丰富的图形世界知识点及练习
第1讲:丰富的图形世界
第1讲:丰富的图形世界知识梳理:知识点1、立体图形1、定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.2、常见的立体图形有两种分类方法:3、棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)要点诠释:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.4、点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.知识点2、展开与折叠:有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:口诀:“一线不过四、田凹应弃之”知识点3、截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.知识点4、从三个方向看物体的形状:一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.(如下图)典型例题:类型一、立体图形例1:下列图形不是立体图形的是()A. 球B. 圆柱C. 圆锥D. 圆例2:将图中的几何体进行分类,并说明理由.类型二、点、线、面、体例3:分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.例4:如图所示的平面图形绕轴旋转一周,可以得出下面相对应的立体图形,把有对应关系的平面图形与立体图形连接起来.例5:18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______ _;(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是________;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y 的值.例6:将如右图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.从正面看相同 B.从左面看相同 C.从上面看相同 D.三个方向都不相同练习:1、如图,直角三角形绕直线l旋转一周,得到的立体图形是()A. B. C. D.2、如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如:四棱柱和六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A. 五棱柱B. 六棱柱C. 七棱柱D. 八棱柱3、如图把一个圆绕虚线旋转一周,得到的立体图形是()A. B. C. D.例7:下列图形中,不可以作为一个正方体的展开图的是()A.B. C.D.例8:在全市人民齐心协力下,西安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是()A. 全B. 明C. 城D. 国练习:1、下列图形中,不能表示长方体平面展开图的是()A.B.C.D.2、下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.3、下列图形中为正方体的平面展开图的是()A.B.C.D.4、说出下列四个图形(如图所示)分别是由哪个立体图形展开得到的?例9:如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1)截面是;(2)截面是;(3)截面是;(4)截面是.例10:用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?练习:1、用一个平面去截一个正方体,则截面的形状不可能为()A.四边形 B.七边形 C.六边形 D.三角形类型五、从三个方向看物体的形状例11:如图是一个几何体的正面和上面看到的图形,求该几何体的体积。
专题01 丰富的图形世界(考点清单)(原卷版)-2024-2025学年七年级数学上学期期中考点大串讲
专题01 丰富的图形世界(考点清单)思维导图考点一生活中的立体图形【考试题型1】几何体的识别【典例1】下面的四个几何图形中,表示平面图形的是()A.B.C.D.【专训1-1】下列图形中,与其他三个不同类的是()A.B.C.D.【专训1-2】(2023秋·七年级课时练习)下面两个立体图形的名称是:.【考试题型2】组合几何体的构成【典例2】(2023秋·七年级课时练习)图中的几何体由个面围成.【专训2-1】(2023秋·七年级课前预习)如图是由棱长为1厘米的小正方体木块搭成的几何体.至少还需要个这样的小正方体才能搭成一个正方体.【专训2-2】(2022秋·全国·七年级专题练习)把4个棱长为2分米的正方体拼成长方体,拼成的长方体的表面积可能是平方分米,也可能是平方分米.【考试题型3】几何体中的点、棱、面【典例3】(2023秋·七年级课时练习)七棱柱有个顶点,有条棱,有个面.【专训3-1】(2023秋·全国·七年级专题练习)几何知识.棱.【专训3-2】(2023秋·全国·七年级专题练习)如图所示,是我们熟悉的三棱柱、五棱柱和六棱柱.(2)设n棱柱(n为正整数,且3n≥)的顶点数为a、棱数为b、面数为c,根据表中数据猜+-=________.想a c b【考试题型4】点、线、面、体关系【典例4】(2022秋·六年级单元测试)直升机的螺旋桨转起来形成一个圆形的面,这说明了.【专训4-1】(2023秋·陕西宝鸡·七年级统考期末)数学老师可以用粉笔在黑板上画出图形,这个现象说明.【专训4-2】(2022秋·辽宁沈阳·七年级统考阶段练习)把一个直角三角形绕它的一条直角边旋转360°,得到一个圆锥体.用数学知识解释为.【考试题型5】平面图形的旋转得体【典例5】(2023春·福建福州·七年级统考开学考试)下列各选项中的图形绕虚线旋转一周后,得到的几何体是圆柱的是()A.B.C.D.a f中【专训5-1】(2023秋·七年级课时练习)如图所示的图形绕轴旋转一周,便能形成~的某个几何体,请你用线把它们连起来.【专训5-2】(2023春·河北石家庄·七年级行唐一中校考开学考试)小军和小红分别以直角梯形的上底和下底为轴,将梯形旋转一周,得到的两个立体图形.(1)你同意______的说法.(2)甲、乙两个立体图形的体积比是多少?考点二展开与折叠【考试题型1】几何体展开图的认识【典例1】(2023·四川达州·统考中考真题)下列图形中,是长方体表面展开图的是()A.B.C.D.【专训1-1】(2021秋·广东珠海·七年级统考开学考试)下列图形,()是正方体的展开图.A.B.C.D.【专训1-2】(2023秋·全国·七年级专题练习)如图所示的平面图形分别都是由哪种几何体展开形成的?(1)______________;(2)______________;(3)______________;(4)______________;(5)______________;(6)______________;【考试题型2】展开图的表面积和体积【典例2】(2023秋·黑龙江大庆·七年级校联考开学考试)一个长方体长20厘米,宽15厘米,高10厘米,把它切成两个完全相同的长方体,两个长方体表面积之和最大是( )平方厘米.【专训2-1】(2023秋·全国·七年级专题练习)一块长方形铁皮(如图),长25厘米,宽15厘米,从四个角分别剪去边长2厘米的小正方形,然后把四周折起来,做成没有盖子的铁盒,请你帮忙计算一下:做这样一个盒子至少需要多少铁皮?铁盒的容积是多少?