数学:第十一章全等三角形复习教案(人教新课标八年级上)
(精)人教版数学八年级上册《全等三角形》全单元教案
第十二章《全等三角形》单元备课一、教学分析1、内容分析:本章主要内容是学习全等三角形的概念、性质以及判定方法,应用全等三角形的性质和判定探索角平分线的性质,能够应用全等三等三角形的性质和判定以及角平分线的性质解决简单的几何总是,初步掌握推理证明的方法。
2、教材分析:学生已经学过线段、角、相交线、平行线、有关三角形的一些知识,通过本章的学习可以丰富和加深学生对已学图形的认识,同时为学习其它图形打好基础,教材力求创设与生活场景相近的、有趣的问题情境引入,使学生经历了从现实生活探索并抽象出几何模型,并应用几何模型解决实际问题的过程,在内容上重点探索三角形全等的判定方法经及应用,至于角平分线的改天换地的两上互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆定理的概念,通过结合具体问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培养学生的推理能力。
二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。
2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。
3.利用尺规作图作一个角等于已知角、作一个角的角平分线。
4、经历角平分线的性质和判定方法的探究过程,灵活应用角平分线的性质和判定解决问题.三、本章教学建议(一)注重探索结论(二)注重推理能力的培养1.注意减缓坡度,循序渐进。
2.在不同的阶段,安排不同的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。
3.注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。
(三)注重联系实际三、几个值得关注的问题(一)关于内容之间的联系(二)关于证明一般情况下,证明一个几何中的命题有以下步骤:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程。
说课教案 三角形全等(二)
说课稿大家好,我说课的内容是八年级上册第十一章第三节,用“角边角”、“角角边”证明两个三角形全等。
一、教材分析本节之前已经学习了两种判定三角形全等的方法,学生对全等三角形的判定有了一定的了解,这为过渡到本节的进一步学习起着铺垫作用。
本节内容是在本章内容中,占据重要的的地位。
它为其它学科和今后的几何学习打下基础。
二、教材目标1、探究并掌握两个三角形全等的条件:“ASA”“AAS”,并能运用它们判别两个三角形是否全等。
2、经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力。
三、教学重难点重点:理解、掌握三角形全等的条件:“ASA”“AAS”。
难点:探究出“ASA”“AAS”以及它们的运用。
四、学情分析刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。
五、教学过程1、回顾旧知。
首先通过两个题目回忆前面讨论的用“边边边”、“边角边”证明三角形全等,其中第二题在原有基础上有所提升,且起到承上启下的作用。
题目为已知△ABD≌△ACE,那么△ABE≌△ACD吗?2、引入新课。
探究两角和两角的夹边对应相等,两三角形是否全等,学生经历自己画图、小组合作得出结论。
让学生总结条件中的注意点。
3、题型展现AD平分∠BAC,AD垂直于BC,△ABD≌△ACD吗?此题肯定能很快想到思路,让多个学生叙述过程,老师并要板书过程,目的强调条件顺序为“角边角”。
仍由此图转化条件为:AD平分∠BAC,∠B=∠C,△ABD还全等于△ACD吗?由刚刚讲的“角边角”,学生很容易进入误区,而且坚定的认为这个结论是不成立的,这时老师可以把思路直接说给学生听,让学生自己判断过程的正确性,从而得到全等的第四种判定方法“角角边”,在这里强调“角角边”就是一种判定方法,遇到相应的条件就可以直接用了,无需再转化成“角边角”。
八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思
八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思教材分析1.掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题;学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
2.培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
学情分析1、学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
2、学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
3、根据学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限。
教学目标(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
教学重点和难点重点:三角形全等条件的探索过程是本节课的重点。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对学生有一定的难度。
教学过程全等形、全等三角角形的概念,对应关系。
判定两个三角形是否全等,至少需要多少个怎样的条件?给定三条定长的线段a.b.c.用这三条线段分别画两个三角形,然后剪下来对照,发现什么问题,多做几次。
八年级数学上册期末复习资料
初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF=。
知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。
求证:BP 为MBN ∠的平分线。
例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
八年级数学 第十一章 第1节 全等三角形 人教新课标版
初二数学第十一章第1节全等三角形人教新课标版一、学习目标:1. 通过实例理解全等图形的概念和特征,并能找出全等图形。
2. 能叙述全等三角形的定义及相关概念,并能找出两个全等三角形的对应边和对应角。
