数学函数的应用题

合集下载

一次函数习题(应用题及分段函数)

一次函数习题(应用题及分段函数)

一次函数应用题及分段函数1、 如图,直线y=12x+2交x 轴于点A,交y 轴于点B,点P(x , y )是线段AB 上一动点(与A,B不重合),△PAO 的面积为S,求S与x 的函数关系式。

2、如图,直线L :221+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。

(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标。

3、和谐商场销售甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.PB AOy4、上海世博园建设期间,计划在园内某处种植A、B两种花卉,共需购买这两种花卉1200棵. 种植A、B 两种花卉的相关信息如下表:设购买A种花卉x棵,种植A、B两种花卉的总费用为y元.(1)求y关于x的函数关系式;(2)由于景观效果的需要,B种花卉的棵数是A种花卉棵数的2倍,求此时种植A、B两种花卉的总费用.5.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?6、.辽南素以“苹果之乡”著称,某乡组织20辆汽车装满运三种苹果42吨到外地销售。

指数函数与对数函数的应用题

指数函数与对数函数的应用题

指数函数与对数函数的应用题指数函数与对数函数是高中数学中的重要内容,它们在实际问题中有着广泛的应用。

本文将通过几个应用题的分析来探讨指数函数与对数函数的实际运用。

应用题一:物质的放射性衰变物质的放射性衰变是指由于放射性核的不稳定性,使核发生自发性变化的过程。

假设某种物质的衰变速率符合指数函数规律,即每个单位时间内剩余的物质量与当前的物质量成比例关系,如何求解衰变物质的半衰期?解析:设物质的初始质量为P0,经过时间t后的质量为P(t),假设衰变常数为k。

由指数函数的性质可得:P(t) = P0 * e^(kt)当t = T (半衰期) 时,物质的质量减少了一半,即:P0 / 2 = P0 * e^(kT)化简后可得:e^(kT) = 1/2由此可以得到半衰期T的解。

应用题二:质量-时间关系某物质在一定条件下的质量随时间的变化满足指数函数的规律。

已知该物质在开始时间时的质量为M0,经过3小时后,质量降低为M0的1/4,求解质量随时间变化的指数函数关系。

解析:设物质的质量随时间t的变化满足指数函数:M(t) = M0 * e^(kt)已知M(3) = M0 * (1/4),带入上述指数函数公式得:M0 * e^(3k) = M0 * (1/4)化简可得:e^(3k) = 1/4由此可以求得k的解,进而得到质量随时间变化的指数函数关系。

应用题三:货币贬值问题某国货币贬值的速度与该国的物价水平及其他因素有关。

假设某国的年物价水平p以指数函数形式增长,即p = p0 * e^(kt),其中p0是初始物价水平,k是贬值系数。

求解该国货币的贬值率。

解析:货币贬值率是指货币购买力下降的速度,可以用物价水平的增长率来近似表示。

设t时刻物价水平为p(t),t+1时刻物价水平为p(t+1),则贬值率为:贬值率 = (p(t+1) - p(t)) / p(t)将p(t) = p0 * e^(kt),p(t+1) = p0 * e^((k+k')t+1)带入上述公式,化简可得贬值率的解。

