第3章 化学键与分子结构章节要点及习题
第3讲 化学键 分子结构与性质
(4)不同种非金属元素双原子间形成的共价键一定是极性键;金属元素与非金属元 素原子形成的化学键可能为共价键。( √ ) (5)ⅠA族元素与ⅦA族元素形成的化学键一定是离子键。( × ) (6)共价化合物溶于水,分子内共价键被破坏,单质溶于水,分子内共价键不被破 坏。( × ) (7)固体溶于水时,一定破坏了化学键。( × ) (8)化学变化中有化学键的断裂,有化学键断裂的变化一定是化学变化。( × ) (9)加热熔化NaCl固体时无新物质生成,化学键没有被破坏。( × ) (10)1 mol KHSO4加热熔化可电离出2NA个阳离子。( × )
第3讲 化学键 分子结构与性质
2017级教学指导意见
核心素养
1.了解微粒间作用(离子键、共价键、配位键、 1.宏观辨识与微观探析:能从不同层次认识分子的构
分子间作用力等)的类型、特征与实质。了解共 型,并对共价键进行分类,能从宏观和微观相结合
价键的极性与类型(σ键,π键)
的视角分析与解决实际问题。
(2)配位化合物 ①概念:由金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化 合物。 ②组成
③形成条件
[考在课外]
教材延伸 判断正误 (1)杂化轨道只用于形成σ键或用于容纳未参与成键的孤电子对。( √ ) (2)分子中中心原子若通过sp3杂化轨道成键,则该分子一定为正四面体结构。 (× ) (3)NH3分子为三角锥形,N原子发生sp2杂化。( × ) (4)只要分子构型为平面三角形,中心原子均为sp2杂化。( √ ) (5)中心原子是sp杂化的,其分子构型不一定为直线形。( × )
三角锥形
2
V形
实例 CO2 BF3 SO2 CH4 NH3 H2O
2.杂化轨道理论 (1)当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相 同的杂化轨道。杂化轨道数不同,轨道间的夹角不同,形成分子的空间结构不同。 (2)杂化轨道的三种类型与分子空间结构
选修3共价键与分子的空间构型知识点及习题
共价键与分子的空间构型【要点梳理】要点一、共价键的形成及其本质1.共价键的形成通常情况下,吸引电子能力相近的原子之间通过共用电子对形成共价键。
那么两个成键原子为什么能通过共用电子对结合在一起呢?下面我们以氢分子的形成过程为例来说明共价键是怎样形成的。
当两个氢原子相互接近时,若两个氢原子核外电子的自旋方向相反,它们接近到一定距离时,两个1s轨道发生重叠,电子在两原子核间出现的机会较大。
随着核间距的减小,核间电子出现的机会增大,体系的能量逐渐下降,达到能量最低状态。
核间距进一步减小时,两原子间的斥力使体系的能量迅速上升,这种排斥作用又将氢原子推回到平衡位置。
能量(主要指势能)随核间距的变化如图中曲线a所示。
2.共价键的本质:共价键的本质是电子与原子核之间的电性作用。
同种或不同种非金属元素(或某些非金属与金属)之间原子相遇时,若原子的最外层电子排布未达到稳定状态,则原子间通过共用电子对形成共价键。
形成共价键的微粒是同种或不同种原子。
要点二、共价分子的表示方法1.电子式:通常人们在元素符号周围用小黑点(或×)来描述分子中原子共用电子以及原子中未成键的价电子的情况,这种式子叫电子式。
如:2.结构式:在化学上,常用一根短线“一”表示一对共用电子,所以氯气分子也可以表示为:C1—Cl,这种式子叫结构式。
注意在不熟练的情况下,书写结构式时往往先写出电子式,原子间有几对共用电子,就用几根短线表示,未共用的电子不加以考虑。
结构式可形象地表示出分子内各原子的连接顺序。
因此,同种原子不能合并,只有通过共价键形成的分子才能写结构式,离子化合物不能用结构式表示。
3.用电子式表示共价化合物的形成过程用电子式表示共价化合物的形成过程时,在“→”的左侧写成键原子的电子式,同种原子可以合并,右侧写形成的单质或化合物的电子式,但应注意,相同的原子要对称写,不能合并。
如:要点三、σ键与π键原子轨道沿核间连线方向以“头碰头”的方式重叠形成的共价键叫做σ键;原子轨道在核间连接两侧以“肩并肩”的方式重叠形成的共价键叫做π键。
化学键与分子结构
PART 2
化学键的类型
化学键的类型
化学键主要分为 共价键、离子键 和金属键三种类
型
共价键
共价键是指两个或多 个原子通过共享电子 对形成的相互作用。 这种相互作用使得原 子能够稳定地结合在 一起,形成稳定的分 子。共价键的形成主 要是由于原子之间的 电子云重叠
化学键的类型
离子键
离子键是指由正离子 和负离子之间形成的 相互作用。正离子失 去电子,负离子得到 电子,从而形成稳定 的离子。离子键的形 成主要是由于静电相 互作用
化学键与分子结构
-
1 化学键的定义 3 分子结构与化学键的关系 5 化学键的断裂与形成 7 总结
2 化学键的类型 4 总结 6 化学键与生命活动
PART 1
化学键的子或晶体中原 子或离子之间的相互作用, 这种相互作用使得原子或离 子能够稳定地结合在一起
化学键的形成是化学反应的 基础,也是生命活动的基础
分子结构与化学键的关系
分子的物理性质
分子的物理性质如熔点、沸点、导电性和透 明度等主要由其化学键的类型和强度决定。 例如,共价化合物的熔点和沸点通常比离子 化合物要高,而金属化合物的导电性和透明 度则受到金属原子的种类和数量的影响
分子结构与化学键的关系
分子的化学性质