3. 掌握全等三角形的性质,会利用全等三角形的性质进行简单的推理和计算,解决一些实际问题。
二、重点、难点:重点是全等三角形的概念,难点是全等三角形的对应顶点要对应写,对应关系要明确。
三、考点分析:本讲所涉及的考点是全等三角形的概念与全等三角形的性质。
在这里,全等三角形的概念属于了解范畴,而全等三角形的性质属于掌握范畴,对其性质还要求会运用。
这两个知识点不会单独出大题,只会以小题的形式出现,或在大题中用到。
所以,大家只要在掌握各概念性质的基础上弄清对应关系即可。
1. 全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。
(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点。
重合的边叫做对应边。
重合的角叫做对应角。
(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12. 全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等。
知识点一:全等三角形的基本概念例1. 下列说法正确的有()①用一张底片冲洗出来的10张一寸照片是全等图形②我国国旗上的4颗小五角星是全等图形③所有的正方形是全等图形④全等图形的面积一定相等A. 1个B. 2个C. 3个D. 4个思路分析:1)题意分析:本题主要考查全等图形定义中对“能够完全重合”的理解。
2)解题思路:根据全等图形的定义:“能够完全重合的两个图形叫做全等图形。
”来判断题目中每一句话中所谈到的图形是否能完全重合。
解答过程:用一张底片冲洗出来的10张一寸照片的形状和大小完全相同,它们是全等图形,所以①正确;我国国旗上的四颗小五角星的形状和大小也完全相同,它们也是全等图形;所以②正确;所有的正方形只是形状相同,但大小不一定相同,所以它们不是全等图形,故③不正确;全等图形的形状和大小完全相同,所以面积一定相等,所以④正确。
新人教版八年级数学上册第11--13章知识点总结
新人教版八年级数学上册第11--13章知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边;任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线;顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中;连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交;这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的;三角形的这个性质叫三角形的稳定性.7.多边形:在平面内;由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段;叫做多边形的对角线.11.正多边形:在平面内;各个角都相等;各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖;叫做用多边形覆盖平面;13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线;把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了;这个三角形的形状、大小就全确定;这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等;对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件;如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意;画出图形;并用数字符号表示已知和求证.⑶经过分析;找出由已知推出求证的途径;写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠;直线两旁的部分能够互相重合;这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠;如果它能够与另一 个图形重合;那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线;叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰;另一条边叫做底边;两腰所夹的角叫做顶角;底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称;对称轴都是任何一 对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线;底边上的高相互重合. ④等腰三角形是轴对称图形;对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等;都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形;对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等;那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点;作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:。
第十一章 全等三角形小结与复习教案 新人教版
第十一章 全等三角形 全等三角形小结与复习考点呈现考点一 全等三角形的概念和性质例1 下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的对应边相等,对应角相等;④经过平移得到的三角形与原图形是全等形.其中正确的命题有 ( ) A. 1个 B. 2个 C. 3个 D. 4个解析:全等三角形是指两个完全重合的三角形,不仅形状相同,大小也相同,两者缺一不可.互相重合的边叫做对应边,互相重合的角叫做对应角,平移、翻折、旋转不改变图形的大小与形状,所以③④正确.故选B.点评:本题主要考查了全等三角形的概念和性质,注意把一个图形平移、旋转、折叠后得到的图形与原来的图形全等.例2 如图1,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若︒=∠64CDE ,则ADP ∠等于 ( )A .42°B .48°C .52°D .58°解析:由题意知△C DE ≌△PDE ,所以︒=∠=∠64CDE PDE ,则︒=︒-︒-︒=∠-∠︒=∠526464180-180PDE CDE ADP .