空间直线与平面平行的判定

合集下载

高三第一轮复习 空间直线与平面的平行关系

高三第一轮复习 空间直线与平面的平行关系

空间直线与平面的平行关系【提纲挈领】主干知识归纳1. 直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理规律方法总结:1.平行问题中的转化关系2.判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.【指点迷津】【类型一】线面平行、面面平行的基本问题【例1】有互不相同的直线m ,n ,l 和平面α,β,给出下列四个命题: ①若m ⊂α,l ∩α=A ,A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若m ,n 是相交直线,m ⊂α,m ∥β,n ⊂α,n ∥β,则α∥β; ④若l ∥α,m ∥β,α∥β,则l ∥m. 其中真命题有( )A .4个B .3个C .2个D .1个解析:选B 由异面直线的判定定理,易知①是真命题;由线面平行的性质知,存在直线l ′⊂α,m ′⊂α,使得l ∥l ′,m ∥m ′,∵m ,l 是异面直线,∴l ′与m ′是相交直线,又n ⊥l ,n ⊥m ,∴n ⊥l ′,n ⊥m ′,故n ⊥α,②是真命题;由线面平行的性质和判定知③是真命题;满足条件l ∥α,m ∥β,α∥β的直线m ,l 或相交或平行或异面,故④是假命题,于是选B.【例2】过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1 平行的直线共有________条.解析:过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条.答案:6【类型二】直线与平面平行的判定与性质【例2】如图,直三棱柱ABC -A1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积. [解] (1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连接DF ,则BC 1∥DF.因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD.(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD.由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB.又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D. 所以VC -A 1DE =13×12×6×3×2=1.思考:在本例条件下,线段BC 1上是否存在一点M 使得DM ∥平面A 1ACC 1? 解:存在.当M 为BC 1的中点时成立. 证明如下:连接DM ,在△ABC 1中, D ,M 分别为AB ,BC 1的中点 ∵DM 綊12AC 1,又DM ⊄平面A 1ACC 1AC1⊂平面A1ACC1,∴DM∥平面A1ACC1.【类型三】平面与平面平行的判定与性质【例1】如图,四棱柱ABCD -A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD -A1B1D1的体积.[解](1)证明:由题设知,BB1∥DD1且BB1=DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊆平面CD1B1,∴BD∥平面CD1B1.∵A1D1∥B1C1∥BC且A1D1=B1C1=BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊆平面CD1B1,∴A1B∥平面CD1B1.又∵BD∩A1B=B,∴平面A1BD∥平面CD1B1.(2)∵A1O⊥平面ABCD,∴A1O是三棱柱ABD -A1B1D1的高.又∵AO=12AC=1,AA1=2,∴A1O=AA21-OA2=1.又∵S△ABD=12×2×2=1,∴V ABD -A1B1D1=S△ABD×A1O=1.【例2】如图,在直四棱柱ABCD -A1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.求证:平面AD1E∥平面BGF证明:∵E,F分别是B1B和D1D的中点,∴D1F綊BE.∴四边形BED1F是平行四边形,∴D1E∥BF;又∵D1E⊄平面BGF,BF⊂平面BGF,∴D1E∥平面BGF.∵FG是△DAD1的中位线,∴FG∥AD1;又AD1⊄平面BGF,FG⊂平面BGF,∴AD1∥平面BGF.又∵AD1∩D1E=D1,∴平面AD1E∥平面BGF.【例3】如图1,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上一点,设Q 为PA 的中点,G 为ΔAOC 的重心,求证:QG//平面PBC解:如图2连接OG 交AC 于点E ,连接QE ∵点G 为ΔAOC 的重心 ∴点E 为AC 的中点 又点Q 为PA 的中点 ∴QE 为ΔPAC 的中位线 ∴QE ∥PCPBC PC PBC QE 平面,平面⊆⊄∴QE ∥平面PBC 同理OE ∥平面PBC 由E OEQE =⋂得平面QEO//平面PBCQEO QG 平面⊂∴QG//平面PBC【同步训练】【一级目标】基础巩固组1.已知直线a ,b ,平面α,则以下三个命题:①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b. 其中真命题的个数是( )A .0B .1C .2D .3解析:选A 对于①,若a ∥b ,b ⊂α,则应有a ∥α或a ⊂α,所以①不正确;对于②,若a ∥b ,a ∥α,则应有b ∥α或b ⊂α,因此②不正确;对于③,若a ∥α,b ∥α,则应有a ∥b 或a 与b 相交或a 与b 异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.2.