最新6年级小升初立体图形篇

合集下载

小升初数学总复习《立体图形的认识》

小升初数学总复习《立体图形的认识》

长方体、正方体的异同
6个面 12条棱 8个顶点
都是长方形(可能 都是完全相同的 有2个面是正方形) 正方形
相对的棱长度相等 每条棱的长度相等
o
重点3
h
or
底面是2个完全相同的圆, 侧面展开一般是一个长方形,有
时是一个正方形。 有无数条高。
重点4
h or
底面是一个的圆,
侧面展开是一个扇形,
有一数条高。
错正解: 从圆锥的顶点到底面圆的心连的线连,线就,是
就圆是锥圆的锥高的。高。
归纳总结
圆柱 04 圆锥 03
01 长方体 02 正方体
人教版六年级数学
立体图形的认识
六数•分类•复习
重点透视
立体图形的认识
长方体 正方体
圆柱
圆锥
重点1
6个面一般是长 方形。相对的面 完全相同。
高 宽

12条棱,相对的 4条棱长度相等。
8个顶点
长方体有可能有2个 相对的面是正方形。
重点2
6个面完全相同, 都是正方形。
12条棱长度相等。
8个顶点
正方体是特殊的长方体
圆柱和圆锥的异同ຫໍສະໝຸດ 圆形2个 曲面1个
无数条 1条
源题解析
题1 下面的图形哪些是圆柱?是的画“√”。
(1) (√2) (3) (√4) (5)
易错点拨
易错1 判断 圆柱的侧面展开图的一定是一个长方形。(√× )
错正解: 当圆柱的底面周长等于圆柱的高时,
展开图是一个正方形。
易错2 判断 圆锥的高就是从圆锥的顶点到底面的线段。(×√ )

小升初备考:数学知识点之立体图形

小升初备考:数学知识点之立体图形

小升初备考:数学知识点之立体图形立体图形(一)长方体1特征六个面都是长方形(有时有两个相对的面是正方形)。

相对的面面积相等,12条棱相对的4条棱长度相等。

有8个顶点。

相交于一个顶点的三条棱的长度分别叫做长、宽、高。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

把长方体放在桌面上,最多只能看到三个面。

长方体或者正方体6个面的总面积,叫做它的表面积。

2计算公式s=2(ab+ah+bh)V=shV=abh(二)正方体1特征六个面都是正方形六个面的面积相等12条棱,棱长都相等有8个顶点正方体可以看作特殊的长方体2计算公式S表=6a2v=a3(三)圆柱1圆柱的认识圆柱的上下两个面叫做底面。

圆柱有一个曲面叫做侧面。

圆柱两个底面之间的距离叫做高。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。

这种取近似值的方法叫做进一法。

2计算公式s侧=chs表=s侧+s底×2v=sh/3(四)圆锥1圆锥的认识圆锥的底面是个圆,圆锥的侧面是个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。

把圆锥的侧面展开得到一个扇形。

2计算公式v=sh/3(五)球1认识球的表面是一个曲面,这个曲面叫做球面。

球和圆类似,也有一个球心,用O表示。

从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。

通过球心并且两端都在球面上的线段,叫做球的直径,用d 表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。

2计算公式d=2r小升初二轮复习全攻略 | 小学期末考试(上册)试卷汇编小学1—6年级语数英知识要点归纳 |中外名著读后感大全。

小升初数学·立体几何完美编辑版)

小升初数学·立体几何完美编辑版)

小升初数学拓展与提高——立体几何内容提要板块一、基本立体图形认知 板块二、立体染色及最短线路问题 板块三、套模法、切片法及立体旋转问题基础知识点例1.右图是一个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内。

当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米。

则这个玻璃杯的容积为________立方厘米。

(取π=3 .14) (提示:直角三角形中“勾6、股8、弦10)CB A例2.铁路油罐车由两个半球面和一个圆柱面钢板焊接而成,尺寸如下图所示。

问:该油罐车的容积是多少立方米?(π=3.14)例3.图中是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形。

问这个直三棱柱的体积是多少?绿黄例4.下图是半个圆柱的表面展开图,由两个半圆和两个长方形组成,总面积是a ,圆柱底面半径是r 。

用a ,r 和圆周率π所表示的这个半圆柱的高的式子是__________________________,体积的式子是__________________________________。

例5.如下图给出了一个立体图形的正视图、左视图和俯视图,图中单位为厘米。

立体图形的体积()立方厘米。

A. 2πB. 2.5πC. 3πD. 3.5π例6.如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米。

这卷铜版纸的总长是多少米?(π=3.14)例7.输液100毫升,每分钟输2.5毫升。

如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【阶段总结1】1. 柱体的体积:底面积×高;锥体的体积:13×底面积×高。

2. 根据展开图、三视图还原原立体图形的能力,立体图形、展开图对照分析能力。

3. 简易立体图形的画法。

例8.右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?例8.拓展:一个长方体体积462立方厘米,在它的表面涂上一层油漆,然后把它切成棱长1厘米的正方体若干,长宽高为整数,这时三面都有油漆的正方体有86个,有二面油漆的正方体______个.例9.将16个相同的小正方体拼成一个体积为16立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有_________个,最少有________个。