三角函数应用题

三角函数应用题

三角函数应用题在数学中,三角函数是一类描述角和三角形之间关系的函数。

它们在几何、物理、工程等领域中都有广泛的应用。

今天我们就来看几个关于三角函数的实际应用题。

题目一:船长测量船到岸边的距离某船长在海上航行,他利用望远镜测量船到岸边的距离为450米,角度为30°。

请帮助船长计算船实际距离岸边的距离。

解题思路:根据三角函数中正弦函数的定义,正弦函数是对边与斜边的比值。

设实际距离为x,则sin30°=450/x,解得x=450/sin30°≈900米。

题目二:高楼顶部的钢丝张力某座高楼的屋顶有一根斜着的钢丝,已知钢丝与地面的夹角为60°,钢丝的长度为200米。

求钢丝的张力。

解题思路:根据三角函数中余弦函数的定义,余弦函数是邻边与斜边的比值。

设钢丝张力为T,则cos60°=邻边/200,解得邻边=200cos60°≈100米。

再根据正弦函数的定义,sin60°=钢丝张力/200,解得钢丝张力=200sin60°≈173.21牛顿。

题目三:天文测距天文学家利用角度差测量两颗星星间的距离,已知两颗星星的距离为400光年,夹角为20°。

根据此信息,求两颗星星间的实际距离。

解题思路:根据正切函数的定义,切线函数是对边与邻边的比值。

设实际距离为d,则tan20°=400/d,解得d=400/tan20°≈1152.32光年。

通过以上几个实际应用题,我们可以看到三角函数在解决各种实际问题中的重要性和实用性。

希望大家在学习三角函数的过程中能够灵活运用,将数学知识与实际应用相结合,更好地理解和掌握相关知识。

三角函数不仅仅是一堆抽象的公式,更是与我们的生活息息相关的数学工具。

愿大家在学习中取得更好的成绩!。

解正比例函数的应用题

解正比例函数的应用题

解正比例函数的应用题正比例函数是数学中一类重要的函数,其具体形式为y=kx,其中k为常数。

正比例函数具有很多应用,下面我们来讨论一些相关的应用题。

应用一:小明骑车上学小明骑自行车上学,他发现,自行车的速度与他骑行的时间成正比。

当他骑行30分钟时,发现自行车的速度为12公里/小时。

求小明骑行1小时所能达到的速度。

解:设小明骑行1小时的速度为y(单位为公里/小时),骑行的时间为x(单位为小时)。

根据题意可得出如下比例关系:12/30 = y/1解得y=24因此,小明骑行1小时所能达到的速度为24公里/小时。

应用二:工作效率问题一支队伍由10人组成,其中有5名工人。

现在要按照队员们的工作效率,确定他们每个人负责的工作量。

已知其中一名工人每天能完成8个任务,求其他工人每天应该完成的任务数。

解:设其他工人每天应该完成的任务数为y,根据题意可得出如下比例关系:8/5 = y/1解得y=1.6因此,其他工人每天应该完成的任务数为1.6个。

应用三:购买水果小明去水果市场购买水果,商家以每斤5元的价格出售苹果。

现在小明买了3斤苹果,求他应该支付的总价格。

解:设小明应该支付的总价格为y(单位为元),购买的苹果重量为x(单位为斤)。

根据题意可得出如下比例关系:5/1 = y/3解得y=15因此,小明应该支付的总价格为15元。

应用四:汽车行驶里程一辆汽车以每小时80公里的速度行驶,已知汽车行驶2小时可以行驶的里程为160公里。

求汽车行驶5小时可以行驶的里程。

解:设汽车行驶5小时可以行驶的里程为y(单位为公里),行驶的时间为x(单位为小时)。

根据题意可得出如下比例关系:160/2 = y/5解得y=200因此,汽车行驶5小时可以行驶的里程为200公里。

通过以上应用题的分析,我们可以看到正比例函数的应用非常广泛,可以用来描述各种比例关系。

在实际生活中,我们可以利用正比例函数来解决很多实际问题,帮助我们更好地理解和应用数学知识。

(完整版)高中数学应用题

(完整版)高中数学应用题

函数、不等式型1、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x<6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ)求a 的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(Ⅰ)因为x=5时,y=11,所以1011, 2.2aa +== (Ⅱ)由(Ⅰ)可知,该商品每日的销售量2210(6),3y x x =+--所以商场每日销售该商品所获得的利润222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-. 从而,2'()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+--=--,于是,当x 变化时,'(),()f x f x 的变化情况如下表:由上表可得,x=4是函数()f x 在区间(3,6)内的极大值点,也是最大值点,所以,当x=4时,函数()f x 取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.2、某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量. (1)若年销售量增加的比例为0.4x ,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?(2)年销售量关于x 的函数为)352(32402++-=x x y ,则当x 为何值时,本年度的年利润最大?最大利润为多少?解:(1)由题意得:本年度每辆车的投入成本为10×(1+x ); 出厂价为13×(1+0.7x );年销售量为5000×(1+0.4x ), …………2分 因此本年度的利润为[13(10.7)10(1)]5000(10.4)y x x x =⨯+-⨯+⨯⨯+(30.9)5000(10.4)x x =-⨯⨯+即:21800150015000(01),y x x x =-++<< ……………6分 由2180015001500015000x x -++>, 得506x << ……8分 (2)本年度的利润为)55.48.49.0(3240)352(3240)9.03()(232++-⨯=++-⨯⨯-=x x x x x x x f则),3)(59(972)5.46.97.2(3240)(2'--=+-⨯=x x x x x f ……10分由,395,0)('===x x x f 或解得 当)(,0)()95,0('x f x f x >∈时,是增函数;当)(,0)()1,95('x f x f x <∈时,是减函数.