心理统计公式汇总

合集下载

心理统计学公式

心理统计学公式

若n为奇数,则Md为第「个数2X n X n1 若n 为偶数,则Md 2-2b.有重复数据b1.重复数没有位于数列中间方法与无重复数一样b2.重复数位于数列中间若重复数的个数为奇数若重复个数为偶数先将数据从小到大(从大到小)排列三、众数a.皮尔逊经验公式:分布近似正态探M。

:3Md -2X算术平均数、中位数、众数三者的关系探在正态分布中:X=Md=M O 四分位差:a未分组数据Q =Q^ Q12b分组数据2f——XiQi = 1* --------- j------ X i二•平均差—1. 原始数据计算公式:氷D _》X_XnIf Xc-乂2. 次数分布表计算公式:AD = -----------------n 三.方差和标准差的定义式:探S2原始数据导出公式、算术平均数1.原始数据计算公式探X in1X Xn2.简捷公式1——X = AM x' n、中位数(中数)1.原始数据计算法探a.无重复数据一.全距R (又称极差):探R = Xmax —XminP百分位数的计算方法:IPp为所求的第P个百分位数Lb为百分位数所在组的精确下限f为百分位数所在组的次数Fb为小于Lb的各组次数的和N为总次数i为组距百分等级:P R -10°F b f(x一Lb)R n [ bi 」在负偏态分布中:X ::: Md ::: M O四、其它集中量数1. 加权平均数(Mw)探W t X, + Xj + - + W,X n2. 几何平均数(Mg)探M g 7 X i X2 X n3、调和平均数(MH)____________ 1丄(丄+丄』N V X1X2X3X4 'X iS21X 2次数分布表计算公式S2、fg-X)2n导出公式、2 If X c2代f X c f> = -n i n 丿If Xf(X ci-X)2n2在正偏态分布中: X Md MO总标准差的合成:$2 in S? +m(X T —X32Tn i ——2 S T =m S +0i(X T —Xi )四•相对差异量探S差异系数CV 100%X标准分数(基分数或Z分数)X —卩项分布X X n_X b(x, n, p)二C n p qn!X! n-X第六章概率分布后验概率:w/ A先验概率概率的加法定理P(A B) P A P Bp A^2 护A) 二P A I P A2 P A概率的乘法定理探R AB)二P A P BP(A, A2^A n)二P A P A2 :"正态分布曲线函数(概率密度函数)公式:Ny/ f (x)=—i一ey=概率密度,即正态分布的纵坐标J =理论平均数-.?=理论方差-=3.1415926; e = 2.71828 (自然对数)x =随机变量的取值(-::< x< -)标准正态分布将正态分布转化成标准正态分布的公式探X - 1 Z ~ N (0,1)CJ次数分布是否为正态分布的检验方法皮尔逊偏态量数法SK = 或SK = (M -M。

心理统计学常用公式总结

心理统计学常用公式总结

心理统计常用公式总结
1、加权平均数
,其中W i 为权数
,其中为各小组的平均数,n i 为各小组人数
2、方差与标准差

其中
3、变异系数
,其中S 为标准差,M 为平均数
4、标准分数
,其中X 为原始数据,为平均数,S 为标准差
5、全距
R=最大数-最小数
6、四分差
,其中L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,
和为该四分点所在组的次数,i 为组距,N 为数据个数
7、积差相关
基本公式:,其中
N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差
变形:
用估计平均数计算:
8、斯皮尔曼等级相关
,其中D 为各对偶等级之差
有相同等级时:
9、点二列相关
,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差
10、总体为正态,σ 2 已知:
总体为正态,σ 2 未知:。

心理统计公式汇总情况

心理统计公式汇总情况

心理统计公式汇总心理学考研分为:心理学学硕和心理学专硕(又称“应用心理硕士”、“心理专硕”)。

心理学学硕和心理学专硕考试科目不同,但是都会考察到心理学统计,(部分自主命题院校不考察心理学统计,考生需要提前了解院校信息。

)无论是对本专业还是跨专业心理学考研的同学而言,心理学统计始终是比较难懂的一块。

博仁教育老师为考生分章节整理出心理学统计公式,方便考生进行复习与记忆。

第三章集中量数1、几个集中量数的公式计算一览表平均数(M)算术平均数(M)未分组:1=niiXXn=∑分组数据:i ciif XMf∙=∑∑加权平均数(单位权重不相等的情况)iiiW XMwW∙=∑∑几何平均数(解决增长率的问题)lglg iXMgN=∑;11NNXMgX-=;1,,NNMg X X=调和平均数(解决速度的问题)倒数的算术平均数的倒数:1HiNMX=∑;中数(Md)未分组:无重复值N=奇数:中数即12N+位置的数;N=偶数:中数即中间两个数的平均数;有重复值若重复值没有位于中间,则求法与无重复值时一致;若重复值位于中间,则(P62):图示:思路:①连续性数字,不是一个点,是一个区间;②有几个重复的,则将组距除以几;分组d()2b bMdN iM L Ff=+-∙众数(Mo )1、直接观察法。