6年级小升初立体图形篇

6年级小升初立体图形篇

6年级小升初立体图形篇1、立体图形的分类:长方体、正方体、圆柱、圆锥2、表面积公式:长方体表面积=(长×宽+长×高+宽×高)×2 S=(a×b+a×c+b×c)×2 正方体表面积=棱长×棱长×6 S=a×a×6=6a² 圆柱表面积=底面积×2+侧面积 S=∏r²×2+Ch 3、体积公式:长方体体积=长×宽×高 V =a×b×h=Sh 正方体体积=棱长×棱长×棱长 V =a×a×a =a³ 圆柱体积=底面积×高 V =Sh 圆锥体积=31×底面积×高 V =31×Sh 4、常见的题型:鱼缸、水池: 长方体:5个面 正方体:5个面 圆柱:2个面贴标签: 长方体:4个面 正方体:4个面 圆柱:侧面积圆柱压路机: 1.前进的路程:底面周长 2.压路的面积:侧面积圆柱切割后增加的面积: 1刀2段:2个面 2刀3段:4个面同样一块铁所铸成的立体图形的体积都相等。

5、经典题析。

1.加工一个长方体铁皮油桶,长分米,宽分米,高3分米,至少要用多少平方分米铁皮2.学校要挖一个长方形状沙坑,长4米,宽2米,深米,需要多少立方米的黄沙才能填满3.做一个长方形状的鱼缸,长8分米,宽3分米,高5分米,需要玻璃多少平方分米4.把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板有多厚(损耗不计)5.一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重千克,可装机油多少千克6.3个棱长都是8厘米的正方体,拼成一个长方体,表面积是多少7.在一个长20米,宽8米,深米的长方体蓄水池里面贴瓷砖,瓷砖是边长为米的正方形,贴完共需瓷砖多少块8.一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重千克,可装机油多少千克9.在一个长20米,宽8米,深米的长方体蓄水池里面贴瓷砖,瓷砖是边长为米的正方形,贴完共需瓷砖多少块10.一个长方体铁盒长18厘米,宽15厘米,高12厘米,做成这个铁盒至少用多少平方分米的铁皮11.有一块长50厘米、宽30厘米的铁皮,用它做一个直径是8厘米、高10厘米的圆柱形罐头盒后,还剩下多少铁皮12.如图,把圆柱体切去一半,再与长方体组合,求它的表面积。

小升初 第三节立体图形(讲义)六年级下册数学人教版

小升初 第三节立体图形(讲义)六年级下册数学人教版

第三节 立体图形小学梳理小学阶.段,我们主要学习的立体图形有长方体、正方体、圆柱、圆锥。

研究了各个立体图形的特征和表面积、体积的计算方法。

通过对物体的实际观察,使我们了解到从不同方向观察物体,所看到一、立体图形的特征 1、 长方体长方体有6个面,6个面一般都是长方形(也有可能相对的2个面是正方形),长方体每一组相对的2个面形状相同、大小相等。

长方体有8个顶点、12条棱,每一组互相平行的4 条棱(相对的棱)的长度相等。

我们把相交于一个顶点的三条棱分别叫作这个长方体的长、宽、高。

2. 正方体正方体有6个面,6个面都是正方形,且面积相等。

正方体有8个顶点、l2条棱,12 条棱的长度相等。

有时我们也把正方体看成是长、宽、高都相等的长方体。

3、 圆柱圆柱由两个底面和一个曲面组成。

上、下两个底面是相等的两个圆,两个底面之间的距离叫作高,圆柱有无数条高。

把圆柱的侧面沿高展开后得到一个长方形(或正方形),长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

4、 圆锥圆锥有一个顶点、一个曲面和一个圆形的底面。

从顶点到底面圆心的距离就是圆锥的高,圆锥只有一条高。

二、立体图形的表面积 1. 表面积的意义一个立体图形所有面的面积的和叫作这个立体图形的表面积。

2. 表面积的计算方法(1) 长方体的表面积:长方体6个面的面积的和就是这个长方体的表面积。

长方体的表面积计算公式::S=(ab+ah+b)×2(2) 正方体的表面积:正方体6个面的面积的和就是这个正方体的表面积。

正方体的表面积计算公式: S =6a²(3)圆柱的表面积:两个底面的面积与一个侧面面积的和就是这个圆柱的表面积。

圆柱的表面积计算公式: S 底=S N +S 底×2(其中 S N =Cℎ)进一法:在实际生产中,使用的材料都要比计算的结果多一些,因此,在保留得数的时候,即使被省略的尾数的最高位上的数是4或者比4小,都要向前一位进1。

人教版六年级下册数学(全国通用)小升初专项复习:立体图形(专项练习)

人教版六年级下册数学(全国通用)小升初专项复习:立体图形(专项练习)