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )E图2图1A .①③B .②③C .①④D .②④解析:选C 对于图形①,平面MNP 与AB 所在的对角面平行,即可得到AB ∥平面MNP ;对于图形④,AB ∥PN ,即可得到AB ∥平面MNP ;图形②③无论用定义还是判定定理都无法证明线面平行,故选C.3.(2014·济南模拟)平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 若α∩β=l ,a ∥l ,a ⊄α,a ⊄β,则a ∥α,a ∥β,故排除A.若α∩β=l ,a ⊂α,a ∥l ,则a ∥β,故排除B.若α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l ,则a ∥β,b ∥α,故排除C.故选D.4.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎬⎫α∥c β∥c ⇒α∥β ②⎭⎬⎫α∥γβ∥γ⇒α∥β ③⎭⎬⎫α∥c a ∥c ⇒a ∥α ④⎭⎬⎫a ∥γα∥γ⇒α∥a 其中正确的命题是( )A .①②③B .①④C .②D .①③④解析:选C ②正确.①错在α与β可能相交.③④错在a 可能在α内.5.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件______时,有MN ∥平面B 1BDD 1.解析:由平面HNF ∥平面B 1BDD 1知,当M 点满足在线段FH 上有MN ∥平面B 1BDD 1.答案:M ∈线段FH6.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.解析:连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB.因此,MN ∥平面ABC 且MN ∥平面ABD.答案:平面ABC 、平面ABD7.(2016江苏.16,节选(1))如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证:⑴ 直线//DE 平面11A C F ;⑵ 平面1B DE ⊥平面11A C F .解:,D E 为中点,DE ∴为ABC ∆的中位线 //DE AC ∴又111ABC A B C -为棱柱,11//AC AC ∴ 11//DE AC ∴又11AC ⊂平面11A C F ,且11DE AC F ⊄//DE ∴平面11A C F ;8. 如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点, 求证: (1)B ,C ,H ,G 四点共面;(2)平面EFA 1∥平面BCHG . 证明:(1)∵GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC. ∴B ,C ,H ,G 四点共面. (2)∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC.∵EF ⊄平面BCHG ,BC ⊂平面BCHG , ∴EF ∥平面BCHG . ∵A 1G ∥EB 且A 1G ∥EB ∴四边形A 1EBG 是平行四边形. ∴A 1E ∥GB.∵A 1E ⊄平面BCHG ,GB ⊂平面BCHG . ∴A 1E ∥平面BCHG . ∵A 1E ∩EF =E∴平面EFA 1∥平面BCHG .【二级目标】能力提升题组1.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线FEC BAC 1B 1A 1B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析:选A当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.2.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.可以推出α∥β的是()A.①③B.②④C.①④D.②③解析:选C对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.3.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,不一定在平面α内D.有无数条,一定在平面α内解析:选B由直线l与点P可确定一个平面β,则平面α,β有公共点,因此它们有一条公共直线,设该公共直线为m,因为l∥α,所以l∥m,故过点P且平行于直线l的直线只有一条,且在平面α内,选B.4.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,则下列命题中,错误的是()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°解析:选C由题意可知PQ∥AC,QM∥BD,PQ⊥QM,所以AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故B正确;由PN∥BD可知,异面直线PM与BD所成的角等于PM与PN所成的角,又四边形PQMN为正方形,所以∠MPN=45°,故D正确;而AC=BD不确定,故选C.5.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是()A.MC⊥ANB.GB∥平面AMNC.平面CMN⊥平面AMND.平面DCM∥平面ABN解析:选C显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),作AN的中点H,连接HB,MH,GB,则MC∥HB,又HB⊥AN,所以MC⊥AN,所以A正确;由题意易得GB∥MH,又GB⊂平面AMN ,MH ⊂平面AMN ,所以GB ∥平面AMN ,所以B 正确;因为AB ∥CD ,DM ∥BN ,且AB∩BN =B ,CD∩DM =D ,所以平面DCM ∥平面ABN ,所以D 正确.6.