2、公式法。

(皮尔逊经验法&金式插补法)①皮尔逊经验法:o 32M Md M =-; ②金式插补法:ab a bf Mo L i f f =+⨯+ ;【组中值的计算】第四章 差异量数百分位数(点) 100bp bPN F P L i f⨯-=+⨯; 百分等级未分组:(10050)100R R P N-=-分组:()100[]b R b f X L P F N i-=⨯+ 四分位差31=2Q Q Q -; (Q3与Q1即P25与P75) 平均差未分组:..iiXA D nnX x-==∑∑分组:..fxA D n=∑;(IxI 为各组中点值对平均数离差的绝对值)方差与 标准差未分组:①222()sX X NNx-==∑∑;②原始数据代入:222222()()sN NXX X XNN-=-=∑∑∑∑分组:222()c f X X fNNxs-==∑∑22s ()f i Nfd d N=-⨯∑∑总方差与总标准差:222;()i i i iT i T iiN s N ds d X XN+==-∑∑∑标准差的应用差异系数100%sCVX=⨯标准分数X X xZs s-==第五章相关关系相关系数适用资料公式积差相关(皮尔逊)①成对的数据(≥30对);②连续变量;③正态双变量;④线性关系;rx yxyN s s=∑(N为成对数,x、y为离均差);原始值代入:2222()()X YXYNrN NX YX Y-=-∙-∑∑∑∑∑∑∑等级相关斯皮尔曼等级相关(两列)两列具有线性关系的等级或顺序变量;1、等级差数法:226=1(1)r RNDN--∑(D为对偶等级之差)2、等级序数法:43=(1)1(1)r X YRNN N NR R⎡⎤∙-+⎢⎥-+⎣⎦∑3、出现相同等级时:222222r RCyx Dyx+-=∙∙∑∑∑∑∑其中,32-N=12XNx C-∑∑;2(1)12Xn nC-=∑∑(N为成对数据数目,n为各列变量相同等级数)肯德尔等级相关(多列)肯德尔W系数(和谐系数):①K个评分人评N个对象,分析K个评分人的一致性程度;②同一个人先后K次评价N个对象,分析其前后一致性;1、基本公式:23s1()12WK N N=-;(K为评价者数,N为被评对象数)2i22123(1)(1)1NWK N N NR+=---∑; (iR为评价对象获得的K个评价者给的等级之和,222()()i ii iR Rs R RN N=-=-∑∑∑∑);2、相同等级时:23s=1()12WK N N K T--∑;其中,s的意义同上,T如下:312n nT-=∑∑;(n为相同等级数)肯德尔U系数(一致性系数):对偶比较法:将N个事物两两配对,可配成N(N-1)/N对,然后对每一对进行比较,择优选择,优者记1,非优者记0;2ij8=1(1)(1)ijr K rUN N K K-+-∙-∑∑();N为被评价对象数目(即等级数),K为评价者数目,ijr为对偶比较表中i>j(或i<j)格中的择优分数。

心理统计常用公式总结

心理统计常用公式总结

心理统计常用公式总结1 、组数K (总体分布为正态)厂7 广:「〜八’(N为数据个数,K取近似整数)未分组时已分组时,其中皿为估计平均数,i为组距,d=(Xc-O)/i组差数,比组中值3 、中数全不—样!奇(冊1)住个数'偶M2和N/2+1M个数的均数如有-样的数已分组b严"叫,其中Ft为中数所在区间的次数和,险为中数所在区间的次数Lid4为中数所在区间精确下限,1为组距,N为数据个数出现次数最多的数,分组时次数最多那一组区间的组中值3M1-2M (皮尔逊经验法儿其中阳为中数,M为平均数AX=J fLb+二礙全氏插补法),其中h为含众数这一区间的精确下限.刍为髙于介数所在组一个组距那fa + fbfb为低于介数所在组一个组距那1分组区间的次数,i为组距4 、众数2 、算术平均数5 、加权平均数126 、几何平均数-・一」一二・,其中n 为数据个数, X i 为数据的值7 、调和平均数宅我弹工盅-{工舒丫用(用原始分数直接计算)未分组叭其中X 减r 己分组晒其中©=(花-酗)”也曲估计半均数,證为组口值,f 为各组区间的次数,励8 、方差与标准差常珂腐—皿翳)+ (恥哥十恋石+…+ M 曙川何十埜+…+虬)其中」1 -: J J '■_-': ' -.■ x ■i -2--7-: *■'cr =—xioo%9 、变异系数」'匚,其中S 为标准差,M 为平均数X-X10、标准分数 ,其中 X 为原始数据,n i 为各小组人数•为各小组的平均数,--为平均数,S为标准差3411、全距R =最大数—最小数12、平均差已分组时,^ = X C -X13、四分差,其中Lb 为该四分点所在组的精确下限,Fb 为该四分点所在组以下的累加次数,14、积差相关基本公式: 需:,其中:'■ - ' / -变形:差法公式:3N—幺=2分组后Q7十2匕小“44.二和为该四分点所在组的次数, i 为组距, N 为数据个数AD工HN耒分组时,N 为成对数据的数目,S x 、 S y 分别为X 和Y 的标准差工05_N ^X Y-^X '^Y '一叔工疋-(工盘产迦云—0亍 用估计平均数计算:用相关表计算:工“厂①触迄侶)15、斯皮尔曼等级相关",其中D 为各对偶等级之差有相同等级时:减差法工宀17-工(“y 尸其中:葺 禺分别为乩 咻标准差贅、梦为离均差,滋题十碓)方差吐-啲方差直接用等级序数计算:-(N + 1)],其中R X 、 RY 分别为二变量各等级数其中疋=X 「AM X r Y' =Y- AM^, AM X .卫皿丫为估计卫6其中工宀耳尹-三壬=工咛^ 5>a =气尹-1?,送G =工哙2梯成对数据数目,九为相同等级数目K 个等级之和,H 为被评价事物的件数即等级数,K 为评价彳16、肯德尔等级相关有相同等级:;7系数〔一致性系数)二也二斥_迁头 其中M 为被评价事物的数目即等级数,疋为评价者白NK (N~ 1)(疋 _ 1)衍为对偶比较记录中心〔或i ① 的格中的择优分] 其中工害垃为相同等级的数目—J 二f 二"册系数(和谐系数) n —-——,其中一工風・-工附-学厂鸟为每一件被评价:r si「九-血■后 K F17、点二列相关匸,其中亠 旷是两个二分变量对偶的连续变量的平均数,p 、 q 是二分变量各自所占的比率,p+q=1 , S t 是连续变量的标准差dr”,其中ST与…:是连续变量的标准差与平均数, y为P的正态曲线的高度19、多系列相关工【仙-片)百],其中P i为每系列的次数比率,y 1为每一名义变量下限的正态曲线高度,yh为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t为连续变量的标准差返■站crZ7-—”更~・卡2■邑工20、总体为正态,b 2已知:,L二' 1 -21、总体为正态,122、亠工(Xp尸后©T)尽J23247。