通用版小升初专项复习:立体图形一、填空题1.下面图形以红色线为轴旋转后会得到圆锥吗,如果是说出圆锥的高和底面半径。

2.至少用个棱长1cm的小正方体可以拼成一个较大的正方体。

拼成这个大正方体的体积是,表面积是。

3.把一块长8dm、宽6dm、高5dm的长方体分割成两个完全相同的小长方体,则它的表面积最多增加dm2,最少增加dm2。

4.绕着一个圆锥形状的碎石堆的外边缘走一圈,要走18.84米.如果这堆碎石的高是2.4米,它的体积是立方米?5.一个底面半径是20cm、高是15cm的圆柱形铁块,可以熔铸成个底面直径是20cm、高是15cm的圆锥形铁块。

(损耗不计)6.一个圆柱的底面周长是6.28厘米,高5厘米,它的侧面积是,表面积是,体积是。

7.把一个底面直径为3厘米、高是5厘米的圆柱体沿直径切割成两个半圆柱,表面积增加了。

8.把一个棱长是3dm的正方体,切削成最大的圆柱,这个圆柱的侧面积是dm2。

9.5x=4y,那么x∶y=∶.二、单选题10.下面图形中,折叠后能围成正方体的是()。

A.B.C.D.11.一个圆锥的体积是141.3cm3,与它等底等高的圆柱的体积是()cm3。

A.47.1B.141.3C.282.6D.423.912.有一堆小麦如下图,从上面及侧面看,形状大致会是()A.三角形,圆形B.梯形,圆形C.圆形,长方形D.圆形,三角形13.如下图,这块石头的体积约是()cm3。

A.500B.1000C.5000D.6000 14.一个圆锥的体积是100立方厘米,底面积是50平方厘米,它的高是()厘米。

A.2B.23C.6D.1015.奇奇将圆柱内的水倒入()圆锥内,正好倒满。

A.B.C.D.16.学校买来420本课外书,按照人数的比分配给六年级3个班。

六(1)班42人,六(2)班50人,六(3)班48人。

六(3)班可分得()本。

A.126B.140C.144D.15017.如图所示的展开图中是左边的正方体的展开图的是()A.B.C.D.18.用一块长56.52cm、宽31.4cm的长方形铁皮,配上一块直径()cm的圆形铁皮可以做成一个容积最大的水桶。

2023-2024学年人教版六年级下册数学小升初专题训练:立体图形

2023-2024学年人教版六年级下册数学小升初专题训练:立体图形

2023-2024学年人教版六年级下册数学小升初专题训练:立体图形一、单选题1.一个底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40厘米的正方形,这个铁箱的容积是() 升。

A.400B.4000C.4D.402.小明在一个底面积为48 cm2的长方体水槽中放入了一块石头(完全浸没,水未溢出)。

水面上升了2cm.这块石头的体积是() cm3.A.24B.50C.96D.1923.一块长是3分米,宽是2分米,体积是25.2立方分米的长方体木料,()完全放入一个长是3.1分米,宽是2.1分米,高是4分米的长方体纸箱内(纸箱厚度忽略不计)。

A.能B.不能C.不一定能D.条件不足,无法确定4.张华想将四个完全相同的小正方体纸箱堆放在墙角,()露在外面的面积最小。

A.B.C.D.5.一个长方体的长、宽、高分别扩大到原来的2倍,它的表面积扩大到原来的()倍。

A.2B.4C.6D.86.下面图()可以围成一个圆柱。

A.B.C.D.二、判断题7.等底等高的正方体、长方体,圆柱和圆锥的体积都相等。

()8.把28L水倒入一个从里面量长40cm、宽25cm、高40cm的长方体玻璃水槽中,这时水面距水槽口28cm。

()9.一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是1:π。

()10.一个圆柱和一个圆锥的底面半径的比为2:1,高的比为1:1,那么圆柱和圆锥的体积比是4:1。

()11.8 个小正方体拼成的大正方体,拿走一个小正方体,如图,它的表面积和体积都变小了。

()12.一个圆柱的高不变,它的底面半径扩大到原来的2倍,体积扩大到原来的8倍。

()三、填空题13.在一个长10厘米、宽8厘米、高7厘米的长方体盒子里面最多能放个棱长为2厘米的小正方体。

(小正方体不外露)14.把两个底面直径为6cm,高为5cm 的圆柱拼成一个大圆柱,表面积(填“增加”或“减少”)cm2。

15.如图,把底面直径为6cm 的圆柱沿直径切成若干等份,拼成一个近似的长方体,这个长方体的表面积比原来增加60cm2,那么长方体的体积是cm3。

六年级数学试题-小升初专题训练-第6节-立体图形拓展人教课标版含答案

六年级数学试题-小升初专题训练-第6节-立体图形拓展人教课标版含答案

第6节:立体图形拓展【例1】用棱长为1的小正方体木块摆成一个长20,宽15,高10的长方体,然后将所摆成的长方体表面喷上颜色。

则没有喷到颜色的木块共有( )个。

【例2】一个长方体木块,锯掉5厘米后,得到一个正方体木块,表面积比原来减少100平方厘米,求原来长方体木块的表面积。

【例3】一个棱长是3厘米的正方体木块,各面中心凿出一孔面边长是1厘米的正方形柱孔,它余下的体积是多少立方厘米?表面积是多少平方厘米?1.将1立方米的大正方体锯成体积是1立方厘米的小正方体,然后将它们一个一个连成一排,其总长度是 千米。

