎦=⎝⎭11.D 因为单调递减,所以,又与均单调递0.2x y =0.3002021..a =<=3log y x =4log y x =增,故,,其中,33log 4log 31b =>=44log 5log 41c =>=3ln 4log 4ln 3b ==,4ln 5log 5ln 4c ==,其中,故,2ln 4ln 5ln 4ln 3ln 5ln 3ln 4ln 3ln 4-⋅-=⋅ln 30,ln 40>>ln 3ln 40⋅>其中,故,2222ln 3ln 5ln15ln16ln 3ln 5ln 4222+⎛⎫⎛⎫⎛⎫⋅<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2ln 4ln 5ln 4ln 3ln 50ln 3ln 4ln 3ln 4-⋅-=>⋅所以,即,故.故选:D ln 4ln 5ln 3ln 4>b c >a c b <<12.C 【详解】因为,所以,所以函数为奇函数,()()110f x f x -+-=()()f x f x -=-()f x .因为,所以的周期为8.又()00f =()()8f x f x +=()f x ,所以,所以,,()()21111f a =-++=10a +=1a =-()3311f b =+-=-所以,故①正确.3b =-因为,,故②错误.()()()()202325381111f f f f =⨯-=-=-=-易知,作出函数在上的图象,()()211,0231,24x x f x x x ⎧--+<≤⎪=⎨--<≤⎪⎩()f x []0,4根据函数为奇函数,及其周期为8,得到函数在R 上的图象,如图所示,()f x ()f x 由的图象知,当时,的解集为,故③正确.()f x []4,6x ∈-()0f x <()()2,02,4- 由题意,知直线恒过点,与函数的图象在y 轴右侧有3个()1y mx m m x =-=-()1,0()f x 交点根据图象可知当时,应有,即,且同时满足,0m >51m m ⨯-<14m <()mx m f x -=无解,即当时,,无解,所[]8,10x ∈[]8,10x ∈()()()108f x x x =--()()108x x mx m--=-以,解得,所以.当时,应有Δ0<1616m -<<+1164m -<<0m <,即,且同时满足,无解,即当时,31m m ⨯->-12m >-()mx m f x -=[]6,8x ∈[]6,8x ∈,()()()68f x xx =--无解,所以,解得,所以()()58x x mx m --=-Δ0<1212m --<<-+综上,或④错误.故选:C.1122m -<<-+1164m -<<1122m -<<-+13.设,作出不等式组所表示的可行域如下图所示:0,11⎡⎤⎣⎦23z x y =+430x y y x y +≤⎧⎪≤⎨⎪≥⎩联立,可得,即点,平移直线,当该直线经过34y x x y =⎧⎨+=⎩13x y =⎧⎨=⎩()1,3A 23z x y =+可行域的顶点时,直线在轴上的截距最大,此时取最大值,A 23z x y =+x z 即,当直线经过原点时,该直线在轴上的截max 213311z =⨯+⨯=23z x y =+x 距最小,此时取最小值,即,因此,的取值范围是.z min 0z =23x y +0,11⎡⎤⎣⎦14.设线段中点为,, 则,22(2)(1)1x y -++=AB (,)P x y (,)B m n 42m x +=22ny-+=即,因为点为圆上的点,所以24m x =-22n y =+B 224x y +=224m n +=所以,化简得:故答案为:22(24)(22)4x y -++=22(2)(1)1x y -++=22(2)(1)1x y -++=15.,()()1111212322123n a n n n n ⎛⎫==-⎪++++⎝⎭则,因为恒成立,所以,1112121111111123557233236n S n n n --++ +⎛⎫⎛⎫=-+-++=<⎪ ⎪⎝⎭⎝⎭ n S M <16M ≥即的最小值为 故答案为:M 161616因为,,由题意在上恒成立,即321()332mf x x x x '=--2()3f x x mx ''=--()0f x ''<()1,3在上恒成立,分离参数,而在上的最大值为2,230x mx --≤()1,33m x x ≥-3y x x =-()1,317.(1)由正弦定理可得:,222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,.()0,A π∈ 23A π∴=(2)由余弦定理得:,2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=即.()29AC AB AC AB +-⋅=(当且仅当时取等号),22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭ AC AB =,()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭解得:(当且仅当时取等号),AC AB +≤AC AB =周长周长的最大值为ABC ∴ 3L AC AB BC =++≤+ABC ∴ 3+18.(1)由已知得,,67891085x ++++==1012111220135y ++++==,,,()52110ii x x =-=∑()52164ii y y =-=∑()()5120iiix y y x =-=-∑所以,0.791r ===≈因为,||0.791[0.75,1]r ≈∈说明y 与x 的线性相关关系很强,可用线性回归模型拟合y 与x 的关系,设线性回归方程为,ˆˆˆybx a =+∴,.2020ˆ1b ==ˆˆ13163a y bx =-=-=-则y 关于x 线性回归方程为;23y x =-(2)由题可得2×2列联表,喜欢不喜欢总计男7030100女4060100总计11090200,()222007060403018.18210.82810010011090K ⨯⨯-⨯=≈>⨯⨯⨯∴有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”.19.(1)证明:取中点,连接,PD E AE 因为是边长为1正三角形,所以,PAD AE PD ⊥又因为平面平面PBD ,平面平面PBD ,所以平面PAD ⊥PD =PAD ⋂⊥AE PBD ,又因为平面PBD ,所以①,又因为在中,,BD ⊂AE BD ⊥ABD △45BAD∠=,所以1,AD AB ==2222cos 451BD AD AB AD AB =+-⋅⋅⋅︒=,所以②,又因为③,由①②③2222BD AD AB +==AD BD ⊥AE AD A ⋂=可得平面,又因为平面,所以;BD ⊥PADPA ⊂PAD PA BD ⊥(2)解:取中点,连接,AD F PF 因为是边长为1正三角形,所以且(1)可知PAD PF AD ⊥PF =平面,BD ⊥PAD 平面,所以,又因,所以平面,即有PF ⊂PAD BD ⊥PF BD AD D Ç=PF ⊥ABCD 平面,所以为三棱锥P -BCD 的高,又因为ABCD 为平行四边形,所以PF ⊥BCD PF,111122BCD ABD S S ==⨯⨯= 所以111332P BCD BCDV S PF -=⋅=20.(1)由题意,椭圆半焦距,所以c=c e a ==a =2221b a c =-=椭圆方程为;2213x y +=(2)由(1)得,曲线为,当直线的斜率不存在时,直线,221(0)x y x +=>MN :1MN x =不合题意;当直线的斜率存在时,设,MN ()()1122,,,M x y N x y 必要性:若M ,N ,F 三点共线,可设直线即,(:MN y k x =0kx y --=由直线与曲线,解得,MN 221(0)x y x +=>11k =±联立可得,所以,(2213y x x y ⎧=±⎪⎨⎪+=⎩2430x -+=121234x x x x +=⋅==所以必要性成立;充分性:设直线即,():,0MN y kx b kb =+<0kx y b -+=由直线与曲线,所以,MN 221(0)x y x +=>1=221b k =+联立可得,2213y kx b x y =+⎧⎪⎨+=⎪⎩()222136330k x kbx b +++-=所以,2121222633,1313kb b x x x x k k -+=-⋅=++==化简得,所以,()22310k -=1k =±所以或,所以直线或,1k b =⎧⎪⎨=⎪⎩1k b=-⎧⎪⎨=⎪⎩:MNy x =y x =-所以直线过点,M ,N ,F 三点共线,充分性成立;MN F 所以M ,N ,F 三点共线的充要条件是||MN =21(1) 时,, , ,2a =()212ln 2f x x x =-()'2f x x x ∴=-()'11k f ∴==-又,函数在处的切线方程为:;()112f =∴()f x ()()11f ,2230x y +-=(2)函数在上为增函数,则 在恒成立,()f x ()1+∞,()'0a f x x x =-≥()1x ∈+∞,即在恒成立,故,经检验,符合题意,2a x ≤()1x ∈+∞,1a ≤;1a ∴≤(3),()'af x x x =-时, 在上恒成立,在是增函数,0a <①()'0f x >()0+∞,()f x \()0+∞,取,,11x =212eax =由, ,()10f >11121121111e e ln e e e 102222a a a aa f a ⎛⎫⎛⎫=-=-=-< ⎪ ⎪⎝⎭⎝⎭所以在时存在唯一零点,即时,方程有唯一解;12e ,1a x ⎛⎫∈ ⎪⎝⎭0a <()0f x =时,,0a >②()'af x x x =-=在递减,在递增,()f x\(0)+∞ ,()min 1()1ln 2fx fa a ∴==- 时,,此时方程无解,0e a <<0f>()0f x = 时, , 时方程存在一个解,e a >()110,02f f =><(x ∴∈()0f x =又 ,()211e e e e e 22a a a a a f a a ⎛⎫=-=- ⎪⎝⎭令 ,即 是增函数,()()'e 1111e ,e 1,e,e 1e 102222a a a p a a p a a =-=->∴->-> ()p x ,即 ,即 时,()()e e 121111e e e e e 1e e 10222p a p --⎛⎫⎛⎫>=-=->-> ⎪ ⎪⎝⎭⎝⎭()e 0a f >)ax ∈方程存在一个解;()0f x =所以: 时,无解,0e a <<()0f x =或 时,有唯一解,0a <e a =()f x时,有个解;e a >()0f x =2综上, 时,无解,或 时,有唯一解, 时,0e a <<()0f x =0a <e a =()f x e a >有个解;()0f x =222.(1)由(为参数),得,故曲线C 的普通方程为12cos ,22sin x y αα=-+⎧⎨=+⎩α22(1)(2)4x y ++-=.由,得,故直线l 的直角坐标方程22(1)(2)4x y ++-=cos 2sin 40ρθρθ-+=240x y -+=为;240x y -+=(2)由题意可知点P 在直线l 上,则直线l 的参数方程为(t 为参数),4,x y ⎧=-⎪⎪⎨⎪=⎪⎩将直线l 的参数方程代入曲线C 的普通方程,整理得,25450t -+=,(245453800∆=-⨯⨯=>设A ,B 对应的参数分别为,则12,t t 12t t+=故122t t PQ +==23.(1)由柯西不等式有,()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦所以,当且仅当时,取等号,所以.23a b c ++≤21a b c ===23a b c ++≤(2)证明:因为,,,,由(1)得,2b c =0a >0b >0c >243a b c a c ++=+≤即,所以,043a c <+≤1143a c ≥+由权方和不等式知,()22212111293444a c a c a c a c ++=+≥=≥++当且仅当,即,时取等号,124a c =1a =12c =所以.113a c +≥所以实数的取值范围是.m [)2,+∞。
贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案
江西省贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案贵溪市实验中学高中部2019-2020学年第一学期第一次月考高三(文科)数学试卷考试时间:120分钟 总分:150 命题人:第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题.每小题5分,共60分。
在每个小题给出的四个选项中 ,只有一项是符合题目要求的。
1.已知集合{}31|<<-=x x A ,(){}1lg |-==x y x B ,则()=⋂B C A R ( )A 。
()3,1B 。
()3,1- C.()1,1- D.(]1,1-2.已知命题:p x R ∀∈,1sin x e x ≥+。
则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R∃∈,001sin x e x ≤+D .0x R∃∈,001sin x e x <+3.下列哪一组函数相等( ) A 。
()()xx x g x x f 2==与B.()()()42x x g x x f ==与C.()()()2x x g x x f ==与D.()()362x x g x x f ==与 4. = 255tan ( )A .3-2- B .32-+C .3-2D .32+5.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.()的图像为函数R x x y x ∈-=22( ) A.B.C 。
D 。
7.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值在x =e 处取得极大值;③函数f (x )在x =c 处取得极大值在x =e 处取得极小值;④函数f (x )的最小值为f (d ).A.③ B 。
新疆乌鲁木齐市第八中学2022-2023学年高三上学期第一次月考数学(文)试题及答案
乌鲁木齐市第八中学2022-2023学年第一学期高三年级第一阶段考试文数问卷(命题人:高三数学组考试时间: 120 分钟卷面分值: 150 分)(命题范围:高考)一、单选题(本大题共12小题,共60.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B的真子集个数为.( )A. 1B. 3C. 2D. 42.命题“∀x∈[1,2],x 2−2a≤0”为真命题的一个充分不必要条件是( )A. a≤2B. a≥2C. a≥4D. a≤43.函数y=sin x cos x+3cos2x−3的图像的一个对称中心是.( )B. C. −2π3D.4.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a元一年定期,若年利率为r保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为元( )A. a(1+r)17B. ar [(1+r)17−(1+r)]C. a(1+r)18D. ar[(1+r)18−(1+r)]5.如图,正方形ABCD中,M是BC的中点,若AC=λAM+μBD,则λ+μ=( )A. 43B. 2 C. 158D. 536.设数列{a n}为等差数列,S n是其前n项和,且S5<S6,S6=S7>S8,则下列结论不正确的是( )A. d<0B.S9>S5C. a7=0D. S6与S7均为S n的最大值7.已知θ∈(0,π2),sin (π4−θ)=55,则sin (2θ+π3)的值为( )A. 43+310B. 43−310C. 33+410D.33−4108.若点O 和点F 分别为椭圆x24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⋅FP 的最大值为.( )A. 2B. 3C. 6D. 89.在公比q 为整数的等比数列{ a n }中,S n 是数列{ a n }的前n 项和,若a 1+a 4=18,a 2+a 3=12,则下列说法错误的是( )A. q =2B. 数列{ S n +2 }是等比数列C.数列{ lga n }是公差为2等差数列D. S 8=51010.已知关于x 的不等式x 2−4ax +3a 2<0(a <0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最大值是( )A.63B. −433C. 433D. −23311.在△ABC 中,AC =3,AB =1,O 是△ABC 的外心,则BC ⋅AO 的值为( )A.4B. 6C. 8D. 312.已知函数f(x)=|sinx|+|cos x|−sin 2x−1,则下列说法正确的是( )A. x =π2是函数f(x)的对称轴B. 函数f(x)在区间(π2,5π6)上单调递增C. 函数f(x)的最大值为2,最小值为−2D. 函数f(x)在区间(0,Mπ)上恰有2022个零点,则1011<M ⩽20232二、填空题(本大题共4小题,共20.0分)13.已知x >0,y >0,且32x +6y =2,求4x +2y 的最小值____________14.若函数f(x)=2x +mx +1在区间[0,1]上的最大值为3,则实数m =___________.15.已知当a ∈[0,1]时,不等式x 2+(a−4)x +4−2a >0恒成立,则实数x 的取值范围是 .16.数列{a n }满足a n+2+(−1)n a n =3n−1,前16项和为540,则a 1= .三、解答题(本大题共6小题,共70.0分。
河北省冀州中学高三第一次月考数学(文)试卷
)
x
y
0 2.2
1 4.3
3 4.8
4 6.7 )
(A) 2.6 (B) 2.9 (C) 2.8 (D) 2.2 6.若 a,b∈R,且 a>b,则下列不等式中恒成立的是( (A) a 2 b 2
1 1 a (B) ( ) a ( )b (C) lg(a b) 0 (D) 1 2 2 b 7.已知抛物线关于 y 轴对称,它的顶点在坐标原点 O ,并且经过点 M ( x0 ,1) ,若点 M
x2
曲线 Γ 的方程为 2 +y =1. 2 2 5 2 2 (Ⅱ)由 cos ∠BAP= 3 ,|AP|=2 2,得 P ( 3 , 3 ). 2 于是直线 AP 方程为 y= 4 (x+1).