∴当95=x 时,20000)95()(=f x f 取极大值万元, ……12分因为()f x 在(0,1)上只有一个极大值,所以它是最大值, ……14分所以当95=x 时,本年度的年利润最大,最大利润为20000万元. ……15分 3、某民营企业生产,A B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图甲,B 产品的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元).甲 乙(Ⅰ)分别将,A B 两种产品的利润表示为投资x (万元)的函数关系式;(Ⅱ)该企业已筹集到10万元资金,并全部投入,A B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?解:(Ⅰ)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元. 由题设x k x g x k x f 21)(,)(==由图知(1)f =41,故1k =41又45,25)4(2=∴=k g从而)0(45)(),0(41)(≥=≥=x x x g x x x f .(Ⅱ)设A 产品投入x 万元,则B 产品投入10-x 万元,设企业利润为y 万元.)100(104541)10()(≤≤-+=-+=x x x x g x f y 令x t -=10,则)100(1665)25(414541022≤≤+--=+-=t t t t y .当75.3,1665,25m ax ===x y t 此时时.答:当A 产品投入3.75万元,B 产品投入6.25万元,企业最大利润为1665万元. 4、如图所示,一科学考察船从港口O 出发,沿北偏东α角的射线OZ 方向航行,而在离港口a 13(a 为正常数)海里的北偏东β角的A 处有一个供给科考船物资的小岛,其中31tan =α,132cos =β.现指挥部需要紧急征调沿海岸线港口O 正东m (a m 37>)海里的B 处的补给船,速往小岛A 装运物资供给科考船,该船沿BA 方向全速追赶科考船,并在C 处相遇.经测算当两船运行的航向与海岸线OB 围成的三角形OBC 的面积最小时,这种补给最适宜.⑴ 求S 关于m 的函数关系式)(m S ; ⑵ 应征调m 为何值处的船只,补给最适宜.【解】 ⑴以O 为原点,OB 所在直线为x 轴,建立平面直角坐标系,则直线OZ 方程为x y 3=. ………………2分 设点()00,y x A , 则a a a x 313313sin 130=⋅==β,a a a y 213213cos 130=⋅==β,即()a a A 2,3,又()0,m B ,所以直线AB 的方程为()m x ma ay --=32.上面的方程与x y 3=联立得点)736,732(am ama m am C -- ……………5分)37(733||21)(2a m a m am y OB m S C >-=⋅=∴ ………………8分⑵328)3149492(314)37(949)37()(222a a a a a a m a a m a m S =+≥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-= ……12分 当且仅当)37(949372a m a a m -=-时,即a m 314=时取等号, ……………14分 答:S 关于m 的函数关系式)37(733||21)(2a m a m am y OB m S C >-=⋅=∴⑵ 应征调a m 314=处的船只,补给最适宜. ………………15分5、某生产饮料的企业准备投入适当的广告费,对产品进行促销.在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为)0(113≥++=x x x Q .已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需要再投入32万元,若每件售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和. (1) 试将年利润W 万元表示为年广告费x 万元的函数;(2) 当年广告费投入多少万元时,企业年利润最大,最大年利润为多少? (1)年生产成本为)332(+Q 万元,年收入为]%50)332%(150[x Q ++万元.所以)332(21x Q W -+==)311332(21x x x -+++⨯=)0()1(235982≥+++-x x x x (7分) (2))1(264)1(100)1(2+-+++-=x x x W =42)13221(50≤+++-x x (12分)当7,13221=+=+x x x 时,等号成立. 所以当年广告费投入7万元时, 年利润最大为42万元.(14分)6、为迎接2010年上海世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为260000cm ,四周空白的宽度为10cm ,栏与栏之间的中缝空白的宽度为5cm ,怎样确定广告矩形栏目高与宽的尺寸(单位:cm ),能使整个矩形广告面积最小.解:设矩形栏目的高为acm ,宽为bcm ,则20000ab =,20000b a∴= 广告的高为(20)a cm +,宽为(330)b cm +(其中0,0a b >>) 广告的面积40000(20)(330)30(2)6060030()60600S a b a b a a=++=++=++3060600120006060072600≥⨯=+= 当且仅当40000a a=,即200a =时,取等号,此时100b =. 故当广告矩形栏目的高为200cm ,宽为100cm 时,可使广告的面积最小.7、某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质。