2. 一个正方体木块,棱长4 厘米,把它的外表涂成绿色,然后切割成棱长为1 厘米的小正方体。

小正方体中,只有一面是绿色的有( )块,没有一面是绿色的有( )块。

3.已知一个正方体的体积是729立方厘米,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是665立方厘米,则截去的每个小正方体的棱长是 。

形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:V 物体 =V 现在-V 原来也可以 V 物体 =S 底面×(h 现在- h 原来) V 物体 =S 底面×h 升高模块一:正方体题型举例模块二:液体浸物【例1】一个圆柱形容器中有足够量的水,在水中放入一个圆锥形铅锤后,水面上升了3厘米,已知容器内部底面的半径是铅锤底面半径的2倍,这个铅锤的高为多少厘米?【例2】一个圆柱形的容器的底部放着一块正方体铅块,现在向容器内匀速注水,20秒时水恰好没过铅块的上表面,又过了1.5分钟,水注满了容器。

若容器高度是24厘米,铅块高是6厘米,则容器底面积是多少平方厘米?【例3】如图,在底面是边长为60厘米的正方体容器里,直立放着一个高100厘米,底面边长为18厘米的正方形的铁块,这时容器里的水深是50厘米,现在把铁块提出容器之后,水面下降()厘米1.一瓶装满的矿泉水,小亮喝了一些,把瓶盖拧紧后倒置放好在水平的桌面上,无水部分是高3cm,内直径是6cm的圆柱体,那么小亮喝了()cm3水。

小升初真题汇编:立体图形(专项训练)--2024年六年级下册数学

小升初真题汇编:立体图形(专项训练)--2024年六年级下册数学

小升初真题汇编:立体图形(专项训练)2023-2024学年数学六年级下册一、单选题1.(2023·鲤城)如图的纸片可以折成一个正方体,“前”字和()字在折成的正方体中相对。

A.祝B.你C.程D.锦2.(2023·滁州)一个长方形的长是4厘米,宽是3厘米,如图所示。

以长为轴旋转一周和以宽为轴旋转一周分别形成两个圆柱,关于这两个圆柱的说法正确的是()A.两个圆柱底面积相等B.两个圆柱的侧面积相等C.两个圆柱的表面积相等D.两个圆柱的体积相等3.(2023·昌黎)下面四组图形中圆柱与圆锥的体积不相等的是()A.B.C.D.4.(2023·青县)如图,将一个圆柱的侧面剪开,不可能出现的形状是()A.B.C.D.5.(2023·秦都)用一根铁丝正好可以围成一个棱长是6厘米的正方体框架,如果用这根铁丝正好围成一个长是10厘米,宽是5厘米的长方体框架,这个长方体框架的高是()厘米。

A.5B.3C.7D.9 6.(2023·塔河)把直径2厘米,高4厘米的圆柱体木棒截成两个小圆柱体,表面积增加了()平方厘米。

A.16B.3.14C.8D.6.28 7.(2023·顺义)有一块棱长是6分米的正方体木料,把它加工成一个圆锥,这个圆锥的体积最大是()立方分米。

A.216πB.54πC.72πD.18π8.(2020·西充)一个圆柱和圆锥的底面半径的比是1:2,高的比是2:3,那么圆柱和圆锥的体积比是()。

A.1:2B.2:3C.1:3D.3:5二、填空题9.(2023·无锡)如图是一个正方体的展开图,每个面上都填有一个数,且满足相对的两个面上的数互为倒数,那么▲=,mn=。

10.(2023·夏邑)用橡皮泥做一个正方体,棱长是4cm。

如果把它捏成一个高8cm的长方体,长方体的底面积是cm²;在体积不变的情况下,长方体的高和底面积成比例。

小升初立体图形知识点

小升初立体图形知识点

小升初立体图形篇1、立体图形的分类:长方体、正方体、圆柱、圆锥2、棱长公式:长方体棱长之和=正方体棱长之和=3、表面积公式:长方体表面积=S=(a×b+a×c+b×c)×2正方体表面积=S=a×a×6=6a²圆柱表面积=S=πr²×2+2πr 圆柱体的侧面积=S=2πRh圆柱底面积=侧面积=4、体积公式:长方体体积=长×宽×高V=a×b×h=Sh 正方体体积=棱长×棱长×棱长V=a×a×a=a³圆柱体积=底面积×高V=Sh=πr²h 圆锥体积=31×底面积×高V=31×Sh 常见的题型:一、圆柱压路机:1.前进的路程:底面周长2.压路的面积:圆柱侧面积二、底面是正方形的长方体知识索引:画出底面是正方形的长方体的侧面展开图,写出这四个侧面的特点,写出这个长方形长、宽、高的特点。