故选C.点评:本题以折叠为背景,主要考查全等三角形的性质,运用全等三角形的对应角相等结合平角的概念解决问题.考点二 三角形全等的判定例3 (2010年四川巴中)如图2,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件 不能是 ( )A .∠B =∠C B. AD = AE C .∠ADC =∠AEB D. DC = BE解析:已知AB =AC ,还有一个公共角∠A ,具备了一边一角的条件,可根据“SAS ”添加AD =AE ;可根据“ASA ”添加∠B =∠C ;可根据“AAS ”添加∠ADC =∠AEB ;若添加DC =BE ,则是 “SSA”不能判定两个三角形全等.故选D. 点评:本题目是一道条件开放型问题,判定三角形全等的方法有“SSS 、SAS 、AAS 、ASA ”,要根据已知条件添加一条边或一个角满足以上四个判定方法即可,但是需注意添加边时,不能构成“SSA ”的形式. 例4 (2010年四川凉山州)如图3,已知∠E =∠F =90°,∠B = ∠C ,AE =AF .有下列结论:①EM =FN ;②CD =DN ;③∠FAN = ∠EAM ;④△ACN ≌△ABM .其中正确的有 ( ) A.1个 B.2个 C.3个 D.4个解析:因为∠E =∠F =90°,∠B =∠C ,AE =AF ,所以△AEB ≌△AFC .所以AC =AB, ∠EAB =∠FAC .在△ACN 和△ABM 中,∠C =∠B ,AC =AB ,∠CAB =∠BAC ,所以△ACN ≌△ABM ,④正确;因为∠EAB =∠FAC ,所以∠EAB -∠CAB =∠FAC -∠CAB ,即∠EAM =∠FAN ,③正确;在△EAM 和△FAN 中,∠EAM =∠FAN ,AE =AF ,∠E =∠F =90°,所以△EAM ≌△FAN . 所以A EF B CD M NEM =FN ,①正确;由已知条件不能判断出CD =DN .故正确的有3个,应选C.点评:本题主要考查三角形全等的判定,求解时应同时从题设条件和图形出发,寻求三角形全等的条件,准确判定.考点三 运用三角形全等证明线段(或角)相等例5 (2010年呼和浩特)如图4,点A ,E ,F ,C 在同一条直线上,AD ∥BC ,AD =CB ,AE =CF .求证BE =DF .分析:要证明的两条线段BE 和 DF 分别为△CBE 和△ADF 中的边,可以考虑通过证明△ADF ≌△CBE 来解决.证明:∵ AD ∥BC ,∴ ∠A =∠C .∵ AE =FC , ∴ AF =CE .在△ADF 和△CBE 中,AD =CB ,∠A =∠C , AF =CE , ∴ △ADF ≌△CBE . ∴ BE =DF . 点评:如果要证明的两条线段分别是两个三角形的边时,通常可以尝试通过三角形全等进行证明.例6 (2010年北京,改编)如图5,点A ,B ,C ,D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,EC =BF ,AB =DC .求证∠ACE =∠DBF .分析:要使∠ACE =∠DBF ,只要Rt △EAC ≌Rt △FDB 即可,两个三角形显然满足“HL ”.证明:∵ AB =DC , ∴ AC =DB .∵ EA ⊥AD ,FD ⊥AD , ∴ ∠A=∠D=90°.在Rt △EAC 和Rt △FDB 中,EC =FB ,AC =DB , ∴ Rt △EAC ≌Rt △FDB . ∴ ∠ACE =∠DBF .点评:注意“HL ”只适用于直角三角形,而“SSS 、SAS 、ASA 、AAS ”适用于所有的三角形.考点四 三角形全等的实际应用例7 (2010年广安)某学校花台上有一块形如图6所示的三角形ABC 地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,现只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.解析:本题是要利用尺子和量角器测量得到的数据作一个三角形与△ABC 全等,根据全等三角形的判定可以有多种测量方案. 如:⑴用量角器分别量出∠A 、∠B 的大小;⑵用尺子量出AB 的长,根据这三个数据,按照原来的位置关系加工地砖.DOBA 点评:本题是一道方案设计问题,主要考查运用三角形全等解决实际问题的能力,具有一定的开放性,主要依据“SAS 、ASA 、AAS 、SSS ”设计测量方案.考点五 角的平分线的性质例8 有下列说法:①角的平分线上任意一点到这个角两边的距离相等;②到一个角两边距离相等的点在这个角的平分线上;③三角形三条角平分线的交点到三个顶点的距离相等;④三角形三条角平分线的交点到三边的距离相等.其中正确的有 ( )A. 1个B. 2个C. 3个D. 4个解析:由角的平分线的性质可知①②④正确.故选C.点评:解题时要注意用角的平分线的性质,不要总是用全等去证明.例9 (2010年曲靖)如图7,在Rt△ABC 中, ∠C =90°,若BC =10,AD 平分∠BAC 交BC 于点D ,且BD ︰CD =3︰2,则点D 到线段AB 的距离为_________. 解析:要求点D 到AB 的距离,过点D 作DE ⊥AB 于点E ,线段DE 长度即为所求. 因为AD 平分∠BAC ,所以DE =CD . 因为BD ︰CD =3︰2,所以4105252=⨯==BC CD .故DE =CD =4. 点评:解决本题的而关键是运用角的平分线的性质把求点D 到线段AB 的距离转化为求线段CD 的长度.误区点拨误区一 对“对应”二字理解不深、不透例1 已知两个直角三角形中,有一锐角相等,又有一边相等,说明这两个三角形是否全等.错解:这两个三角形全等.剖析:对全等三角形判定定理中的“对应边相等”没有理解,错把边相等当成对应边相等.正解:这两个三角形不一定全等,如图1,在Rt △ABC 与Rt △EDC 中,CD =AB ,∠1=∠2,∠C =∠C =90°,显然△ABC 与△EDC 不全等.误区二 臆造全等的判定方法例2 如图2,AC 和BD 相交点于O ,且C D ∠=∠, BC AD =.求证△DAB ≌△CBA . 错解:在△DAB 和△CBA 中,AD =BC ,AB =BA ,∠D =∠C ,所以△DAB ≌△CBA .剖析:“SSA ”不能判定三角形全等,属于臆造三角形全等的判定方法导致错误. 正解:在△ODA 和△OCB 中,∠D =∠C ,∠AOD =∠BOC ,AD =BC ,所以△ODA ≌△OCB . 