山东数学中考分类汇编--有关函数的应用题

山东数学中考分类汇编--有关函数的应用题

有关函数的应用题1.(2022年东营)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?2.(2020济南)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?3.(2021)20.(8分)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?4.(2022)19. 某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B 两地,两种货车载重量及到A,B两地的运输成本如下表:(1)求甲、乙两种货车各用了多少辆;(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.①写出w与t之间的函数解析式;②当t为何值时,w最小?最小值是多少?5.(2017年莱芜)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种6.(2018年莱芜)口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?7.(2019年莱芜)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?8.(2017临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?。

二次方程,二次函数应用题

二次方程,二次函数应用题

一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。

某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。

3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。

二)增长率问题1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。

2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。

3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。

三)定价问题1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2、商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?1.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,所截去的小正方形的边长是。

2.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了是元钱四)3.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡。

二次函数的应用题及解析

二次函数的应用题及解析

二次函数的应用题及解析二次函数是数学中重要的函数之一,广泛应用于各个领域。

本文将探讨几个常见的二次函数应用题,并进行详细解析。

问题一:某天气预报显示,一天内温度的变化服从二次函数关系。

已知该地点上午8时的温度为15摄氏度,下午2时的温度为25摄氏度,晚上8时的温度为18摄氏度。

问该地点第二天早上6时的温度是多少摄氏度?解析:根据已知条件构建二次函数的关系式。

假设时间为x,温度为y,则可以得出二次函数表达式为:y = ax^2 + bx + c。

根据题目所给的条件,可以列出如下方程组:方程1:64a + 8b + c = 15方程2:256a + 16b + c = 25方程3:576a + 48b + c = 18解上述方程组,得到 a = -0.005, b = 0.16, c = 15.16。

带入x = 22(第二天早上6时的时间),计算二次函数的值,即可得到第二天早上6时的温度为20.62摄氏度。

问题二:某公司销售某款产品,预测未来几个月的销售情况。

已知该产品销售量符合二次函数模型。

已知该产品2月份的销售量为2000件,5月份的销售量为3000件,8月份的销售量为4000件。

预测11月份的销售量是多少件?解析:同样地,假设时间为x,销售量为y,构建二次函数关系式:y = ax^2 + bx + c。

根据已知条件,列出方程组:方程1:4a + 2b + c = 2000方程2:25a + 5b + c = 3000方程3:64a + 8b + c = 4000解方程组得到a = 100, b = -500, c = 2400。