2
„5 分 „8 分
x 2 +y =1, 7 由 解得 5x +2x-7=0,x =1,x =- 5 . 2 y= 4 (x+1),
冀州中学高三第一次月考数学试卷(文)答案
BADAA CBCDBDD 17.解: (Ⅰ) -2 364
1,1
„„„„„„„„„„„4 分
m n 1 , 2 sin B 3 cos B 2 cos2 B 1 ,
sin( 2 B
3 sin 2B cos2B 2 ,
11.如果关于 x 的方程 ① F ( x) f ( x) ; ② 函 数 F ( x) 是 奇 函 数 ; ③ 当 a 0 时 , 若 mn 0 , m n 0 , 总 有
F (m) F (n) 0 成立,其中所有正确命题的序号是( (A)② (B)①② (C)③
二、填空题:本大题 4 个小题,每小题 5 分,共 20 分.
河北省冀州中学高三第一次月考试卷 数学(文)
2023届江西省部分学校高三上学期1月联考数学(文)试题(word版)
故 .
因为 ,所以 ,即 ,所以 ,
则 .故 对一切 恒成立,
即 对一切 恒成立.
【点睛】含参不等式的证明,若根据参数范围进行适当放缩,消去参数,这样可以简化不等式结构,便于构造函数进行研究,放缩消参是处理含参不等式的常规技巧,值得学习体会,常用放缩方法有切线放缩,也可结合题干中参数取值范围进行放缩.
(一)必考题:共60分.
17.公差不为 的等差数列 的前 项和为 ,且满足 , 、 、 成等比数列.
(1)求 的前 项和 ;
(2)记 ,求数列 的前 项和 .
【答案】(1)
(2)
【解析】
【分析】(1)设等差数列 的公差为 ,则 ,根据题意可得出关于 的方程,求出 的值,可求得数列 的通项公式,利用等差数列的求和公式可求得 ;
(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.
[选修4-4:坐标系与参数方程]
22.在平面直角坐标系 中,曲线C的参数方程为 ( 为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是 .
(1)求曲线C的普通方程和直线l的直角坐标方程;
1
3
1
1
6
3
3
4
1
2
4
1
2
5
3
1
2
6
3
1
6
1
2
1
2
2
5
3
4
5
(1)以此样本数据来估计顾客的抽奖情况,分别估计某顾客抽奖1次,积分为3分和2分的概率:
(2)某顾客抽奖3次,求该顾客至多有1次的积分大于1的概率.
安徽省黄山市田家炳实验中学2021届高三上学期第一次月考数学(文)试卷 Word版含解析
2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)2.若a、b为实数,则“0<ab<1”是“a <”或“b >”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.下列函数中既是奇函数,又在区间(﹣1,1)上是增函数的为()A. y=|x| B. y=sinx C. y=e x+e﹣x D. y=﹣x34.若函数f(x)=log a(2﹣ax)(a>0a≠1)在区间(1,3)内单调递增,则a的取值范围是() A. [,1) B.(0,] C.(1,) D. [)5.奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),则在(﹣∞,0)上f(x)的函数解析式是()A. f(x)=﹣x(1﹣x) B. f(x)=x(1+x) C. f(x)=﹣x(1+x) D. f(x)=x(x﹣1)6.函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x﹣1)是奇函数,若f(0.5)=9,则f(8.5)等于()A.﹣9 B. 9 C.﹣3 D. 07.定义两种运算:a⊕b=,a⊗b=,则f(x)=是()函数. A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()A. B. C . D.9.若log a(a2+1)<log a2a<0,则a的取值范围是()A.(0,1) B.(0,) C.(,1) D.(0,1)∪(1,+∞)10.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根,则a 的取值范围是()A.(1,2) B.(2,+∞) C.(1,) D.(,2)二、填空题:本大题共5小题,每小题5分,共25分.11.命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,则m 的取值范围是.12.函数f(x)=lg|x+m|关于直线x=1对称,则m= .13.已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是.14.定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(1)•f(2)<0.则函数y=f (x)的图象与x轴的交点个数是.15.已知函数f(x)=(a∈R),若对于任意的X∈N*,f(x)≥3恒成立,则a的取值范围是.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.设集合,B={x|x2﹣3mx+2m2﹣m﹣1<0}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.17.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)求函数g(x)的解析式;(Ⅱ)解不等式g(x)≥f(x)﹣|x﹣1|.18.某单位用2160万元购得一块空地,方案在该地块上建筑一栋至少10层、每层2000平方米的楼房.经测算,假如将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)19.已知函数(a为常数).(1)若常数a<2且a≠0,求f(x)的定义域;(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.20.定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.21.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=x0,则称x0是f(x)的一个不动点,也称f(x)在区间D上有不动点.(1)证明f(x)=2x﹣2x﹣3在区间(1,4)上有不动点;(2)若函数在区间[1,4]上有不动点,求常数a的取值范围.2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)考点:交、并、补集的混合运算.专题:集合.分析:由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规章解出A∩(∁R B)即可得出正确选项解答:解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B点评:本题考查交、并、补的混合运算,属于集合中的基本计算题,娴熟把握运算规章是解解题的关键2.若a、b为实数,则“0<ab<1”是“a <”或“b >”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断;不等关系与不等式.专题:简易规律.分析:由于“0<ab<1”⇒“a <”或“b >”.“a <”或“b >”不能推出“0<ab<1”,所以“0<ab<1”是“a <”或“b >”的充分而不必要条件.解答:解:∵a、b为实数,0<ab<1,∴“0<a <”或“0>b >”∴“0<ab<1”⇒“a <”或“b >”.“a <”或“b >”不能推出“0<ab<1”,所以“0<ab<1”是“a <”或“b >”的充分而不必要条件.故选A.点评:本题考查充分分条件、必要条件和充要条件,解题时要留意基本不等式的合理运用.3.下列函数中既是奇函数,又在区间(﹣1,1)上是增函数的为()A. y=|x| B. y=sinx C. y=e x+e﹣x D. y=﹣x3考点:奇偶性与单调性的综合.专题:探究型;函数的性质及应用.分析:对于A,C均是偶函数;对于B,C均是减函数,B在区间(﹣1,1)上是增函数,D在区间(﹣1,1)上是减函数.解答:解:对于A,C均是偶函数,故不满足题意对于B,C均是减函数,B在区间(﹣1,1)上是增函数,D在区间(﹣1,1)上是减函数所以B满足题意故选B.点评:本题考查函数的奇偶性与函数的单调性,考查同学分析解决问题的力量,属于中档题.4.若函数f(x)=log a(2﹣ax)(a>0a≠1)在区间(1,3)内单调递增,则a的取值范围是() A. [,1) B.(0,] C.(1,) D. [)考点:对数函数的单调性与特殊点.专题:计算题.分析:先将函数f(x)=log a(2﹣ax)转化为y=log a t,t=2﹣ax,两个基本函数,再利用复合函数求解.解答:解:令y=log a t,t=2﹣ax,∵a>0∴t=2﹣ax在(1,3)上单调递减∵f(x)=log a(2﹣ax)(a>0,a≠1)在区间(1,3)内单调递增∴函数y=log a t是减函数,且t(x)>0在(1,3)上成立∴∴0<a ≤故选B.点评:本题主要考查复合函数,关键是分解为两个基本函数,利用同增异减的结论争辩其单调性,再求参数的范围.本题简洁忽视t=2﹣ax>0的状况导致出错.5.奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),则在(﹣∞,0)上f(x)的函数解析式是()A. f(x)=﹣x(1﹣x) B. f(x)=x(1+x) C. f(x)=﹣x(1+x) D. f(x)=x(x﹣1)考点:函数奇偶性的性质.专题:计算题.分析:把x∈(﹣∞,0)的函数解析式通过函数是奇函数的性质转化求出函数f(x)在(0,+∞)上的解析式.解答:解:当x∈(﹣∞,0)时,﹣x∈(0,+∞),由于函数f(x)是奇函数,故f(x)=﹣f(﹣x)=x(1+x).故选B点评:已知函数的奇偶性和函数在一个区间上的解析式求这个函数在其关于坐标原点对称的区间上的函数解析式,就是依据函数的奇偶性进行转化的,这类试题重点考查化归转化思想是运用.6.函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x﹣1)是奇函数,若f(0.5)=9,则f(8.5)等于()A.﹣9 B. 9 C.﹣3 D. 0考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由f(x﹣1)是奇函数、f(x)是偶函数,可得f(x)=f(x﹣4),从而求得f(8.5)=f(0.5),即可得到答案.解答:解:∵f(x﹣1)是奇函数,故有f(﹣x﹣1)=﹣f(x﹣1),即f(﹣x)=﹣f(x﹣2).又∵f(x)是偶函数,得f(x)=﹣f(x﹣2),f(x﹣4)=f(x)对任意x∈R恒成立,可得f(x)的最小正周期为4,∴f(0.5)=f(8.5)=9.故选:B.点评:本题综合考查抽象的函数奇偶性、周期性的应用,属于基础题.7.定义两种运算:a⊕b=,a⊗b=,则f(x)=是()函数. A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数考点:函数奇偶性的推断;进行简洁的合情推理.专题:新定义;函数的性质及应用.分析:先利用新定义把f(x)的表达式找出来,在利用函数的定义域把函数化简,最终看f(x)与f(﹣x)的关系得结论.解答:解:由定义知f(x)==,由4﹣x2≥0且|x﹣2|﹣2≠0,得﹣2≤x<0或0<x≤2,所以f(x)==,则f(﹣x)==﹣()=﹣f(x),故f(﹣x)=﹣f(x),即f(x)是奇函数.故选 A.点评:本题是对函数新定义与奇偶性的综合考查,关于新定义的题,关键在于理解新定义,并会用新定义解题,属于易错题题.8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()A. B. C. D.考点:指数函数的图像变换.专题:数形结合.分析:由已知中函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象,我们易推断出a,b与0,±1的关系,依据指数函数的图象的性质及指数函数图象的平移变换,我们分析四个答案中函数的图象,即可得到结论.解答:解:由已知中函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象可得b<﹣1<0<a<1则函数g(x)=a x+b为减函数,即函数的图象从左到右是下降的且与Y轴的交点在X轴下方分析四个答案只有A符合故选A点评:本题考查的学问点是指数函数的图象变换,其中依据已知推断出a,b与0,±1的关系,进而分析出函数图象的单调性及特殊点是解答本题的关键.9.若log a(a2+1)<log a2a<0,则a的取值范围是()A.(0,1) B.(0,) C.(,1) D.(0,1)∪(1,+∞)考点:对数函数的单调性与特殊点.专题:计算题;转化思想;对应思想.分析:由题意,可得出a2+1>1,结合log a(a2+1)<0,可得出a∈(0,1),再由log a2a<0得出2a>1,即可解出a的取值范围,选出正确选项解答:解:∵log a(a2+1)<log a2a<0,a2+1>1∴a∈(0,1),且2a>1∴a ∈(,1)故选C点评:本题考查对数函数的单调性,考察了对数数符合与真数及底数取值范围的关系,解题的关键是确定出a2+1>1,由此打开解题的突破口,本题考察了观看推理的力量,题目虽简,考查学问的方式很奇妙.10.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根,则a 的取值范围是()A.(1,2) B.(2,+∞) C.(1,) D.(,2)考点:函数的零点与方程根的关系.专题:作图题;函数的性质及应用.分析:作出在区间(﹣2,6]内函数f(x)的图象,将方程的根的个数化为函数图象交点的个数.解答:解:∵f(x)是定义在R上的偶函数,∴f(x)的图象关于y轴对称,∵对x∈R,都有f(x﹣2)=f(x+2),∴f(x)是周期函数,且周期为4;∵当x∈[﹣2,0]时,f(x)=()x﹣1,∴其在区间(﹣2,6]内的图象如右图,∴在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根可转化为,函数f (x)的图象与y=log a(x+2)的图象有且只有三个不同的交点,则log a(2+2)<3,且log a(6+2)>3解得,a ∈(,2).故选D.点评:本题通过分析可得函数f(x)的性质,并由这些性质依据图象变换作出其图象,将方程问题化为图象交点问题,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,则m 的取值范围是(﹣∞,﹣5] .考点:命题的真假推断与应用.专题:综合题;转化思想.分析:写出命题的否命题,据已知命题为假命题,得到否命题为真命题;分别出﹣m;通过导函数求出不等式右边对应函数的在范围,求出m的范围.解答:解:∵命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,∴命题“∀x∈(1,2)时,满足不等式x2+mx+4<0”是真命题,∴在(1,2)上恒成立令x∈(1,2)∵∴f(x)<f(1)=5,∴﹣m≥5,∴m≤﹣5.