分子的化学性质如反应活性、氧化还原性质等主要由其 化学键的类型和强度决定。例如,共价化合物的反应活 性通常比离子化合物要低,而金属化合物的氧化还原性 质则受到金属原子的种类和数量的影响
化学键的类型
化学键的类型
金属键
金属键是指金属原子之间形成的相互作用。 金属原子最外层电子很容易失去,从而形成 自由电子。这些自由电子在金属原子之间流 动,形成了金属键。金属键的形成主要是由 于自由电子的流动
高等有机化学各章习题及答案 (1)
1.1 预测下列各分子的形状和键角的大小: (1)BeCI4 (2)CH2=C=CH2 (3)PCl3 (4)N+(CH3)4 (5)(CH3)O+
1.2 画比下列化合物的 Iewis 结构;如果存在共振结构 所有有贡献的共振结构式. (1)CH2N2 (2)N02 (3)PhO- (4)P-02NC6H4NH2
1.8 (2)和(7)不能形成分子间氢键 (1)HCN┈HCN (3)H2CO┈HOH
(6)H2NCH2CH2OH┈NH2CH2CH2OH
(4)Cl┈HOH
(5) (CH3)2CO┈HOOCC6H4OH
当第一个羧基上的 H+电离后,所形成的负离子是一个强的给电子基,它对第二个羧基所 发生的直接诱导,将使第二个羧基上好的电离趋于困难,这种影响也是顺式大于反式,所以 丁烯二酸的第二电离常数是顺式小于反式。这种诱导影响是通过空间或溶剂间的场效应传递 的。 1.6 (1)无芳香性
分子没有一个闭合的共轭体系,因而无芳香性,然后失去 H-以后生成的 A 为含有六个π 电子的离子,则具有芳香性。
1.8 下列各组化合物能否形成分子间氢键?若有的话,请画出分子间氢键。
(1)HCN 和 HCN (2)HCHO 和 HCHO
(3)HCHO 和 H2O
(4)Cl-和H
和丙酮
(6)HOCH2CH2NH2 和 HOCH2CH2NH2
答案: 1.1 (1)线性 (2)三个碳原子呈线型,氢位于相互垂直的平面上 (3)棱锥型,键角约
105~110°(4)正四面体 (5)棱锥型,键角约 105~110°。
1.2 (1) (2)
(3)
(4)
1.3 (1)Ⅰμ=2.5D Ⅱμ=3.4D (2)Ⅰμ=6.3D Ⅱμ=2.6D (3)Ⅰμ=3.48D Ⅱμ=2.68D
无机化学 第3章 分子结构与化学键理论
O3 ; PCl3 ; CO2 ; OF2 。
O3分子的结构
O3 中心原子 O 价层电子对数: (6+0×2)/2=3
价电子对构型平面三角形。分子构型为V型
O 127.8pm
O
O
O
O
O
116.80
价电子对构型和分子构型都为线形。
O
C
O
CO2以sp杂化成键:一个
键,两个
4 3
键。
OF2的分子结构
OF2 中心原子O的价层电子对数为: (6+1×2)/2=4
价电子对构型为四面体,分子构型为V型
O
F
F
OF2以sp3不等性杂化成键。
3.4 分子轨道理论
分子轨道理论的基本要点
原子轨道的线性组合—s-s重叠
原子轨道的线性组合—s-p重叠
原子轨道的线性组合—p-p重叠(1)
原子轨道的线性组合—p-p重叠(2)
能量近似原则
最大重叠原则
对称性原则
同核双原子分子的分子轨道能级图(1)
同核双原子分子的分子轨道能级图(2)
同核双原子分子的分子轨道能级图
N2分子的分子轨道能级图
O2分子的分子轨道能级图
CO的分子轨道能级图
3.5 分子间力和氢键
分子间作用力——范德华力
取向力
诱导力
色散力
化学视野——光电子能谱(PES)
PES——Photoelectron Spectroscope
光电子能谱技术是光电效应的现代应用。
可见光源照射物质可将价电子射出。短波光 源(紫外或X射线)产生的高能光子能将分 子或原子内层具有各种结合能的电子射出, 通过这些结合能的大小可提供分子中能级的 细节。
第三章 分子结构
共价键理论:
Lewis理论(1916年) 价键理论(1927年, 1930年) 杂化轨道理论(1931年) 价层电子对互斥理论(1940年) 分子轨道理论(20世纪20年代末)
3.1.2 共价键的形成与本质
两核间电子云密度增大
两核间电子云密度减小
H2的形成过程
一:共价键的形成
当具有自旋反平行的成单电子的原子相互 接近时,其原子轨道重叠相加,核间产生电子 云密度较大的区域,把两个核紧密地吸引在一 起使体系能量下降的这种结合力就是共价键.
4
3
1
四面体
NH3 (三角锥)
H 2O (V型或角型 )
2
2
四面体
5
0
三角双锥
PCl5 (三角双 锥)
(变形三 角双锥) ClF3 (T型) I 3(直线型 )
4 5 3
1
三角双锥
2
三角双锥
2
3
三角双锥
6
0
正八面 体
SF6 (正八面体 ) IF5 (四方锥)
5 6 4
1
八面体
2
八面体
ICl4XeF4 (平面正方 形)
3-8: 对N2、O2分子回答下列问题: (1)写出它们的分子轨道式; (2)计算键级,说明其成键情况和磁性; (3)N2+,O2+分别与N2,O2相比,谁更稳定?
解:因H2+的分子轨道排布式为:(σ1s)1,键级 =0.5,可稳定存在.
同理He2+的分子轨道排布式为:(σ1s)2(σ*1s)1, 键级=0.5,可稳定存在. 而He2的分子轨道排布式为:(σ1s)2(σ*1s)2,键级 =0.0,则不可能稳定存在.
因排斥力大小顺序为: 1. 孤对电子与孤对电子>孤对电子与成键电子 >成键电子与成键电子 2. 叁键-叁键>叁键-双键>双键-双键 >双键-单键>单键-单键 3.电子对之间的夹角越小,排斥力也就越大。 90o > 120o > 180o 所以当分子中有两对或以上的孤对电子 时,必须选择分子内斥力最小的空间结构.