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有________. ①若m ∥α,n ∥α,则m ∥n ;②若α⊥γ,β⊥γ,则α∥β; ③若m ∥α,m ∥β,则α∥β;④若m ⊥α,n ⊥α,则m ∥n.解析:若m ∥α,n ∥α,m ,n 可以平行,可以相交,也可以异面,故①不正确;若α⊥γ,β⊥γ,α,β可以相交,故②不正确;若m ∥α,m ∥β,α,β可以相交,故③不正确;若m ⊥α,n ⊥α,则m ∥n ,④正确.答案:④7.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面PAO.解析:假设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥PA.连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面PAO ,QB ⊄平面PAO ,所以D 1B ∥平面PAO ,QB ∥平面PAO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面PAO.故Q 满足条件Q 为CC 1的中点时,有平面D 1BQ ∥平面PAO.答案:Q 为CC 1的中点8.设α,β,γ为三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ. 可以填入的条件有________.解析:由面面平行的性质定理可知,①正确;当n ∥β,m ⊂γ时,n 和m 在同一平面内,且没有公共点,所以平行,③正确.答案:①或③9.已知直三棱柱ABC -A ′B ′C ′满足∠BAC =90°,AB =AC =12AA ′=2,点M ,N 分别为A ′B ,B ′C ′的中点.(1)求证:MN ∥平面A ′ACC ′; (2)求三棱锥C -MNB 的体积.解:(1)证明:如图,连接AB ′,AC ′, ∵四边形ABB ′A ′为矩形,M 为A ′B 的中点,∴AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点, ∴MN ∥AC ′,又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′, ∴MN ∥平面A ′ACC ′. (2)由图可知V C -MNB =V M -BCN ,∵∠BAC =90°,∴BC =AB 2+AC 2=22,又三棱柱ABC -A ′B ′C ′为直三棱柱,且AA ′=4, ∴S △BCN =12×22×4=4 2.∵A ′B ′=A ′C ′=2,∠B ′A ′C ′=90°,点N 为B ′C ′的中点,∴A ′N ⊥B ′C ′,A ′N = 2.又BB ′⊥平面A ′B ′C ′, ∴A ′N ⊥BB ′, ∴A ′N ⊥平面BCN. 又M 为A ′B 的中点, ∴M 到平面BCN 的距离为22, ∴V C -MNB =V M -BCN =13×42×22=43.10.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB.过A作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA.证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF ∥AB.因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC.同理EG ∥平面ABC.又EF ∩EG =E , 所以平面EFG ∥平面ABC.(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC.因为BC ⊂平面SBC ,所以AF ⊥BC.又因为AB ⊥BC ,AF ∩AB =A ,AF ⊂平面SAB ,AB ⊂平面SAB ,所以BC ⊥平面SAB. 因为SA ⊂平面SAB ,所以BC ⊥SA.【高考链接】1.(2016北京理.17),14分,节选(3)) 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值; (3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.解:设M 是棱PA 上一点,则存在]1,0[∈λ使得λ=.因此点),,1(),,1,0(λλλλ--=-M .因为⊄BM平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅BM ,∵平面PCD 的一个法向量)2,2,1(-=n即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM .2.(2016新课标Ⅲ.文19,12分)如图,四棱锥P-ABCD 中,PA ⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB; (II )求四面体N-BCM 的体积.【解析】 (1)取PB 中点Q ,连接AQ 、NQ , ∵N 是PC 中点,NQ//BC ,且NQ=12BC ,又22313342AM AD BC BC ==⨯=,且//AM BC , ∴//QN AM ,且QNAM=.∴AQNM是平行四边形.∴//MN AQ .又MN ⊄平面PAB ,AQ ⊂平面PAB ,∴//MN平面PAB .(2)由(1)//QN平面ABCD.∴1122N BCM Q BCM P BCM P BCA V V V V ----===.∴11142363N BCM ABCV PA S-∆=⨯⋅=⨯⨯=.。