统计学常用公式总结

统计学常用公式总结

心理统计常用公式总结1 、组数 K(总体分布为正态)( N 为数据个数, K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中 W i 为权数,其中为各小组的平均数, n i 为各小组人数6 、几何平均数,其中 n 为数据个数, X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中 S 为标准差, M 为平均数10 、标准分数,其中 X 为原始数据,为平均数, S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中 L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数, i 为组距, N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目, S x 、 S y 分别为 X 和 Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中 R X 、 R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数, p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差18 、二列相关,其中 S T 与是连续变量的标准差与平均数, y 为 P 的正态曲线的高度19 、多系列相关,其中 P i 为每系列的次数比率, y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数, S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。

312心理学计算公式

312心理学计算公式

312心理学计算公式
心理学中的计算公式种类繁多,以下列举几个常见的心理学计算公式:
1. 正态分布概率计算公式(Z分数):
标准正态分布表是用来计算和查找给定z分数对应的累积概率值。

2. 平均数计算公式:
平均数可通过对样本中的各个数值求和,然后除以数值的数量得出。

3. 方差和标准差计算公式:
方差是用来衡量数据分散程度的统计量。

标准差是方差的平方根。

4. 相关系数计算公式:
相关系数常用于衡量两个变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼相关系数。

5. 回归分析计算公式:
回归分析通过建立数学模型来描述两个或多个变量之间的关系,最常见的是线性回归模型。

6. t检验和方差分析计算公式:
t检验用于比较两个样本均值之间的差异,方差分析用于比较三个或更多个样本均值之间的差异。

以上只是一些常见的心理学计算公式,根据具体研究问题和方法选择相应的公式进行计算分析。

心理统计学公式汇总

心理统计学公式汇总

心理统计学公式汇总在心理统计学的领域中,各种公式犹如工具,帮助我们理解、分析和解释数据。

下面就为大家汇总一些常见且重要的心理统计学公式。

一、集中趋势的测量1、算术平均数算术平均数是最常用的集中趋势测量指标,其公式为:\\bar{X} =\frac{\sum_{i=1}^{n} X_{i}}{n}\其中,\(\bar{X}\)表示算术平均数,\(X_{i}\)表示第\(i\)个观测值,\(n\)表示观测值的数量。

2、中位数当数据呈现偏态分布时,中位数比平均数更能代表数据的集中趋势。

对于未排序的数据,首先将其从小到大排序。

如果数据个数\(n\)为奇数,中位数就是位于中间位置的那个数;如果\(n\)为偶数,中位数则是中间两个数的平均值。

3、众数众数是数据中出现次数最多的数值。

二、离散程度的测量1、极差极差是一组数据中最大值与最小值之差,公式为:\(R =X_{max} X_{min}\)。

2、方差方差反映了数据相对于平均数的离散程度,其公式为:\S^2 =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}\3、标准差标准差是方差的平方根,公式为:\(S =\sqrt{\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}}\)。

三、正态分布相关公式1、正态分布的概率密度函数\f(x) =\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x \mu)^2}{2\sigma^2}}\其中,\(\mu\)是均值,\(\sigma\)是标准差。

2、标准正态分布若\(X\)服从正态分布\(N(\mu, \sigma^2)\),则\(Z =\frac{X \mu}{\sigma}\)服从标准正态分布\(N(0, 1)\)。