化学键和分子结构(习题及答案)
1
General Chemistry
Chapter 3 Homework
5.下列分子中含有极性键的非极性分子是( A ) A.BeCl2 A.O2B.H2S B.S2C.F2 C.FD.HBr 6.下列物种中,变形性最大的是( B )。 D.Cl7. 下列物质中只需克服色散力即沸腾的是( D ) A.HCl B.Cu C.CH2Cl2 D.CS2
9
8. 下列化合物中存在氢键的是( C )
A.HCl B.C2H5OC2H5 C.HNO3 D.CH3F
形成氢键要具备两个条件: ① 分子中必须有电负性较大而半径较小的元素(X=F、O、 N),并与H形成共价键; ② 分子中还必须有另外一个电负性大而半径小,有孤对电子的 原子(Y=F、O、N) 。
2
General Chemistry
2012-8-2
ionic bond theory
11
General Chemistry
Chapter 3 Molecular Structure
影响离子变形性的因素: ① 离子的半径。半径越大,变Байду номын сангаас性越大。 如:I->Br- >Cl- >F② 离子的电荷。负离子电荷越高,变形性越大,正离子电 荷越高,变形性越小。
如: O2- > F- >Na+ > Mg2+ > Al3+ >Si4+
③ 离子的电子构型。 18电子构型、 9~17电子构型>8电子构型 ④ 复杂离子的变形性通常不大,且复杂离子中心原子氧 化数越高,变形性越小。 如: I->Br- >OH- > NO3- >F- >ClO49
2012-8-2
选修3共价键与分子的空间构型知识点及习题
共价键与分子的空间构型【要点梳理】要点一、共价键的形成及其本质1.共价键的形成通常情况下,吸引电子能力相近的原子之间通过共用电子对形成共价键。
那么两个成键原子为什么能通过共用电子对结合在一起呢?下面我们以氢分子的形成过程为例来说明共价键是怎样形成的。
当两个氢原子相互接近时,若两个氢原子核外电子的自旋方向相反,它们接近到一定距离时,两个1s轨道发生重叠,电子在两原子核间出现的机会较大。
随着核间距的减小,核间电子出现的机会增大,体系的能量逐渐下降,达到能量最低状态。
核间距进一步减小时,两原子间的斥力使体系的能量迅速上升,这种排斥作用又将氢原子推回到平衡位置。
能量(主要指势能)随核间距的变化如图中曲线a所示。
2.共价键的本质:共价键的本质是电子与原子核之间的电性作用。
同种或不同种非金属元素(或某些非金属与金属)之间原子相遇时,若原子的最外层电子排布未达到稳定状态,则原子间通过共用电子对形成共价键。
形成共价键的微粒是同种或不同种原子。
要点二、共价分子的表示方法1.电子式:通常人们在元素符号周围用小黑点(或×)来描述分子中原子共用电子以及原子中未成键的价电子的情况,这种式子叫电子式。
如:2.结构式:在化学上,常用一根短线“一”表示一对共用电子,所以氯气分子也可以表示为:C1—Cl,这种式子叫结构式。
注意在不熟练的情况下,书写结构式时往往先写出电子式,原子间有几对共用电子,就用几根短线表示,未共用的电子不加以考虑。
结构式可形象地表示出分子内各原子的连接顺序。
因此,同种原子不能合并,只有通过共价键形成的分子才能写结构式,离子化合物不能用结构式表示。
3.用电子式表示共价化合物的形成过程用电子式表示共价化合物的形成过程时,在“→”的左侧写成键原子的电子式,同种原子可以合并,右侧写形成的单质或化合物的电子式,但应注意,相同的原子要对称写,不能合并。
如:要点三、σ键与π键原子轨道沿核间连线方向以“头碰头”的方式重叠形成的共价键叫做σ键;原子轨道在核间连接两侧以“肩并肩”的方式重叠形成的共价键叫做π键。
2013-第三章--配合物的化学键理论解析
与羰基配合物成键过程相似,CN-配体中C上的 孤电子对向金属的杂化空轨道配位,形成σ配键,金 属的d电子向CN- π* 轨道配位,形成d-pπ配键。
(3) 烯烃配合物
1827年,Zeise合成了K[ PtCl3(C2H4) ]·H2O,这是第 一个有机金属化合物,但其结构直到120多年后才确定。 乙烯的成键π电子向铂的杂化轨道配位,按成键的对称 性应为σ配键;金属d轨道的电子向乙烯的 π* 轨道配位, 形成d-pπ配键。
z
y x
1. d轨道的分裂
dz2
dyz
dxz
dx2-y2
z
y
x
dxy
d 轨道分裂情况 八面体场中:
dz2 , dx2-y2, 轨道能量升高 (eg 或 dγ) dxy, dyz, dxz 轨道能量降低 (t2g 或 dε) 四面体场中:
dz2 , dx2-y2, 轨道能量降低 (eg) dxy, dyz, dxz 轨道能量升高 (t2g)
dx2-y2
x y
极大值指向面心
dxy
x
y
极大值指向棱的中点
1. d轨道的分裂 ( 在Oh场中的分裂 )
分裂能 o = 10 Dq 场强参数Dq: D—中心离子的
极化度 q:配体电荷
Dq具有能量单位
重心守恒原理: 分裂前后五个d轨 道的总能量相等
没有不成对电子
稳定性:内轨型配合物 > 外轨型配合物
根据实验测得的有效磁矩,判断下列各种离子分
别有多少个未成对电子?哪个是外轨?哪个是内轨?
① Fe (e n22)
5.5 B.M.
第三章 化学键和分子结构2.
(8 + 4) / 2 = 6
电负性大的元素放在较远的位置!