直线、平面平行的判定和性质

直线、平面平行的判定和性质
又∵平面 ABEF∩平面 BCE=BE,
∴PM∥BE,∴APEP=MAMB,
又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴MAMB=DQQB,
∴MQ∥AD,又 AD∥BC,
∴MQ∥BC,∴MQ∥平面 BCE,又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE,又 PQ⊂平面 的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, 上面命题中正确的是________(填序号). 答案 ④
解析 ①若 a∥α,b⊂α,则 a,b 平行或异面;②若 a∥α,b∥α,则 a,b 平行、相交、异面都有可能;③若 a∥b,b⊂α,a∥α 或 a⊂α.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N,
连接 MN. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴AE =BD. 又 AP=DQ,∴PE=QB,
又 PM∥AB∥QN,∴PAMB =PAEE=QBDB,QDNC=BBQD,
∴PAMB =QDNC, ∴PM // QN,即四边形 PMNQ 为平行四边形, ∴PQ∥MN.又 MN⊂平面 BCE,PQ⊄平面 BCE, ∴PQ∥平面 BCE.
直线、平面平行的判定及性质
2012·考纲
1.以立体几何的定义、公理、定理为出发点,认识 和理解空间中线面平行的有关性质和判定定理.
2.能运用公理、定理和已获得的结论证明一些空间位 置关系的简单命题.
课本导读
1.直线和平面平行的判定: (1)定义:直线与平面没有公共点,则称直线平行平面; (2)判定定理: a⊄α,b⊂α,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α⇒a∥β. 2.直线和平面平行的性质: a∥α,a⊂β,α∩β=l⇒a∥l.

直线平面平行、垂直地判定及其性质的知识点

直线平面平行、垂直地判定及其性质的知识点

一、直线、平面平行的判定与其性质知识点一、直线与平面平行的判定ii .思考:如图,设直线b在平面a内,直线a在平面a外,猜测在什么条件下直线a与平面a 平行.〔a|| b〕※判定定理的证明特别提示证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线平行,证得“线面〃平行;②利用两平面平行的性质定理,通过“面面〃平行,证得“线面〃平行. 知识点三、平面与平面平行的判定、直线、平面垂直的判定与其性质知识点一、直线和平面垂直的定义与判定要点诠释:定义中“平面-内的任意一条直线"就是指“平面二:内的所有直线",这与“无数条直线〃不同〔线线垂直线面垂直〕知识点二、二面角I.二面角::从一条直线出发的两个半平面所组成的图形叫二面角〔dihedral angle 〕.这条直线叫做二面角的棱,这两个半平面叫做二面角的面•记作二面角一AB —.〔简记P —AB —Q〕.面角的平面角的三个特征:i .点在棱上ii.线在面内iii.与棱垂直n .二面角的平面角:在二面角一I —的棱I上任取一点O ,以点O为垂足,在半平面,内分别作垂直于棱丨的射线OA和0B,如此射线OA和0B构成的AOB叫做二面角的平面角• 作用:衡量二面角的大小;X 围:0°180°.2能保证直线 a 与平面a 平行的条件是〔A 〕 A.a a ,b a ,a / bB .b a ,a / b知识点四、平面和平面垂直的定义和判定定义 判定文字描述 两个平面相交,如果它们所成的二面角是 直二面角,就说这两个平面垂直 .一个平面过另一个平面的垂线,如此这两 个平面垂直 图形 k z结果aAp = l a -l- B =90° 戸 a 丄 B 1 丄 cxj c a:丄 0〔垂直问题中要注意题目中的文字表述,特别是“任何〃“随意〃“无数〃等字眼〕 知识点五、平面和平面垂直的性质面面垂直 '线面垂直〔如果两个平面垂直,那么一个平面内垂直于它们交线的直线与一个面平垂直〕例题1.如图,假如 是长方体ABCD-ABCQ 被平面EFGH 截去几何体 EFGHBD 后得到的几 何体,其中E 为线段A i B i 上异于B i 的点,F 为线段BB 上异于B 的点,且EH// A i D i , 如此如下结论中不正确的答案是A. EH // FGB. 四边形EFGH 是矩形C. 是棱柱D.是棱台 C. b a ,c / a ,a / b,a / cD. b a ,A € a,B € a,C € b ,D € b 且 AC = BD3如下命题正确的答案是〔 DF 〕A. 平行于同一平面的两条直线平行B. 假如直线a / a ,如此平面a 内有且仅有一条直线与a 平行 C. 假如直线a / a ,如此平面a 内任一条直线都与a 平行 D. 假如直线a / a ,如此平面a 内有无数条直线与 a 平行E. 如果a 、b 是两条直线,且 a / b ,那么a 平行于经过b 的任何平面F. 如果直线a 、b 和平面a 满足 a / b , a / a ,b a,那么b /a4在空间,如下命题正确的答案是〔A 〕平行直线的平行投影重合〔B 〕平行于同一直线的两个平面平行〔C〕垂直于同一平面的两个平面平行A. m , n〔D〕垂直于同一平面的两条直线平行5m n为两条不同的直线,a、B为两个不同的平面,如此如下命题中正确的答案是B. a m , nm// nC. ml a,m 丄n n / aD. n / m,n丄a m± a〔A〕如果平面丄平面,那么平面内一定直线平行于平面〔B〕如果平面垂直于平面,那么平面内一定不存在直线垂直于平面〔C〕如果平面丄平面,平面丄平面,丨,那么丨丄平面〔D〕如果平面丄平面,那么平面内所有直线都垂直于平面设盘上是悔条直线, 血是两个平酣则a Lb的一个充分条件是(A) a ± a.bll(i.Q1 /J (B) □丄a少丄p(C) a c a,b丄(D)a c a.bll丄08. 求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面:空间四边形ABCD中, E、F分别是AB AD的中点求证:EF”平面BCD9. 如图,在椎体P-ABCD中,ABCD1边长为1的棱形,且/ DAB=60, ,PB=2,E,F分别是BC,PC的中点.⑴证明:AD丄平面DEF;(2)求二面角P-AD-B的余弦值.课堂练习A组1已知砌理是两条不冋宜线,a t j8,y是三个不同平面'下列命题中正确的是()A•若fn\\ ay/II a,则加“舟 B.若c(一丁』丄人则口"0C*若卅队则伉//爪 D.若仍丄丄<7,则朋“料4.已拓两荼直线,阳个平和。