四、相关分析1、皮尔逊积差相关系数用于测量两个连续变量之间的线性关系,公式为:\r =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})(Y_{i} \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} \bar{X})^2 \sum_{i=1}^{n} (Y_{i} \bar{Y})^2}}\2、斯皮尔曼等级相关系数适用于测量两个顺序变量之间的相关性,公式为:\r_s = 1 \frac{6 \sum_{i=1}^{n} d_{i}^2}{n(n^2 1)}\其中,\(d_{i}\)是两个变量的等级差。

心理统计学常用公式总结

心理统计学常用公式总结

心理统计常用公式总结1 、组数K(总体分布为正态)(N 为数据个数,K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数6 、几何平均数,其中n 为数据个数,X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中S 为标准差,M 为平均数10 、标准分数,其中X 为原始数据,为平均数,S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中L b 为该四分点所在组的精确下限,F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数,i 为组距,N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差18 、二列相关,其中S T 与是连续变量的标准差与平均数,y 为P 的正态曲线的高度19 、多系列相关,其中P i 为每系列的次数比率,y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。

SPSS公式总结

SPSS公式总结

心理统计常用公式总结1 、组数 K (总体分布为正态)( N 为数据个数, K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中 W i 为权数,其中为各小组的平均数, n i 为各小组人数6 、几何平均数,其中 n 为数据个数, X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中 S 为标准差, M 为平均数10 、标准分数,其中 X 为原始数据,为平均数, S 为标准差11 、全距 R =最大数-最小数12 、平均差13 、四分差,其中 L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数, i 为组距, N 为数据个数14 、积差相关基本公式:,其中, , N 为成对数据的数目, S x 、 S y 分别为 X 和 Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中 R X 、 R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差18 、二列相关,其中 S T 与是连续变量的标准差与平均数, y 为 P 的正态曲线的高度19 、多系列相关,其中 P i 为每系列的次数比率, y 1 为每一名义变量下限的正态曲线高度, y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数, S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。

SPSS公式总结

SPSS公式总结

心理统计常用公式总结1 1 、组数、组数、组数 K K K (总体分布为正态)(总体分布为正态)( N N 为数据个数,为数据个数,为数据个数, K K K 取近似整数)取近似整数)2 2 、算术平均数、算术平均数3 3 、中数、中数4 4 、众数、众数5 5 、加权平均数、加权平均数,其中,其中 W i W i W i 为权数为权数,其中为各小组的平均数,为各小组的平均数, n i n i n i 为各小组人数为各小组人数6 6 、几何平均数、几何平均数、几何平均数,其中,其中 n n n 为数据个数,为数据个数,为数据个数, X i X i X i 为数据的值为数据的值为数据的值7 7 、调和平均数、调和平均数、调和平均数8 8 、方差与标准差、方差与标准差、方差与标准差,其中其中9 9 、变异系数、变异系数、变异系数 ,其中,其中 S S S 为标准差,为标准差,为标准差, M M M 为平均数为平均数为平均数10 10 、标准分数、标准分数、标准分数 ,其中,其中 X X X 为原始数据,为原始数据,为原始数据, 为平均数,为平均数, S S S 为标准差为标准差为标准差 11 11 、全距、全距、全距 R R R =最大数-最小数=最大数-最小数=最大数-最小数12 12 、平均差、平均差、平均差13 13 、四分差、四分差、四分差,其中,其中 L b L b L b 为该四分点所在组的精确下限,为该四分点所在组的精确下限,为该四分点所在组的精确下限, F b F b F b 为该四分点所在组以下的累加次数,为该四分点所在组以下的累加次数,为该四分点所在组以下的累加次数,和 为该四分点所在组的次数,为该四分点所在组的次数, i i i 为组距,为组距,为组距, N N N 为数据个数为数据个数为数据个数14 14 、积差相关、积差相关、积差相关基本公式:基本公式: ,其中,其中, , ,, N N 为成对数据的数目,为成对数据的数目,为成对数据的数目, S x S x S x 、、 S y S y 分别为分别为分别为 X X X 和和 Y Y 的标准差的标准差的标准差变形:变形:差法公式:差法公式:用估计平均数计算:用估计平均数计算:用相关表计算:用相关表计算:15 15 、斯皮尔曼等级相关、斯皮尔曼等级相关、斯皮尔曼等级相关,其中,其中 D D D 为各对偶等级之差为各对偶等级之差为各对偶等级之差直接用等级序数计算:直接用等级序数计算:,其中,其中 R X R X R X 、、 R Y R Y 分别为二变分别为二变量各等级数量各等级数 有相同等级时:有相同等级时:16 16 、肯德尔等级相关、肯德尔等级相关、肯德尔等级相关有相同等级:有相同等级:17 17 、点二列相关、点二列相关、点二列相关,其中,其中 是两个二分变量对偶的连续变量的平均数,平均数, p p 、、 q q 是二分变量各自所占的比率,是二分变量各自所占的比率,是二分变量各自所占的比率, p+q=1 p+q=1 p+q=1 ,, S t S t 是连续变量的标准差是连续变量的标准差是连续变量的标准差18 18 、二列相关、二列相关、二列相关,其中,其中 S T S T S T 与与是连续变量的标准差与平均数,是连续变量的标准差与平均数, y y y 为为 P P 的正态曲线的高度的正态曲线的高度的正态曲线的高度19 19 、多系列相关、多系列相关、多系列相关,其中,其中 P i P i P i 为每系列的次数比率,为每系列的次数比率,为每系列的次数比率, y 1 y 1 y 1 为每一名义变量下限的正态曲线高度,为每一名义变量下限的正态曲线高度,为每一名义变量下限的正态曲线高度, y h y h y h 为每为每一名义变量上线的正态曲线高度,一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,为每一名义变量对偶的连续变量的平均数, S t S t S t 为连续变量的标准差为连续变量的标准差为连续变量的标准差20 20 、总体为正态,、总体为正态,、总体为正态, σ 2 2 已知:已知:已知: 21 21 、总体为正态,、总体为正态,、总体为正态, σ 2 2 未知:未知:未知:22 22 、、23 23 、、24 24 、、。