价层电子对排斥规则(P118)
规则一:
孤电子对对孤电子对的排斥 > 孤电子对对成键
电子对的排斥 > 成键电子对对成键电子对的排斥
CH4:109o28’ NH3: 107.3o H2O: 104.45o
CH4
NH3
H2O
109o28’
107.3o
104.45o
sp3杂化
P118 — P119: 表
sp3d杂化
SF4
ClF3
XeF2
畸变
畸变
sp3d2杂化 AX4E2 (XeF4)
规则二:中心原子的电负性愈大,成键电子对之间的排
斥也愈大;配位原子的电负性愈大,成键电子
对之间的排斥愈小。 中心原子的电负性愈大 氮族元素氢化物 NH3 PH3 AsH3 SbH3
112.5
111.3 118 118
<
< < <
123.2
124.3 121 121
例 1: XeF5+ (8 + 5 1) / 2 = 6, sp3d2杂化,四方锥 ICl4 (7 + 4) / 2 = 5.5 6, sp3d2杂化,平面正方形
作业:P121:1, 2,8 1:中心原子的价层电子对总数;中心原子的杂化轨 道类型;价层电子对排列的几何形状(名称);分 子的几何结构(名称,图) 2:中心原子的价层电子对总数;中心原子的杂化轨 道类型;价层电子对的空间排列形状(名称);分 子和分子离子的结构的大体形状(名称,图);其 中孤电子对的存在使分子的结构发生了怎样的畸变 (不要做)
3.2. 原子轨道线性组合的类型 (P151)
第3讲 化学键 分子结构与性质
第3讲化学键分子结构与性质课程标准知识建构1.能说出微粒间作用(离子键、共价键、配位键和分子间作用力等)的主要类型、特征和实质;能比较不同类型的微粒间作用的联系与区别;能说明典型物质的成键类型。
2.能利用电负性判断共价键的极性,能根据共价分子的结构特点说明简单分子的某些性质;能运用离子键、配位键、金属键等模型,解释离子化合物、配合物、金属等物质的某些典型性质;能说明分子间作用力(含氢键)对物质熔、沸点等性质的影响,能列举含有氢键的物质及其性质特点。
3.能根据给定的信息分析常见简单分子的空间结构,能利用相关理论解释简单的共价分子的空间结构;能根据分子结构特点和键的极性来判断分子的极性,并据此对分子的一些典型性质及其应用做出解释。
一、化学键电子式1.化学键(1)概念:相邻的原子之间强烈的相互作用。
(2)分类2.离子键、共价键的比较离子键共价键非极性键极性键概念阴、阳离子通过静电作用形成的化学原子间通过共用电子对所形成的化学键键成键粒子阴、阳离子原子成键实质阴、阳离子的静电作用共用电子对不偏向任何一方原子共用电子对偏向一方原子形成条件活泼金属与活泼非金属经电子得失,形成离子键;或者铵根离子与酸根离子之间同种元素原子之间成键不同种元素原子之间成键形成的物质离子化合物非金属单质(稀有气体除外);某些共价化合物或离子化合物共价化合物或某些离子化合物3.电子式(1)概念:在元素符号周围用“·”或“×”来表示原子的最外层电子的式子。
(2)电子式的书写①书写方法②写出下列微粒的电子式:a.NH+4b.OH-c.N2d.H2O2e.MgCl2f.Na2O2(3)用电子式表示化合物的形成过程①离子化合物,如NaCl :。
②共价化合物,如HCl:。
4.化学键与物质类别的关系(1)化学键与物质类别的关系(2)离子化合物与共价化合物化合物类型概念与物质分类的关系举例离子化合物含有离子键的化合物①强碱②绝大多数盐③活泼金属的氧化物NaCl、Na2O2、NH4Cl等共价化合物只含有共价键的化合物①酸②弱碱③极少数盐④气态氢化物⑤非金属氧化物⑥大多数有机物等H2S、SO2、CH3COOH、H2SO4、NH3·H2O等(1)化学键是相邻离子或原子间的一种强作用力,既包括静电吸引力,又包括静电排斥力()(2)所有物质中都存在化学键()(3)非金属元素组成的化合物中只含共价键()(4)非金属元素的两个原子之间一定形成共价键,多个原子间可能形成离子键()(5)由活泼金属元素与活泼非金属元素形成的化学键都是离子键()(6)最外层只有一个电子的元素原子跟卤素原子结合时,所形成的化学键一定是离子键()(7)离子化合物中可能含有共价键,共价化合物中一定不含离子键()答案(1)√(2)×(3)×(4)√(5)×(6)×(7)√二、共价键及其参数1.本质和特征共价键的本质是在原子之间形成共用电子对(电子云重叠),特征是具有饱和性和方向性。
结构化学 第03章 双原子分子结构
简记为: n
c j (Hij ESij ) 0
j 1
i 1, 2,, n (3- 10)
15
《结构化学》-双原子分子
(3-10)式是一个关于ca , cb 的二元一次方程组,要使 ca , cb
有非零解,必须使其系数行列式为零。
Haa E Hab ESab 0 Hba ESba Hbb E
3
《结构化学》-双原子分子
3.1 化学键理论简介
3.1.1 原子间相互作用 3.1.2 化学键理论 3.1.3 结构与性质的关系
4
《结构化学》-双原子分子
3.1.1 原子间相互作用
化学键和范德华力、氢键
3.1.2 化学键理论
分子轨道理论:近似求解薛定谔方程的方法,目前 量子化学研究的主流方法。1966年Nobel化学奖, Mulliken,1998年Nobel化学奖,Pople。
i 为已知函数。显然,=(x,y,z,c1,c2,…,cn),即变分 函数 是坐标与一些可调节量 ci 的函数。
将(3-3)代入(3-2)计算将得到:
E E (c1, c2 cn ) (3- 4) 12
《结构化学》-双原子分子
E E (c1, c2 cn ) (3- 4)
(3-4)式代表平均能量 <E>是一些可调节参数的函数。
ca2Haa 2cacb Hab cb2Hbb ca2 2cacbSab cb2