【专训2-2】(2023秋·全国·七年级专题练习)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【考试题型3】正方体相对面的字【解题方法】【典例3】(2023春·山东泰安·六年级校考开学考试)如图,是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【专训3-1】(2023秋·江苏宿迁·七年级沭阳县怀文中学校考开学考试)如图一个正方形的平面展开图如图所示,将它折成正方体后,“保”字对面的字是().A.碳B.低C.绿D.色【专训3-2】(2022春·上海·九年级统考自主招生)如图是正方体的一种展开图,那么在原正方体中,与“上”字所在面相对的面上的汉字是.【考试题型4】含图案的正方体【解题方法】【典例4】2023·全国·七年级专题练习)如图所示,正方体的展开图为()A.B.C.D.【专训4-1】(2023秋·河南商丘·七年级统考期末)如图,下面的图是正方体的展开图的是()A.B.C.D.【专训4-2】(2023·全国·七年级假期作业)如图所示的正方体,它的展开图可能是下列四个选项中的()A.B.C.D.【考试题型5】展开后的折叠点距离【解题方法】【典例5】(2023秋·全国·七年级专题练习)图①是边长为1的六个正方形组成的图形,经过折叠能围成如图①的正方体,一只蜗牛从A点沿该正方体的棱......爬行到B点的最短距离为()A.0B.1C.2D.3【专训5-1】(2023秋·全国·七年级专题练习)如图①是边长为2的六个小正方形组成的,在围成的正方体上图形,它可以围成如图②所示的正方体,则图①中小正方形的顶点A B的距离是.【专训5-2】(2021秋·七年级单元测试)如图所示,图(1)为一个长方体,AD=AB=10,AE=6,图2为图1的表面展开图(字在外表面上),请根据要求回答问题:(1)面“句”的对面是面______;(2)如果面“居”是右面,面“宜”在后面,哪一面会在上面?(3)图(1)中,M、N为所在棱的中点,试在图(2)中画出点M、N的位置;并求出图(2)中三角形ABM的面积.【考试题型6】添加一个面成正方体【典例6】(2022秋·全国·七年级专题练习)如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()A.B.C.D.【专训6-1】(2023秋·七年级课时练习)如图所示的A、B、C、D四个位置的某个正方形与实线部分的五个正方形组成的图形,不能拼成正方体的是位置.【专训6-2】(2022秋·北京石景山·七年级期末)小景准备制作一个无盖的正方体盒子.请你在图中再画出一个正方形,并将添加的正方形用阴影表示,使得新图形经过折叠后能够成为一个无盖的正方体盒子.说明:至少画出2种符合上述条件的情况.考点三截一个几何体【考试题型1】截几何体所得的形状【典例1】(2023秋·七年级课时练习)小明用橡皮做了一个长方体,若用一个小刀去切该长方体,截面的形状不可能是()A.三角形B.长方形C.五边形D.圆【专训1-1】(2023·全国·七年级专题练习)妹妹把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.三角形B.长方形C.圆形D.椭圆【专训1-2】(2023秋·陕西咸阳·七年级统考期末)用一个平面分别去截长方体,圆锥,三棱柱,圆柱,能得到截面是三角形的几何体有个.【考试题型2】截几何体后的表面积和体积【典例2】(2023秋·全国·七年级专题练习)若将一根底面半径是5厘米的圆柱体木料锯成三段(每段都是圆柱体),则其表面积增加了()A.25π平方厘米B.50π平方厘米C.75π平方厘米D.100π平方厘米【专训2-1】(2023秋·全国·七年级专题练习)如图所示,圆柱体的高为8,底面半径为2,则截面面积最大为 .【专训2-2】(2022秋·江苏·七年级专题练习)已知图1为一个正方体,其棱长为12,图2为图1的表面展开图(数字和字母写在外面),请根据要求回答问题:(1)若正方体相对面上的数互为相反数,则xy =_________;(2)用一个平面去截这个正方体,下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;①可能是直角三角形;①可能是钝角三角形;①可能是平行四边形.其中所有正确结论的序号是( );A .①B .①①C .①①①D .①①①①(3)图1中,,M N 为所在棱的中点,请在图2标出点M 的位置,并求出ABM ∆的面积. 考点四 从三个方向看物体的形状【考试题型1】由三视图判断立体图形【典例1】(2022秋·江西九江·七年级统考期中)一个由小立方块搭成的几何体,从正面、左面、上面看到的形状如图所示,这个几何体是由( )个小立方块搭成的.A .4B .5C .6D .7【专训1-1】(2023秋·湖南岳阳·七年级校考开学考试)搭出同时符合下面要求的物体,需要( )个小正方体.A.10B.7C.8D.9【专训1-2】(2022秋·广东茂名·七年级校考期中)下图是由几个相同的小立方块所搭成的几何体从上面看到的形状图,请分别画出该几何体从正面、左面看到的形状图.【考试题型2】由立体图形画三视图【典例2】(2023秋·山东济南·六年级统考期末)如图,是由一些棱长都为1cm的小正方体组合成的简单几何体.该几何体从正面看到的平面图形如图所示,请在下面方格纸中分别画出从左面、上面看到的平面图形.【专训2-1】(2023秋·山东枣庄·七年级滕州育才中学校考开学考试)如图是由9个相同的小立方体组成的一个几何体,请利用下方网格画出从正面看、从左面看和从上面看的图形(一个网格为小立方体的一个面).【专训2-2】(2023秋·全国·七年级专题练习)由8个棱长都为1cm的小正方体搭成的几何体如左图.(1)请利用图2中的网格画出这个几何体从正面看、从左面看和从上面看到的形状图.(一个网格为小立方体的一个面)(2)图1中8个小正方体搭成的几何体的表面积(包括与地面接触的部分)是cm2.(3)若要用大小相同的小立方块搭一个几何体,使得它从上面和左面看到的形状图与你在图2。
01 《丰富的图形世界》知识梳理与复习(第一章)
《丰富的图形世界》知识梳理与复习(第一章丰富的图形世界)知识要点一:生活中的立体图形1、下列实物中外形类似于棱柱的有()①水桶②一堆谷物③螺母④鹅卵石⑤砖头⑥电视机包装箱⑦水管A、2个 B 、3个C、4个D、5个2、下列图形中有14条棱的是()3、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体;可以看成有两个底面的几何体是()A、①②④⑥B、②③④C、②④⑤⑥D、①②③⑥4、写出下列各立体图形的名称5、观察下图中的棱柱和圆柱;回答下列问题(1)该棱柱和圆柱各是由几个面围成的?它们都是平的吗?(2)该棱柱有几个顶点?经过每个顶点有几条棱?6、将长和宽分别为3cm 和2cm 的长方形分别绕长、宽所在的直线旋转一周得到两个几何体,哪个几何体的体积大?(2V r h π=)知识要点二:展开与折叠7、下列说法中错误的是( )A 、棱柱的侧面数与侧棱数相同B 、棱柱的顶点数一定是偶数C 、棱柱的面数一定是奇数D 、棱柱的棱数一定是3的倍数8、下图中不可能围成正方体的有( )A 、1个B 、2个C 、3个D 、4个9、小红制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图应该为( )10、一个正方体的展开图如图所示,如果这个正方体相对的面上标注的数值相等,那么x = ,y = 。