带入x = 14(11月份的时间),计算二次函数的值,可得到预测11月份的销售量为3400件。

通过以上两个实例,我们可以看到二次函数在温度预测和销售预测中的应用。

根据给定的条件,构建二次函数关系式,并解方程组可以得到问题所求的结果。

通过这种方法,我们可以更加准确地评估和预测未来的发展趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的应用题【热点聚焦】最近几年的高试题,加强了对函数应用题的考查,主要的是将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义等等.【基础知识】运用函数概念建立模型研究解决某些实际问题的过程和方法:1)建立实际问题中的变量之间的函数关系,从而将实际问题转化为函数问题;2)运用所学知识研究函数问题得到函数问题的解答;3)将函数问题的解翻译或解释成实际问题的解,从而解决实际问题.根据收集到的数据的特点建立函数模型,解决实际问题的基本过程:【课前训练】1.老师今年用7200元买一台笔记本.电子技术的飞速发展,计算机成本不断降低,每隔一年计算机的价格降低三分之一.三年后老师这台笔记本还值( )A .7200×(31)3元B .7200×(32)3元C .7200×(31)2元D .7200×(32)2元 2.化学上常用pH 来表示溶液酸碱性的强弱,pH =-1g {c (H +)},其中f (H +)表示溶液中H +的浓度.若一杯胡萝卜汁的c (H +)=1×10-5mo l/L ,则这杯胡萝卜汁的pH 是( )A .2B .3C .4D .53.如果某林区的森林蓄积量每年平均比上一年增长10.4%,那么经过x 年可以增长到原来的y 倍,则函数y =f (x )的图象大致为图中的( )4.邮局规定,邮寄包裹,在5千克内每千克5元,超过5千克按每千克3元收费,邮费与邮寄包裹重量的函数关系式为____.5.某工厂八年来某种产品总产量C 与时间t (年)的函数关系如图所示,下列四种说法:(1)前三年中产量增长的速度越来越快;图 2 图1(2)前三年中产量增长的速度越来越慢;(3)三年后,这种产品停止生产了;(4)第三年后,年产量保持不变.其中说法正确的是____.【试题精析】【例1】(2007年上海春季高考试题)某人定制了一批地砖. 每块地砖(如图1所示)是边长为4.0米的正方形ABCD ,点E 、F 分别在边BC 和CD 上, △CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形EFGH .(1) 求证:四边形EFGH 是正方形;(2) F E 、在什么位置时,定制这批地砖所需的材料费用最省?【例2】(2003北京春)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【评述】本题贴近生活.要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决.【例3】(2000全国卷)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图2—10中(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图2—10中(2)的抛物线表示.(1)写出图中(1)表示的市场售价与时间的函数关系式P =f (t );写出图中(2)表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102 ,kg ,时间单位:天)【评述】本题主要考查由函数图象建立函数关系式和求函数最大值的问题.考查运用所学知识解决实际问题的能力.【例4】(2001上海卷)用水清洗一堆蔬菜上残留的农药.对用一定量的水清洗一次....的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的21,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 单位量的水清洗..一次..以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f (x ).(1)试规定f (0)的值,并解释其实际意义;(2)试根据假定写出函数f (x )应该满足的条件和具有的性质;(3)设f (x )=211x +,现有a (a >0)单位量的水,可以清洗一次,也 可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.【评述】本题主要考查运用所学数学知识和方法解决实际问题的能力.以及函数概念、性质和不等式证明的基本方法.【例5】据世界人口组织公布,地球上的人口在公元元年为2.5亿,1600年为5亿,1830年为10亿,1930年为20亿,1960年为30亿,1974年为40亿,1987年为50亿,到1999年底,地球上的人口数达到了60亿.请你根据20世纪人口增长规律推测,到哪年世界人口将达到100亿?到2100年地球上将会有多少人口?【例6】(2007年襄樊市调研试题)通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设)(t f 表示学生注意力随时间t (分钟)的变化规律()(t f 越大,表明学生注意力越集中),经过实验分析得知:⎪⎩⎪⎨⎧≤<+-≤<≤<++-=40203807201024010010024)(2t t t t t t t f (1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?【针对练习】1.(2007年襄樊市调研试题)用清水漂洗衣服,假定每次能洗去污垢的43,若要使存留的污垢不超过原有的1%,则至少要漂洗( )A .3次B .4次C .5次D .6次2.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系式是 ( ) A y =2x (x ∈N *) B.y =2x (x ∈N *)C.y=2x+1(x∈N*)D.y=log2x(x∈N*)3.对山东省某县农村抽样调查,结果如下:电冰箱拥有率49%,电视机拥有率85%,洗衣机拥有率44%,至少拥有上述三种家用电器中两种以上的占63%,三种电器齐全的占25%,那么一种电器也没有的相对贫困户所占比例为( ) A.35% B.10% C.15% D.资料不全,难以判断4.北京电视台每星期六晚播出《东芝动物乐园》,在这个节目中曾经有这样一个抢答题:小蜥蜴体长15cm,体重15g,问:当小蜥蜴长到体长为20cm时,它的体重大约是()A.20g B.25g C.35g D.40g5.向高为H的水瓶中注水,注满为止,如果注水量y与水深入的函数关系的图象如右图所示,那么水瓶的形状是……()6.1999年11月1日起,全国储蓄存款征收利息税,利息税的税率为20%,即储蓄利息的20%由各银行储蓄点代扣代缴,某人在1999年11月l日存入人民币1万元,存期2年,年利率为2.25%,则到期可净得本金和利息总计____元.7.已知函数f(x)的图象如右图,试写出一个可能的解析式____.8.