底面是正方形的长方体,四个侧面:长方体的长=宽=正方形周长÷4三、、把一个圆柱的底面平均分成相等的若干小扇形,然后把圆柱切开,拼成一个近似的长方体(如图)特性:(1)长方体的长相当于圆柱的;(2)长方体的宽相当于圆柱的;(3)长方体的高相当于圆柱的;(4)长方体比圆柱增加了部分的表面积。

四、立体图形表面积的增加问题(1)圆柱切割后增加的面积:1刀2段:增加个面2刀3段:增加个面(2)长方体、正方体切割后增加的面积:1刀2段:增加个面2刀3段:增加个面(3)一个立体图形底面大小不变,高增加,则会跟着增加。

五、圆柱与圆锥之间的比较,可以用比的方法解决(1)底面圆:周长之比等于半径之比;面积之比等于半径的平方之比。

(2)体积之比:锥锥柱柱锥柱::h s V V 31h s =(3)高之比:)3()S V (h 锥锥柱柱锥柱::S V h ÷÷=(4)面积之比:)3()h V (S 锥锥柱柱锥柱::h V S ÷÷=六、往水中放入物体,使水面上升专题解析:抓住浸没问题的关键:水面上升(下降)的体积=物体浸没部分的体积即:容器底面积×水面上升(下降)的高度=物体底面积×高情形一:往容器里放物体(淹没或半淹没),水面上升,浸末增加V V =情形二:从容器里取出物体(淹没或半淹没),水面下降,浸末减少V V =七、展开图问题例题讲解1、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。

小学六年级【小升初】数学《立体图形的表面积专题课程》含答案

小学六年级【小升初】数学《立体图形的表面积专题课程》含答案

25. 立体图形的表面积知识要点梳理一、立体图形的切割1.立体图形每切割一次,增加两个面的面积。

2.立体图形每拼一次,减少两个面的面积。

二、表面积表面积:物体表面面积的总和叫做物体的表面积。

表面积通常用 S 表示,常用面积单位有平方千米、公顷、平方米、平方分米、平方厘米。

1.长方体、正方体的表面积为 6 个面的面积和。

2.圆柱的表面积=侧面积+2 个底面面积。

3.圆锥的表面积=侧面积+底面积三、立体图形的表面积计算公式考点精讲分析典例精讲考点1 长方体与正方体的表面积【例 1 】一个长 40 厘米,截面是正方形的长方体,如果长增加 5 厘米,表面积就增加80 平方厘米,原来长方体的表面积是多少?【精析】根据题意可知,一个长方体如果长增加 5 厘米,增加的80 平方厘米是 4个同样的长方形的面积和。

【答案】 80÷4÷5=4(厘米)0×4×4+4×4×2=672(平方厘米)答:原来长方体的表面积是672 平方厘米。

【归纳总结】根据长方体增加的面积,计算出长方体的宽和高,然后根据长方体的表面积计算公式解答即可。

【例2】学校新建一个游泳池,长50 米,宽 20 米,深 2 米。

这个游泳池占地面积有多大?如果游泳池的四壁和底面都要贴上瓷砖,一共需要贴多少平方米的瓷砖?【精析】此题主要考查长方体底面积及表面积的计算方法在实际生活中的应用。

解答时要清楚长方体游泳池的占地面积是指长方体的底面积。

贴瓷砖的面积,就等于游泳池的表面积减去上面的面积。

【答案】占地面积:50× 20= 1000(平方米)贴瓷砖的面积:( 50× 2+ 20× 2)×2+50× 20= 1280(平方米)答:这个游泳池占地面积有1000 平方米,共需要贴1280 平方米的瓷砖。

【归纳总结】这类题目解答时一般遵循下列步骤:①识别形体;②搞清问题(求表面积还是求体积、容积、求表面积涉及几个面);③回忆公式;④正确列式;⑤计算解答。

小升初典型奥数:立体图形的表面积和体积 (讲义)-2023-2024学年六年级下册数学人教版

小升初典型奥数:立体图形的表面积和体积 (讲义)-2023-2024学年六年级下册数学人教版
【解答】解:80×60×2+100×80×2
=160×80×2
=25600(平方厘米)
80×45×2+100×45×2
=180×45×2
=16200(平方厘米)
答:刷浅黄色的面积为25600平方厘米;油绿色面积为16200平方厘米.
【点评】本题主要运用长方形面积公式:长方形面积=长×宽,解决问题.
1.一个长方体容器长10厘米,宽10厘米,高20厘米,盛满水后,将容器绕着靠地面的一条棱倾斜45°,求容器内剩下水的体积。
(1)如果要在领奖台的表面喷漆(底面不喷漆),需要喷漆的面积是多少?
(2)这个领奖台的体积是多少?
34.有一个形状如图的零件.(单位:dm)
①一个碗的高度是多少厘米?
②把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
③一个长方体木箱子内部高度是25cm,最高的一摞最多能摆下几个碗?
④量得碗口的直径是6厘米,这个长方体木箱子的底面的长28厘米,宽22厘米,这个木箱最多可放下多少个这样的碗?
12.计算下面物体的体积和表面积
13.如图的物体摆放在地面上(如图,单位:分米),露在外面的面积和是多少平方分米?
(1)一共有多少个面露在外面?
(2)露在外面的面积是多少cm2?
27.如图所示是一个用棱长为1厘米的小正方体木块堆放而成的物体。
(1)这个物体的表面积是多少平方厘米?
(2)要把这个物体补成一个大正方体,这个大正方体的表面积至少是多少平方厘米?
28.有5个棱长是20cm的正方体纸盒放在墙角处(如图),有几个面露在外面?露在外面的面积一共有多少平方厘米?
不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”合并使用才能解决.