直线、平面平行的判定与性质

直线、平面平行的判定与性质

[解析]
选项A,平行直线的平行投影可以依然是两条平行
直线;选项 B ,两个相交平面的交线与某一条直线平行,则这
条直线平行于这两个平面;选项 C,两个相交平面可以同时垂
直于同一个平面;选项D,正确. [答案] D
2.(2009·福建,10)设m,n是平面α内的两条不同直线;l1,
l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件
∵AF⊄平面PCD,CD⊂平面PCD,∴AF∥平面PDC.
∵AF∩EF=F,∴平面AEF∥平面PCD.
∵AE⊂平面AEF,AE∥平面PCD.
∴线段PB的中点E是符合题意要求的点.
1.证明直线和平面平行的方法有:
(1)依定义采用反证法
(2) 判定定理( 线∥线 ⇒线∥面) ,即想方设法在平面内找出 一条与已知直线平行的直线. (3)面面平行性质定理(面∥面⇒线∥面) 2.证明平面与平面平行的方法有:
(1)[证明] ∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,
∵PD⊂平面PAD,∴AB⊥PD.
(2)[解]
解法一:取线段 PB 的中点 E,PC 的中点 F,连
接 AE,EF,DF,则 EF 是△PBC 的中位线. 1 1 ∴EF∥BC,EF= BC,∵AD∥BC,AD= BC, 2 2 ∴AD∥EF,AD=EF. ∴四边形 EFDA 是平行四边形,∴AE∥DF. ∵AE⊄平面 PCD,DF⊂平面 PCD, ∴AE∥平面 PCD. ∴线段 PB 的中点 E 是符合题意要求的点.
(1)依定义采用反证法
(2) 判定定理( 线∥面 ⇒面∥面) .即证一平面内两条相交直
线与另一平面垂直.