11、如图所示,是两个立体图形的展开图,请写出这两个立体图形的名称(1):(2):12、如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)如果面D在后面,从右面看是面C,那么哪一面会在上面?知识要点三:截一个几何体13、用平面去截一个圆柱,截面的形状不可能是()A、三角形B、正方形C、长方形D、圆14、有下列几何体:①正方体;②长方体;③圆柱;④圆锥;⑤棱柱;⑥球这些几何体中截面可能是圆的有()A、2种B、3种C、4种D、5种15、正方体被一个平面所截,所得边数最多的多边形是A、四边形B、五边形C、六边形D、七边形16、写出下图中截面的形状17、如图所示,有一个正方体,棱长为5cm,如果在它的左上方截去一个长、宽、高分别为5cm,3cm,2cm的长方体,求它的表面积减少了百分之几?知识要点四:从三个方向看物体的形状18、下面四个几何体中,从左面看是四边形的几何体共有()A、1个B、2个C、3个D、4个19、如图所示是从三个方向看到的物体的形状图,对应的直观图是下列选项中的()20、如图所示,是一个几何体从三个方向看到的形状图,根据图中标注的数据可求得这个几何体的体积为()A、24πB、32πC、36πD、48π21、如图所示,把立方体的六个面分别涂上六种不同的颜色(红、黄、紫、蓝,白、绿),现将上述大小相同颜色分布完全一样的四个立方体拼成一个水平放置的长方体,那么立方体绿色面的对面颜色是()A、红色B、紫色C、白色D、蓝色21、如图是由几个立方块所搭成的几何体从上面看到的形状,则该几何体从正面看有列,从左面看有行。
丰富的图形世界知识点及练习
第一章:丰富的图形世界知识要点:1、常见的几何体分类及其特点:长方体:有顶点; 条棱; 个面;且各面都是正方形是特殊的长方形正方体是特殊的..棱柱:上下两个面称为棱柱的;其它各面称为;长方体是..圆柱:有上下两个底面和一个侧面;两个底面是的圆..圆锥:有一个和一个;且侧面展开图是..球:由围成的几何体2、.图形是由、、构成..点动成;线动成;面动成..面与面相交得到;线与线相交得到..面动成体可以通过平移和旋转实现..例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成..圆柱又可以看作是绕着一边旋转一周形成..3、展开与折叠1.正方体的展开图正方体有;需要剪刀才能展开成平面图形..2圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:4、截一个几何体1用一个截面去截长方体或正方体;截面可能是等腰三角形、等边三角形、但不可能是三角形;也可能是正方形;长方形;梯形;五边形等;最多可截得边形..2用一个截面去截圆柱;截面可能是正方形;长方形;梯形、圆或椭圆..3用一个截面去截圆锥;截面可能是等腰三角、圆、抛物线形或椭圆..4三棱锥的截面可以是三角形、长方形、四边形..其中四边形可以是特殊的矩形、梯形..5、三视图我们从不同方向观察物体时;从正面看到的图形叫做主视图;从左边看到的图形叫做左视图;从上面看到的视图叫做俯视图..三种视图之间的关系:主俯长对正;主左高平齐;俯左宽相等..6、生活中的平面图形1多边形:由不在直线上的线段相连组成的封闭图形.扇形:由和经过这条弧的端点的组成的图形..2从一个多边形的同一个顶点出发;分别连接这个顶点与其余各顶点;可以把这个多边形分割成个三角形;可以得到条对角线..从一个多边形内部的任意一点出发;分别连接这个点与其余各顶点;可以把这个多边形分割成个三角形..从一个多边形边上除顶点外的任意一点出发;分别连接这个点与其余各顶点;可以把这个多边形分割成个三角形..3一个n..典型例题例1、观察下图;请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来例2、一个几何体全部展开后铺在平面上;不可能是A、一个三角形B、一个圆C、三个正方形D、一个小圆和半个大圆例3、有一个正方体的六个面上分别写养1;2;3;4;5;6这6个数;根据图中ABC三个图中所写数字想一想“ ”处的数字是什么例4、画出下列立方体的三视图;例5下图是用小立方块搭成的几何体的俯视图;小正方形的数字表亦该位置的小立方块的个数;请画出它的主视图和左视图..例6用小立方块搭一个几何体;使得它的主视图和俯视图如图所示..这样的几何体只有一种吗 它最少需要多少个小立方块 最多需要多少个小立方块巩固练习1. 圆柱体是由____个面围成;这些面相交共得_____条线;它们是 线.2. 用一个平面去截某一几何体;若截面是圆;则原来的几何体可能是 .3. 将半圆绕直径旋转一周;形成的几何体是_______;将直角三角形以一条直角边为轴旋转一周;形成的几何体是________;假如我们把笔尖看作一个点;当笔尖在纸上移动时;就能画出线;说明了_______ ___.4. 如果一个几何体的主视图、左视图、俯视图都完全相同的是 .5. 如果长方体从一顶点出发的三条棱长分别为2;3;4;则该长方体的 表面积为___ ___;体积为____ __.6.如图;这是一个正方开体的展开图;则“喜”代表的面所相对的面....的 号码是 .7.平面内有5个点;每两个点都用直线连接起来;则最多可得______条直线;最少可得______条直线.. 平面内的三条直线可把平面分割成最少______部分;最多_____部分8.如下图是由四个相同的小立方体组成的立体图形的主视图和左视图;那么原立体图形可能是 .把下图中正确的立体图形的序号都填在横线上9.一个几何体是由若干个相同的正方体组成的;其主视图和左视图如图所示;则这个几何体最多可由_______个这样的正方体组成..10.将一个长方形绕它的一边所在的直线旋转一周;得到的几何体是圆柱;现有一个长为4cm 、宽为3cm 的长方形;分别绕它的长、宽所在的直线旋转一周.................;得到的圆柱体的体积分别是多少 友情提示:2V r hπ=•;其中r 代表圆柱底面半径;h 代表圆柱高结果保留π 11.正方体是由六个平面图形围成的立体图形;设想沿着正方体的一些棱将它剪开;就可以把正方体剪成一个平面图形;但同一个正方体;按不同的方式展开所得的平面展开图是不一样的;下面的图形是由6个大小一样的正方形;拼接而成的;请问这些图形中哪些 可以折成正方体 试试看12.已知正方体的顶点A 处有一只蜘蛛;B 处有一只小虫;如图所示;请你在图上作出一种由A 到B 的最短路径;使得这只小蜘蛛能在最短时间内捉住这只小虫子.丰富的图形世界的作业姓名: 老师评阅: 家长签字一、填空题1、面与面相交成___;线与线相交得到___;点动成____;线动成_____;面动成____2、下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:________;___________3、下图所示的三个几何体的截面分别是:1_________;2__________;3___________.4、已知三棱柱有5个面、6个顶点、9条棱;四棱柱有6个面、8个顶点、12条棱;五棱柱有7个面、10个顶点、15条棱;……;由此可以推测n 棱柱有_____个面;____个顶点;_____条棱..5、当下面这个图案被折起来组成一个正方体;数字_______会在我 喜 欢 数 学 课 6题图 主视图 左视图 ① ② ③ ④与数字2所在的平面相对的平面上6、从一个多边形的某个顶点出发;分别连接这个点和其余各顶点;可以把这个多边形分割成10个三角形;则这个多边形的边数为_____..7、用小正方块搭一个几何体;使它的主视图、俯视图如图所示;这样的几何体只有一种吗最少需几块最多需几块二、选择题8、下面几何体的截面图不可能是圆的是A、圆柱B、圆锥C、球D、棱柱9、将左边的正方体展开能得到的图形是10、将半圆绕它的直径旋转一周形成的几何体是A、圆柱B、圆锥C、球D、正方体11、用一个平面去截一个正方体;截面可能是A、七边形B、圆C、长方形D、圆锥12、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是A长方形、圆、长方形 B、长方形、长方形、圆C、圆、长方形、长方形D、长方形、长主形、圆。