六年级下册数学人教版小升初专题复习-立体图形的认识与测量(课件)(共28张)

六年级下册数学人教版小升初专题复习-立体图形的认识与测量(课件)(共28张)

2.计算下面各图形的体积。
(1)
1
2
【答案】3.14×5 ×3+ ×3.14×52×3=314(m3)
3
(2)
(单位:cm)
10 2
【答案】30×20×5-3.14×( ) ×5=2607.5(cm3)
2
五、解决问题。
1.一个长方体铁块,长6.28厘米,宽5厘米,高6厘米,现在把这个铁块熔铸成
一个圆柱体,圆柱的底面积是18.84平方厘米。圆柱的高是多少厘米?
【答案】S:700cm2 V:880cm3
典例4
视察如图,从左面看到的图形是(

),从上面看到的图形是
)。
从左面看有两层:下层2个正方形,上层1个正方形。从上面看到的图
形也是两层,分别是3个正方形和1个正方形。
即时训练4:一个立体图形是由5个相同的正方体搭成的,从正面看到的平面
图形是
,从右面看到的平面图形是
要( 6 )个小正方体。
6.把一根半径为2dm,长为1m的圆木平均截成2根圆木,表面积增加
( 25.12 )dm2。
7.自来水管的内直径是2厘米,水管内水的流速是每秒8厘米。一位同学去水
池洗手,走时忘记关掉水龙头,5分钟浪费( 7.536 )升水。
8.学校体育馆底层用10根圆柱体柱子支撑着,每根柱子高3m,底面直径
1
2
1
1
3
体积= ×π×( ) ×a= π×a = ×3.14×360=94.2(立方厘米)
3
2
12
12
B.
C.
典例2
一个长方体铁皮油箱长80厘米、宽50厘米、高40厘米。
(1)做这个油箱至少要用铁皮多少平方分米?

第十二讲 立体图形的分类及识别-2023年六年级数学下册小升初专项复习(通用版)

第十二讲 立体图形的分类及识别-2023年六年级数学下册小升初专项复习(通用版)

2023年学校六班级小升初数学专项复习(12)——立体图形的分类及识别★★学学问问归归纳纳总总结结一、立体图形的分类及识别1.立体几何图形:从实物中抽象出来的各种图形,统称为几何图形,几何图形是数学争辩的主要对象之一.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形.由一个或多个面围成的可以存在于现实生活中的三维图形.点动成线,线动成面,面动成体.即由面围成体,看一个体最多看到立体图形实物三个面.2.常见立体几何图形及性质:(1)正方体:有8个顶点,6个面.每个面面积相等(或每个面都有正方形组成).有12条棱,每条棱长的长度都相等.(正方体是特殊的长方体)(2)长方体:有8个顶点,6个面.每个面都由长方形或相对的一组正方形组成.有12条棱,相对的4条棱的棱长相等.(3)圆柱:上下两个面为大小相同的圆形.有一个曲面叫侧面.开放后为长方形或正方形或平行四边形.有很多条高,这些高的长度都相等.(4)圆锥:有1个顶点,1个曲面,一个底面.开放后为扇形.只有1条高.四周体有1个顶点,四周六条棱高.(5)直三棱柱:三条侧棱切平行,上表面和下表面是平行且全等的三角形.(6)球:球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体.例1:长方体有4个,正方体有4个,圆柱有5个,球有4个。