统考心理学 心理统计的公式整理

统考心理学 心理统计的公式整理

心理统计常用公式总结1 、组数K (总体分布为正态)(N 为数据个数,K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数6 、几何平均数,其中n 为数据个数,X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中S 为标准差,M 为平均数10 、标准分数,其中X 为原始数据,为平均数,S 为标准差11 、全距R =最大数-最小数12 、平均差13 、四分差,其中L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数,i 为组距,N 为数据个数14 、积差相关基本公式:,其中, ,N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差18 、二列相关,其中S T 与是连续变量的标准差与平均数,y 为P 的正态曲线的高度19 、多系列相关,其中P i 为每系列的次数比率,y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。

心理统计公式汇总

心理统计公式汇总

心理统计公式汇总第三章集中量数1、几个集中量数的公式计算一览表平均数(M)算术平均数(M)未分组:1=niiXXn=∑分组数据:i ciif XMf∙=∑∑加权平均数(单位权重不相等的情况)几何平均数(解决增长率的问题)lglg iXMgN=∑;11NNXMgX-=;1,,NNMg X X=调和平均数(解决速度的问题)倒数的算术平均数的倒数:1HiNMX=∑;中数(Md)未分组:无重复值N=奇数:中数即12N+位置的数;N=偶数:中数即中间两个数的平均数;有重复值若重复值没有位于中间,则求法与无重复值时一致;若重复值位于中间,则(P62):图示:思路:①连续性数字,不是一个点,是一个区间;②有几个重复的,则将组距除以几;分组众数(Mo)1、直接观察法。

2、公式法。

(皮尔逊经验法&金式插补法)①皮尔逊经验法:o32M Md M=-;②金式插补法:aba bfMo L if f=+⨯+;【组中值的计算】第四章差异量数百分位数(点) 100bp bPN F P L i f⨯-=+⨯; 百分等级未分组:(10050)100R R P N-=-分组:()100[]b R b f X L P F N i-=⨯+ 四分位差31=2Q Q Q -; (Q3与Q1即P25与P75) 平均差未分组:..iiXA D nnX x-==∑∑分组:..fxA D n=∑;(IxI 为各组中点值对平均数离差的绝对值)方差与 标准差未分组:①222()sX X NNx-==∑∑;②原始数据代入:222222()()sN NXX X XNN-=-=∑∑∑∑分组:222()c f X X fNNxs-==∑∑总方差与总标准差:222;()iii iTi Ti iN sN d sd XX N+==-∑∑∑标准差的应用 差异系数标准分数第五章 相关关系相关系数适用资料公式积差相关(皮尔逊)①成对的数据(≥30对);②连续变量;③正态双变量;④线性关系;rx yxyN s s=∑(N为成对数,x、y为离均差);原始值代入:2222()()X YXYNrN NX YX Y-=-∙-∑∑∑∑∑∑∑等级相关斯皮尔曼等级相关(两列)两列具有线性关系的等级或顺序变量;1、等级差数法:226=1(1)r RNDN--∑(D为对偶等级之差)2、等级序数法:43=(1)1(1)r X YRNN N NR R⎡⎤∙-+⎢⎥-+⎣⎦∑3、出现相同等级时:其中,32-N=12XNx C-∑∑;2(1)12Xn nC-=∑∑(N为成对数据数目,n为各列变量相同等级数)肯德尔等级相关(多列)肯德尔W系数(和谐系数):①K个评分人评N个对象,分析K个评分人的一致性程度;②同一个人先后K次评价N个对象,分析其前后一致性;1、基本公式:23s1()12WK N N=-;(K为评价者数,N为被评对象数)2i22123(1)(1)1NWK N N NR+=---∑; (iR为评价对象获得的K个评价者给的等级之和,222()()i ii iR Rs R RN N=-=-∑∑∑∑);2、相同等级时:23s=1()12WK N N K T--∑;其中,s的意义同上,T如下:312n nT-=∑∑;(n为相同等级数)。