XXX七年级上培优第1讲:丰富的图形世界
XXX七年级上培优第1讲:丰富的图形世界几何初步培优知识点:展开图例1】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在圆柱的侧面上,过点M,P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.B.C.D.例2】如图,把下边的图形折起来,它会变成的正方体是()A.B.C.D.例3】图2为正方体图1的展开图。
图1中M、N分别是FG、GH的中点,CM、CN、MN是三条线段,试在图2中画出这些线段。
例3】如图是一个正方体的展开图,标注了字母a的面是正方体的正面。
如果正方体相对两个面上的式子的值相等,求2y x2019的值。
1例4】图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是。
常识点:三视图例1】由多少个相同的小正方体搭成的一个多少体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,画出这个多少体的主视图。
例4】用小立方体搭一个多少题,使得它的主视图和俯视图如下图,它至少要个立方体,最多要个立方体例5】一些完全相同的小正方体搭成一个几何体,这个几何体从正面和左面看所得的平面图形均如图所示,小正方体的块数可能有(。
)个知【例2】如图是由大小相同的小正方体构成的简单多少体的主视图和左视图那么构成这个多少体的小正方体的个数最多为。
例3】如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图。
1)请你画出这个几何体的一种左视图;2)若组成这个几何体的小正方形的块数为n,请你写出n 的所有可能值。
识点:截面外形例1】用一个平面去截一个圆柱,截面的形状不可能是(。
)A.B.C.D.例2】一个正方体,用刀截去一个角后,所得的几何体有个顶点。
知识点:表面积例1】如图所示的立体图形由9个棱长为1的正方体木块搭成,这个立体图形的表面积为。
【例2】如图,这个几何体是由16块棱长为1cm的正方体木块堆积而成的,如果在其表面涂上油漆,求所涂油漆部分的面积.例3】如图都是边长为1的正方体叠成的几何体,例如第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位。
苏教版七年级数学 第五章走进图形世界知识点与典题
夯实基础融会贯通苏教版七年级数学精准训练提升能力第五章走进图形世界知识点与典题第一节丰富的图形世界一、知识点1、几何图形由点、线、面组成。
面与面相交得到线,线与线相交得到点。
2、棱柱、棱锥中,相邻两个面的交线叫做棱, (其中相邻两个侧面的交线叫侧棱),棱柱中的棱与棱的交点叫棱柱的顶点,棱锥的各侧棱的公共点叫棱锥的顶点.3、棱柱的侧棱长都相等,棱柱的上、下底面都是相同的多边形,直棱柱的侧面都是长方形,棱锥的侧面都是三角形。
4、七巧板的构成:它是用一个正方形分割成五个三角形、一个正方形形和一个平行四边形形。
二、典题1、如图,将下列图形与对应的图形名称用线连接起来:2、五棱柱有个面,条棱,有个顶点.六棱柱有个面,条棱,有个顶点.n棱柱有个面,条棱,有个顶点.3、一个棱锥有7个面,这是棱锥,它有个侧面.4、下图是图(1)的正方体切去一块,得到图(2)~(5)的几何体,①它们各有多少个面?多少条棱?多少个顶点?②举例说明其他形状的几何体也切去一块,所得到的几何体的面数、棱数和顶点数各是多少.③若面数记为f,棱数记为e,顶点数记为v,则f+v-e满足什么关系?用其它的几何体验证上面的结论,还成立吗?5、如图,长方体ABCD-A′B′C′D′有个面,条棱,个顶点.与棱AB垂直相交的棱有条,与棱AB平行的棱有条.6、一个棱柱的底面是七边形,则它的侧面有个长方形,它一共有个面.7、有一个几何体,有9个面,16条棱,那么它有个顶点.第二节图形的运动一、知识点1、图形的运动主要有图形的平移、旋转、翻折。
2、如图所示:(1)将图形A平移到图形B;(2)将图形B沿图中虚线翻折到图形C;(3)将图形C沿其右下方的顶点旋转180°到图形D.二、典题1、下列现象中是平移的是()A.将一张纸沿它的中线折叠 B.飞蝶的快速转动 C.电梯的上下移动 D.翻开书中的每一页纸张2、如图,是由9个相同的小三角形组成的三角形(1)图形2绕它下面的顶点旋转180°度,可以变换到图形.(2)图形1沿它的下边缘线翻折可得到图形.(3)涂出图形1通过平移可以到达的三角形,这样的三角形共有个.(4)图形1通过可以变换到图形3.3、阅读下列材料:如图②,把△ABC沿直线平移线段BC的长度,可以变到△ECD 的位置;如图③,以BC为轴把△ABC翻折180°可以变到△DBC的位置;如图④,以点A为中心,把△ABC旋转1800,可以变到△AED的位置,像这样其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.问:在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF 的位置.ABCDAB CD////A B CD123456789第三节展开与折叠一、知识点1、将几何体展开成展开图,在几何体展开图中,能识别多个面在几何体中的对应位置。
初中数学丰富的图形世界知识点归纳
第一章丰富多彩的图形总结济宁附中李涛1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
点、线、面、体都是几何图形。
任何一个几何体都由点、线、面构成,点无大小,线有曲直而无粗细,平面是无限延伸的,面有平面和曲面,面面相交得线,线线相交得点。
本节拓展习题:将一个平面按一定方式旋转得到什么样的几何体3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱体生活中的立体图形棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥体圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)球体还有一种分类看是否有曲面:曲面体和多面体。
棱柱与圆柱的异同点相同点:圆柱、棱柱都有(相同的)个底面不同点:a.圆柱的底面是(圆)形,棱柱的底面是(多边形)形。
b.圆柱的侧面是一个(曲)面,棱柱的侧面是(平行四边形)形4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
1.性质:棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,2.分类:1.根据侧棱是否与底面垂直分为直棱柱和斜棱柱。
直棱柱的侧面是长方形。
斜棱柱的侧面是平行四边形。
2.棱柱还可以根据底面多边形的边数(或侧棱的条数)分类的,如:五棱柱说明它有五条侧棱而不是五条棱,它的底面为五边形。
第一章丰富的图形世界