整
理
E (ca2 2cacbSab cb2 ) ca2Haa 2cacb Hab cb2Hbb (3- 7)
14
《结构化学》-双原子分子 E (ca2 2cacbSab cb2 ) ca2Haa 2cacb Hab cb2Hbb (3- 7)
chapter3 共价键和双原子分子的结构化学习题解答
(1σ ) 2 (2σ ) 2 (1π ) 4 (3σ ) 2
其中,1σ ,3σ 和 1π 轨道是成键轨道,2σ 和 2π 轨道是反键轨道。这些价层分子轨道是由 O 原子的 2s、2p 轨道和 S 原子的 3s、3p 轨道叠加成的。 根据价层分子轨道的性质和电子数,可算出 SO 分子的键级为:
P=
1 (8 − 4 ) = 2 2
4. 同核双原子分子轨道的能级顺序:氮分子之前(包括氮分子) π 2 p < σ 2 p ;氧 :
分子之后(包括氧分子) σ 2 p < π 2 p 。 : ;没有未 5. 分子的顺磁性和反磁性:有未成对电子的分子,顺磁性(如 O 2 , B2 ) 成对电子的分子,反磁性。 二、双原子分子光谱
1.转动光谱:同核双原子分子没有转动光谱(因转动时偶极矩不发生变化,一直
5
乐山师范学院 化学与生命科学学院
解:NF,NF+和 NF-分别是 O2, O 2 和 O 2 的等电子体,它们的基态电子组态、键级、 不成对电子数及磁性等情况如下: “分子” NF NF+ NF基态电子组态 键级 2 2.5 1.5 不成对电子数 2 1 1 磁性 顺磁性 顺磁性 顺磁性
+
−
KK (1σ ) 2 (2σ ) 2 (3σ ) 2 (1π ) 4 (2π ) 2 KK (1σ ) 2 (2σ ) 2 (3σ ) 2 (1π ) 4 (2π )1 KK (1σ ) 2 (2σ ) 2 (3σ ) 2 (1π ) 4 (2π )3
为0) 。 (1)转动能级: EJ = J ( J + 1) (2)跃迁规则: ∆J = ±1 (3)跃迁时吸收光的波数与转动量子数 J 的关系:ν = 2 B( J + 1) 。
高中化学——化学键与分子结构及性质
化学键与分子结构及性质课标解读要点网络1.了解化学键的定义及分类,了解离子键的形成和本质及存在的物质。
2.了解共价键的形成、极性、类型(σ键和π键),了解配位键的含义。
3.能用键能、键长、键角等说明简单分子的某些性质。
4.了解杂化轨道理论及简单的杂化轨道类型(sp、sp2、sp3)。
5.能用价层电子对互斥理论或者杂化轨道理论推测简单分子或离子的空间结构。
6.了解范德华力的含义及对物质性质的影响。
7.了解氢键的含义,能列举存在氢键的物质,并能解释氢键对物质性质的影响。
8.掌握分子式、电子式、结构式及结构简式等表示方法。
离子键与共价键1.化学键及其分类(1)化学键是指使离子或原子相结合的作用力,包括离子键和共价键。
(2)离子键与共价键①离子键:带相反电荷离子之间的相互作用。
②共价键:原子间通过共用电子对所形成的相互作用。
其特征为具有方向性和饱和性。
③二者比较项目离子键共价键成键粒子阴、阳离子原子成键方式得失电子形成阴、阳离子形成共用电子对成键条件活泼金属元素与活泼非金属元素一般在非金属原子之间作用力实质静电作用提醒:(1)离子键中的“静电作用”既包括静电吸引力又包括静电排斥力;(2)物质中并不一定都存在化学键,如He等稀有气体分子;(3)由活泼金属与活泼非金属形成的化学键不一定都是离子键,如AlCl3中Al—Cl键为共价键;(4)非金属元素的两个原子之间一定形成共价键,但多个原子间也可能形成离子键,如NH4Cl 等。
2.化学键与化合物的关系[补短板](1)离子化合物中一定含离子键,可能含非极性键和极性键。
(2)共价化合物一定含极性键,可能含非极性键,一定不含离子键。
(3)既有极性键又有非极性键的共价化合物一般由多个原子组成,如H2O2、C2H4等。
(4)既有离子键又有极性共价键的物质,如NaOH、K2SO4等;既有离子键又有非极性共价键的物质,如Na2O2等。
3.共价键的分类与键参数(1)共价键的常见分类分类依据类型及特点形成共价键的原子轨道重叠方式σ键原子轨道“头碰头”重叠π键原子轨道“肩并肩”重叠形成共价键的电子对是否偏移极性键共用电子对发生偏移非极性键共用电子对不发生偏移[深度归纳]大π键的简介(1)简介:大π键一般是三个或更多个原子间形成的,是未杂化轨道中原子轨道“肩并肩”重叠形成的π键。
第3章_共价键和双原子分子的结构化学_3.3分子轨道理论_3.4价键理论
§3.3 分子轨道理论和 双原子分子结构
§3.3 分子轨道理论和双原子分子结构
3.3.1 分子轨道理论要点:
1. 在分子中电子的空间运动状态可用相应的分子轨道波函数 ψ(称为分子轨道)来描述。 2. 原子在形成分子时,所有电子都有贡献,分子中的电子不 再从属于某个原子,而是在整个分子空间范围内运动。 3. 分子轨道可以由分子中原子轨道波函数的线性组合(linear combination of atomic orbitals,LCAO)而得到。 4. 有几个原子轨道就可以组合成几个分子轨道。 5. 电子在分子轨道中的排布遵守Pauli不相容原理、能量最低 原理和Hund规则。具体排布时,应先知道分子轨道的能 级顺序(可用分子光谱实验确定)。 6. 原子轨道有效地组成分子轨道, 必须满足 “成键三原则”。
非等价组态的谱项
等价组态的谱项 (1) π2
等价组态的谱项
双原子分子基态光谱项的推求
只考虑HOMO轨道电子组态,低于HOMO轨道的电子
已占满轨道,故可忽略。
(1)求Λ的取值
Λ是各电子的ml的所有可能代数和的绝对值。
(2)求S的取值
自旋多重度中S的求法与原子的情况相同.
空穴规则对分子谱项也有效.