心理统计学常用公式总结

心理统计学常用公式总结

心理统计常用公式总结1 、组数K(总体分布为正态)(N 为数据个数,K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数6 、几何平均数,其中n 为数据个数,X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中S 为标准差,M 为平均数10 、标准分数,其中X 为原始数据,为平均数,S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数,i 为组距,N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差18 、二列相关,其中S T 与是连续变量的标准差与平均数,y 为P 的正态曲线的高度19 、多系列相关,其中P i 为每系列的次数比率,y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。

心理统计测量学常用公式及例题总结完整版

心理统计测量学常用公式及例题总结完整版

心理统计常用公式总结1、中数常见题型:例题3-5。

2 、众数常见题型:以3Md-2M=Mo公式为基础的考察3、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数几何平均数,其中n 为数据个数,X i 为数据的值调和平均数此种类型的题目极少出现4 、方差与标准差,其中考察方式和高中数学无二,送分题。

有时会和其他题型结合,例如通过标准差计算一些其他的值,例如和信度或标准误结合。

见下文。

5 、变异系数,其中S 为标准差,M 为平均数重点☆,变异系数是考察两不同样本变异大小区别的标准,容易在选择题中出现。

也称为差异系数。

要理解什么类型的样本才需要使用变异系数来比较,什么类型的用方差或标准差就够了。

两样本差异过大这个说法比较模糊,但考试中不会给你一个模糊的例子。

例题4-56 、标准分数,其中X 为原始数据,为平均数,S 为标准差总分题,常见的变式有通过标准分数估计概率、比例、区间等。

7 、全距R=最大数-最小数8、积差相关基本公式:,其中N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:(不常用)用相关表计算:(不常用)积差相关出题一般为简答,也可以嵌套在实验设计题当中。

需要掌握前四个公式。

例题5-19 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数公式1较为常用。

如出现公式2,将会列出详细数据。

参考例题5-310、肯德尔等级相关有相同等级时:(不重要)肯德尔W 系数和U 系数,相比运用,更重要的是区分。

区别在于,W 系数使用时,评分者可以任意评分,例如有十个物体,可以评分1-10,但注意,不重复;U 系数是对单一维度的二元评分。

肯德尔等级相关目的在于分析评价者的一致性。

由于公式繁简问题,W 系数更有可能被考察计算,要求掌握如何把现成的数据套入公式计算。

参考例题5-6 11 、点二列相关,其中 是两个二分变量对偶的连续变量的平均数,p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差二列相关,其中 S T 与 是连续变量的标准差与平均数, y 为 P 的正态曲线的高度点二列相关和二列相关的区别是考察重点(也是人为二分变量和真正的二分变量的考察) 计算主要考察点二列相关。

心理统计公式

心理统计公式
2 2
2
N 1
,用 sn 1 表示。总体方差未知时,用样本统计量取估计它,
2
也就是求 sn 1 而不是 s 。
显著性水平:估计总体参数落在某一区间时,可能犯错误的概率,用 表示。还指拒绝虚无假设时可能出 现的犯错误的概率水平。 置信度或置信水平: 1
例:0.95 置信区间是指总体参数落在该区间之内,估计正确的概率为 95%,而出现错误的 概率为 5% 0.05 ,可知: 0.95 置信区间=0.05 显著性水平的置信区间 0.99 置信区间=0.01 显著性水平的置信区间
12
F df1
22
df 2
如果令 1 2 ,有
2 2
n1 1 sn2 1 12 n1 1 F n2 1 sn2 1 2 2 n2 1
1 2
2 sn 1 1

12
2 2
2 sn 2 1
参数估计 无偏性:
2
x 的无偏估计量是
心理统计公式
算数平均数:
未分组:
X
X
N
i
, X :平均数;
X
i
:所有数据之和; N :数据个数
分组: X

f X
N
c
, X c :各区间组中值; f :各区间次数; N :数据总次数(=
f )
利用估计平均数的计算方法:
未分组:
X AM
X , X= X
N
N
i
AM ;AM:估计平均数
准差的分布,渐趋于正态分布,这时,其分布的平均数与标准差与母总体的 和 的关系如下:
2
X S , X S 2 2 , S

心理统计学公式范文

心理统计学公式范文

心理统计学公式范文
1.平均数公式:
平均数是数据集中数值的总和除以观测数,用于描述数据的中心位置。

公式:均值(μ)=总和(ΣX)/观测数(N)
2.方差公式:
方差是衡量数据的离散程度,它表示每个值与平均值之间的差异。

公式:方差(σ^2)=Σ((X-μ)^2)/N
3.标准差公式:
标准差是方差的平方根,它度量了数据的离散程度,并且具有与原始
数据相同的度量单位。

公式:标准差(σ)=√方差
4.t检验公式:
t检验是一种常用的统计方法,用于比较两个样本平均值是否存在显
著差异。

公式:t值(t)=(样本平均值差异)/(标准误差)
5.相关系数公式:
相关系数用于度量两个变量之间的关联关系,它可以是正相关、负相
关或无相关。

公式:相关系数(r)=Σ((X-μ_x)*(Y-μ_y))/
(N*σ_x*σ_y)
6.回归方程公式:
回归方程用于描述自变量和因变量之间的关系,并可以预测未知观测值的因变量。