故答案为:(﹣∞,﹣5]点评:将问题等价转化为否命题为真命题即不等式恒成立,进一步将不等式恒成立转化为函数的最值.12.函数f(x)=lg|x+m|关于直线x=1对称,则m= ﹣1 .考点:奇偶函数图象的对称性.专题:计算题;转化思想.分析:本题争辩的是一个对数型的函数,其可以看作是由函数g(x)=lg|x|图象向右平移了一个单位而得到,由同一性的思想方法就可以求出m的值.解答:解:由于函数g(x)=lg|x|图象关于直线x=0对称,函数g(x)=lg|x|图象向右平移一个单位后所得函数为r(x)=lg|x﹣1|,其对称轴方程为x=1由题设条件知f(x)=r(x)=lg|x﹣1|,故m=﹣1故答案为﹣1点评:本题考点是函数图象的对称性,考查函数图象本身的对称性及图象变换后所得函数图象的对称性,及利用变换规章求参数,本题旧考点新考法,较好.13.已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是[0,1]∪[9,+∞).考点:函数的值域;一元二次不等式的应用.专题:计算题.分析:当m=0时,检验合适; m<0时,不满足条件; m>0时,由△≥0,求出实数m的取值范围,然后把m的取值范围取并集.解答:解:当m=0时,f(x)=,值域是[0,+∞),满足条件;当m<0时,f(x)的值域不会是[0,+∞),不满足条件;当m>0时,f(x)的被开方数是二次函数,△≥0,即(m﹣3)2﹣4m≥0,∴m≤1或 m≥9,综上,0≤m≤1或 m≥9,∴实数m的取值范围是:[0,1]∪[9,+∞);故答案为[0,1]∪[9,+∞).点评:本题考查函数的值域及一元二次不等式的应用.14.定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(1)•f(2)<0.则函数y=f (x)的图象与x 轴的交点个数是 2 .考点:函数零点的判定定理;奇偶性与单调性的综合.专题:函数的性质及应用.分析:函数的单调性和奇偶性、函数零点的判定定理,可得函数y=f(x)在(0,+∞)上有唯一零点,在(﹣∞,0)上有唯一零点,可得函数f(x)在R上有2个零点,从而得出结论.解答:解:依据当x>0时,y=f(x )是单调递增的,f(1)•f(2)<0,∴函数y=f(x)在(0,+∞)上有唯一零点.又∵函数f(x)时R 上的偶函数,图象关于y轴对称,∴函数y=f(x)在(﹣∞,0)上有唯一零点.综上可得,函数f(x)在R上有2个零点,即函数y=f(x)的图象与x轴的交点个数是2.故答案为:2.点评:本题主要考查函数的单调性和奇偶性的应用,函数零点的判定定理、函数的零点与方程的根的关系,属于中档题.15.已知函数f(x)=(a∈R ),若对于任意的X∈N*,f(x)≥3恒成立,则a的取值范围是a ≥﹣.考点:函数恒成立问题.专题:计算题;综合题.分析:由于x∈N *,可将f(x)=≥3转化为a≥﹣﹣x+3,再令g(x)=﹣﹣x+3(x∈N*),利用其单调性可求得g(x)max,从而可得答案.解答:解:∵x∈N *,∴f(x)=≥3恒成立⇔x2+ax+11≥3x+3恒成立,∴ax≥﹣x2﹣8+3x,又x∈N*,∴a≥﹣﹣x+3恒成立,∴a≥g(x)max,令g(x)=﹣﹣x+3(x∈N*),再令h(x)=x+(x∈N*),∵h(x)=x+在(0,2]上单调递减,在[2,+∞)上单调递增,而x∈N*,∴h(x)在x取距离2较近的整数值时达到最小,而距离2较近的整数为2和3,∵h(2)=6,h(3)=,h(2)>h(3),∴当x∈N*时,h(x)min=.又g (x)=﹣﹣x+3=﹣h(x)+3,∴g(x)max=﹣+3=﹣.∴a≥﹣.点评:本题考查函数恒成立问题,依题意得到a≥﹣﹣x+3是关键,考查转化思想,构造函数的思想,考查函数的单调性的应用,综合性强,思维度深,属于难题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.设集合,B={x|x2﹣3mx+2m2﹣m﹣1<0}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.考点:子集与真子集;集合的包含关系推断及应用.专题:计算题;函数的性质及应用.分析:(1)由x∈Z,知={﹣2,﹣1,0,1,2,3,4,5}.由此能求出A的非空真子集的个数.(2)由A={x|﹣2<x<5},B={x|x2﹣3mx+2m2﹣m﹣1<0}={x|(x﹣2m﹣1)(x﹣m+1)=0}.A⊇B,知,或,由此能求出m的取值范围.解答:解:(1)∵={x|﹣2≤x≤5},∵x∈Z,∴A={﹣2,﹣1,0,1,2,3,4,5}.∴A的非空真子集的个数为28﹣2=254.(2)∵A={x|﹣2<x<5},B={x|x2﹣3mx+2m2﹣m﹣1<0}={x|(x﹣2m﹣1)(x﹣m+1)=0}.A⊇B,∴,或,解得﹣1≤m≤2,或m不存在.故m的取值范围{m|﹣1≤m≤2}.点评:本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,是基础题.解题时要认真审题,认真解答.17.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)求函数g(x)的解析式;(Ⅱ)解不等式g(x)≥f(x)﹣|x﹣1|.考点:确定值不等式的解法;函数解析式的求解及常用方法.专题:计算题;分类争辩.分析:(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则P在g(x)的图象上,由线段的中点公式解出 x0和y0 的解析式,代入函数y=f(x)可得g(x)的解析式.(Ⅱ)不等式可化为 2x2﹣|x﹣1|≤0,分类争辩,去掉确定值,求出不等式的解集.解答:解:(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则P在g (x)的图象上,且,即∵点Q(x0,y0)在函数y=f(x)的图象上,∴﹣y=x2﹣2x,即y=﹣x2+2x,故,g(x)=﹣x2+2x.(Ⅱ)由g(x)≥f(x)﹣|x﹣1|,可得2x2﹣|x﹣1|≤0当x≥1时,2x2﹣x+1≤0,此时不等式无解.当x<1时,2x2+x﹣1≤0,解得﹣1≤x ≤.因此,原不等式的解集为[﹣1,].点评:本题考查求函数的解析式的方法以及解确定值不等式的方法,体现了分类争辩的数学思想,属于基础题.18.某单位用2160万元购得一块空地,方案在该地块上建筑一栋至少10层、每层2000平方米的楼房.经测算,假如将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)考点:导数在最大值、最小值问题中的应用;实际问题中导数的意义.专题:计算题;应用题.分析:先设楼房每平方米的平均综合费为f(x)元,依据题意写出综合费f(x)关于x的函数解析式,再利用导数争辩此函数的单调性,进而得出它的最小值即可.解答:解:方法1:导数法设楼房每平方米的平均综合费为f(x)元,则(x≥10,x∈Z+),令f'(x)=0得x=15当x>15时,f'(x)>0;当0<x<15时,f'(x)<0因此当x=15时,f(x)取最小值f(15)=2000;答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.方法2:(本题也可以使用基本不等式求解)设楼房每平方米的平均综合费为f(x)元,则,当且进行,即x=15时取等号.答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.点评:本小题主要考查应用所学导数的学问、思想和方法解决实际问题的力量,建立函数式、解方程、不等式、最大值等基础学问.19.已知函数(a为常数).(1)若常数a<2且a≠0,求f(x)的定义域;(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.考点:对数函数的定义域;函数单调性的性质.专题:计算题;综合题.分析:(1)由对数函数的性质知其真数必需大于0,对字母a进行分类争辩:当0<a<2时,当a<0时,即可求得求f(x)的定义域;(2)由题意知函数f(x)是由y=和复合而来,由复合函数单调性结论,只要u(x)在区间在(2,4)上为增且为正即可.解答:解:(1)由,当0<a<2时,解得x<1或,当a<0时,解得.故当0<a<2时,f(x)的定义域为{x|x<1或}当a<0时,f(x)的定义域为{x|}.(2)令,由于为减函数,故要使f(x)在(2,4)上是减函数,则在(2,4)上为增且为正.故有.故a∈[1,2).点评:本题主要考查对数函数的定义域、复合函数的单调性和一元二次方程根的分布,整体思想是解决本类问题的根本.20.定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的推断.专题:计算题;证明题.分析:(1)欲证f(x)为奇函数即要证对任意x都有f(﹣x)=﹣f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=﹣x可得f(0)=f(x)+f(﹣x)于是又提出新的问题,求f(0)的值.令x=y=0可得f (0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.(2)先将不等关系f(k•3x)+f(3x﹣9x﹣2)<0转化成f(k•3x)<f(﹣3x+9x+2),再结合函数的单调性去掉“f”符号,转化为整式不等关系,最终利用分别系数法即可求实数k的取值范围.解答:解:(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即f(0)=0.令y=﹣x,代入①式,得f(x﹣x)=f(x)+f(﹣x),又f(0)=0,则有0=f(x)+f(﹣x).即f(﹣x)=﹣f(x)对任意x∈R成立,所以f(x)是奇函数.(2)解:f(3)=log23>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k•3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),k•3x<﹣3x+9x+2,令t=3x>0,分别系数得:,问题等价于,对任意t>0恒成立.∵,∴.点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的力量,属于中档题.说明:问题(2)本题解法:是依据函数的性质.f(x)是奇函数且在x∈R上是增函数,把问题转化成二次函数f(t)=t2﹣(1+k)t+2对于任意t>0恒成立.对二次函数f(t)进行争辩求解.21.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=x0,则称x0是f(x)的一个不动点,也称f(x)在区间D上有不动点.(1)证明f(x)=2x﹣2x﹣3在区间(1,4)上有不动点;(2)若函数在区间[1,4]上有不动点,求常数a的取值范围.考点:函数与方程的综合运用;函数零点的判定定理;导数在最大值、最小值问题中的应用.专题:计算题;证明题;压轴题.分析:(1)依据“f(x)在区间D上有不动点”当且仅当“F(x)=f(x)﹣x在区间D上有零点”,令F (x)=f(x)﹣x=2x﹣3x﹣3在区间[1,4]上是一条连续不断的曲线,利用F(1)•F(4)<0可确定函数F (x)=f(x)﹣x在区间(1,4)内有零点,从而得到结论;(2)依题意,存在x∈[1,4],使,争辩将a分别出来,利用导数争辩出等式另一侧函数的取值范围即可求出a的范围.解答:解:(1)依题意,“f(x)在区间D上有不动点”当且仅当“F(x)=f(x)﹣x在区间D上有零点”(2分),F(x)=f(x)﹣x=2x﹣3x﹣3在区间[1,4]上是一条连续不断的曲线(3分),F(1)•F(4)=﹣4×1<0(4分),所以函数F(x)=f(x)﹣x在区间(1,4)内有零点,f(x)=2x﹣2x﹣3在区间(1,4)上有不动点(5分).(2)依题意,存在x∈[1,4],使当x=1时,使(6分);当x≠1时,解得(8分),由(9分),得x=2或(,舍去)(10分),x (1,2) 2 (2,4)a′ + 0 ﹣a ↗最大值↘(12分),当x=2时,(13分),所以常数a 的取值范围是(14分).点评:本题主要考查了函数与方程的综合运用,以及函数零点和利用导数争辩最值等有关学问,属于中档题.。
2021-2022学年山西省朔州市怀仁一中高三(上)第一次月考数学试卷(文科)(解析版)
2021-2022学年山西省朔州市怀仁一中高三(上)第一次月考数学试卷(文科)一、选择题(共12小题,每小题5分,共60分).1.设集合P={x|x>﹣1},集合Q={x|x2<4},则P∩Q=()A.{x|x>﹣1}B.{x|﹣2<x<﹣1}C.{x|﹣2<x<2}D.{x|﹣1<x<2} 2.已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合共有()A.3个B.4个C.5个D.6个3.“|x﹣1|<1”是”log2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知p,q是两个命题,若(¬p)∨q是假命题,那么()A.p是真命题且q是假命题B.p是真命题且q是真命题C.p是假命题且q是真命题D.p是假命题且q是假命题5.已知函数,则f(f(﹣3))等于()A.1B.2C.3D.46.已知a=π﹣2,b=﹣log25,c=log2,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c7.若函数y=x2+2mx+1在[2,+∞)上单调递增,则实数m的取值范围是()A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,2)D.(﹣∞,2] 8.函数f(x)=的图象大致为()A.B.C.D.9.已知f(x)是定义在R上的奇函数,且满足5f(1﹣x)=f(1+x),当x∈(0,1]时,f (x)=log2(x+1),则f(2021)等于()A.1B.﹣1C.0D.log2310.已知函数,且f(a2)+f(3a﹣4)>2,则实数a的取值范围是()A.(﹣4,1)B.(﹣∞,﹣4)∪(1,+∞)C.(﹣∞,﹣1)∪(4,+∞)D.(﹣1,4)11.已知f(x)=(x2+ax+b)•lnx,(a,b∈R),当x>0时,f(x)≥0,则实数a的取值范围为()A.﹣2≤a<0B.a≥﹣1C.﹣1<a≤0D.0≤a≤112.已知函数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围是()A.(﹣∞,﹣2]B.[1,+∞)C.[﹣2,1]D.(﹣∞,﹣2]∪[1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A={x|2<x≤11},B={x|2x﹣a>0}.若A⊆B,则实数a的取值范围为.14.若函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),则函数g(x)=log a(x+m)的单调增区间为.15.已知f(x)=是(﹣∞,+∞)上的减函数,那么实数a的取值范围是.16.在下列命题中,正确命题的序号为(写出所有正确命题的序号).①函数的最小值为;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0;④已知函数f(x)=x﹣sin x,若a+b>0,则f(a)+f(b)>0.三、解答题(本大题共6小题,共70分)17.已知集合A={x|﹣2<x+1<3},集合B为整数集,令C=A∩B.