所以OD =OC ,OA =OB .所以OD +OB =OC +OA ,即BD =AC .在△DAB 和△CBA 中,AD =BC ,∠D =∠C ,BD =AC ,所以△DAB ≌△CBA . 误区三 忽视图形的多种情况例3 已知△ABC 和△A ′B ′C ′中,AB =A ′B ′,AC =A ′C ′,若AD ,A ′D ′分别是BC ,B ′C ′边上的高,且AD =A ′D ′.问△ABC 与△A ′B ′C ′是否全等?如果全等,给出证明;如果不全等,请举出反例.错解:这两个三角形全等.证明如下:如图3,在Rt △ABD 和Rt △A ′B ′D ′中,因为E DCBAB DAB =A ′B ′,AD =A ′D ′,所以Rt △ABD ≌Rt △A ′B ′D ′. 所以BD =B ′D ′. 同理可得DC =D ′C ′,所以BC =B ′C ′.在△ABC 和△A ′B ′C ′中,因为AB =A ′B ′,AC =A ′C ′,BC =B ′C ′,所以△ABC ≌△A ′B ′C ′.剖析:这两个三角形不一定全等.当这两个三角形均为钝角(或锐角)三角形时全等;若一个是锐角三角形,一个是钝角三角形时就不可能全等.正解:这两个三角形不一定全等.如图4,虽有BD =B ′D ′,DC =D ′C ′,但BC ≠B ′C ′,因此这两个三角形不全等.跟踪训练1.如果NMQ ∆∆≌MNP ,且8cm MN =,7cm PN =,6cm PM =,则MQ 的长为 ( )A .cm 8B .cm 7C .cm 6D .cm 52.如图1,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△ 的是 ( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠3.如图2,BOP CPO ∠=∠,PC ∥OA ,4=PD ,则点P 到OB的距离是 ( )A .2B .3C .4D .5A B CD图1PODCB AA ′B ′C ′D ′ABC D图3A BC D图4A ′B ′D ′4.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是 ( )A .SASB .ASAC .AASD .SSS5.如果△ABC ≌△DEF ,△DEF 周长是32 cm ,DE=9cm ,EF=13 cm ,∠E=∠B , 则AC=____ cm.6.如图3,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,可补充的条件是 .(写出一个即可)7.如图4,ABE △和ACD △是ABC △分别沿着150BAC ∠=,则θ∠的度数是 .8.如图5,在Rt△ABC 和Rt △BAD 中,AB 为斜边,AC =BD ,BC ,AD 相交于点E .求证A D=BC .9. 如图6,在ABC ∆中,︒=∠90ACB ,BC AC =,CE BE ⊥,CE AD ⊥,垂足分别为E ,D ,且cm AD 5=,cm DE 3=,求BE 的长度.10. 如图7,正方形网格中有一个ABC △,请你在方格内画出满足条件1111A B AB BC BC ==,,1A A ∠=∠的所有的111A B C △,(形状相同算一个),并判断111A B C △与ABC △是否一定全等?你能够得到什么结ACE B D 图3CDA EBθ图4BA C图7论?跟踪训练参考答案1.B2.C3.C4.D5. 106.答案不唯一,如AC AE =或D B ∠=∠等 7.︒60 8.证明:在Rt △ABC 和Rt △BAD 中,AB =BA ,AC =BD , ∴ Rt △ABC ≌Rt △BAD . ∴ A D=BC .9.解:∵ ︒=∠90ACB , ∴ ︒=∠+∠90BCE ACD . ∵ CE BE ⊥,CE AD ⊥,∴ ︒=∠=∠90CEB ADC ,︒=∠+∠90CAD ACD . ∴ ∠CAD =∠BCE . ∵ BC AC =,∴ ACD ∆≌CBE ∆.∴ cm CE AD 5==,BE CD =. ∵ )(235cm DE CE CD =-=-=. ∴ cm BE 2=. 10.解:如图所示:ABC △与111A B C △不一定全等.结论:由两边及其中一边的对角对应相等的两个三角形不一定全等.BACB 1A 1C 1C 1B 1A 1。
八年级数学上学期期中复习《全等三角形》课案(教师用) 新人教版【精品教案】
课案(教师用)全等三角形(复习课)【理论支持】九年义务教育阶段的数学课程应该突出体现基础性、普及性、和发展性,使数学教育面向全体学生。
《数学新课程标准》中指出:对学生数学学习的评价,既要关注学生的在学习过程中的变化和发展,也要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度。
《三角形全等复习课内容》选用义务教育课程标准实验教科书《数学》八年级上册第十一章的内容,三角形全等是初中数学中重要的学习内容之一。
本套教材把三角形全等看作是几何证明的重要基础,同时三角形全等的概念,三角形全等的判别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。
本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。
针对教材内容和初二学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。
然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。
教学重难点:重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
课时安排一课时【教学设计】课前延伸1、______________三角形是全等三角形,________________是对应角,____________是对应边,________________是对应顶点。
(完整word版)全等三角形判定的复习教案