公式:Y=a+bX
其中,Y表示因变量,X表示自变量,a表示截距,b表示斜率。

7.方差分析公式:
方差分析用于比较多组之间的均值是否存在差异,例如比较不同组别的实验条件下的平均值是否有显著差异。

公式:F值(F)=(组间方差/组内方差)
8.卡方检验公式:
卡方检验用于比较观测频数与期望频数之间的差异,从而判断观测值是否符合一些理论分布。

公式:X^2值(X^2)=Σ((观测频数-期望频数)^2/期望频数)
以上是心理统计学中常用的一些公式,它们在心理学研究中起到了重要的作用,用于分析和解释心理数据。

312心理学公式

312心理学公式

312心理学公式
心理学中的计算公式种类繁多,以下列举几个常见的心理学计算公式:
1. 正态分布概率计算公式(Z分数):标准正态分布表是用来计算和查找给定z分数对应的累积概率值。

2. 平均数计算公式:平均数可通过对样本中的各个数值求和,然后除以数值的数量得出。

3. 方差和标准差计算公式:方差是用来衡量数据分散程度的统计量。

标准差是方差的平方根。

心理学中的公式和概念远不止这些,建议阅读心理学相关书籍或者咨询专业人士获取更多信息。

心理视角计算公式

心理视角计算公式

心理视角计算公式在心理学领域中,研究人员经常会使用各种计算公式来帮助他们理解和解释人类行为和心理过程。

这些公式可以帮助心理学家量化和测量一些抽象的概念,从而使他们能够更好地理解人类心理的运作方式。

在本文中,我们将探讨一些常见的心理计算公式,并探讨它们在心理学研究中的应用。

1. 平均数(Mean)。

平均数是一组数字的总和除以数字的个数。

在心理学研究中,平均数通常用于计算一组数据的中心趋势。

例如,研究人员可能会计算一组参与者的平均年龄,以便了解他们研究对象的年龄分布情况。

平均数的计算公式如下:\[。

\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}。

\]其中,\(\bar{x}\)代表平均数,\(x_i\)代表每个数据点,\(n\)代表数据的总个数。

2. 标准差(Standard Deviation)。

标准差用于衡量一组数据的离散程度,即数据点与平均数的偏离程度。

在心理学研究中,标准差可以帮助研究人员了解一组数据的变异程度。

例如,研究人员可能会计算一组参与者在某项任务上的表现的标准差,以便了解他们的表现差异程度。

标准差的计算公式如下:\[。

\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n}}。

其中,\(\sigma\)代表标准差,\(x_i\)代表每个数据点,\(\bar{x}\)代表平均数,\(n\)代表数据的总个数。

3. 相关系数(Correlation Coefficient)。

相关系数用于衡量两组数据之间的关联程度。

在心理学研究中,相关系数可以帮助研究人员了解两个变量之间的关系。

例如,研究人员可能会计算两种心理特质之间的相关系数,以便了解它们之间的相关性程度。

相关系数的计算公式如下:\[。

r = \frac{\sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i \bar{x})^2 \sum_{i=1}^{n} (y_i \bar{y})^2}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

心理统计公式汇总
心理学考研分为:心理学学硕和心理学专硕(又称“应用心理硕士”、“心理专硕”)。

心理学学硕和心理学专硕考试科目不同,但是都会考察到心理学统计,(部分自主命题院校不考察心理学统计,考生需要提前了解院校信息。

)无论是对本专业还是跨专业心理学考研的同学而言,心理学统计始终是比较难懂的一块。

博仁教育老师为考生分章节整理出心理学统计公式,方便考生进行复习与记忆。

第三章集中量数
1、几个集中量数的公式计算一览表
【组中值的计算】
第四章差异量数
第五章相关关系
第六章概率分布
1、几个基本概念
(1)概率:表明随机事件出现的可能性大小的客观指标。

(2)后验概率(统计概率):
先验概率(古典概率):
(3)概率分布:对随机变量取值的概率分布的情况用数学方法(函数)描述。

2、概率的基本性质:
※概率的公理系统:
任何一个随机事件的概率都是非负的;
在一定条件下必然发生的必然事件概率为1;
在一定条件下必然不发生的事件,即不可能事件的概率为0.
※概率的加法定理
※概率的乘法定理
3、概率的分布类型划分
4、几个重要分布
★正态分布
(1)特征:
①正态分布的形式是对称的,对称轴是经过平均数的垂线。

②正态分布的中央点即平均数最高,然后逐渐向两侧下降;曲线形式先向内弯,再向外弯,拐点位于正负1个标准差处,曲线两端向基线无线靠近,但不相交。

③正态曲线下面积为1。

④正态分布是一族分布。

平均数决定其位置,标准差决定其形态。

标准差越小,曲线越狭高。

⑤正态分布中各差异量数值间有固定比率。

⑥正态曲线下,标准差和概率(面积)有一定的数量关系。

(2)正态分布表的利用
①已知Z分数求概率p,即已知标准分数求面积。

②已知概率P求Z分数。

③已知概率或Z求概率密度y,即曲线的高。

【直接查表即可。

注意已知的y是位于中间部分,还是两尾。


(3)次数分布是否为正态的检验方法
(4)正态分布理论在测验中的应用
①化等级评定为测量数据
②标准测验题目的难易度
③在能力分组或等级评定时确定人数
④测验分数的正态化
二项分布(贝努里分布)
(1)几个重要概念理解
二项试验:必须满足几个条件——任何一次实验恰好只有2个结果;共有n 次实验,n 是事先给定的一个正整数;某种结果出现的概率在任何一次实验中都是固定的。