(1)求集合C;(2)若集合D={1,a},C∪D={﹣2,﹣1,0,1,2},求实数a的值.18.函数f(x)=lg(x2﹣2x﹣3)的定义域为集合A,函数g(x)=2x﹣a(x≤2)的值域为集合B.(Ⅰ)求集合A,B;(Ⅱ)已知命题p:m∈A,命题q:m∈B,若¬p是¬q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣x2+2x.(1)求函数f(x)在R上的解析式;(2)解关于x的不等式f(x)<3.20.设二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1).(1)求实数a的值;(2)若函数g(x)=f(e x)在x∈[0,1]的最大值是1,求实数c的值.21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4711).22.若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)•f(x2)=1成立,则称该函数为“依赖函数”.(1)判断函数g(x)=2x是否为“依赖函数”,并说明理由;(2)若函数在定义域[m,n](m,n∈N,且m>1)上为“依赖函数”,求m+n的取值范围.(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的t∈R,有不等式f(x)≥﹣t2+(s﹣t)x+8都成立,求实数s的取值范围.参考答案一、选择题1.设集合P={x|x>﹣1},集合Q={x|x2<4},则P∩Q=()A.{x|x>﹣1}B.{x|﹣2<x<﹣1}C.{x|﹣2<x<2}D.{x|﹣1<x<2}解:∵P={x|x>﹣1},Q={x|﹣2<x<2},∴P∩Q={x|﹣1<x<2}.故选:D.2.已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合共有()A.3个B.4个C.5个D.6个解:由题意:M=∅,{7},{4,7},{7,8},{4},{8},六个故选:D.3.“|x﹣1|<1”是”log2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:∵|x﹣1|<1⇒0<x<2.log2x<1⇒0<x<2,∴“|x﹣1|<1”是”log2x<1”的充要条件.故选:C.4.已知p,q是两个命题,若(¬p)∨q是假命题,那么()A.p是真命题且q是假命题B.p是真命题且q是真命题C.p是假命题且q是真命题D.p是假命题且q是假命题解:结合复合命题的真假关系,由(¬p)∨q是假命题可知¬p为假,q是假,故p真q假,故选:A.5.已知函数,则f(f(﹣3))等于()A.1B.2C.3D.4解:∵函数,∴依题意得f(﹣3)=1,f(f(﹣3))=f(1)=log2(3+1)=2.故选:B.6.已知a=π﹣2,b=﹣log25,c=log2,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c 解:∵a=π﹣2=,∴0<a<1,∵b=﹣log25=log2,c=log2,<,∴log2<log2,即b<c<0.∴a>c>b,故选:C.7.若函数y=x2+2mx+1在[2,+∞)上单调递增,则实数m的取值范围是()A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,2)D.(﹣∞,2]解:根据题意,函数y=x2+2mx+1为开口向上的抛物线,对称轴为x=﹣m,函数y=x2+2mx+1在[2,+∞)上单调递增,则﹣m≤2,解得m≥﹣2,即m的取值范围为[﹣2,+∞);故选:A.8.函数f(x)=的图象大致为()A.B.C.D.解:函数的定义域为{x|x≠0},f(x)>0恒成立,排除C,D,当x>0时,f(x)==xe x,当x→0,f(x)→0,排除B,故选:A.9.已知f(x)是定义在R上的奇函数,且满足5f(1﹣x)=f(1+x),当x∈(0,1]时,f (x)=log2(x+1),则f(2021)等于()A.1B.﹣1C.0D.log23解:因为f(x)是定义在R上的奇函数,且满足f(1﹣x)=f(1+x),所以f(1+x)=f(1﹣x)=﹣f(x﹣1),则f(2+x)=﹣f(x),所以f(4+x)=﹣f(x+2)=f(x),故f(x)的周期为4,则f(2021)=f(505×4+1)=f(1),而当x∈(0,1]时,f(x)=log2(x+1),所以f(1)=log2(1+1)=1,则f(2021)=1.故选:A.10.已知函数,且f(a2)+f(3a﹣4)>2,则实数a的取值范围是()A.(﹣4,1)B.(﹣∞,﹣4)∪(1,+∞)C.(﹣∞,﹣1)∪(4,+∞)D.(﹣1,4)解:令g(x)=,则f(x)=g(x)+1,∵f(a2)+f(3a﹣4)>2,∴g(a2)+g(3a﹣4)>0,∵g(﹣x)==﹣(),∴g(x)是R上的奇函数,∴g(a2)+g(3a﹣4)>0可化为g(a2)>g(4﹣3a),又∵g(x)==1﹣+3x,g′(x)=,所以g(x)在R上是增函数,∴a2>4﹣3a,解得,a<﹣4或a>1,故选:B.11.已知f(x)=(x2+ax+b)•lnx,(a,b∈R),当x>0时,f(x)≥0,则实数a的取值范围为()A.﹣2≤a<0B.a≥﹣1C.﹣1<a≤0D.0≤a≤1解:设g(x)=x2+ax+b,h(x)=lnx,则h(x)在(0,+∞)上为增函数,且h(1)=0,若当x>0时f(x)≥0,则满足当x>1时,g(x)≥0,当0<x<1时,g(x)≤0,即g(x)必需过点(1,0)点,则g(1)=1+a+b=0,即b=﹣1﹣a,此时函数g(x)与h(x)满足如图所示:此时g(x)=x2+ax﹣1﹣a=(x﹣1)[x+(a+1)],则满足函数g(0)=﹣a﹣1≤0,即a≥﹣1,故选:B.12.已知函数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围是()A.(﹣∞,﹣2]B.[1,+∞)C.[﹣2,1]D.(﹣∞,﹣2]∪[1,+∞)解:设m=f(x),作出函数f(x)的图象如图:则m≥1时,m=f(x)有两个根,当m<1时,m=f(x)有1个根,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则等价为m2+m+t=0有2个不同的实根,且m≥1或m<1,当m=1时,t=﹣2,此时由m2+m﹣2=0得m=1或m=﹣2,满足f(x)=1有两个根,f(x)=﹣2有1个根,满足条件当m≠1时,设h(m)=m2+m+t,则h(1)<0即可,即1+1+t<0,则t<﹣2,综上t≤﹣2,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A={x|2<x≤11},B={x|2x﹣a>0}.若A⊆B,则实数a的取值范围为(﹣∞,4].解:由已知可得,因为A⊆B,所以,即a≤4,故答案为:(﹣∞,4].14.若函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),则函数g(x)=log a(x+m)的单调增区间为(1,+∞).解:∵函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),∴m+2=1,且2α=4,求得m=﹣1,α=2,可得f(x)=x2,则函数g(x)=log a(x+m)=log2(x﹣1)的单调增区间为(1,+∞),故答案为:(1,+∞).15.已知f(x)=是(﹣∞,+∞)上的减函数,那么实数a的取值范围是[,).解:∵f(x)是减函数,∴函数在(﹣∞,1)和[1,+∞)上都是减函数,且满足条件,得,得≤a<,即实数a的取值范围是[,).故答案为:[,).16.在下列命题中,正确命题的序号为②③④(写出所有正确命题的序号).①函数的最小值为;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0;④已知函数f(x)=x﹣sin x,若a+b>0,则f(a)+f(b)>0.解:①,函数f(x)=x+(x>0)中,当a≤0时,在f(x)在(0,+∞)为单调递增函数,不存在最小值,故①错误;②,∵f(2﹣x)=f(2+x),∴f(4﹣x)=f(x),又f(x)为定义在R上周期为4的函数,∴f(x)=f(4﹣x)=f(﹣x),∴f(x)为偶函数,故②正确;③,∵定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,∴f(4)=f(0)=0;f(7)=f(8﹣1)=f(﹣1)=﹣f(1),∴f(1)+f(4)+f(7)=f(1)+0﹣f(1)=0,故③正确;④,∵f(x)=x﹣sin x,∴f′(x)=1﹣cos x≥0,∴f(x)=x﹣sin x为R上的增函数,又f(﹣x)=﹣x+sin x=﹣(x﹣sin x)=﹣f(x),∴f(x)=x﹣sin x为R上的奇函数;∴若a+b>0,即a>﹣b时,f(a)>f(﹣b=﹣f(b),∴f(a)+f(b)>0,故④正确.综上所述,正确的命题序号为:②③④.故答案为:②③④.三、解答题(本大题共6小题,共70分)17.已知集合A={x|﹣2<x+1<3},集合B为整数集,令C=A∩B.(1)求集合C;(2)若集合D={1,a},C∪D={﹣2,﹣1,0,1,2},求实数a的值.解:(1)∵A={x|﹣3<x<2},B=Z,∴C=A∩B={﹣2,﹣1,0,1};(2)∵C={﹣2,﹣1,0,1},D={1,a},C∪D={﹣2,﹣1,0,1,2},∴a=2.18.函数f(x)=lg(x2﹣2x﹣3)的定义域为集合A,函数g(x)=2x﹣a(x≤2)的值域为集合B.(Ⅰ)求集合A,B;(Ⅱ)已知命题p:m∈A,命题q:m∈B,若¬p是¬q的充分不必要条件,求实数a的取值范围.解:(Ⅰ)A={x|x2﹣2x﹣3>0}={x|(x﹣3)(x+1)>0}={x|x<﹣1,或x>3},B={y|y=2x﹣a,x≤2}={y|﹣a<y≤4﹣a}.(Ⅱ)∵¬p是¬q的充分不必要条件,∴q是p的充分不必要条件,∴B⊆A,∴4﹣a<﹣1或﹣a≥3,∴a≤﹣3或a>5,即a的取值范围是(﹣∞,﹣3]∪(5,+∞).19.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣x2+2x.(1)求函数f(x)在R上的解析式;(2)解关于x的不等式f(x)<3.解:(1)由题意,当x<0时,﹣x>0,则f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x,由f(x)是定义在R上的奇函数,得f(x)=﹣f(﹣x)=x2+2x,且f(0)=0,综上:.(2)(i)当x>0时,﹣x2+2x<3恒成立;(ii)当x=0时,0<3显然成立;(iii)当x<0时,x2+2x<3,即x2+2x﹣3<0,解得﹣3<x<1,此时﹣3<x<0,综上x>﹣3,综上:不等式的解集为(﹣3,+∞).20.设二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1).(1)求实数a的值;(2)若函数g(x)=f(e x)在x∈[0,1]的最大值是1,求实数c的值.解:(1)根据题意,二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1),则二次函数f(x)开口向下,其对称轴为x=1,则有﹣=1,解可得a=﹣1;(2)函数g(x)=f(e x),设t=e x,若x∈[0,1],则1≤t≤e,函数g(x)=f(e x)在x∈[0,1]的最大值是1,且∀x∈R,f(x)≤f(1).则x=0时,g(x)取得最大值1,即g(0)=f(1)=﹣1+2+c=1,解可得c=0;故c=0,21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4711).解:(1)函数y=ka x(k>0,a>1)与在(0,+∞)上都是增函数,随着x的增加,函数y=ka x(k>0,a>1)的值增加的越来越快,而函数的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型y=ka x(k>0,a>1)符合要求.根据题意可知x=2时,y=24;x=3时,y=36,∴,解得.故该函数模型的解析式为,1≤x≤12,x∈N*;(2)当x=0时,,元旦放入凤眼莲的覆盖面积是m2,由>10•,得>10,∴x>=≈5.9,∵x∈N*,∴x≥6,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.22.若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)•f(x2)=1成立,则称该函数为“依赖函数”.(1)判断函数g(x)=2x是否为“依赖函数”,并说明理由;(2)若函数在定义域[m,n](m,n∈N,且m>1)上为“依赖函数”,求m+n的取值范围.(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的t∈R,有不等式f(x)≥﹣t2+(s﹣t)x+8都成立,求实数s的取值范围.解:(1)对于函数g(x)=2x的定义域R内任意的x1,取x2=﹣x1,则g(x1)g(x2)=1,且由g(x)=2x在R上单调递增,可知x2的取值唯一,故g(x)=2x是“依赖函数”;(2)因为m>1,f(x)=(x﹣1)2在[m,n]递增,故f(m)f(n)=1,即(m﹣1)2•(n﹣1)2=1,由n>m>1,得(m﹣1)(n﹣1)=2,故n=,故m+n=m+=m﹣1++2≥2+2=2(+1),(当且仅当m=1+时“=”成立),故m+n的取值范围是[2(+1),+∞);(3)因a<,故f(x)=(x﹣a)2在[,4]上单调递增,从而f()•f(4)=1,即(﹣a)2(4﹣a)2=1,进而(﹣a)(4﹣a)=1,解得a=1或a=(舍),从而存在x∈[,4],使得对任意的t∈R,有不等式(x﹣1)2≥﹣t2+(s﹣t)x+8都成立,即t2+xt+x2﹣(2+s)x﹣7≥0恒成立,由△=x2﹣4(x2﹣(2+s)x﹣7)≤0恒成立,故2+s≤(x﹣)max,x∈[,4],由y=x﹣在[,4]递增,故x=4时,y取最大值,y的最大值是,故2+s≤,故s≤﹣,即s的取值范围是(﹣∞,﹣].。
高三数学上学期第一次月考试题 文扫描 试题