【分析】依据常见立体图形的特征及分类即可解答。

【解答】解:长方体有4个,正方体有4个,圆柱有5个,球有4个。

故答案为:4;4;5;4。

【点评】本题主要考查常见立体图形的特征及分类。

例2:填一填,圈一圈。

(1)一共有8个图形。

(2)排第6;排第7的是。

(3)如图的图形中有1个正方体,3个长方体,2个球和2个圆柱。

(4)圈出如图图形中简洁滚动的图形。

【分析】正方体:有8个顶点,6个面,每个面面积相等(或每个面都有正方形组成);长方体:有8个顶点,6个面,每个面都由长方形或相对的一组正方形组成;圆柱:上下两个面为大小相同的圆形,有一个曲面叫侧面;球:球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档6年级小升初立体图形篇1、立体图形的分类:长方体、正方体、圆柱、圆锥2、表面积公式:长方体表面积=(长×宽+长×高+宽×高)×2 S=(a×b+a×c+b×c)×2 正方体表面积=棱长×棱长×6 S=a×a×6=6a ² 圆柱表面积=底面积×2+侧面积 S=∏r ²×2+Ch 3、体积公式:长方体体积=长×宽×高 V =a×b×h=Sh 正方体体积=棱长×棱长×棱长 V =a×a×a =a ³ 圆柱体积=底面积×高 V =Sh 圆锥体积=31×底面积×高 V =31×Sh 4、常见的题型:鱼缸、水池: 长方体:5个面 正方体:5个面 圆柱:2个面贴标签: 长方体:4个面 正方体:4个面 圆柱:侧面积圆柱压路机: 1.前进的路程:底面周长 2.压路的面积:侧面积圆柱切割后增加的面积: 1刀2段:2个面 2刀3段:4个面同样一块铁所铸成的立体图形的体积都相等。

5、经典题析。

1.加工一个长方体铁皮油桶,长2.5分米,宽1.6分米,高3分米,至少要用多少平方分米铁皮?2.学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,需要多少立方米的黄沙才能填满?3.做一个长方形状的鱼缸,长8分米,宽3分米,高5分米,需要玻璃多少平方分米?4.把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板有多厚?(损耗不计)5.一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重0.72千克,可装机油多少千克?6.3个棱长都是8厘米的正方体,拼成一个长方体,表面积是多少?7.在一个长20米,宽8米,深1.5米的长方体蓄水池里面贴瓷砖,瓷砖是边长为0.2米的正方形,贴完共需瓷砖多少块?8.一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重0.72千克,可装机油多少千克?9.在一个长20米,宽8米,深1.5米的长方体蓄水池里面贴瓷砖,瓷砖是边长为0.2米的正方形,贴完共需瓷砖多少块?10.一个长方体铁盒长18厘米,宽15厘米,高12厘米,做成这个铁盒至少用多少平方分米的铁皮?11.有一块长50厘米、宽30厘米的铁皮,用它做一个直径是8厘米、高10厘米的圆柱形罐头盒后,还剩下多少铁皮?12.如图,把圆柱体切去一半,再与长方体组合,求它的表面积。

13.有一个圆柱形木料,如果沿着底面的直径把它锯开,增加的表面积恰好是边长为6厘米的正方形的面积,求原来圆柱体的侧面积。

14.有一个圆柱体,如果它的侧面展开正好是一个周长是2512厘米的正方形,这个圆柱体的表面积是多少平方分米?15.一个圆柱体的高是31.4厘米,它的侧面展开是一个正方形,这个圆柱体的体积是多少?16.一个圆柱体的体积是105立方分米,底面积是21平方米,它的高是多少厘米?17.一根圆柱形钢柱长5米,如果把它截成两段,表面积比原来增加628平方厘米。

每立方厘米钢重7.8克,求这根钢柱的重量。

18.在底面半径是5厘米的量筒中,里面装有8厘米高的水。

把一铁块放入里筒中,水面上升到10厘米,求这一铁块的体积。

19.下图ABCD是一个长方体,若已知DC=40厘米,BC=25厘米,以DC为轴旋转360°,问:旋转后形体的体积是多少立方分米?20.在底面半径是10厘米的圆柱形杯中,装有7厘米高的水,把一铁块放入杯中,沉入水底后,水面上升到10厘米,这块铁重多少克?(每立方厘米铁重7.8克)21.把一个底面周长是28.26厘米、高5厘米的圆柱体木块削成一个最大的圆锥体,圆锥体的体积是多少?削去的部分是多少?22.把一个圆柱体钢材削成一个最大的圆锥形零件,已知削去了54立方分米,这个最大的圆锥形零件的体积是多少立方分米?23.已知一个圆锥体的底面半径和高都等于一正方体的棱长,这个正方体的体积是216立方分米。

求这个圆锥体的体积。

24.一个正方体的纸盒中如图所示,恰好能装入一个体积6.28立方厘米的圆柱体。

纸盒的容积有多大?25.如图,圆锥形容器中装有3升水,水面高度正好是圆锥高度的一半。

这个容器还能装多少水?精品文档26.一个棱长为40厘米的正方体零件的上、下两个面上,各有一个直径为4厘米的圆孔,孔深为10厘米。

求这个零件的表面积。

27.用铁皮做一个如图所示的工件,需用铁皮多少平方厘米?28.一个圆柱体原来高8分米,底面半径是5分米,被切成图(斜圆柱)的形状,求这个形体的体积。

29.将一个圆锥体沿底面直径和高切成形状、大小完全一样的两个部分,结果表面积之和比原来增加了48平方分米,已知圆锥的高为6分米,求原来圆锥体的体积是多少立方分米?30.有一种瓶深为24厘米的塑料瓶,瓶身呈圆柱形(不包括瓶颈),现在瓶中装有一些水,正放时水高16厘米,倒放时水高20厘米,若水的体积是32立方厘米,则瓶中的容积是多少立方厘米?5年级立体图形表面积篇1、立体图形的分类:长方体、正方体、立体图形棱长之和公式:长方体棱长之和=(长+宽+高)×4正方体棱长之和=棱长×12表面积公式:长方体表面积=(长×宽+长×高+宽×高)×2 S=(a×b+a×c+b×c)×2正方体表面积=棱长×棱长×6 S=a×a×6=6a²常见的题型:鱼缸、水池、洗衣机罩:长方体:5个面正方体:5个面贴标签:长方体:4个面正方体:4个面粉刷墙壁、天棚:求5个面之和-门窗面积=实际粉刷的面积长方体、正方体切割后增加的面积:1刀2段:2个面2刀3段:4个面同样一块铁所铸成的立体图形的体积都相等。