(1σ)2 (2σ)2 (1π)4 (3σ)2 (1π)1
2π
键级=2.5
1π
3σ
1π
2σ 1σ
NO是一种非常独特的分子,它极其简单又引人瞩目, 声名 狼藉却又声誉卓著. NO是大气中的有害气体: 破坏臭氧层、 造成酸雨、污染环境等. 但在人体中能穿过生物膜,氧化外 来物质,在受控小剂量下是有益成分。 1992年,美国《科学》 杂志把它选为明星分子. 三位美国药理学家弗奇戈特(Robert F.Furchgott)、伊格纳罗(Loui s J. Ignarro)及穆拉德 (Ferid Murad)因发现硝酸甘油及其他有机硝酸酯通过释放 NO气体而舒张血管平滑肌,从而扩张血管而获得1998年诺 贝尔生理/医学奖. 1977年,穆拉德发现硝酸甘油等有机硝酸酯代谢为NO后 才能扩张血管,认为NO可能是对血流具有调节作用的信使 分子。
普通化学课件第3章化学键与分子结构
电子分布式 (1s )2 39
图3.13 氢分子轨道
N2
(1s
)2
(1s
)2
(
2s
)2
(
2s
)2
(
2
p
)2
(
y
2
p
)2
(
z2
p
)2
O2
(1s
)2
(1s
)2
(
2s
)2
(
2s
)2
(
2
p
)2
(
y2
p
)2
(
z
2
p
)2
(
y2
p
)1(
* z2
p
)1
40
3.1.2 杂化轨道理论
共价型分子中各原子在空间排列构成的几何 形状,叫做分子的空间构型。 1931年,鲍林等以价键理论为基础,提出化 学键的杂化轨道理论。我国化学家唐敖庆教 授对杂化轨道进行了系统化处理。
道组合前后都是全满的,能量不发生变化。因此可以 不考虑它们的组合。
组合前原子轨道中的所有电子,在组合后的分子轨 道中重新分布,分布法则与电子在原子轨道中的排布 类似,服从泡利不相容原理、能量最低原理和洪特规 则等基本原理。
35
分子轨道的两种类型—— 轨道和 轨道
由s和s原子轨道、s和p原子轨道、px 和 px原子 轨道组合而成的分子轨道都是对键轴呈圆柱
Cl2(g ) 2Cl(g) D(ClCl) H 242kJ mol1
对于由两种元素组成的多原子分子而言, 可以取键解离能平均值作为键能。如:
H2O(g) H(g) OH(g) D1 498kJ mol 1
OH(g ) H(g ) O(g ) D2 428kJ mol 1
初一化学化学键与分子结构练习题及答案20题
初一化学化学键与分子结构练习题及答案20题一、选择题1. 下列说法中,正确的是:A. 共价键和离子键的键能是指中心原子为同一元素时,但只能是一个。
B. 非金属原子间的键都是共价键。
C. 确定键价最多的那一个原子,它起着助电子对于次级地位。
D. 具有饱和甲烷键的碳原子会在无进行主键变化下保持不变。
答案:C2. 键长最短的是:A. 单键B. 双键C. 三键D. 离子键答案:C3. 具有碳碳三键的有机化合物是:A. 1-丁炔B. 正丁烷C. 丙烯D. 乙烯答案:A4. m-二甲苯的结构式中,若CH3基团的取代发生改变,则在新的化合物中,其:A. 没有手性中心B. 投射式不变C. 有一对对映手性中心D. 有两对对映手性中心5. 黄磷的化学式为P4,其中磷原子间的键是:A. 单键B. 双键C. 三键D. 由共价键和金属键组成的复合键答案:C二、填空题1. SO3的分子结构为_______。
答案:三角形2. 锂离子的共价配位数为_______。
答案:43. H2O2的最简分子式为_______。
4. 度水分子的配位数为_______。
答案:25. 乙醇的结构式为_______。
答案:CH3CH2OH三、解答题1. 请解释共价键和离子键的区别,并举例说明。
共价键是指两个非金属原子通过共享电子对形成的化学键,电负性接近的两个原子通过共享外层电子,使其共享电子外层电子数达到8个,共享电子对数即为元素的键价。
离子键是指由正、负离子通过静电作用相互结合形成的键,由于不同元素的电子亲和力和电离能不同,电负性较大的元素往往倾向于获得电子,而电负性较小的元素则倾向于失去电子,形成带正电荷和负电荷的离子。
例如,氯化钠(NaCl)中的钠和氯分别失去一个电子和获得一个电子,形成带正电荷的钠离子和带负电荷的氯离子,它们通过静电作用相互结合形成具有离子键的晶体。
2. 请解释饱和键和不饱和键的概念,并列举其各自的例子。
饱和键是指化合物中的键价已满足其元素的化合价,不再具有活性,不能再进一步发生化学反应。
第3章 化学键与分子结构章节要点及习题
第3章化学键与分子结构【章节要点】价键基础共价键是通过原子核之间共用电子平衡吸引力和排斥力而形成的。
在H2中,这使得两个H原子距离为74pm 时能量最低。
这个距离就被称为键长。
这个距离的分子和孤立原子之间的能量差就称为键能。
H2中的单键是一个σ键,关于键轴旋转对称。
在简单的双原子分子例如O2,F2中,可以用含有单电子的原子轨道的重叠来描述键的形成。
当双原子分子中两个原子不同时,电子对趋向于被其中一个原子所吸引,导致电子共享的不平均,由此产生了极性共价键。
电子的不平均共享是分子中不同原子电负性不同的结果。
原子之间电负性差值越大,键的极性越大。
对于同一周期的原子,电负性一般随着原子序数的增大而增大;对于同一族的原子,电负性一般随着原子序数增大而减少。
离子键电负性差别较大的元素形成的化合物通常比较适合形成离子型分子。
离子型化合物一般由交替的正负离子组成,通过正负离子的静电引力结合在一起。
吸引力的大小取决于离子所带的电荷及离子间的距离和一些其它因素。
将晶体点阵打破变成气态离子所需的总能量称为晶格能。
离子化合物中晶格能的变化趋势可以用离子电荷和距离来解释。
路易斯结构路易斯结构给出了分子中价层电子的分布。
成键的电子在单键(1对电子)、双键(2对电子)、三键(3对电子)中出现,分别在成键原子之间用1,2,3条横线描述。