全等三角形判定的复习学习目标:1、了解判定两个三角形全等的4种方法,并能应用它们解决简单问题;2、学会用全等的方法证明线段(角)的相等3、了解全等的证明思路,学会合理思考.教学重点:1、了解判定两个三角形全等的4种方法,并能应用它们解决简单问题;2、学会用全等的方法证明线段(角)的相等教学难点:1:如何灵活运用合适判定方法进行全等证明 2:初步认识并获得全等的证明思路 教学过程:(一) 温故知新:(直接导入复习内容)学生回顾旧知识 1、全等三角形的定义?能够完全重合的两个三角形叫全等三角形 2、全等三角形的性质?全等三角形对应边相等,对应角相等 3、全等三角形的判定方法判定方法1 三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS ” ) 判定方法2 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)判定方法3 有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)判定方法 4 有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)(师引言本章重点复习三角形的全等进入全等证明) (二) 基础训练:1.如图, A,E,B,D 在同一直线上, AB=DE,AC=DF,AC ∥ DF,在ΔABC 和ΔDEF, (1)求证: ΔABC ≌ΔDEF (学生口述过程)(师指出需要条件先给予证明)(1)证明:∵AC ∥DF(已知) ∴∠A=∠D (两直线平行,内错角相等) 在ΔABC 和ΔDEF 中AB=DE(已知) ∠A=∠D(已证) AC=DF (已知∴ΔABC ≌ΔDEF(SAS) (2) 如图,A,E,B,D 在同一直线上, 在ΔABC 和ΔDEF 中, AB=DE,AC=DF,AC ∥DF, 你还可以得到的结论是 .(写出一个,不添加其他线段,不再表注或使用其他字母) 解:根据”全等三角形的对应边(角)相等”可知:① BC=EF, ② ∠C=∠F③ ∠ABC=∠ DEF, (师引导学生分析全由学生回答) ④ EF ∥BC ⑤ AE=BDF EDC BA F E DC BA(基础训练2)已知:如图,AB=AD,AC=AE,∠1=∠2, (本题全由学生解答) 求证:∠B=∠D.证明: ∵∠1=∠2 (已知) ∴ ∠1+∠DAC =∠2+ ∠DAC, (等式性质)即∠BAC=∠DAE (等量代换) 在ΔABC 和ΔADE 中AB=AD(已知)∠BAC=∠DAE(已证) AC=AE (已知)∴ ΔABC ≌ΔADE(SAS) ∴ ∠B=∠D(全等三角形的对应角相等)(三)开放训练: 1 、如图,点B 在AE 上,∠CAB=∠DAB,要使ΔABC ≌ΔABD,可补充的一个条件是___________________ .如图,AE=AD,要使ΔABD ≌ΔACE,请你增加一个条件是如图,AB,CD 相交于点O,OA=OD.要使ΔOAC ≌ΔODB,请你增加一个条件是 .(四)合作探究:在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,如图,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:△ ADC ≌ △CEB.如图在ΔACD 和ΔCBE 中AC=BC, ∠ACB= 120°, ∠ ADC=∠BEC= 120°, ΔACD 和ΔCBE 是否还全等?(学生分组合作讨论)(从中你发现了什么?)CBOAD E DCBAACDBE120°120° 120°ENM EDCBAE DC BA ACDBEX ° X °X °(五)谈收获:通过本节的学习,谈谈你在全等证明问题中的收获和经验(六)教师总结1.证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法2.全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时①要观察待证的线段或角,在哪两个可能全等的三角形中。
数学八年级上人教版第十一章全等三角形复习课件
三、解答题:
1 、 已 知 如 图 △ ABC≌△DFE , ∠A=96º,∠B=25º,DF=10cm。
求 ∠E的度数及AB的长。
A
D
B
CE
F
2 已知如图 CD⊥AB于D,BE⊥AC于E, △ ABE≌△ACD , ∠ C=20º, AB=10 , AD=4,G为AB延长线上的一点。 求 ∠EBG的度数及CE的长。
C E
F
A
D BG
3如图:已知△ABC≌△ADE,BC的延长 线 交 DA 于 F , 交 DE 于 G , ∠ ACB=105º, ∠CAD=10º,∠D=25º。 求 ∠EAC,∠DFE,∠DGB的度数。
D
G FC
E
A
B
寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边, 最小的边是对应边; (5)两个全等三角形最大的角是对应角, 最小的角是 对应角;
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC, D在AB上,E是AC延长线上一点,且 BD=CE,DE与BC交于点F. 求 证:DF=EF.
提示:此题辅助线作法 较多,如: ①作 DG∥AE交BC于G; ②作EH∥BA交BC的延 长线于H; 再通过 证三角形全等得DF= EF.
三角形中常见辅助线的作法
1.延长中线构造全等三角形
例1 如图1,已知△ABC中,AD 是△ABC的中线,AB=8,AC=6, 求AD的取值范围.
提示:延长AD至A',使 A'D=AD,连结 BA'.根据“SAS”易证 △A'BD≌△ACD,得AC =A'B.这样将AC转移 到△A'BA中,根据三角 形三边关系定理可解.
全等三角形判定复习教案
全等三角形的判定(复习)
【学习目标】:
1、熟记三角形全等的判定条件,能灵活运用各种方法判定两个三角形全等。
2、运用各种全等判定法进行说理;
【重点难点】:
重点:灵活应用各种判定法识别全等三角形.
难点:判定三角形全等的正确的思维方法及正确的数学表述 【教学过程】:
二、典型例题解析:
1、如图D 在AB 上,E 在AC 上,且∠B=∠C ,补充一个条件使△ABE ≌△ACD
2如图(四),点P 是AB 上任意一点,ABC ABD ∠=∠, (1)请补充一个条件,使PC=PD ,你添加的条件是 ,并简单说明理由 (2)图中有几对全等三角形
温馨提示:(1)由图形可知的一个条件是
(2)如何说明PC=PD ?你的基本思路是什么?
三、巩固练习
1、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P,BE 与CD 交于点Q ,连结PQ 。
以下五个结论:①AD=BE;②PQ ∥AE ;③AP=BQ;④DE=DP ;⑤∠AOB=60°.
恒成立的结论有_______________________(把你认为正确的序号都填
上).