HY中学2021届高三数学上学期第一次月考试题文〔扫描版〕创作人:历恰面日期:2020年1月1日一中第一期联考文科数学答案命题、审题组老师 杨昆华 彭力 杨仕华 王佳文 张波 毛孝宗 丁茵 易孝荣 江明 李春宣一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBCDADDCAAB1. 解析:由题意,因为集合{}1>=x x A ,所以=B A {}31<<x x ,选B . 2. 解析:因为2i 12i i i)i)(1(1i)i(1i 1i 2+=-=-+-=+,选C . 3. 解析:18=0.4540,选B . 4. 解析:由得54)cos(-=--αβα,即54cos )cos(-==-ββ,又πβ(∈,)23π,所以0sin <β,且53cos 1sin 2-=--=ββ,选C .5. 解析:在长、宽、高分别为2,1,1的长方体中截得该三棱锥A DBC -,那么最长棱为2222116AB =++=,选D .6. 解析:对于B ,函数的周期是π,不是π4;对于C ,函数在3π=x 时不取最值;对于D ,当∈x 65(π-,)6π时,34(32ππ-∈+x ,)32π,函数不是单调递增,选A . 7. 解析:因为()()11f x f x -=+,所以()f x 的图象关于直线1x =对称,选D .8. 解析:由垂径定理可知直线CM 的斜率为2-,所以直线CM 的方程是)2(21--=+x y ,即032=-+y x ,选D .9. 解析:设外接球的半径为R ,因为PA ⊥平面ABC ,所以BC PA ⊥,又BC AB ⊥,所以BC PB ⊥,设PC 的中点为O ,易知:OA OB OC OP ===,故O 为四面体P ABC -的外接球的球心,又2PA AB BC ===,所以22AC =,23PC =,半径3R =,四面体P ABC -的外接球的外表积为()24312ππ=,选C .10. 解析:由()y f x =,()01f =-排除B ,()f x 是偶函数排除C,()20f =和()40f =排除D ,选A .11. 解析:由题设得3=ab,2)(12=+=a b e ,所以b e a +2362322323322=≥+=+=aa a a ,选A . 12. 解析:由余弦定理及22b ac a -=得,22222cos b a c ac B a ac =+-=+,所以有2cos c a B a =+,因此sin 2sin cos sin C A B A =+,故有()sin 2sin cos sin A B A B A +=+,即()sin sin A B A =-,因为三角形ABC 为锐角三角形,所以A B A =-,即2B A =,所以022A π<<,所以04A π<<,又3B A A +=,所以32A ππ<<,所以63A ππ<<,综上,64A ππ⎛⎫∈ ⎪⎝⎭, 所以()sin sin 22cos 2,3sin sin B At A A A===∈,选B .二、填空题13. 解析:由22a b a b -=+解得0a b ⋅=,所以向量a 与b 夹角为90︒. 14. 解析:N=126+146+96+136=288⨯⨯⨯⨯.15. 解析:由图知,直线4z y x =-过()1,0时,4y x -有最小值1-. 16. 解析:由得()()22log 1933f x x x -=+++,所以()()6f x f x +-=,因为2lg 3⎛⎫ ⎪⎝⎭与3lg 2⎛⎫⎪⎝⎭互为相反数,所以23lg lg 632f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以3lg 22f ⎛⎫=- ⎪⎝⎭. 三、解答题〔一〕必考题17. 解:〔1〕证明:设1122n n nn a a d ---=那么122n n n a a d --= 所以1122n n n a a d ++-=,11122222n n n n n n a a da a d++--==-所以}{12n na a +-是首项为4,公比为2的等比数列. ………6分〔2〕因为{}2n n a 是等差数列,所以1221122=-=a a d ,所以11(1)22n n a a n d =+-⨯ , 所以1()22nn a n =-所以123113531222...()2()222222n n n S n n -=⨯+⨯+⨯++-+-① 2311333222...()2()22222n n n S n n +=⨯+⨯++-+-②由①-②得23111=2+2+2...2()222n n n S n +-⨯++-- 13=(n-)232n n S ++. ………12分18. 解:〔1〕 选派B 同学参加比拟适宜.理由如下:1(7580808385909295)858A x =+++++++=,1(7879818284889395)858B x =+++++++=,22222221[(7885)(7985)(8185)(8285)(8485)(8885)8B S =-+-+-+-+-+-+22(9385)(9585)]35.5-+-=,22222221[(7585)(8085)(8085)(8385)(8585)(9085)8A S =-+-+-+-+-+-+22(9285)(9585)]41-+-=,从A B x x =,22B A S S <可以看出:A ,B 两位同学的平均程度一样而B 的成绩较稳定,所以选派B 参加比拟适宜. ………7分〔2〕任选派两人有(,)A B ,(,)A C ,(,)A D ,(,)A E ,(,)B C ,(,)B D ,(,)B E ,(,)C D ,(,)C E ,(,)D E 一共10种情况;所以A ,B ,C 三人中至多有一人参加英语口语竞赛有7种情况; 所以710P =. ………12分19. 解:〔1〕在直角梯形ABCD 中,2BC AD AB ⋅=,即AB ADBC AB=, 因为90DAB PBC ∠=∠=, 所以tan AB ACB BC ∠=,tan ADABD AB∠=, 所以ABD ACB ∠=∠,又因为90ACB BAC ∠+∠=, 所以90ABD BAC ∠+∠=,即AC BD ⊥图2的四棱锥1P ABCD -中,1P A AB ⊥,由题知1P A AD ⊥,那么1P A ⊥平面ABCD , 所以1BD P A ⊥,又1P AAC A =所以BD ⊥平面1P AC . ………6分(2)在图1中,因为AB =,1AD =,2BC AD AB ⋅=,所以3BC =因为PAD ∆∽PBC ∆,所以13PA AD PA PB BC ==⇒=,即1P A = 由〔1〕知1P A ⊥平面ABCD ,那么1C P BD V -1P CBD V -=1P CBD V -=111111133332324CBD S P A BC AB P A ∆⋅⋅=⨯⋅⋅=⨯⨯=. ………12分20. 解:〔1〕由椭圆定义知,224AF BF AB a ,又222AF BF AB ,得43ABa ,l 的方程为y x c ,其中22c a b .设11(,)A x y ,22(,)B x y ,将y x c 代入22221x y a b 得,2222222()2()0a b x a cx a c b . 那么212222-a c x x a b ,2221222)a cb x x a b (.因为直线AB 的倾斜角为4π,所以212122()4ABx x x x ,由43AB a 得,222443a ab a b ,即222a b .所以C的离心率2222c a b e a a. ………6分 (2) 设AB 的中点为0,0()N x y ,由〔1〕知,2120222--23x x a c c x a b ,003cy x c .由PA PB 得,PN 的斜率为-1,即001-1y x ,解得,3c ,32a ,3b .所以椭圆C 的方程为221189x y . ………12分21. 解:〔1〕()f x 的定义域为(,)-∞+∞,因为()e x f x a '=+,由(0)0f '=,得1a =-, 所以()e 2x f x x =--,由()e 10x f x '=->得0x >,由()e 10x f x '=-<得0x <,所以()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ………6分 (2) 因为0x >,所以()e 1e 1xxm x -<+可化为e 1e 1x x x m +<-,令e 1()e 1x x x F x +=-,那么()2e (e 2)()e 1x x x x F x --'=-, 由〔1〕得()e 2x f x x =--在(0,)+∞上单调递增,而(1)e 30f =-<,2(2)e 40f =->,所以()f x 在(1,2)上存在唯一的0x , 使0()0f x =,所以()F x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增, 所以0()F x 是()F x 00e 20x x --=得00e 2x x =+, 所以00000000e 1(2)1()11e 1x x x x x F x x x +++===++-, 又因为012x <<,所以02()3F x <<,所以[]max 2m =. ………12分 〔二〕选考题:第22、23题中任选一题做答。
【解析】天津市新华中学2013届高三上学期第一次月考文科数学
天津新华中学2012-2013学年度第一学期高三年级第一次月考数学试卷(文科)一、选择题(每小题4分,共32分)1. 集合}4{},0lg {2≤=>=x x N x x M ,则=N M ( )A. (1,2)B. )2,1[C. ]2,1(D. ]2,1[【答案】C【解析】{lg 0}{1}M x x x x =>=>,2{4}{22}N x x x x =≤=-≤≤,所以{12}M N x x =<≤,选C.2. 给出如下四个命题①若“p 且q ”为假命题,则p 、q 均为假命题②命题“若b a >,则122->b a ”的否命题为“若b a ≤,则122-≤ba ” ③“11,2≥+∈∀x R x ”的否定是“11,2≤+∈∃x R x ” ④在∆ABC 中,“B A >”是“B A sin sin >”的充要条件 其中不正确...的命题的个数是( ) A. 4 B. 3C. 2D. 1【答案】C【解析】若“p 且q ”为假命题,则p 、q 至少有一个为假命题,所以①不正确。
②正确。
“11,2≥+∈∀x R x ”的否定是211x R x ∃∈+<,,所以③不正确。
在∆ABC 中,若B A >,则a b >,根据正弦定理可得sin sin A B >,所以④正确,所以不正确的个数为2个,选C.3. 若角︒600的终边上有一点()a ,4-,则a 的值是( )A. 34B. 34-C. 34±D.3【答案】B【解析】因为000600360240=+为第三象限,所以0a <,00tan 600tan 240tan 6034a====-,所以43a =-,选B.4. 公差不为零的等差数列}{n a 的前n 项和为n S 。
若4a 是3a 与7a 的等比中项,328=S ,则10S 等于( ) A. 18B. 24C. 60D. 90【答案】C【解析】因为4a 是3a 与7a 的等比中项,所以2374a a a =,又1888()322a a S +==,即188a a +=,解得13,2a d =-=,所以1011091031090602S a d ⨯=+=-⨯+=,选C. 5. 下图是函数()()R x x A y ∈+=ϕωsin 在区间⎥⎦⎤⎢⎣⎡-65,6ππ上的图象,为了得到这个函数的图象,只要将()R x x y ∈=sin 的图象上所有的点( )A. 向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的21倍,纵坐标不变 B. 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C. 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的21倍,纵坐标不变 D. 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】由图象知1A =,5()66T πππ=--=,又2T ππω==,所以2ω=,所以函数为sin(2)y x ϕ=+,当3x π=时,23πϕπ⨯+=,解得3πϕ=,所以函数为sin(2)3y x π=+所以要得到函数sin(2)3y x π=+,则只要sin y x =先向左平移3π单位,然后再把所得各点的横坐标缩短到原来的21倍,纵坐标不变,选A.6. 已知)(x f 是定义在),(+∞-∞上的偶函数,且在]0,(-∞上是增函数,设)2.0(),3(log )7(log 6.0214f c f b f a ===,则c b a ,,的大小关系是( )A. a b c <<B. a c b <<C. c a b <<D. c b a <<【答案】C【解析】41log 72<<,122(log 3)(log 3)b f f ==,0.600.21<<,因为244log 3log 9log 71=>>,因为)(x f 是定义在),(+∞-∞上的偶函数,且在]0,(-∞上是增函数,所以函数在(0,)+∞上单调递减,所以c a b >>,选C.7. 若向量a 与b 不共线,0≠⋅b a ,且()a ac a b a b=-,则向量a 与c 的夹角为( ) A. 0B.6πC.3πD.2π【答案】 D【解析】因为()a a c a b a b =-,所以222[()]0a a c a ab a a a b =-=-=,所以ac ⊥,即向量夹角为2π,选D.8. 设定义在R 上的函数)(x f 是最小正周期为π2的偶函数,)('x f 是)(x f 的导函数,当],0[π∈x 时,1)(0<<x f ;当),0(π∈x 且2π≠x 时,0)(')2(>-x f x π,则函数x x f y sin )(-=在[]ππ2,2-上的零点个数为( ) A. 2B. 4C. 5D. 8【答案】B【解析】由当x ∈(0,π) 且x ≠2π时 ,()()02x f x π'->,知0,2x π⎡⎫∈⎪⎢⎣⎭时,()0,()f x f x '< 为减函数,当()0,()2x f x f x ππ⎛⎤'∈>⎥⎝⎦,时,为增函数。
深圳布吉高中高三文科数学第一学期第一次月考试卷
布吉高级中学2013--2014学年度第一学期月考试卷高三(文科)数学满分:150分 时间:120分钟考生注意:客观题请用2B 铅笔填涂在答题卡上,主观题用黑色的水笔书写在答题卡上。
一、选择题:(本大题共10小题,每小题5分,共50分。