第一章丰富的图形世界一、知识梳理一.几种常见的几何体1.柱体① 棱柱体:〔如图(1)(2)〕,图中上下两个面称棱柱的底面,周围的面称棱柱的侧面,面与面的交线是棱柱的棱.其中侧面与侧面的交线是侧棱,棱与棱的交点是顶点.点拨:正方体和长方体是特殊的棱柱,它们都是四棱柱.正方体是特殊的长方体.② 圆柱:图(3)中上下两个圆面是圆柱的底面,这两个底面是半径相同的圆,周围是圆柱的侧面.点拨:棱柱和圆柱统称柱体.2.锥体① 圆锥:〔如图(4)〕图中的圆面是圆锥的一个底面,中间曲面是圆锥的侧面,圆锥只有一个顶点.② 棱锥:〔如图(5)〕图中下面多边形面是棱锥的一个底面,其余各三角形面是棱锥的侧面.点拨:棱锥和圆锥统称锥体.3.台体1 圆台:〔如图(6)〕图中上下两个大小不同的圆面是圆台的底面,中间曲面是圆台的侧面.2 棱台:〔如图(7)〕图中上下两个大小不同的多边形是棱台的底面,其余四边形是棱台的侧面.4.球体:〔如图(8)〕图中半圆绕其直径旋转而成的几何体,球体表面是曲面.二.几何体的展开图1. 圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:2. 正方体的平面展开图(有11种):三.用平面截一个几何体出现的截面形状1.用一个平面去截正方体,可能出现下面几种情况:三角形正方形长方形梯形五边形六边形点拨:用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.2. 几种常见的几何体的截面:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、正方形、……圆锥圆、三角形、……球圆点拨:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,相交得到是曲线,无法截出三角形.四.识别物体的三视图1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看图叫主视图,从左面看图叫左视图,从上面看图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.(2)球体:三视图都是圆.(3)圆柱体:(4)圆锥体:点拨:圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.用若干个小正方体搭成几何体的三视图如图:从正面看2列每列1层;从左面看2列每列1层;从上面看2列左列2层右列1层.则三视图是:点拨:①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字即为左视图中的列的层数.二、课堂精讲例题例1常见几何体的特征(1)列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个【难度分级】A【试题来源】经典试题【解析】n棱柱的数量特征如下:它有3n条棱,(n+2)个面,侧面一定是长方形.对于完全相同的面则需注意.棱柱的侧棱都是相等的但底面边长不一定相等,因此以底面边长和侧棱为长和宽的侧面的大小不一定相同。
丰富的图形世界专题复习(含答案)
丰富的图形世界专题复习【课标要点】1.通过观察现实生活中的物体,认识基本几何体及点、线、面.2.通过展开与折叠活动,认识棱柱的基本性质,能根据展开图想象和制作立体模型.3.通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验.4.能识别简单物体的三视图,会画立方体及其简单组合的三视图.5.通过平面图形与空间几何体相互转换的活动过程中,建立空间观念.6.认识常见几何体的基本特性,能对这些几何体进行正确的识别和简单的分类. 【知识网络】图1-1-2图1-1-3第1讲 几何体的三视图及常见几何体的侧面展开图【知识要点】1、了解直棱柱.圆柱.圆锥的侧面展开图,能根据展开图判断和制作立体模型.2、会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型.3、重点:体会从不同方向看同一物体可能看到不同的结果,根据主视图、左视图、俯视图相象出实物图形.4、难点: 能画立方体及其简单组合的三视图.根据主视图、左视图、俯视图相象出实物图形.【典型例题】例1 棱长是1cm 的小立方体组成如图1-1-1所示的几何体,那么这个几何体的表面积是( )A. 36cm 2B . 33cm 2C. 30cm 2D. 27cm 2分析:考查学生观察想象能力,从6个方向观察都是6个边长为1cm 的正方形,所以表面积共计6×6 cm 2=36 cm2解: A例2 如图1-1-2是由相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )A .4个B .5个C .6个D .7个分析:在画三视图时,主俯列相等,从左向右看,画图取大数;左俯行相等,从上向下看,画图取大数.解:B图1-1-1图1-1-4图1-1-5图1-1-6例3 如图1-1-3平面图形中,是正方体的平面展开图形的是( ) 分析:主要考查学生的想象能力和动手操作能力. 解:C例4 如图1-1-4所示,直三棱柱的底面是等边三角形,在它的上底面上有一个半球形凹坑请你画出这个几何体的主视图.左视图和俯视图.分析:本题主要考查学生画简单组合体的三视图的能力,解答的思路是审题并观察几何体,明确这种较复杂的几何体是由哪些几何体组合而成的.它们是怎样组合的,联系三种视图的绘制要求画图.可以先画出主视图,再画其他两种视图.解:如图1-1-5:【知识运用】一、选择题1.下列图形中,不是正方体的展开图的是( ).2.如图1-1-6是正方体的一个表面展开图,展开前,2号面对面上的数字为( ) A.3 B.4 C.5 D.63.小明从正面观察图1-1-7所示的两个物体,看到的是( )主视左视俯视4.图1-1-8中几何体的主视图是图1-1-9中的()二、填空题5.根据下图1-1-10物体的三视图,填出几何体的名称并画出示意图是:.6.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如1-1-11图所示,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面,则“祝”. “你”. “前”分别表示正方体的______________________.三、解答题7.如图1-1-12中图(1)和图(2)分别是两个正方体的展开图,这两个正方体中,对面数字之和为2的数各有几对?有哪几对?8.如图1-1-13,一钢球置于圆柱的上底面,它们之间的接触点恰好是圆柱上底面的中心,请你画出图中所示几何体的主视图.左视图和俯视图.图1-2-1 图1-2-29.若要使得图1-1-14中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z 的值第2讲 用平面截某几何体及生活中的平面图形【知识要点】1.截面:用一个平面去截一个几何体,截出的面叫做截面.2.多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形叫做多边形.3.从n(n>3整数)边形一个顶点出发,能够引(n -3)条对角线,这些对角线把n 边形分成了(n -2)个三角形,n 边形对角线总条数为(3)2n n 条. 重点:用一个平面去切、截一个正方体,所得截面的形状的特征以及圆柱.圆锥的截面形状特征,认识生活中各类物体所含有的平面图形并将基本图形抽象出来. 难点:用平面切、截几何体,很多情况是靠想象的,归纳.猜想一些规律性的结论.【典型例题】例1 (2004.武汉)如图1―2―1,五棱柱的正确截面是图如图1―2―2中的( ) 解:B例2 用一个平面去截一个正方体,截面形状不能为图如图1―2―3中的( ) 分析:截面可以是三角形.四边形.五边形.解:D例3 如图1-2-4 在正方体1111ABCD A B C D -中,连结AB l .AC.B 1C ,则△AB 1C 的形状是 三角形.分析:本题考查学生判断对立体图形的截面图形形状的能力;应先想到三角形的分类,确定从哪个方面解答,再去分析它的边长或角的大小,确定答案.解:三角形按边分,有等边三角形.等腰三角形和不等边三角形等三类.