Q
P
O B
E
D C A
五、作业
如图,在ΔABC 和ΔDCB 中,AC 与BD 相交于点., AB = DC,AC = BD. (1)求证: ΔABC ≌ΔDCB;(2)判断 Δ0BC 的形状并说明
C
A
D
P B 图(四)。
八年级数学(上)全册教案(新人教版)(初中数学培优)
最权威初中复习资料 - 1 -第十一章 全等三角形 11.1全等三角形教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质;3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉;4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣。
重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角 教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形 引导学生完成课本P 3思考: 归纳:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用“≌”表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如⊿ABC 和⊿DEF 全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作⊿ABC ≌⊿DEF 。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考:如课本P 3思考图11.1-1中,⊿ABC ≌⊿DEF ,对应边有什么关系?对应角呢? 归纳:全等三角形性质:全等三角形的对应边相等; 全等三角形的对应角相等。
思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角最权威初中复习资料- 2 -DDD(2)将⊿ABC 沿直线BC 平移,得到⊿DEF,说出你得到的结论,说明理由?B E(3)如图,⊿ABE ≌⊿ACD, AB 与AC ,AD 与AE 是对应边,已知:∠A=43°,∠B=30°,求∠ADC 的大小。
BC作业:P4习题11.1第1,2,3题。
全等三角形优质课课件
全等三角形优质课课件第1篇:全等三角形优质课课件一、教材背景及学情分析:本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的*质,探索发现全等三角形的*质.新课标对本节课的要求是:“了解全等三角形的有关概念,探索并掌全等三角形的*质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。
三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识练习紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。
二、教学目标分析:1、知识技能了解全等形及全等三角形的概念,能理解全等三角形的*质,并能熟练找出两个全等三角形的对应角、对应边。
2、数学思考在图形的变换以及实际*作的过程中,发展学生的空间观念,培养学生的几何直观能力。
3、过程与方法在探索全等三角形*质的过程中,体会研究问题的方法,感受图形变化途径4、情感态度与价值观让学生在观察、发现生活中的全等形和实际*作中获得全等形和全等三角形的体验;在探究和运用全等三角形*质的过程中感受数学活动的乐趣。
5、教学重点⑴全等三角形以及相关概念。
⑵探索全等三角形的*质.6、教学难点寻找并掌握全等三角形对应角、对应边的方法。
三、教法分未完,继续阅读 >第2篇:全等三角形课件【教学目标】1.使学生理解边边边公理的内容,能运用边边边公理*三角形全等,为*线段相等或角相等创造条件;2.继续培养学生画图、实验,发现新知识的能力.【重点难点】1.难点:让学生掌握边边边公理的内容和运用公理的自觉*;2.重点:灵活运用sss判定两个三角形是否全等.【教学过程】一、创设问题情境,引入新课请问同学,老师在黑板上画得两个三角形,△abc与△全等吗?你是如何判定的.(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.)上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等.满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究.二、实践探索,总结规律1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段、、,分别为、、,你能画出这个三角形吗?先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.步骤:(1)画一线段ab使它的长度等于c(4.8cm).(2)以点a为圆心,以线段b(3cm)的长为半径画圆弧;以点b为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点未完,继续阅读 >第3篇:全等三角形说课课件一、说教材全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。
八年级数学 第十一章全等三角形综合复习 人教新课标版
初二数学第十一章全等三角形综合复习人教新课标版一、学习目标:1. 复习全等形与全等三角形的概念、全等三角形的判定定理,以及角平分线的作图方法和角平分线的性质等知识,建立知识系统;2. 使学生总结寻找全等三角形及其全等条件的方法、归纳常见辅助线的作法,使学生掌握分析问题的方法,提升解题能力。
二、重点、难点:重点:将所学知识科学地组织起来,将其纳入已有的知识结构中。
难点:提升分析问题、解决问题的能力。
三、考点分析:全等三角形是初中几何的重要内容,也是数学中最基础的知识,是研究平面几何的重要工具。
近几年的中考数学试题中,经常将全等与其他知识结合在一起,考查学生综合运用数学知识解决问题的能力,形式多种多样,为全等这一传统的话题增添了新颖的味道。
1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSS HL AAS SAS ASA AAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
思路分析:从结论ACF BDE ∆≅∆入手,全等条件只有AC BD =;由A E B F =两边同时减去EF 得到AF BE =,又得到一个全等条件。
还缺少一个全等条件,可以是CF DE =,也可以是A B ∠=∠。
由条件AC CE ⊥,BD DF ⊥可得90ACE BDF ∠=∠=,再加上AE BF =,AC BD =,可以证明ACE BDF ∆≅∆,从而得到A B ∠=∠。
新人教版八年级数学第11章全等三角形教案(全章)
第1课时全等三角形第2课时三角形全等的判定(1)第3课时三角形全等的判定(2)教学目标1、会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、掌握作已知角的平分线的方法及步骤。
教学重点用尺规作一个角等于已知角,作已知角的平分线。
教学难点规范使用尺规,规范使用作图语言,规范的按照步骤作出图形。
教学互动设计设计意图一、创设情境导入新课前面我们用量角器画一个角等于已知角和画一个已知角∠AOB的平分线OC,怎样用尺规来作一个角等于已知角和作已知角的平分线呢?由具体的问题引入,激发学生的学生兴趣二、合作交流解读探究【问题1】作一个角等于已知角。
已知如图,∠AOB求作:∠A’O’B’,使∠A’O’B’=∠AOB教师在黑板上作图,同时写出作法:①作射线O’A’。
②以O点为圆心,以任意长为半径画弧,交OA于点C,交OB于点D。
③以O’为圆心,以OC长为半径画弧,交O’A’于点C。
④以C’为圆心,以CD长为半径画弧,交前面的弧于点D’。
⑤过点D’作射线O’B’,∠A’O’B’ 就是所求作的角。
只用无刻度的直尽和圆规作图的方法称为尺规作图。