二项分布:试验仅有两种不同性质结果的概率分布。

(两个对立事件的概率分布)。

具体定义如下:设有n 次试验,各次试验是彼此独立的,每次试验某事件出现的概率都是p ,某事件不出
现的概率都是q,即(1-p ),则对于某事件出现X 次的概率分布为:(,,)x x n x
n b x n p C p q -=;
n !
!()!)
x n C x n x =
-
表示在n 次试验中有X 次成功,成功的概率为p 。

(2)二项分布的性质
① 二项分布是离散型分布,概率直方图是跃阶式。

(p=q 与p ≠q ) ② 二项分布的平均数与标准差
当p ﹤q ,np ≥5,二项分布接近正态。

此时有,µ=np ,ð=npq (3)二项分布的应用
当p ﹤q ,np ≥5,二项分布接近正态。

用其概率分布计算 当np <5,直接用二项分布函数计算
5、抽样分布一览表【样本分布:指的是样本统计量的分布。


第七章 参数估计
1、几个重要概念
点估计、区间估计、置信区间、显著性水平(α)、置信度(置信水平即1-α)、 标准误(平均数的离散程度):X
σ
2、参数估计步骤总结
(1)分析条件,选择方法,计算样本统计量; (2)计算样本平均数的标准误;【是关键!!】
(3)确定显著性水平,求置信区间; (4)查找Z 值或t 值; (5)计算置信区间; (6)结果解释。

正态分布表:/2/2X X X Z X Z αασμσ-•≤≤+•或
(1)/2(1)/2X X X Z X Z αασμσ---•≤≤+•
T 分布表:/2/2X X X t X t αασμσ-•≤≤+•或(1)/2(1)/2t X X X X t αασμσ---•≤≤+• 3、参数估计一览表
第八章假设检验
【假设检验】,即差异显著性的检验,包括总体和样本之间的差异以及样本和样本之间的差异。

1、几个重要概念
假设检验小概率原理、Ⅰ型错误&Ⅱ型错误、统计检验力(1-β)、双侧&单侧检验、
2、假设检验的步骤
①根据问题要求,提出H0和H1;②选择适当的统计检验量;③确定显著性水平α;
④计算检验统计量的值;(计算标准误,计算临界的Z或t值)⑤做出决策;
χ检验)
5、假设检验一览表(4种主要的检验方法:Z检验、t检验、F检验、2
第九章方差分析
1、几个基本概念
【方差分析】即变异分析。

本质仍然是假设检验。

主要功能在于分析实验数据中不同来源的变异对总变异的贡献大小,从而确定实验中的自变量是否对因变量有重要影响。

【方差分析的要求】①总体分布呈正态;②每个实验组的方差齐性;③变异具有可加性;
【方差分析依据的基本原理】即方差(或变异)的可加性原则
【方差分析目的】通过F检验讨论组间变异在总变异中的作用,借以对两组以上的平均数进行差异检验。

【方差分析的步骤】
(1)齐性检验;(哈特莱最大F比率法)
(2)构建综合虚无假设;
(3)计算平方和;
(4)计算自由度;
(5)计算均方;
(6)确定检验统计量(计算F值);
(7)确定显著性水平的临界值(查F值表进行F检验);
(8)做出统计决断;
(9)陈列方差分析表
2、方差分析一览表
第十章 2χ检验
1、相关知识点
【2
χ检验】是对类别数据的检验,对数据总体的分布形态不做任何要求,实际上是一种非参数检验。

处理的是一个因素两项或多项分类的【实际观察频数】与【理论频数】(即期望次数)是否一致。

【2χ的假设】
①分类相互排斥,互不包容;②观测值相互独立;(要求每个被试只有一个观测值) ③期望次数的大小;(每一个单元格中的期望次数至少在5个以上)
χ检验一览表2、2
χ值显著。

R×C表检验结果说明两因素有关联。

同方差分析与事后检验【相关源分析】前提是总的2
的关系一样,相关源分析离析出相关源。

具体见下表:
4、相关源的分析一览表
第十一章非参数检验1、非参数检验一览表
2、等级方差分析一览表(非参数检验)
第十二章线性回归
相关概念
【决定系数】
)
2
2
2
()
()
R
T
Y Y SS r
Y Y SS
-
==
-


了解了这些公式之后要学会运用,实验心理学中会涉及到统计的知识点,同学可以将实验心理学与心理统计与测量结合学习。

如果你还有心理学考研相关问题,如院校信息、参考书、分数线等可以咨询博仁教育老师。

相关文档
最新文档