这里,AB 1.AC.B 1C 分别是全等的正方形的对角线,所以本题应填“等边”.例4 用一个平面去截几何体,若截面是三角形,这个几何体可能是________. 点拨:若截面是三角形,则需要几何体至少有三个平面且有共同的顶点,或几何体有一个平面,其他的若是曲面,必须能截出直线.符合上述条件的是棱柱、圆锥、棱锥、棱台.解:正方体、长方体、棱柱、棱锥、棱台、圆锥.【知识运用】 一、选择题1.用一个平面去截一个正方体,截面图形不可能是( )A.长方形B.梯形C.三角形D.圆2.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是( )A.圆柱B.圆锥C.正方体D.球3.正方体的截面不可能是( )A. 四边形B. 五边形C. 六边形D. 七边形 4.n 边形所有对角线的条数是( )(1)n(n-2)n(n-3)n(n-4)ABCD.2222n n -、、、二、填空题5.从多边形的一个顶点共引了6条对角线,那么这个 多边形的边数是_______________6.图1-2-5几何体的截面(图中阴影部分)依次是 . . . .三、解答7.观察下列1-2-6由棱长为1的小立方体摆成的图形,寻找规律:图 1-2-6如图①中:共有1个小立体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见的小立方体有个。
七年级数学丰富的图形世界知识点专题总结
七年级数学丰富的图形世界知识点专题总结丰富的图形世界(1)一、立体图形的表面展开图:几何体的表面展开图在中考中主要涉及两个方面的内容:一是考查几何体的侧面展开图,以圆锥和圆柱等几何体为主,二是考查几何体的表面展开图,以柱体为主要考查对象;其中难点为利用正方体的表面展开图,找对应面。
例题1(2)解析:利用空间想象或通过动手操作,将展开图还原成立体图形,看能否构成正方体.A,B,D选项的展开图都能折叠成一个正方体,C选项的展开图中含有“凹”的图形,不能折叠成一个正方体.故选C.二、截一个几何体:当用一个平面去截一个几何体时:首先要明确该截面是个平面图形,然后看截面与几何体哪些面相交;通过确定交线的条数来判断截面的边数,最后判断该平面图形的形状。
判断立体图形截面的形状是这类问题的重点和难点。
例题2(3)解:(1)截面与底面平行,可以得到圆形截面;(2)截面沿圆柱的高线切割,可得到长方形截面;(3)截面与底面平行,可以得到三角形截面.综上所述,截面的形状分别是圆形、长方形、三角形.三、从不同方向看物体:从不同方向看物体,主要指的是从正面、左面、上面看到的图形,最为常见的是由小正方体组成的图形从不同方向看到的图形,或根据从三个方向看到的图形判断小正方体的个数。
例题3(4)四、解题方法与技巧:1、分类讨论思想:当被研究的问题包含多种可能情况时,不能一概而论,必须按可能出现的情况来分类讨论,得出各种情况下的对应结果。
例题4(5)解:若按组成几何体的面是平面或曲面来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体。
2、正方体表面展开图的识别技巧:每一个正方体都是由三对相对的面围成的,如果能在展开的平面图形中,找到三对相对无重叠的面,那么就能找到符合实际意义的正方体的表面展开图,在表面展开图中找相对的面是探究正方体表面展开图的关键。
北师大版七年级上册知识点和典型例题
第一章:丰富的图形世界考点1:三视图例题1:如图是某几何体的从正面、左面、上面看,所得到的图形,它对应的几何体是下图中的( )A. B. C. D.例题2:下面的正六棱柱从正方向看的图形是( )A. B. C. D.例题3:如图是由小立方块构成的立体图形的从正面、左面、上面看,所得到的图形,构成这个立体图形的小立方块有_____个练习题1:如图是下列一个立体图形的从正面、左面、上面看,所得到的图形,则这个立体图形是( )A.圆锥B.球C.圆柱D.正方体练习题2:在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的物体从正面、左面、上面看,所得到的图形画了出来,如图,你能根据从正面、左面、上面看,所得到的图形,帮他清点一下箱子的数量吗?这些正方体箱的个数是_____箱.练习题3:下列几何体中,同一个几何体的从上面图形看的图形与从正面看的图形不同的是______.①正方体②圆锥③球考点2:正方体对面对应的文字例题1:将右边正方体的平面展开图重新折成正方体后,“董”字对面的字是( )例题2:如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值是______.例题3:在立方体六个面上,分别标上“勤、奋、成、就、未、来”,如图是立体的三种不同摆法,则三种摆法的底面上三个字分别是______.练习题1:如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是______.练习题2:如图.正方体的每一个面上都有一个正整数,并且相对面所写的两个数的和都相等,若10的对面是数a,16的数的对面是b,21的对面是数c,则代数式 (a−b)2+(b−c)2+(c−a)2的值是___1___.一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是_____.考点1:有理数的概念例题1:如果m是一个有理数,那么﹣m是()A.正数B.0C.负数D.以上三者情况都有可能例题2:π不是有理数,那么___1___有理数(填“是”或“不是”)例题3:在12.3、-0.5、-100、-8、88、4.01、中,分数有______, 负有理数有______.(按从大到小的顺序填写)练习题1:有理数2,7.5,-0.03,-0.4,0,1313中,非负数是______.(按从大到小的顺序填写,用逗号隔开)练习题2:有理数1.7,-17,0,,-0.001,,2003和-1中,负整数有_____个,负分数有______个练习题3:______, 正分数是_____.(按从大到小的顺序填写)例题1:若x>1.5,化简=______例题2:若|x+4|+|2﹣y|=0,则xy=_____.例题3:化简:|π−4|+|π−3.14|=_____(用小数表示)练习题1:当x>3时化简:|x+2|−|1−x|=_____练习题2:已知||a|+1|=2,则a =______练习题3:若|a+1|与|b﹣2|互为相反数,则ab=______.考点3:有理数加减混合运算例题1:计算:|−2/2|−(−2.5)+1−|1−2/2|=_____例题2:1﹣2+3﹣4+5﹣6+7﹣8+…+2015﹣2016的结果是______例题3:已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=______练习题1:规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=______(直接写出答案).练习题2:若m、n互为相反数,则|m﹣3+n|=()练习题3: −3.5+|−5/2|−(−2) =______.考点3:有理数的乘除例题1:-2013×2014×0=_____例题2:(+15)×(−8.234)×0×(−23/3)= =______.例题3:在数﹣5,﹣3,﹣2,2,6中,任意两个数相乘,所得的积中最小的数是______ 练习题1: 两个有理数的乘积为负数,在这两个有理数中,有______个负数.练习题2:数a、b在数轴上的位置如图所示,则ab______0.(用“>”或“<”号连接)练习题3:(−2)×(−3/2)=___1___.例题1: 把(−2)×(−2)×(−2)×(−2)×(−2)写成幂的形式是_____.