问:你能验证你所作的角与已知角相等吗?【问题2】作一个已知角∠AOB的平分线OC。
分析:假如∠AOB的平分线OC已经画出,在前面角的平分线的研究中,我们用折线的实验发现:如果有OE=OD,那么CE=CD.这个实验也启发我们:如果有OE=OD,CE=CD,那么OC平分∠AOB吗?用“SSS”公理易证△OEC≌△ODC,∠EOC=学生探索作图方法通过示范,使学生明白如何利用尺规作一个角等于已知角。
第4课时三角形全等的判定(3)教学目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.能运用“SAS”证明简单的三角形全等问题.教学重点会用“边角边”证明两个三角形全等。
教学难点会正确运用“SAS”判定定理,在实践观察中正确选择判定三角形的方法。
八年级数学上册 第十一章 三角形复习教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案
第十一章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和。
三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。
教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。
接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。
这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。
最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标〔知识与技能〕1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。
4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。
〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。
〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平页镶嵌设计是难点。
课时分配11.1与三角形有关的线段……………………………………… 2课时11.2 与三角形有关的角………………………………………… 2课时11.3多边形及其内角和………………………………………… 2课时本章小结………………………………………………………… 2课时三角形的边[教学目标]1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.[重点难点]三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
初中数学(人教版)八年级上知识点最全总结
初中数学(人教版)八年级上知识点最全总结第十一章全等三角形一.知识框架二.知识概念1. 全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2 .全等三角形的性质:全等三角形的对应角相等、对应边相等。
3. 三角形全等的判定公理及推论有:(1 )“ 边角边” 简称“SAS”(2 )“ 角边角” 简称“ASA”(3 )“ 边边边” 简称“SSS”(4 )“ 角角边” 简称“AAS”(5 )斜边和直角边相等的两直角三角形(HL )。
4. 角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5. 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式( 顺序和对应关系从已知推导出要证明的问题). 在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称一.知识框架二.知识概念1. 对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2. 性质:(1 )轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2 )角平分线上的点到角两边距离相等。
(3 )线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4 )与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5 )轴对称图形上对应线段相等、对应角相等。
3. 等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4. 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
人教初中数学课标八年级上册 第十一章 11.1与三角形有关的线段(第二课时) 教案
11.1与三角形有关的线段(第二课时)一、内容和内容解析1.内容三角形的高、中线与角平分线,三角形的稳定性2.内容解析三角形的高、中线与角平分线是三角形内部的三条重要线段,也是“图形与几何”必备的知识基础。
既是对前面学过的线段的中点、垂线及角平分线等知识的内化,又为后面学习全等三角形及相似三角形等知识奠定了基础。
理解三角形的高、中线与角平分线的概念到用几何语言精确表述,这是学生在几何学习上的一个深入.基于以上分析,确定本节课的教学重点:理解三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线。
二、目标和目标解析1.目标(1)理解三角形的高、中线与角平分线的概念,了解三角形的稳定性。
(2)会用工具准确画出三角形的高、中线与角平分线。
2.目标解析达成目标(1)的标志是:学生通过画图操作理解三角形的高、中线与角平分线的概念,并能用几何语言表述;通过教具展示感受三角形的稳定性。
达成目标(2)的标志是:能在具体的图形中利用工具作出三角形的高线、中线、角平分线。
三、教学问题诊断分析画钝角三角形的高时,有两个垂足落在边的延长线上,对于图形的这种特点学生不太适应,教学时可结合过线段外一点画已知线段的垂线(垂足在线段的延长线上)的知识帮助学生理解。
基于以上分析,确定本节课的教学难点是:画钝角三角形的高。
四、教学过程设计1.质疑展示,操作验证问题1.通过画三角形的中线,你有什么发现?师生活动:学生回答,三角形有三条中线。
追问1.教材中以三角形一条边上的中线为例介绍了三角形的中线,结合作图你能用语言描述三角形中线的定义吗?师生活动:学生通过讨论概括三角形中线的定义,教师加以完善。
设计意图:让学生通过亲自作图,先从形象上认识三角形中线的定义,然后用语言归纳出中线定义,这样做,不仅容易理解定义,同时也培养了他们的语言表达能力。
追问2.除此之外你还有什么发现?师生活动:学生回答,三角形三条中线交于一点追问3.在作图过程中三角形的三条中线都交于一点吗?师生活动:学生交流,提出质疑,教师提供技术帮助,学生亲自操作验证。
人教版数学八年级上第十一章全等三角形综合复习及答案
初二数学第十一章全等三角形综合复习第十一章全等三角形复习(一)全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
(三)学习全等三角形应注意以下几个问题:(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” (5)截长补短法证三角形全等。
【切记】:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
数学:11.2三角形全等的判定(第4课时)课件(人教新课标八年级上)
书面作业: 课后体会:学完判定全等三角形的条件后,你 有什么收获?
§11.2.4 三角形全等的判定
复习旧知 引入新知
1:如图:△ABC≌△DEF,指出它们的对应角、 对应边。
A D
B
E
C
F
AB——DE AC——DF BC——EF ∠A——∠D ∠B——∠DEF ∠ACB——∠F
2:我们已经学过判定全等三角形的方法有哪些? (SSS)、(SAS)、(ASA)、(AAS)
如果他只带了一个卷尺,能完成这个任务?