非成键电子被称为孤对电子,用圆点表示于元素符号旁边。
路易斯结构可用以下五个步骤画出:第一步数出价层电子数。
第二步用单键组成键的框架。
第三步在每一个外部的原子放上3对孤对电子,H除外。
第四步将剩余的价层电子分配给内部的原子。
第五步将所有原子的形式上的电荷减至最小。
被4对原子包围的原子是八隅体结构的。
这种排布通常在第二周期的元素中比较常见。
当电子排布有多种时,使所有原子所带形式电荷减小的结构更优。
在一些情况下,一个分子可以画出两种或者更多的能量等价的路易斯结构,差别仅仅是电子对的位置不同。
这种结构被称为共振结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章化学键与分子结构【章节要点】价键基础共价键是通过原子核之间共用电子平衡吸引力和排斥力而形成的。
在H2中,这使得两个H原子距离为74pm 时能量最低。
这个距离就被称为键长。
这个距离的分子和孤立原子之间的能量差就称为键能。
H2中的单键是一个σ键,关于键轴旋转对称。
在简单的双原子分子例如O2,F2中,可以用含有单电子的原子轨道的重叠来描述键的形成。
当双原子分子中两个原子不同时,电子对趋向于被其中一个原子所吸引,导致电子共享的不平均,由此产生了极性共价键。
电子的不平均共享是分子中不同原子电负性不同的结果。
原子之间电负性差值越大,键的极性越大。
对于同一周期的原子,电负性一般随着原子序数的增大而增大;对于同一族的原子,电负性一般随着原子序数增大而减少。
离子键电负性差别较大的元素形成的化合物通常比较适合形成离子型分子。
离子型化合物一般由交替的正负离子组成,通过正负离子的静电引力结合在一起。
吸引力的大小取决于离子所带的电荷及离子间的距离和一些其它因素。
将晶体点阵打破变成气态离子所需的总能量称为晶格能。
离子化合物中晶格能的变化趋势可以用离子电荷和距离来解释。
路易斯结构路易斯结构给出了分子中价层电子的分布。
成键的电子在单键(1对电子)、双键(2对电子)、三键(3对电子)中出现,分别在成键原子之间用1,2,3条横线描述。
非成键电子被称为孤对电子,用圆点表示于元素符号旁边。
路易斯结构可用以下五个步骤画出:第一步数出价层电子数。
第二步用单键组成键的框架。
第三步在每一个外部的原子放上3对孤对电子,H除外。
第四步将剩余的价层电子分配给内部的原子。
第五步将所有原子的形式上的电荷减至最小。
被4对原子包围的原子是八隅体结构的。
这种排布通常在第二周期的元素中比较常见。
当电子排布有多种时,使所有原子所带形式电荷减小的结构更优。
在一些情况下,一个分子可以画出两种或者更多的能量等价的路易斯结构,差别仅仅是电子对的位置不同。
这种结构被称为共振结构。
当然也存在能量不等的共振结构;在这种情况下,带有最少形式电荷的结构依然是最优的。
价层电子对互斥(VSEPR)理论VSEPR理论认为分子采用电子对排斥力最小的一种构型。
通过将电子对放置在尽可能远的地方可以实现。
通常通过如下三个步骤预测分子的结构:画出分子的路易斯结构。
数出中心原子成键电子对和孤对电子对的数目,用下表确定电子对对数最适合的几何构型。
如有必要,通过考察电子对之间的排斥力修改分子几何构型。
排斥力主要取决于电子对是成键电子(BP)还是孤对电子(LP)。
排斥力的顺序如下:LP—LP>BP—LP>BP—BP当孤对电子对存在时,电子对的理想几何构型将会有轻微变形,因为孤对电子对比成键电子对占据更多的空间。
共价键的性质总电子分布不对称的分子存在着偶极矩。
偶极矩的大小用C m(库伦•米)来度量。
含有极性键的分子不一定存在偶极矩,因为方向相反的两个键的极性能够互相抵消,二氧化碳就是一个很好的例子。
分子的键长取决于成键原子的半径,而原子半径又取决于有效核电荷数。
两个原子之间的多重键要比相应的单键键长短。
键能随着化学键所含的电子数增加而增大,同样随着成键原子电负性差值的增加而增大。
一个化学键的键长和它的键能是成反比例的——随着键长的增加,键能减小。
价键理论价键理论描述的是分子采用杂化轨道重叠形成定域键的成键规律。
顾名思义,价键理论在形成化学键时仅仅考虑价层轨道。
价层原子轨道通过杂化形成杂化轨道,它所包含的轨道与所需的杂化轨道类型有关。
一个s轨道和3个p轨道的杂化形成4个sp3杂化轨道,一个s轨道和2个p轨道的杂化形成3个sp2杂化轨道,一个s轨道和1个p轨道的杂化形成2个sp杂化轨道。
这些过程分别剩余0、1、2个p轨道未参与杂化。
sp3杂化轨道排列成正四面体,sp2杂化轨道排列成平面三角形,sp轨道常采用直线型排列方式。
杂化轨道与临近原子的原子轨道或者杂化轨道重叠形成σ键;多重键可以认为是一个σ键加上一个π键(双键)或者一个σ键加上两个π键(三键);π键是由相邻的sp2或者sp杂化的原子中未参与杂化的p轨道重叠形成的。
分子轨道理论:双原子分子分子轨道理论考虑分子里所有原子轨道可能的重叠方式,以离域键的形式描述原子的结合。
两个原子轨道重叠形成的分子轨道能够覆盖整个分子。
原子轨道能够同相重叠(有效重叠)形成能量较低的成键分子轨道,或者异相重叠(无效重叠)形成能量较高的反键分子轨道。
在成键分子轨道中原子核之间的电子云密度最大,而在反键分子轨道里原子核之间包含一个电子云密度为零的节点。
所形成轨道的相对能量显示在分子轨道图上,电子按照原子轨道能级图里所用的相同的规则填入分子轨道能级图里。
简单双原子分子的键级可以通过如下公式计算得到:键级=1/2(成键轨道上的电子数—反键轨道上的电子数)键级一般是1,2或者3,但是也有可能存在非整数键级。
分子轨道理论能够解释O2分子的顺磁性这个实验现象,这是价键理论所不能达到的。