例题2:计算(−1)^2017=______.例题3:计算(−2)^1000×(1/2)^999的结果是_____.练习题1: 计算:(−2013)^2013×(−2014)^2014×(−2015)^2015的结果可能是( ). 练习题2:下列判断正确的有_____(请依次填写正确答案的序号).3^4<4^3 −3^4<(−4)^3 −3^2>(−3)^2 (−3×2)^2<−3×2^2练习题3:(−2)^3的底数是______,结果为______;−2^3的底数是_____,结果为_____.考点5:有理数偶次方的非负性例题1:若(a+3)^2+(3b−1)^2=0,则a^2003⋅b^2004=______.例题2:已知(x−1)^2+ |y−1|^2=0,则x^y的值为______.例题3:式子(x−1)^2+2的最小值是( ).练习题1:当xx=___1___时,式子(x+3)^2+2012有最小值,这个最小值是______;当y=______ 时,式子2013−(y−1)^2有最大值,这个最大值是_____.练习题2:若x是有理数,则x^2+1一定是( ).A.等于1B.大于1C.不小于1D.不大于1练习题3:下列说法,其中正确的有( ).1、a为任意有理数,a^2+1总是正数;2、如果a+|a|=0,则a是负数;3、当a<b时,a^2<b^2;4、x、y为任意有理数, 5−(x+y)^2的最大值是5;考点6:科学计数法例题1:全球每年大约有577000000000000m^3的水从海洋和陆地转化为大气中的水汽,将数577000000000000用科学记数法表示为( ).A.5.77×10^14B.0.577×10^15C.577×10^12D.5.77×10^13练习1:2016年10月16日上午7:45南京马拉松正式开跑,约21000名中外运动爱好者参加了此次活动.21000用科学记数法可表示为( ) A.0.21×10^5 B.0.21×10^4 C.2.1×10^4 D.2.1×10^3考点7:有理数的混合运算例题1:已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|−|a −b|+|a+c|=______.例题2: 计算2×(−3)^3+4×(−3)的结果______.例题3:计算(−8)×3÷(−2)^2得( ).练习题1:−1^2016+16÷(−2)^3×|−3|=______.练习题2:现定义一种新运算“∗∗”,规定a ∗b=ab+a −b ,如1∗3=1×3+1−3,则(2∗5)∗5等于______.练习题3:算式[−5−(−11)]÷(32×4)之值为______.第三章:整式及其加减考点一:代数式例题1:长为a ,宽为b 的长方形周长是 。
北师大版七年级上册数学[丰富的图形世界(提高版)知识点整理及重点题型梳理]
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习丰富的图形世界(提高)知识讲解【学习目标】1.认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类,并能从组合图形中分离出基本几何体;2.认识点、线、面、体的基本含义,了解点、线、面、体之间的关系;3.能辨认和画出从不同方向观察立方体及其简单组合体得到的形状图;4.了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.【要点梳理】要点一、立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.要点诠释:常见的立体图形有两种分类方法:2.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)要点诠释:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.要点二、展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点三、截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.要点四、从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.(如下图)【典型例题】类型一、立体图形1.将图中的几何体进行分类,并说明理由.【思路点拨】首先要确定分类标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.【答案与解析】解:若按形状划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按构成划分:(1)(2)(4)(7)是一类,是柱体;(5)(6)是一类,即锥体;(3)是球体.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).类型二、点、线、面、体2. 18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______ _;(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是________;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.【思路点拨】根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v)、面数(F)、棱数(E)之间存在的关系式,再用这个关系式解答后面的问题.【答案与解析】解:(1)6, 6, V+F-E=2;(2)20;(3)这个多面体的面数为x+y,棱数为243362⨯=条,根据V+F-E=2可得24+(x+y)-36=2,∴ x+y=14.【总结升华】欧拉公式:V(顶点数)+F(面数)-E(棱数)=2【变式】(2014•宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()五棱柱 B. 六棱柱 C. 七棱柱 D. 八棱柱【答案】B解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;3.将如右图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.从正面看相同 B.从左面看相同 C.从上面看相同 D.三个方向都不相同【答案】D【解析】首先考虑三角形和长方形旋转后所得几何体的形状,然后再根据两种几何体从不同方向看所得到的图形做出判断.【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的立体图形是()A. B. C. D.【答案】B类型三、展开与折叠4.(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是()A. 全B. 明C. 城D. 国【答案】C【解析】由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.【总结升华】培养空间想想能力的方法有两种,一是通过动手操作来解决;二是通过想象进行确定.举一反三:【变式】说出下列四个图形(如图所示)分别是由哪个立体图形展开得到的?【答案】 (1)正方体;(2)圆柱;(3)三棱柱;(4)四棱锥.类型四、截一个几何体5.用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?