第03讲 空间直线、平面的平行 (精讲)-1(含答案解析)

第03讲 空间直线、平面的平行 (精讲)-1(含答案解析)

第03讲空间直线、平面的平行(精讲)-1第03讲空间直线、平面的平行(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析题型一:直线与平面平行的判定与性质角度1:直线与平面平行的判定角度2:直线与平面平行的性质题型二:平面与平面平行的判定与性质角度1:平面与平面平行的判定角度2:平面与平面平行的性质题型三:平行关系的综合应用第四部分:高考真题感悟知识点一:直线与平面平行1、直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行.2、直线与平面平行的判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行符号表述:a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭3、直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行符号表述:a αP ,a β⊂,b αβ= ⇒a b知识点二:平面与平面平行1、平面与平面平行的定义两个平面没有公共点2、平面与平面平行的判定定理如果一个平面内的有两条相交直线平行于另一个平面,那么这两个平面平行.符号表述:,////,//a b a b P a b ββαβαα⊂⊂⎫⎪⋂=⇒⎬⎪⎭3、平面与平面平行的性质定理3.1性质定理两个平行平面,如果另一个平面与这两个平面相交,那么两条交线平行.符号语言////a a bb αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭3.2性质两个平面平行,则其中一个平面内的直线平行与另一平面符号语言:,a a αβαβ⊂⇒∥∥(2022·全国·高一课时练习)1.判断正误.(1)若平面//α平面β,l ⊂平面β,m ⊂平面α,则lm .()(2)夹在两平行平面之间的平行线段相等.()(2022·全国·高一课时练习)2.已知长方体ABCD A B C D -'''',平面α 平面ABCD EF =,平面α 平面A B C D E F ''''''=,则EF 与E F ''的位置关系是A .平行B .相交C .异面D .不确定(2022·全国·高一课时练习)3.在正方体1111F EFG E G H H -中,下列四对平面彼此平行的一对是A .平面11E FG 与平面1EGH B .平面1FHG 与平面11F H G C .平面11F H H 与平面1FHE D .平面11E HG 与平面1EH G (2022·全国·高一课时练习)4.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是()A .一定平行B .一定相交C .平行或相交D .以上判断都不对(2022·全国·高一课时练习)5.直线a ∥平面α,平面α内有n 条直线交于一点,那么这n 条直线中与直线a 平行的直线()A .至少有一条B .至多有一条C .有且只有一条D .不存在(2022·全国·高二课时练习)6.若平面//α平面β,直线a α⊂,则a 与β的位置关系是____________.题型一:直线与平面平行的判定与性质角度1:直线与平面平行的判定典型例题例题1.(2022·四川绵阳·高二期末(理))7.如图,三棱柱111ABC A B C -的侧棱与底面垂直,2AC =,BC =,4AB =,12AA =,点D 是AB 的中点(1)求证:1//AC 平面1CDB ;(2)求直线1AC 与直线1CB 所成角的余弦值.例题2.(2022·四川凉山·高一期末(文))8.已知直三棱柱ABC A B C '''-中,AA C C ''为正方形,P ,O 分别为AC ',BC 的中点.(1)证明:PO ∥平面ABB A '';(2)若ABC 是边长为2正三角形,求四面体B AOC '-的体积.题型归类练(2022·四川成都·高一期末(理))9.在四棱锥P ABCD -中,四边形ABCD 为矩形,平面ABCD ⊥平面PAB ,点,E F 分别在线段,CB AP 上,且CE EB =,=AF FP .求证://EF 平面PCD .(2022·重庆市第七中学校高一期末)10.如图,正三棱柱111ABC A B C -的所有棱长均为2,E 为线段11B C 的中点,F 为正方形11ACC A 对角线的交点.(1)求证:EF ∥面1B AC ;(2)求三棱锥111C B A C -的体积.(2022·河北石家庄·高一期末)11.如图,在直三棱柱111ABC A B C -中,AC BC ==90ACB ∠=︒.12AA =,D 为AB 的中点.(1)求证:1AC ∥平面1B CD ;(2)求异面直线1AC 与1B C 所成角的余弦值.(2022·四川南充·高二期末(文))12.如图,四棱锥P ABCD -的底面是正方形,PA ⊥平面ABCD ,E ,F 分别为AB ,PD 的中点,且2PA AD ==.(1)求证:AF ∥平面PEC ;(2)求三棱锥C PEF -的体积.角度2:直线与平面平行的性质典型例题例题1.(2022·山东·济南市章丘区第四中学高一阶段练习)13.如图,四边形ABCD 为长方形,PD ⊥平面ABCD ,2PD AB ==,4=AD ,点E 、F 分别为AD 、PC 的中点.设平面PDC 平面PBE l =.(1)证明://DF 平面PBE ;(2)证明://DF l ;(3)求三棱锥P BDE -的体积.例题2.(2022·吉林·双辽市第一中学高三期末(文))14.如图,三棱锥-P ABC 中,AC ,BC ,PC 两两垂直,AC BC =,E ,F 分别是AC ,BC 的中点,ABC 的面积为8,四棱锥P ABFE -的体积为4.(1)若平面PEF 平面=PAB l ,求证://EF l ;(2)求三棱锥-P ABC 的表面积.题型归类练(2022·重庆巴蜀中学高二期末)15.如图所示,在四棱锥P ABCD -中,底面是直角梯形,//AD BC ,90ADC ∠= ,AC和BD 相交于点N ,面PAC ⊥面ABCD ,22BC AD ==,1CD =,2PA PC ==.在线段PD 上确定一点M ,使得//PB 面ACM ,求此时PM MD 的值.(2022·安徽池州·高一期末)16.在四棱锥V ABCD -中,底面ABCD 为平行四边形,BC ⊥平面VAB ,VA VB ⊥,设平面VAB 与平面VCD 的公共直线为l .写出图中与l 平行的直线,并证明。