) 1. 已知全集{}1,2,3,4U =,集合{}{}1,3,4,2,3A B ==,则图中阴影部分表示的集合为A .{2}B .{3}C .{1,4}D .{1,2,3,4}2. 已知i 是虚数单位,则复数1-2i 的虚部为A .2B .1C .1-D .2-3. 已知曲线281x y =的一条切线的斜率为12,则切点的横坐标为A .4B .3C .2 D.124. 函数lg(1)()1x f x x +=-的定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞ 5. 已知51)2cos(=+απ,那么=αsin A .25- B .15- C .15 D .256. 某程序框图如图所示,该程序运行后,输出s 的值是A .10B .15C .20D .307. 将函数y=sinx 图象上所有的点向左平移3π个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象 的函数解析式为A .)(32sin π+=x yB .)(62sin π+=x yC .)(32sinπ+=x y D .)(32sin π-=x y 8.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则a+b 等于A .2B .3C .6D .99. 已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,则[(1)]f f -=A .2-B .1-C .1D .210. 设函数()fx 的定义域为D ,如果x D y D ,∀∈∃∈,使()()2f x fy C C (+= 为常数)成立,则称函数()fx 在D 上的均值为C . 给出下列四个函数:①3yx =;②12xy ⎛⎫= ⎪⎝⎭;③y x ln =;④21y x sin =+, 则满足在其定义域上均值为1的函数的个数是A .1B .2C .3D .4二、填空题:(本大题共5小题.考生作答4小题.每小题5分,满分20分.)(一)必做题(11~13题) 11. =32sinπ12. cos 25cos35sin 25sin35-=_____________13. 函数()y f x =的图象在点(1,(1))M f 处的切线方程是y ex e =-,则(1)f '= (二)选做题(14、15题,考生只能从中选做一题;两道题都做的,只记第一题的分) 14.(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为________.15.(几何证明选讲选做题) 已知PA 是圆O 的切线,切点为A , 直线PO 交圆O 于,B C 两点,2AC =,120PAB ∠=, 则圆O 的面积为 .三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16. (本小题满分12分)已知54sin =α,),2(ππ∈α.试求:(1)αtan 的值;(2)sin2α的值;PABOC17.(本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.18.(本小题满分14分)已知函数a x x x x f +++-=93)(23. (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值19.(本小题满分14分)已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.20.(本小题满分14分)数列{}n a 的前n 项和为22n n S a =-,数列{}n b 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列. (1)求123,,a a a 的值;(2)求数列{}n a 与{}n b 的通项公式; (3)求证:3121235n nb b b b a a a a ++++< .21. (本小题满分14分)已知函数3211()(,)32a f x x x bx a ab +=-++∈R ,且其导函数()f x '的图像过原点.(1)当1a =时,求函数()f x 的图像在3x =处的切线方程; (2)若存在0x <,使得()9f x '=-,求a 的最大值; (3)当0a >时,求函数()f x 的零点个数。
高三第一次月考数学试卷
高三第一次月考数学试题(文科)一、选择题:(本大题共10小题,每小题5分,共50分)1. 已知集合A ={x |y =2x -x 2},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A =( )A. [0,1]B. [0,1)C. (-∞,0]D. 以上都不对2. 设f :x →x 2是集合A 到集合B 的映射,如果B ={1,2},则A ∩B 等于( )A. ∅B. {1}C. {2}或∅D. {1}或∅3.函数f (x )=4x +12x 的图象( ) A. 关于原点对称 B. 关于直线y =x 对称C. 关于x 轴对称D. 关于y 轴对称4.给定函数:① 12y x =,②12log (1)y x =+,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的是( )A. ①②B. ②③C. ③④D. ①④5.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )6. 设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 009)=8,则f (x 21)+f (x 22)+…+f (x 22 009)=( )A. 4B. 8C. 16D. 2log a 87.已知幂函数()a f x x =的图象经过点⎝⎛⎭⎪⎫2,22,则(4)f 的值为( ) A. 16 B. 116 C. 12 D. 210.已知函数)(x f 满足:①R y x ∈∀,,)()()(y f x f y x f +=+,②0>∀x ,0)(>x f ,则A. )(x f 是偶函数且在),0(+∞上单调递减B. )(x f 是偶函数且在),0(+∞上单调递增C. )(x f 是奇函数且单调递减D. )(x f 是奇函数且单调递增二、填空题(本题共5小题,每小题5分,共25分)11. 命题“若x ,y 是奇数,则x +y 是偶数”的逆否命题是________________________,它是_______命题(填“真”或“假”). bb fc c f a a f D c c f a a f b b f C aa fb b fc c f B c c f b b f a a f A cc f b b f a a f c b a x x f m D m C m B m A m m tf t f t ax x x f ) ( ) ( ) ( . ) ( ) ( ) ( . ) ( ) ( ) ( ) ( ) ( ) ( . ) ( ) ( ) ( , 0 ), 1 ( log ) ( . 9 04 . 0 2 . 2 4 . 2 . 15 ] 0 [ 4 5 ) ( . 8 > > > > > > > > > > > + = ≤ ≤ - ≤ ≤ - - ≤ ≤ - - ≤ - - = + + = 、 的大小关系是 、 、 则 且 已知 的取值范围是 ,则 ,最小值是 上的最大值是 , ),且在闭区间 ( ) ( 都有 对任意 设二次函数12.如图所示,函数f (x )=⎩⎨⎧ ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象是一条连续不断 的曲线,则a +b +c=________.13.已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时,应该有f ′(x ) ____0,g ′(x )______0(填“>”“<”或“=”).14.已知函数f (x )=|lg x |.若a ≠b 且f (a )=f (b ),则a +b 的取值范围是 ____ ___.15.若函数f (x )、g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则f (2),f (3)g (0)的大小关系是________.三、解答题 (本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16.(12分)已知p :x ∈A ={x |x 2-2x -3≤0,x ∈R },q :x ∈B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若p 是非q 的充分条件,求实数m 的取值范围.17.(12分)如果函数2()21(01)x x f x a a a a =+->≠且在区间[]1,1-上的最大值是14,求a 的值。
山东省邹平双语学校二区2022届高三上学期第一次月考数学(文)试题 Word版含答案
邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三 班级 数学(文科)试题(时间:120分钟,分值:150分)一.选择题(每题5分,共12小题)1.设集合A={1,2,3},B={2,3,4},则A ∪B=( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4} 2.已知cosα=﹣,α是第三象限的角,则sinα=( ) A .﹣B .C .﹣D .3.命题p :“∃x 0∈R“,x 02﹣1≤0的否定¬p 为( ) A .∀x ∈R ,x 2﹣1≤0 B .∀x ∈R ,x 2﹣1>0 C .∃x 0∈R ,x 02﹣1>0 D .∃x 0∈R ,x 02﹣1<0 4.函数y=sin2x +cos2x 的最小正周期为( )A .B .C .πD .2π5.已知函数f (x )=a x (a >0,a ≠1)在[1,2]上的最大值和最小值的和为6,则a=( ) A .2B .3C .4D .56.设非零向量,满足|+|=|﹣|则( ) A .⊥B .||=||C .∥D .||>||7.已知函数f (x )=3x ﹣()x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 8.设函数f (x )=cos (x +),则下列结论错误的是( )A .f (x )的一个周期为﹣2πB .y=f (x )的图象关于直线x=对称C .f (x +π)的一个零点为x=D .f (x )在(,π)单调递减9.已知函数f (x )=sinx ﹣cosx ,且f′(x )=2f (x ),则tan2x 的值是( ) A .﹣B .C .﹣D .10.已知曲线C 1:y=cosx ,C 2:y=sin (2x +),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 211.函数y=f (x )的导函数y=f′(x )的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .12.函数y=的部分图象大致为( )A .B.C .D .二.填空题(每题5分,共4小题)13.已知集合A={1,2},B={a ,a 2+3}.若A ∩B={1},则实数a 的值为 . 14.设f (x )=xlnx ,若f′(x 0)=2,则x 0的值为 .15.函数f (x )=sin 2x +cosx ﹣(x ∈[0,])的最大值是 .班级:____________ 姓名:_____________ 考号:________________________16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的条件.三.解答题(共6小题,70分)17.(10分))已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.18.(12分))已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(12分)已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.20.(12分).在△ABC中,角A,B,C的对边分别是a、b、c,已知,,且.(Ⅰ)求角A 的大小;(Ⅱ)若b=3,△ABC的面积,求a的值.21.(12分))某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).22.(12分))已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三班级数学(文科)试题答案一.选择题(共12小题)1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}【分析】集合A={1,2,3},B={2,3,4},求A∪B,可并集的定义直接求出两集合的并集.【解答】解:∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}故选A.【点评】本题考查并集及其运算,解题的关系是正确理解并集的定义及求并集的运算规章,是集合中的基本概念型题.2.已知cosα=﹣,α是第三象限的角,则sinα=()A .﹣B .C .﹣D .【分析】利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值.【解答】解:∵cosα=﹣,α是第三象限的角,则sinα=﹣=﹣,故选:C.【点评】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.3.命题p:“∃x0∈R“,x02﹣1≤0的否定¬p为()A.∀x∈R,x2﹣1≤0 B.∀x∈R,x2﹣1>0C.∃x0∈R,x02﹣1>0 D.∃x0∈R,x02﹣1<0【分析】直接写出特称命题的否定得答案.【解答】解:命题p:“∃x0∈R“,x0﹣1≤0为特称命题,其否定为全称命题,∴¬p为∀x∈R,x2﹣1>0.故选:B.【点评】本题考查特称命题的否定,留意命题的否定的格式是关键,是基础题.4.函数y=sin2x+cos2x的最小正周期为()A .B .C.πD.2π【分析】利用帮助角公式,化简函数的解析式,进而依据ω值,可得函数的周期.【解答】解:∵函数y=sin2x+cos2x=2sin(2x +),∵ω=2,∴T=π,故选:C【点评】本题考查的学问点是三角函数的周期性及其求法,难度不大,属于基础题.5.已知函数f(x)=a x(a>0,a≠1)在[1,2]上的最大值和最小值的和为6,则a=()A.2 B.3 C.4 D.5【分析】依据指数函数的单调性在定义域是要么递增,要么递减,即看求解.【解答】解:依据指数函数的性质:当x=1时,f(x)取得最大值,那么x=2取得最小值,或者x=1时,f(x)取得最小值,那么x=2取得最大值.∴a+a2=6.∵a>0,a≠1,∴a=2.故选:A.【点评】本题考查了指数函数的性质的运用,属于基础题.6.设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.【点评】本题考查两个向量的关系的推断,是基础题,解题时要认真审题,留意向量的模的性质的合理运用.【点评】本题考查对数的运算法则,解题时要认真审题,认真解答.7.已知函数f(x)=3x ﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f (x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x ﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x ﹣()x为增函数,故选:A.【点评】本题考查的学问点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.8.设函数f(x)=cos(x +),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x )在(,π)单调递减【分析】依据三角函数的图象和性质分别进行推断即可.【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x +)=cos (+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f (+π)=cos (+π+)=cos=0,则f(x+π)的一个零点为x=,故C 正确,D .当<x<π时,<x +<,此时函数f(x)不是单调函数,故D错误,故选:D【点评】本题主要考查与三角函数有关的命题的真假推断,依据三角函数的图象和性质是解决本题的关键.9.已知函数f(x)=sinx﹣cosx,且f′(x)=2f(x),则tan2x的值是()A .﹣B .C .﹣D .【分析】求出f(x)的导函数,依据f′(x)=2f(x)列出关系式,计算即可求出tan2x的值.【解答】解:求导得:f′(x)=cosx+sinx,∵f′(x)=2f(x),∴cosx+sinx=2(sinx﹣cosx),即3cosx=sinx,∴tanx=3,则tan2x===﹣.故选C【点评】此题考查了三角函数的化简求值,以及导数的运算,娴熟把握求导公式是解本题的关键.10.已知曲线C1:y=cosx,C2:y=sin(2x +),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x +)=cos(2x +)=sin(2x +)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算力量.11.