不过想要解释其他双原子分子的实验性质,轨道组合、s原子轨道和pz原子轨道的重叠必须考虑在内。
核心概念电负性的周期趋势通过这个趋势,可以由元素在周期表中的位置估计所成极性键的强弱,也可估计键中哪一个原子的电负性最大。
绘制路易斯结构的方法路易斯结构反映了分子或离子中价电子的分布情况。
该方法下画出的分子结构使更多的原子拥有八隅体稳定构型。
(1)每一个原子用它的元素符号来表示。
(2)连接两个元素符号的线表示被两个原子共享的电子对。
(3)路易斯结构式中只出现价电子。
(4)元素符号周围的点表示该原子的未成键电子,未成键电子通常成对出现并且自旋相反。
形式电荷通过分配形式电荷,可以选择出分子或离子的最佳路易斯结构。
决定共振结构的方法通过分配原子间的多重键,可以达到优化键的目的。
VSEPR理论当路易斯结构已知时,这个理论可用来预测分子或离子的几何构型。
(1)画出分子的路易斯结构式。
(2)数清中心原子周围的成键电子对和孤对电子对的对数,然后用下表确定电子对的最佳几何形状。
价层电子对的对数电子对的几何构型2 线形3 平面三角形4 四面体5 三角双锥体6 八面体(3)修正了几何构型之后,如果必要,可以考虑电子对之间的互斥作用影响,互斥作用的大小取决于它们是成键电子对(BP)还是孤对电子对(LP)。
互斥力大小有如下规则:LP-LP > BP-LP > BP-BP杂化轨道杂化轨道有助于解释分子中的键,尤其可以使分子构型合理化。
分子轨道图通过把电子填入到分子轨道图中,可以使简单的双原子分子的键级与实验结果相一致。
思考题及习题3.1 写出下列元素完整的电子构造,判断那个电子是成键电子。
(a)O (b)P (c)B (d)Br3.2 请描述一个氢原子和一个碘原子构成HI分子的成键过程,并画出轨道重叠图。
3.3 写出氢元素与周期表中第一主族元素形成的双原子分子,描述LiH中的键并画出轨道重叠图。
3.4 对于以下成对的元素,试判断在共价键中那种元素容易吸电子。
(a)C和N (b)S和H (c)Zn和I (d)S和As3.5 用δ+/δ-来标出下列键极性的方向。
(a)Si-O (b)N-C (c)Cl-F (d)Br-C3.6 按键极性的大小排列下列分子:H2O、NH3、PH3和H2S。
3.7 从元素Ca、C、Cu、Cs、Cl和Cr)中选取元素组成离子化合物,说明每种化合物是否形成了稳定的阴离子和阳离子。
3.8 以下是几种钡元素和氧元素可能形成的离子化合物:Ba+O–、Ba2+O2–,Ba3+O3–。
(a)哪一种具有最大的晶格能?(b)形成哪种离子所需的能量最低?(c)哪种化合物实际存在?并说明为什么。
3.9 写出下列物质中的价电子数。
(a)H3PO4(b)(C6H5)3C+(c)(NH2)2CO (d)SO42–3.10 将下列分子式转换成分子框架,计算每个分子构建框架所需的价电子数。
(a)(CH3)3CBr (b)(CH3CH2CH2)2NH (c)HClO3(d)OP(OCH3)33.11 确定NH3、NH4+、H2N–的路易斯结构。
3.12 用标准步骤逐步确定H3CNH2、CF2Cl2、OF2的路易斯结构。
3.13 确定下列多原子离子的路易斯结构,画出所有可能的共振结构并标出形式电荷数。
(a)NO3–(b)HSO4–(c)CO32–(d)ClO2–3.14 画出分子CF2Cl2、SiF4、PBr3的构型并命名3.15 画出1,2-二氯乙烷(ClH2CCH2Cl)的球棍模型来表示它的几何构型。
3.16 画出二甲基氨的路易斯结构式,确定其几何构型并绘制出球棍模型,类似于氨分子上的氢被甲基所取代。
3.17 命名中心原子有如下特征的分子形状。
(a)2个孤对电子和3个配体;(b)5对电子对,其中1对是孤对电子对;(c)3对电子对,没有孤对电子对;(d)5配体6对电子对。
3.18 由碘和氯组成的三种化合物ICl、ICl3、ICl5,确定它们的路易斯结构,判断分子构型,并画出每个化合物的球棍模型。
3.19 判断物质SO2、SbF5、ClF4+、ICl4–的分子构型和理论键角。
3.20 确定下列化合物的路易斯结构式,判断哪种化合物具有偶极矩。
对具有偶极矩的分子画出其球棍模型并用箭头标明偶极矩的方向。
(a)SF4(b)H2S (c)XeF2(d)GaCl3(e)NF33.21 二氧化碳没有偶极矩,但是二氧化硫的偶极矩μ=5.44×10-30C∙m。
试用路易斯结构来解释两者偶极矩的差异。
3.22 分子PF5、CH3I、BrF5中哪个的键角最有可能与VSEPR理论相背离?画出这个分子的草图,对相背离的情况进行说明。
3.23 利用表3.2对下列键的强度从低到高排列,并找出使键增强的最重要原因:C≡C、H-N、C=O、N≡N和C-C。
3.24 请描述氢原子和氯原子在HCl中键的形式,画出轨道重叠图。
3.25 在三氟化锑中键角是87°。
画出轨道重叠作用后的Sb-F键,描述SbF3中的键。
3.26 试命名由下列原子轨道组成的杂化轨道。
(a)3s和三个3p轨道(b)2s和一个2p轨道3.27 判断(CH3)2N H、S O2、C S2化合物中粗体字标出的原子在其中的杂化形式。
3.28 描绘丙酮溶剂(CH3)2CO中的键,画出所有键中轨道重叠的草图。
3.29 几种碳的化合物1,4-戊二烯、1-戊炔和环戊烯的分子式都是C5H8,运用电子对数目和杂化方式画出三种分子的成键图。
(a)(b)(c)3.30 判断下列轨道进行重叠时是形成σ键、π键还是不成键,试画出轨道草图,假定键位于z轴。
(a)2p z和2p z(b)2p y和2p x(c)sp3和2p z(d)2p y和2p y3.31 CNO可以形成两种不同的多原子阴离子氰酸根CNO–和异氰酸根NCO–,分别画出它们的路易斯结构式、包括等价共振式,并标出有效电荷。