直线平行平面的判定定理

直线平行平面的判定定理

直线平行平面的判定定理直线和平面是空间解析几何中的基本概念,它们的位置关系有着重要的几何性质。

在空间中,当一条直线与一个平面满足特定条件时,我们可以根据直线和平面的性质来判断它们是否平行。

本文将介绍直线平行平面的判定定理,以及相关的推导和应用。

一、在空间中,判定一条直线与一个平面是否平行,可以根据以下定理进行判断:定理1:如果直线上的任意一点到平面的距离为定值k,那么这条直线与这个平面平行。

证明:设直线L上任意一点为P(x,y,z),平面为α,平面上一点为Q(a,b,c)。

根据直线上任意一点到平面的距离公式,有:d(P, α) = |ax + by + cz + d| / √(a^2 + b^2 + c^2)其中,α的一般方程为ax + by + cz + d = 0。

因为直线L上的任意一点P(x,y,z)到平面α的距离为定值k,所以有:|ax + by + cz + d| / √(a^2 + b^2 + c^2) = k即:|ax + by + cz + d| = k√(a^2 + b^2 + c^2)根据绝对值的性质,得到:ax + by + cz + d = ± k√(a^2 + b^2 + c^2)由于k为定值,√(a^2 + b^2 + c^2)也为定值,因此左侧和右侧都是一个常数等式,表示一个平面β。

所以,直线L和平面β平行,即直线L与平面α平行。

经过推导和证明,我们得出了判定直线平行平面的定理,即直线与平面上的一点到平面的距离为定值,那么这条直线和这个平面是平行的。

二、直线平行平面的应用直线平行平面的判定定理在解决空间几何问题时具有重要的应用价值。

下面通过几个具体的例子来说明其应用。

例1:已知平面α的一般方程为2x - 3y + 4z - 5 = 0,直线L上的一点为P(1, 2, -1),求直线L与平面α的位置关系。

解:由直线平行平面的判定定理可知,如果点P到平面α的距离为定值,那么直线L与平面α平行。

空间直线与平面平行判定

空间直线与平面平行判定

空间直线与平面平行判定在空间几何中,判断直线和平面是否平行是一个重要的问题。

本文将介绍如何判定空间直线与平面的平行关系,并给出相关的数学公式和例子。

首先,我们来定义空间直线和平面。

定义•空间直线:空间中的直线由一个点和一个方向确定。

直线上的所有点满足其上的任意两个不同的点都可以通过直线的方向向量表示出来。

•空间平面:空间中的平面由三个不共线的点确定。

平面上的所有点满足其上的任意三个不共线的点都可以通过平面上的任意两个向量表示出来。

平行判定条件判断空间直线与平面是否平行,我们可以利用以下条件:1.直线的方向向量与平面的法向量垂直。

2.直线上的一点到平面的距离为0。

根据上述条件,我们可以得到以下判定公式:1. 方向向量与法向量的垂直判定设直线的方向向量为 $ \vec{v}(a, b, c) $,平面的法向量为 $ \vec{n}(d, e, f) $,则方向向量与法向量垂直,可以表示为以下条件:$ a \cdot d + b \cdot e + c \cdot f = 0 $2. 零点到平面的距离判定设直线上的一点为 $ P(x_0, y_0, z_0) $,平面的方程为 $ Ax + By + Cz + D = 0 $,其中 $ \vec{n}(A, B, C) $ 为平面的法向量。