A
B
1
C
1
C
B
A1
那么他只能测直角边 和斜边了,只满足斜 边和一条直角边对应 相等索规律
任意画一个Rt△ACB ,使∠C﹦90°,再画一个 Rt△A′C′B′使∠C﹦∠C′,B′C′﹦BC,A′B′﹦AB (1):你能试着画出来吗?与小组交流一下。 (2):把画好的Rt△A′C′B′放到Rt△ACB上, 它们全等吗?你能发现什么规律? 作法: 1、画∠MC′N=90°
B
A
F E G
C
D
变式训练2
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF
想想:BD平分EF吗?
B
E A F G
C
D
联系实际 综合应用 如图,有两个长度相同的滑梯, 左边滑梯的高度AC与右边滑梯 水平方向的长度DF相等,两个滑 梯的倾斜角∠ABC和∠DFE的大 小有什么关系?
议一议
∠ABC+∠DFE=90°
解:在Rt△ABC和Rt△DEF中
BC=EF, AC=DF . ∴ Rt△ABC≌Rt△DEF (HL). ∴∠ABC=∠DEF (全等三角形对应角相等). ∵ ∠DEF+∠DFE=90°, ∴∠ABC+∠DFE=90°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章全等三角形复习教案
一、知识点:
1.全等三角形:
⑴全等形:能够完全重合的两个图形叫全等形。
⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。
⑶全等三角形的性质:全等三角形对应边相等,对应角相等。
2.三角形全等的性质:
全等三角形的识别:SAS,ASA,AAS,SSS,HL(直角三角形)
3.角平分线的性质:
⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。
⑵角平分线的判定:到角两边距离相等的点在角的平分线上。
⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。
二、经验与提示
1.寻找全等三角形对应边、对应角的规律:
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.
③有公共边的,公共边一定是对应边.
④有公共角的,公共角一定是对应角.
⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)
2.找全等三角形的方法
(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;
(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;
(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;
(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
3.角的平分线是射线,三角形的角平分线是线段。
4.证明线段相等的方法:
(1)中点定义;
(2)等式的性质;
(3)全等三角形的对应边相等;
(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。
随着知识深化,今后还有其它方法。
5.证明角相等的方法:
(1)对顶角相等;
(2)同角(或等角)的余角(或补角)相等;
(3)两直线平行,同位角、内错角相等;
(4)角的平分线定义;
(5)等式的性质;
(6)垂直的定义;
(7)全等三角形的对应角相等;
(8)三角形的外角等于与它不相邻的两内角和。
随着知识的深化,今后还有其它的方法。
6.证垂直的常用方法
(1)证明两直线的夹角等于90°;
(2)证明邻补角相等;
(3)若三角形的两锐角互余,则第三个角是直角;
(4)垂直于两条平行线中的一条直线,也必须垂直另一条。
(5)证明此角所在的三角形与已知直角三角形全等;
(6)邻补角的平分线互相垂直。
7.全等三角形中几个重要结论
(1)全等三角形对应角的平分线相等;
(2)全等三角形对应边上的中线相等;
(3)全等三角形对应边上的高相等。
三、典型例题
例1.已知,
求证:。
证明:
文字叙述题
例2:求证:等腰三角形的顶角平分线垂直平分底边。
已知:如图,,求证:. 证明:
例3 已知:如图,已知AB=DC,AC = DB,AC和DB相交于点O .
求证:OB=OC;
略证:证明。
例4 已知:如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.
求证:PA=PD.
略证:证明即可。
全等三角形的应用(生活实际问题)
(1)利用全等三角形配玻璃
例5如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()
(A)带①去(B)带②去(C)带③去(D)带①和②去
答案:C
(1)利用全等测距离
例6 如图,工人师傅把两根钢条AA’和BB’中心铆在一起,可以
做成一个测量工件内槽宽度的工具,请你结合图形,并利用你学过
的知识,解释一下它的工作原理。
答案:证明即可。
三角形中常见辅助线的作法
1、延长中线构造全等三角形
例1 如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD的取值范围.提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△ACD,得AC=A'B.这样将AC转移到△A'BA中,根据三角形三边关系定理可解.
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC,D在AB上,E是AC延长线上一点,且BD=CE,DE与BC交于点F.
求证:DF=EF.
提示:此题辅助线作法较多,如:
①作DG∥AE交BC于G;
②作EH∥BA交BC的延长线于H;
再通过证三角形全等得DF=EF.
3、作连线构造等腰三角形
例3 如图3,已知RT△ACB中,∠C=90°,AC=BC,AD=AC,DE⊥AB,垂足为D,交BC 于E.
求证:BD=DE=CE.
提示:连结DC,证△ECD是等腰三角形.
4、利用翻折,构造全等三角形.
例4 如图4,已知△ABC中,∠B=2∠C,AD平分∠BAC交BC于D.求证:AC=AB+BD.提示:将△ADB沿AD翻折,使B点落在AC上点B'处,再证BD=B'D=B'C,易得△ADB≌△ADB',△B'DC是等腰三角形,于是结论可证.
5、作三角形的中位线
例5 如图5,已知四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线交EF的延长线于点M、N.求证:∠BME=∠CNE.
提示:连结AC并取中点O,再连结OE、OF.则OE∥AB,OF∥CD,故∠1=∠BME,∠2=∠CNE.、且OE=OF,故∠1=∠2,可得证.。