经典题析。

1.加工一个长方体铁皮油桶,长2.5分米,宽1.6分米,高3分米,至少要用多少平方分米铁皮?2.做一个长方形状的无盖鱼缸,长8分米,宽3分米,高5分米,需要玻璃多少平方分米?3.3个棱长都是8厘米的正方体,拼成一个长方体,表面积是多少?4.在一个长20米,宽8米,深1.5米的长方体蓄水池里面贴瓷砖,瓷砖是边长为0.2精品文档米的正方形,贴完共需瓷砖多少块?5.一个长方体铁盒长18厘米,宽15厘米,高12厘米,做成这个铁盒至少用多少平方分米的铁皮?6.一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?7.用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?8.一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?9.一间教室长8米、宽6米,高3米,现在要用涂料粉刷它的四壁和顶棚。

如果扣除门、窗和黑板24平方米,求要粉刷的面积有多大?如果每平方米用涂料0.15千克,一共需要多少千克涂料?10.水泥厂要制作10根长方体铁皮通风管,管口是边长30厘米的正方形,管子长2米。

共需多少平方米铁皮?5年级(下)提升题第1讲分数的分拆专题精析:所谓分数的分拆就是将这个分数拆成几个分数的和或差的形式,如:121=31-41,561=71-81,151=531⨯=(31-51)×21=61-101通过分拆,可以达到简单的目的。

例1.计算:21+61+121+201+…+901例2.计算:211⨯+321⨯+431⨯+…+50491⨯课后习题:1.计算:61+121+201+…+721+901+1101精品文档精品文档2.计算:13112⨯+15132⨯+17152⨯+19172⨯+1916年级小升初立体图形篇1、立体图形的分类:长方体、正方体、圆柱、圆锥2、表面积公式:长方体表面积=(长×宽+长×高+宽×高)×2 S=(a×b+a×c+b×c)×2 正方体表面积=棱长×棱长×6 S=a×a×6=6a ² 圆柱表面积=底面积×2+侧面积 S=∏r ²×2+Ch 3、体积公式:长方体体积=长×宽×高 V =a×b×h=Sh 正方体体积=棱长×棱长×棱长 V =a×a×a =a ³ 圆柱体积=底面积×高 V =Sh 圆锥体积=31×底面积×高 V =31×Sh 4、常见的题型:鱼缸、水池:长方体:5个面 正方体:5个面 圆柱:2个面贴标签: 长方体:4个面 正方体:4个面 圆柱:侧面积圆柱压路机: 1.前进的路程:底面周长 2.压路的面积:侧面积 圆柱切割后增加的面积: 1刀2段:2个面 2刀3段:4个面同样一块铁所铸成的立体图形的体积都相等。

5、经典题析。

1.加工一个长方体铁皮油桶,长2.5分米,宽1.6分米,高3分米,至少要用多少平方分米铁皮?2.学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,需要多少立方米的黄沙才能填满?3.做一个长方形状的鱼缸,长8分米,宽3分米,高5分米,需要玻璃多少平方分米?4.把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板有多厚?(损耗不计)5.一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重0.72千克,可装机油多少千克?6.3个棱长都是8厘米的正方体,拼成一个长方体,表面积是多少?7.在一个长20米,宽8米,深1.5米的长方体蓄水池里面贴瓷砖,瓷砖是边长为0.2米的正方形,贴完共需瓷砖多少块?8.一个圆柱体的高是31.4厘米,它的侧面展开是一个正方形,这个圆柱体的体积是多少?9.一个圆柱体的体积是105立方分米,底面积是21平方米,它的高是多少厘米?10.一根圆柱形钢柱长5米,如果把它截成两段,表面积比原来增加628平方厘米。

每立方厘米钢重7.8克,求这根钢柱的重量。

11.将一个圆锥体沿底面直径和高切成形状、大小完全一样的两个部分,结果表面积之和比原来增加了48平方分米,已知圆锥的高为6分米,求原来圆锥体的体积是多少立方分米?第一章名词(Noun)名词的概念在生活中,我们会接触到各种各样的人和事物,用来表示这些人或事物名称的词就是名词。

一、名词的数名词的数指名词的单数和复数形式。

可数名词表示“一个”时用单数,“两个以上”时用复数;不可数名词表示量时,通常用“数词+单位+of+物质名词”的形式,如 a piece of bread (一片面包),变为复数时,只须将单位名词变为复数,如:two pieces of bread(两片面包)。

相关文档
最新文档