平面上任意一点 $ Q(x, y, z) $ 到平面的距离可以利用以下公式计算:$ Distance = \frac{|Ax + By + Cz + D|}{\sqrt{A^2 + B^2 + C^2}} $当直线上的点到平面的距离为0时,可以判断直线与平面平行。

例子我们来看一个具体的例子,判定空间直线和平面的平行关系。

例子 1:直线 $ l: x = t, y = 2t, z = 3t $,判断直线与平面 $ \pi: 2x + 4y - 3z + 6 = 0 $ 是否平行。

首先,我们需要找到直线的方向向量和平面的法向量。

总结证明线面平行的常用方法

总结证明线面平行的常用方法

BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习旧知
直线和平面的位置关系
位置 关系
公共点
直线 a 在平 面α内
有无数个
公共点
直线 a 与平 面 α 相交
直线 a 与平 面 α 平行
有且只有一个
公共点
没有
公共点
符号表示
a⊂α
a∩α=A
a∥α
图形 表示
新课导入
【问题导思】 如图,一块矩形木板ABCD的一边AB在平面α内,把这
块木板绕AB转动,在转动过程中,AB的对边CD(不落在α内) 是否都和平面α平行?
D1
C1
A1
E
B1
F
G
D C
A B
练习 3. 如图,已知公共边为 AB 的两个全等的矩形 ABCD 和 ABEF 不在同一平面内,P,Q 分别是对角线 AE,BD 上的点,且 AP=DQ. 求证:PQ∥平面 CBE.
G H
反思~领悟
1.线面平行,通常可以转化为线线平行来处理.
2.寻找平行直线可以通过三角形的中位线、 梯形的中位线、平行线的判定等来完成。
探究问题,归纳结论
如图,平面 外的直线 a平行于平面 内的直线b。
(1)这两条直线共面吗?
(2)直线 a 与平面 相交吗?
a
b

猜想:如果平面外一条直线和这个平面内的一条直 线平行,那么这条直线和这个平面平行。
归纳结论
直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,
求证:(1)EH∥平面 BCD;(2)BD∥平面 EFGH.
练习 1.如图,P 是▱ABCD 所在平面外一点,E,F 分别为 AB,PD 的 中点,求证:AF∥平面 PEC.PBiblioteka A BEFG
D
C
练习 2.如图,在长方体 ABCD-A1B1C1D1中,E, F, G 分别是棱 A1B1, B1C1, DD1 的中点,求证:EF∥平面 ACG.
D.若直线a∥b,b⊂α, a ⊄ α,那么直线a平行于平面α
内的无数条直线
线面平行的判定定理的理解
若直线 a 不平行于平面 α,则下列结论成立的是( ) A.α 内的所有直线均与 a 异面 B.α 内不存在与 a 平行的直线 C.α 内直线均与 a 相交 D.直线 a 与平面 α 有公共点
线面平行的判定定理的运用
则该直线与此平面平行 .
a
(线线平行 线面平行)
符号表示:

b
①内 b
②外
a




a
/
/
③平行 a / /b
线面平行的判定定理的理解
例1 下列说法中正确的是( ) A.若直线l平行于平面α内的无数条直线,则l∥α B.若直线a在平面α外,则a∥α C.若直线a∥b,b⊂α,则a∥α
3.证明的书写三个条件“内”、“外”、“平 行”,缺一不可。
例1. 如图,空间四边形ABCD中,E、F分别是
AB,AD的中点.
A
求证:EF∥平面BCD.
分析:只要证一个平面内有
两条相交直线和另一个平面平 行即可.
F
E
D
B
线线平行
线面平行
线面平行的判定定理的运用
例 2.如图,空间四边形 ABCD 中,E、F、G、H 分别是 AB、BC、CD、 DA 的中点.
相关文档
最新文档