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A .B .C .D .【分析】依据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,依据函数图象,即可推断函数的单调性,然后依据函数极值的推断,即可推断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最终单调递增,排解A,C,且其次个拐点(即函数的极大值点)在x轴上的右侧,排解B,故选D【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的推断,考查数形结合思想,属于基础题.12.函数y=的部分图象大致为()A . B .C D .【分析】推断函数的奇偶性排解选项,利用特殊值推断即可.【解答】解:函数y=,可知函数是奇函数,排解选项B,当x=时,f ()==,排解A,x=π时,f(π)=0,排解D.故选:C.【点评】本题考查函数的图形的推断,三角函数化简,函数的奇偶性以及函数的特殊点是推断函数的图象的常用方法.二.填空题(共4小题)13.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,留意交集定义及性质的合理运用.14.设f(x)=xlnx,若f′(x0)=2,则x0的值为e.【分析】先依据乘积函数的导数公式求出函数f(x)的导数,然后将x0代入建立方程,解之即可.【解答】解:f(x)=xlnx∴f'(x)=lnx+1则f′(x0)=lnx0+1=2解得:x0=e故答案为:e【点评】本题主要考查了导数的运算,以及乘积函数的导数公式的运用,属于基础题之列.15.函数f(x)=sin2x +cosx ﹣(x∈[0,])的最大值是1.【分析】同角的三角函数的关系以及二次函数的性质即可求出.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:1【点评】本题考查了同角的三角函数的关系以及二次函数的性质,属于基础题16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的充分条件.【分析】A⇒B验证充分性x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,可推出x1+x2=﹣,而必要性不肯定成立,故得是充分条件【解答】解:由题意若x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由根与系数的关系肯定可以得出x1+x2=﹣,故A⇒B成立;若x1+x2=﹣,成立,不能得出x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由于此方程有根与否要用推断式进行推断,须考虑a,b,c三个字母,故B⇒A不肯定成立;故可得,A是B的充分条件故答案为充分【点评】本题考查必要条件充分条件充要条件的推断,求解的关键是正确理解充分条件与必要条件的定义,以及二次方程有根的条件.三.解答题(共6小题)17.已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.【分析】(Ⅰ)把集合B化简后,由A∩B=∅,A∪B=R,借助于数轴列方程组可解a的值;(Ⅱ)把p 是q的充分条件转化为集合A和集合B之间的关系,运用两集合端点值之间的关系列不等式组求解a的取值范围.【解答】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x <a+1},由A∩B=∅,A∪B=R ,得,得a=2,所以满足A∩B=∅,A∪B=R的实数a的值为2;(Ⅱ)因p 是q的充分条件,所以A ⊆B,且A ≠∅,所以结合数轴可知,a+1≤1或a﹣1≥3,解得a≤0,或a≥4,所以p是q的充分条件的实数a的取值范围是(﹣∞,0]∪[4,+∞).【点评】本题考查了充分条件,考查了集合关系的参数取值问题,集合关系的参数取值问题要转化为两集合端点值的大小比较,是易错题.18.已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及帮助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)依据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin(2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.【点评】本题考查的学问点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.【分析】(1)求出导数,求出切线的斜率,由点斜式方程,即可得到曲线在点P(1,1)处的切线方程;(2)y=0时,x=;x=2时,y=4,即可求直线l与x轴、直线x=2所围成的三角形的面积.【解答】解:(1)y=x3的导数为y′=3x2,则曲线在点P(1,1)处的切线斜率为3,即有曲线在点P(1,1)处的切线方程为y﹣1=3(x﹣1),即3x﹣y﹣2=0;(2)y=0时,x=;x=2时,y=4,∴直线l与x轴、直线x=2所围成的三角形的面积为=.【点评】本题考查导数的几何意义:曲线在该点处的切线的斜率,考查直线方程的求法,考查运算力量,属于基础题.20.在△ABC中,角A,B,C的对边分别是a、b、c ,已知,,且.(Ⅰ)求角A的大小;(Ⅱ)若b=3,△ABC 的面积,求a的值.【分析】(Ⅰ)利用向量平行,列出方程,通过两角和与差的三角函数,化简求解角A的大小;(Ⅱ)利用三角形的面积,求出c,然后利用余弦定理求解a即可.【解答】解:(Ⅰ)∵,∴(2c﹣b)•cosA﹣a•cosB=0,∴cosA•(2sinC﹣sinB)﹣sinA•cosB=0,即2cosAsinC﹣cosAsinB﹣sinA•cosB=0,∴2cosAsinC=cosAsinB+sinA•cosB,∴2cosAsinC=s in(A+B),即2cosAsinC=sinC,∵sinC≠0∴2cosA=1,即又0<A<π∴,(Ⅱ)∵b=3,由(Ⅰ)知∴,,∴c=4,由余弦定理有a2=b2+c2﹣2bccosA=,∴.【点评】本题考查向量与三角函数相结合求解三角形的几何量,考查余弦定理的应用,是基础题.21.某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).【分析】(1)由题可知生产100件这样的产品单价为50万元,所以把x=100,P=50代入到p2=中求出k的值确定出P的解析式,然后依据总利润=总销售额﹣总成本得出L(x)即可;(2)令L′(x)=0求出x的值,此时总利润最大,最大利润为L(25).【解答】解:(1)由题意有,解得k=25×104,∴,∴总利润=;(2)由(1)得,令,令,得,∴t=5,于是x=t2=25,则x=25,所以当产量定为25时,总利润最大.这时L(25)≈﹣416.7+2500﹣1200≈883.答:产量x定为25件时总利润L(x)最大,约为883万元.【点评】考查同学依据实际问题选择函数关系的力量,及利用导数求函数最值的方法的力量.22.已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.【分析】(I)将a的值代入f(x),求出f(x)的导函数;,将∃x0∈[1,e]使不等式f(x0)≤m 转化为f(x)的最小值小于等于m,利用[1,e]上的函数递增,求出f(x)的最小值,令最小值小于等于m即可.(II)将图象的位置关系转化为不等式恒成立;通过构造函数,对新函数求导,对导函数的根与区间的关系进行争辩,求出新函数的最值,求出a的范围.【解答】解:(I)当a=1时,,可知当x∈[1,e]时f(x)为增函数,最小值为,要使∃x0∈[1,e]使不等式f(x0)≤m,即f(x)的最小值小于等于m,故实数m 的取值范围是(2)已知函数.若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,等价于对任意x∈(1,+∞),f(x)<2ax,即恒成立.设.即g(x)的最大值小于0.(1)当时,,∴为减函数.∴g(1)=﹣a ﹣≤0∴a ≥﹣∴(2)a≥1时,.为增函数,g(x)无最大值,即最大值可无穷大,故此时不满足条件.(3)当时,g(x )在上为减函数,在上为增函数,同样最大值可无穷大,不满足题意.综上.实数a 的取值范围是.【点评】解决不等式恒成立及不等式有解问题一般都转化为函数的最值问题,通过导数求函数的最值,进一步求出参数的范围.第页,共页第页,共页。
新人教版2高三数学上学期第一次月考试题文科版
数学(文)一.选择题:本大共10小题,每小题5分,共50分;在每个小题所给出的四个选项中,只有一项是符合题目要求的1.已知集合2{1},{M x y x N y y ==+==,则M N =( )A. {(0,1)}B. {1}x x ≥-C. {0}x x ≥D. {1}x x ≥2、复数31i z i=-(其中i 为虚数单位),则下列说法中正确的是( )A .在复平面内复数z 对应的点在第一象限B .复数z 的共轭复数122i z =-- C .若复数1()z z b b R =+∈为纯虚数,则12b =-D .复数z 的模1||2z = 3. 设,a b R ∈,则“()20a b a -<”是“a b <”的 条件 A.充要B.充分而不必要C.必要而不充分D.既不充分也不必要4.已知双曲线22221x y a b-=的渐近线方程为y =,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于A.1B.2D.125.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点( )A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. B .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变. C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.6. 三棱锥S ABC -及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB 的长为A. B.7. 在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,若()222tan a c b B +-=,则角B 的值为 A.6πB.3πC. 566ππ或D.233ππ或8.已知函数()()1ln 1f x y f x x x ==--,则的图象大致为9.已知函数2()ln(1)f x a x x =+-在区间(0,1)内任取两个实数p ,q ,且p ≠q ,不等式(1)(1)1f p f q p q+-+>-恒成立,则实数a 的取值范围为A .[15,)+∞B .](,15-∞C .](12,30D .](12,15-10.若实数a ,b ,c ,d 满足222(3ln )(2)0b a a c d +-+-+=,则22()()a c b d -+-的最小值为( )A B .8C .D .2二.填空题:本大题共5个小题,每小题5分,共25分。
高三第一次月考文科数学试卷
高三第一次月考文科数学试卷一、选择题:本大题共10小题,每小题5分,共50分. 1.222()22i -=( ) A .1B .-1C .iD .-i2.函数(21)y f x =-的定义域为[0,1] ,则()y f x =的定义域为( )A .[1,1]-B .1[,1]2C .[0,1]D .[1,0]-3.一组数据1x 、2x 、3x 、4x 、5x 、6x 的方差为1,则121x -、221x -、321x -、421x -、521x -、621x -的方差为( )A .1B .2C .3D .44.若函数2()sin 22sin sin 2f x x x x =-⋅,则()f x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数5.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的体积是( )A .14πB .12πC .8πD .16π6.满足()f x x '=的()f x ( )A .存在且有无限个B .存在且只有有限个C .存在且唯一D .不存在7.若等比数列{}n a 公比为q ,其前n 项和为n S ,若3S 、9S 、6S 错误!未找到引用源。
成等差数列,则3q 等于( )A .1错误!未找到引用源。
B . 12- C .错误!未找到引用源。
或1 D .错误!未找到引用源。
8.面积为1的正方形ABCD 内部随机取一点P ,则PAB ∆的面积不小于14的概率是( )A .错误!未找到引用源。
15B .12C .13D .14错误!未找到引用源。
9.已知双曲线方程:C 22221x y a b-= (0)b a >>的离心率为1e ,其实轴与虚轴的四个顶点和椭圆G 的四个顶点重合,椭圆G 的离心率为2e ,一定有( ) A .22122e e += B .2212112e e += C .222212122e e e e +=+ D .12122e e e e +=+ 10.如图,已知正方体1111D C B A ABCD -上、下底面中心分别为21,O O ,将正方体绕直线21O O 旋转一周,其中由线段1BC 旋转所得图形是( )二、填空题:本大题共5小题,每小题5分,共25分.11.设(2,4)a = ,(1,1)b = ,若()b a mb ⊥+,则实数m =________. 12.执行如图所示的程序框图所表示的程序,则所得的结果为 .13.记不等式2y x xy x ⎧≥-⎨≤⎩所表示的平面区域为D ,直线1()3y a x =+与D 有公共点,则a 的取值范围是________14.已知定义在R 上的奇函数()f x 满足()()4f x f x -=-,且[]0,2x ∈时,()()2log 1f x x =+,有下列结四个论:① ()31f =;②函数()f x 在[]6,2--上是增函数;③函数()f x 关于直线4x =对称;④若()0,1m ∈,则关于x 的方程()0f x m -= 在[]8,8-上所有根之和为-8,其中正确的是________(写出所有正确命题的序号) 15.若关于实数x 的不等式2|1||2|3x x a a ---≤--的解集是空集, 则实数a 的取值范围是____________.三、解答题:本大题共6题,共75分,解答应写出文字说明、证明过程或演算步骤.DC B A O 2O 1C 1D 1C B 1A 1A BD16.(本小题满分12分)已知函数()4cos sin()6f x x x a π=++的最大值为2.(1)求a 的值及()f x 的最小正周期; (2)在坐标纸上做出()f x 在[0,]π 上的图像.17.(本小题满分12分)某种产品按质量标准分为1,2,3,4,5五个等级.现从一批该产品中 随机抽取20个,对其等级进行统计分析,得到频率分布表如下:等级 12 3 45频率0.05m0.150.35n(1)在抽取的20个产品中,等级为5的恰有2个,求m ,n ;(2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.18.