根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP 是指国内生产总值)4035亿元,2000年上海市GDP预期增长9%,市委、市府提出本市常住人口每年的自然增长率将控制在0.08%.若GDP与人口均按这样的速度增长,则要使本市年人均(GDP达到或超过1999年的2倍,至少需____年.(按1999年本市常住人口总数约1300万计算)9.我国水资源相对贫乏,某市节水方法是:水费=基本费+超额费+损耗费.若每月用水量不超过最低限量pm3时,只付基本费8元和每户每月定额损耗费q元;若用水量超过pm3时,除了付上述的基本费和损耗外,超过部分每m3付r元的超额费,已知每户每月的定额损耗不超过5元,该市一家庭某季度的用水量支付如下表:月份用水量(m3)水费(元)1 9 92 15 193 22 33(1)写出水费y (元)与用水量x (m 3)的函数关系式(这里的p ,q ,r 可作为已知数);(2)根据数据表,求p ,q ,r 的值.第七节参考答案【课前训练】1.答案:B 解析:此题关键是读懂每隔一年价格降低三分之一的含义.设原价为1,一年后降价为32,再过一年降价为32×32,……,三年后降价为32×32×32=(32)3,故选B . 2.答案:D 3.答案:D 解析:y =(1+0.104%)x ,如图D4.答案:f (x )=⎩⎨⎧≤)5(3)5(5>x x x x5.答案:(2)(3)(4) 解析:从图形得知前三年的总产量增长趋势是先快后慢,所以(2)是正确的;三年后总产量不变,说明没有新的产量增加,所以(3)或(4)都是正确的.【试题精析】【例1】 (1) 证明:图2是由四块图1所示地砖绕点C 按顺时针旋转ο90后得到,△CFE 为等腰直角三角形,∴ 四边形EFGH 是正方形.(2) 解:设x CE =,则x BE -=4.0,每块地砖的费用为W ,制成△CFE 、△ABE 和四边形AEFD 三种材料的每平方米价格依次为3a 、2a 、a (元),则a x x a x a x W ⎥⎦⎤⎢⎣⎡-⨯⨯--+⨯-⨯⨯+⋅=)4.0(4.0212116.02)4.0(4.02132122 ()24.02.02+-=x x a []4.00,23.0)1.0(2<<+-=x x a . 由0>a ,当1.0=x 时,W 有最小值,即总费用为最省.答:当1.0==CF CE 米时,总费用最省.【例2】解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为:5030003600- =12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为:f (x )=(100-503000-x )(x -150)-503000-x ×50,整理得:f (x )=-502x +162x -21000=-501(x -4050)2+307050.所以,当x =4050时,f (x )最大,其最大值为f (4050)=307050.即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元.【例3】解:(1)由图(1)可得市场售价与时间的函数关系为f (t )=⎩⎨⎧≤<-≤≤-;300200,3002,2000,300t t t t由图(2)可得种植成本与时间的函数关系为g (t )=2001(t -150)2+100,0≤t ≤300. (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,21025272001,2000,217521200122t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-2001(t -350)2+100,所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.【例4】解:(1)f (0)=1表示没有用水洗时,蔬菜上的农药量将保持原样.(2)函数f (x )应该满足的条件和具有的性质是:f (0)=1,f (1)=21, 在[0,+∞)上f (x )单调递减,且0<f (x )≤1.(3)设仅清洗一次,残留的农药量为f 1=211a +,清洗两次后,残留的农药量为 f 2=2222)4(16)2(11a a +=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+,则f 1-f 2=22222222)4)(1()8()4(1611a a a a a a ++-=+-+. 于是,当a >22时,f 1>f 2;当a =22时,f 1=f 2;当0<a <22时,f 1<f 2. 因此,当a >22时,清洗两次后残留的农药量较少;当a =22时,两种清洗方法具有相同的效果;当0<a <22时,一次清洗残留的农药量较少. 【例5】解:题目中的数据均为大致时间,粗略估计的量,带有较多的误差.因此寻找人口增长规律时不需要,也不应该过分强调规律与数据完全吻合.数据中20世纪以前的人口资料更加粗略,况且人口的预报准确程度主要受到20世纪人口增长规律的影响,因而组建预报模型时,不必考虑20世纪以前的数据资料,在20世纪人口增长速度是逐渐变快的,因此用直线变化(匀速增长)建模做预报是不恰当的.做为人口增长的模型,一般可以使用指数关系N (t )=ae ,其中N (t )为t 时人口数,a 、r 为参数.将N (t )=ae n 式取对数可得ln N (t )=ln a +r t ,它是关于t 的线性模型,这里ln 为以e 为底的对数.利用1930~1999年的数据可以得到ln a =-28.33,r =0.0162,a =33.28-e=4.97×10-13.模型为N (t )=4.97×10-13t e 0162.0(亿)(1930≤t ≤1999). 模型的拟合效果如下表(人口单位:亿)拟合效果较好,可用于预报.令N (t )=100,可求出t =2030.84,故可知如果照此规律大约在2031年世界人口将达到100亿,而于2100年世界人口将达到307亿.【例6】(1)解:当0<t ≤10时,244)12(10024)(22+--=++-=t t t t f 是增函数,且240)10(=f 当20<t ≤40时,3807)(+-=t t f 是减函数,且240)20(=f所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟(2)解:205)25(195)5(==f f ,,所以,讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中(3)当0<t ≤10时,令18010024)(2=++-=t t t f 得:4=t当20<t ≤40时,令1803807)(=+-=t t f 得:57.28≈t则学生注意力在180以上所持续的时间2457.24457.28>=-所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题。

相关文档
最新文档