(本小题满分12分)已知数列{}n a 各项均为正数,满足22(1)0n n na n a n +--=.(1)计算12,a a ,并求数列{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .19.(本小题满分12分)如图,已知四棱锥P ABCD PA -,⊥平面ABCD , 底面ABCD 为直角梯形,90BAD ∠=,且AB CD ∥,12AB CD =. (1)点F 在线段FC 上运动,且设PF FCλ=,问当λ为何值时,BF ∥平面PAD ,并证明你的结论;(2)当BF ∥面PAD ,且4PDA π∠=,23AD CD ==,求四棱锥F BCD -的体积.20.(本小题满分13分)已知椭圆C 的中心在原点,焦点F 在x 轴上,离心率32e =,点2(2)2Q ,在椭圆C 上. (1)求椭圆C 的标准方程;(2)若斜率为k (0)k ≠的直线n 交椭圆C 与A 、B 两点,且OA k 、k 、OB k 成等差数列, 点M (1,1),求ABM S ∆的最大值.21.(本小题满分14分)设321()2x e f x x ax e=++.(1)若3(,)2x ∈ +∞时,()f x 单调递增,求a 的取值范围; (2)讨论方程()|ln |0f x x ax b +--=的实数根的个数.参考答案 题号 1 2 3 4 5 6 7 8 9 10 答案DADACABBCD11. 3- 12. 43- 13. 16[]37- , 14. 15.12a -<< 解答题16.解:(1)()2sin(2)16f x x a π=+++ 最大值为2∴1a =- T π=(2)如右图 17.解:(1)0.35m =,0.1n =(2)等级为3的有3个,等级为5的有2个, 由枚举得,共有10种取法,抽取的2个产品等级恰好相同的取法有4种,故概率为2518.解: (1)11a = 22a =∵ 22(1)0n n na n a n +--= ⇒ (1)()0n n na an +-= 又 ∵ 数列{}n a 各项均为正数 ∴ n a n =(2)231232222n n n S =+++⋅⋅⋅+ 2112321222n n nS -=+++⋅⋅⋅+ ∴2111121222222n n n n n n S -+=+++⋅⋅⋅+-=-19.解:(1)当1PFFC λ==时,取PD 中点G ,连接AG 、FG ,则1CD AB 2FG ∥∥ ∴BF AG ∥ 且 BF ⊆/平面PAD ∴BF ∥平面PAD(2)∵PA ⊥平面ABCD 且 4PDA π∠= ∴PDA ∆为等腰直角三角形∴11113213232F BCD BCD V S PA -∆=⋅=⨯⨯⨯= 20.解 1)1422=+y x ……………………(4分)2) 由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为mkx y +=1122(,),(,)P x y Q x y 满足22440y kx m x y =++-=⎧⎨⎩ ,消去y 得222(14)84(1)0k x kmx m +++-=.2222226416(14)(1)16(41)0k m k m k m ∆=-+-=-+>,且122814km x x k -+=+,.因为直线OB AB oA ,,的斜率依次成等差数列,所以,k x y x y 22211=+,即2112212x kx y x y x =+,又m kx y +=,所以0)(21=+x x m ,即m=0. ……………………(9分)联立kx y y x ==+⎩⎨⎧1422 易得弦AB 的长为224141k k ++又点M 到kx y =的距离112+-=k k d所以11414121222+-++=k k k k s 24112kk +-=平方再化简求导易得41-=k 时S 取最大值5……………………(13分)21.解:(1)∵ 321()2x e f x x ax e =++ ∴ 3()x e f x x a e'=+-∵ 当3(,)2x ∈ +∞时,()f x 单调递增 ∴当3(,)2x ∈ +∞时,3()0xe f x x a e '=+->∴3x e a x e >- 函数3()x e g x x e =- 在3(,)2x ∈ +∞上递减 ∴33()22a g ≥=-(2)()|ln |0f x x ax b +--= ∴ 321|ln |2x e x x b e ++=令321()|ln |2x e h x x x e=++① 当1x >时 31()x e h x x e x '=-+∵ 12x x+≥ 32x e e e ≤< ∴()0h x '>即()h x 在(1,) +∞递增② 当01x <≤时 31()x e h x x e x'=--∵ 10x x-< 30x e e > ∴()0h x '<即()h x 在(0,1] 递减∵121(1)2h e =+当0x →时 321()|ln |2x e h x x x e=++ → +∞当x →+∞时 321()|l n |2x e h x x x e=++ → +∞ ∴① 当1212b e <+时,方程无解② 当1212b e =+时,方程有一个根③ 当1212b e >+时,方程有两个根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012学年高三年级第一次月考试卷数学试卷(文科)2011、9、22参考公式:样本数据1x ,2x ,…,n x 的标准差锥体体积公式其中x 为样本平均数 其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式Sh V = 24R S π=,334R V π=其中S 为底面面积,h 为高其中R 为球的半径线性回归方程,a bx y+=ˆ,其中∑∑==---=ni ini i ix xy y x xb 121)())((,---=x b y a .独立性检验,随机变量2k ,))()()(())((22d b c a d c b a bc ad d c b a k ++++-+++=第I 卷一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x>2},P={x |x<3},那么“x ∈M 或x ∈P ”是“x ∈M ∩P ”的() A .必要不充分条件B .充分不必要条件 C .充要条件D .既不充分也不必要条件第4题图2.已知a 为实数,2321>++i a i ,则a=() A .1B .21C .31D .-2 3.已知函数)(x f 在R 上可导,且)2('2)(2xf x x f +=,则)1(-f 与)1(f 的大小() A .)1(-f =)1(f B .)1(-f 〈)1(f C .)1(-f 〉)1(f D .不确定 4.某程序框图如图所示,该程序运行后输出的x 值是 A .3 B .4 C .6 D .85.正方体的内切球表面积和外接球表面积比等于() A .1:3B .1:2C 。
2:3D.3:56.已知函数⎪⎩⎪⎨⎧>≤+=)0( log )0( )6sin()(2x x x x x f ππ,则)]21([f f =()A .23B .-23C .21D .—217.已知m 、n 为两条不同直线,α、β为两个不重合的平面,给出下列命题中正确的有()①αα//n n m m ⇒⎭⎬⎫⊥⊥②n m n m //⇒⎭⎬⎫⊥⊥ββ③βαβα//⇒⎭⎬⎫⊥⊥m m ④n m n m ////⇒⎪⎭⎪⎬⎫⊂⊂βααα A .③④B 。
②③C.①②D 。
①②③④8.把函数x x y sin cos 3-=的图象向左平移m (m>0)个单位,所得图象关于y 轴对称,m 最小值为()A .6π-B .6πC .3πD .65π9.在边长为1的正方形ABCD 内随机选一点M ,则点M 到直线AB 的距离大于点M 到点D 的距离的概率P 满足() A .0〈P<41B .41<P 〈21C .21〈P<43D .43<P 〈1 10.在△ABC 中,已知D 是AB 边上一点,若CB CA CD DB AD λ+==31,2,则λ=() A .32B .31C .-31D .—32 11.四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如图所示,则四棱锥P ABCD -的表面积为A 。
2222S a a =+B 。
2223S a a =C 。
2242S a a =+D 。
2233S a a =+12.在抛物线x y 42=上有点M ,它到直线x y =的距离为24,如果点M 的坐标为),(n m 且+∈R n m ,,则nm的值为() A .21B .1C .2D .2 第Ⅱ卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知}{n a 是等差数列,664=+a a ,前5项和S 5=10,则其公差d=__________。
14.一般来说,一个人脚越长,他的身高就越高,现对10名成年人的脚长x 和身高y 进行测量,数据如下:x20 21 22 23 24 25 26 27 28 29 y141146154160169176181188197203第18题图作出散点图后,发现散点在一条直线附近,且解得x =24.5,y =171。
5,))((101y y x xi i i--∑==577。
5,2101)(x xi i-∑==82.5,若某人脚长26。
5,请你估计该人身高为__________(cm).15直线2y x =+经过椭圆22221(0)x y a b a b+=>>的一个焦点和一个顶点,则椭圆的离心率为____;16.为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下图:现在加密密钥为log (2)a y x =+,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6"。
若接受方接到密文为“4”,则解密后得明文为; 三、解答题:(共5题,满分60分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知数列}{n a 满足n n a a 21-+=0且23+a 是42,a a 的等差中项,n S 是数列}{n a 的前n 项和。
(1)求}{n a 的通项公式; (2)若)2(log 2+=n n S b ,求数列}1{1+n n b b 的前n 项和n T 的值。
18.(本小题满分12分)在四棱锥P —ABCD 中,平面PAD ⊥平面ABCD ,PA P =D=2,底面ABCD 是边长为2的菱形,60A ∠=,E 是AD 的中点,F 是PC 中点. (Ⅰ)求证:BE PAD ⊥平面 (Ⅱ)求证:EF//平面PAB. 19.(本小题满分12分)某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如表所示: 积极参加班级工作不太主动参加班级工作合计 学习积极性高 18 7 25 学习积极性一般6 19 25 合计242650(1)如果随机从该班抽查一名学生,抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系,并说明理由. 参考表:20.(本小题满分12分)已知可行域⎪⎩⎪⎨⎧≤-+≥+-≥03230230y x y x y 的外接圆C 与x 轴交于A 1、A 2,椭圆C 1以A 1A 2为长轴,离心率e=22(1)求圆C 及椭圆C 1的方程;(2)求椭圆C 1的右焦点为F,点P 为圆上异于A 1、A 2的动点,过点P 作圆C 的切线,交直线22=x 于点Q ,求证:直线PF 与直线OQ 垂直(O 为原点)。
21。
(本小题满分12分)已知函数21()()ln 2f x a x x =-+.(R a ∈)(Ⅰ)当1=a 时,求)(x f 在区间[1,e ]上的最大值和最小值; (Ⅱ)求()f x 的极值四、选考题:(本小题满分10分)22.选修4-1:几何证明选讲 如图所示,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点 G 作AB 的垂线,交AC 的延长线于点E ,交AD 的延 长线于点F ,过G 作⊙O 的切线,切点为H. 求证:(Ⅰ)C ,D ,F,E 四点共圆;(Ⅱ)GH 2=GE ·GF.AB CDEF GH O2011—2012学年南乐一中高三第一次月考文科数学答案一、选择题:ABCDADBDBAAD 二、提空题:13、12;14、185。
5;1516、14三、解答题:于是()()111111212n n b b n n n n +==-++++ 111111233412n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭即()22n n T n =+。
18、(本小题满分12分)(Ⅰ)证明:∴AB=2,AE=12222cos BE AB AE AB AE A =+-⋅⋅∠41221cos603=+-⨯⨯⨯=222134AE BE AB ∴+=+==∴BE ⊥AE又平面PAD ⊥平面ABCD,交线为AD, ∴BE ⊥平面PAD17、(本小题满分12分) 解:(1)由题意知:12n na a +=, {}n a 是公比2q =的等比数列,又()32422a a a +=+ 即()11124228a a a +=+ 解得12a =故2nn a =(2)由(1)得()12122212n n n S +-==--则()2log 21n n b S n =+=+(Ⅱ)取BC 中点G,连结GE ,GF .则GF//PB,EG//AB , 又GFEG G =∴平面EFG//平面PAB ∴EF//平面PAB 19、(本小题满分12分)解:(1)抽到积极参加班级工作的学生的概率为24125025=。
抽到不太主动参加班级工作且学习积极性一般的学生的概率为1950。
(2)假设:0H 学生的学习积极性与对待班级工作的态度没有关系。
得2K 的观测值为()25018197611.53810.825252426k ⨯-⨯=≈>⨯⨯⨯()210.80.001P K >≈这就意味着“学生的学习积极性与对待班级工作的态度之间有关系”这一结论是错误的可能性约为0.001,即有99.9%的把握认为“学生的学习积极性与对待班级工作的态度之间有关系”。
20、(本小题满分12分)解:(1)由题意知,两直线垂直,外接圆圆心为坐标原点O,半径为2的圆,圆C 的方程为224x y +=。
则有()12,0A -,()22,0A 知2a =,又c e a=,得c =2222b a c =-= 椭圆1C 的方程为22142x y +=. (2)由(1)知右焦点)F ,设()00,P x y则00op y k x =,得00x k y =-切过P 点切线方程为()0000x y y x x y -=--当Q x =解得004Q y y -+=即004Q y ⎛⎫-+ ⎪ ⎪⎝⎭GPCBAEDFO于是042OQy⎛⎫-+= ⎪⎪⎝⎭()00PF x y=有0PF OQ=,即PF OQ⊥直线PF与直线OQ垂直。
21.(本小题满分12分)解:(Ⅰ)当1=a时,xxxf ln21)(2+=,xxxxxf11)(2+=+='对于∈x[1,e],有0)(>'xf,∴)(xf在区间[1,e]上为增函数,∴21)()(2maxeefxf+==,21)1()(min==fxf.-—--—4分(Ⅱ)21(21)1()(21)a xf x a xx x-+'=-+=(x>0)①当012≥-a,即21≥a时,)(>'xf,所以,)(xf在(0,+∞)是单调递增函数故)(xf无极值点。