【思路点拨】当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个点,当截面截取一棱的一点和两底点组成的面时可剩下几何体有8个点,当截面截取由2条棱中点和一顶点组成的面时剩下几何体有9个顶点.当截面截取由三棱中点组成的面时,剩余几何体有10个顶点.【答案与解析】(1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;(2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点,如图所示.【总结升华】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.类型五、从三个方向看物体的形状6.(2016春•潮南区月考)如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.【思路点拨】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【答案与解析】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【总结升华】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.举一反三:【变式】用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?【答案】几何体的形状不唯一,最少需要小方块的个数: 3222110++++=,最多需要小方块的个数: 3323116⨯+⨯+=.主视图 俯视图。
数学七年级上册第一章丰富的图形世界知识点与同步训练讲义(解析版)
数学七年级上册第一章丰富的图形世界知识点与同步训练讲义(分析版)丰富的图形世界知识精讲一.点、线、面、体几何图形由点、线、面构成,面与面订交获得线,线与线订交获得点.常有立体图形的平面睁开图圆锥棱锥圆柱长方体直棱锥三点分析一.考点:几何图形.二.重难点:几何图形.三.易错点:1.注意常有立体图形的特色.题模精讲题模一:丰富的图形世界例六棱柱中,棱的条数有()A.6条B.10条C.12条D.18条1/6【答案】D【分析】六棱柱有六条侧棱,12条底棱例以下说法错误的选项是()A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面,12个极点C.三棱柱的侧面是三角形D.圆柱由两个平面和一个曲面围成【答案】C【分析】A.长方体、正方体都是棱柱是正确的,不切合题意;B.六棱柱有18条棱、6个侧面,12个极点是正确的,不切合题意;C.棱柱的侧面是长方形,不行能是三角形,本来的说法是错误的,切合题意;D.圆柱由两个平面和一个曲面围成是正确的,不切合题意.例阅读资料,回答以下问题。
初中生课外阅读状况检查表(1)从表中的数据,我们能够得出这样一个结论:______________________________________________________________________________________________________________________________________________________________(2)看了这一统计结果,你对同学的建议是:______________________________________________________________________________________________________________________________________________________________【答案】(1)多半初中生课外阅读喜爱看卡通画而不喜爱阅读文学名著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:丰富的图形世界
知识要点:
1、常见的几何体分类及其特点:
长方体:有_顶点,_条棱,_个面,且各面都是______________________ (正方形是特殊的长方形)正方体是特殊的
棱柱:上下两个面称为棱柱的____________ ,其它各面称为 _______ ,长方体是_________ 。
圆柱:有上下两个底面和一个侧面,两个底面是__________________ 的圆。
圆锥:有一个__________ 和一个 _______ ,且侧面展开图是 _________ 。
球:由_____________ 围成的几何体
2、.图形是由、、构成。
点动成—,线动成—,面动成—。
面与面相交得到—,线与线相交得到—。
面动成体可以通过平移和旋转实现。
例如:五棱柱、圆柱分别可以看作是由五边形或
圆沿着竖直方向平移形成。
圆柱又可以看作是_____________ 绕着一边旋转一周形成。
3、展开与折叠
(1).正方体的展开图
正方体有___________ ,需要剪______ 刀才能展开成平面图形。
(2)圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:
4、截一个几何体
(1)用一个截面去截长方体或正方体,截面可能是等腰三角形、等边三角形、但不可能是
三角形,也可能是正方形,长方形,梯形,五边形等,最多可截得_边形。
(2)用一个截面去截圆柱,截面可能是正方形,长方形,梯形、圆或椭圆。
(3)用一个截面去截圆锥,截面可能是等腰三角、圆、抛物线形或椭圆。
(4)三棱锥的截面可以是三角形、长方形、四边形。
其中四边形可以是特殊的矩形、梯形。
5、三视图
我们从不同方向观察物体时,从正面看到的图形叫做主视图,从左边看到的图形叫做左视图,从上面看到的视图叫做俯视图。
三种视图之间的关系:主俯长对正,主左高平齐,俯左宽相等。
6生活中的平面图形
(1)多边形:由不在___________ 直线上的线段 ___________ 相连组成的封闭图形•扇形:由 ________ 和经过这条弧的端点的____________ 组成的图形。
(2)从一个多边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成
__________ 个三角形,可以得到 ____________ 条对角线。
从一个多边形内部的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边
形分割成_个三角形。
从一个多边形边上除顶点外的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成_个三角形。
(3)—个n边形一共有n(n
2
3)
条对角线。
【典型例题】
例1、观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来
()
例2、一个几何体全部展开后铺在平面上,不可能是()
A、一个三角形 B 、一个圆 C 、三个正方形 D 、一个小圆和半个大圆
例3、有一个正方体的六个面上分别写养1, 2,3,4,5,6这6个数,根据图中ABC三个图中所写数字想一想“?”处的数字是什么?
例4、画出下列立方体的三视图,
例5下图是用小立方块搭成的几何体的俯视图,小正方形的数字表亦该位置的小立方块的个数,请画出它的主视图和左视图。
例6用小立方块搭一个几何体,使得它的主视图和俯视图如图所示。
这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?
【巩固练习】
1. 圆柱体是由— 面围成,这些面相交共得 _______________ 线,它们是 ________ 线•
2. 用一个平面去截某一几何体,若截面是圆,则原来的几何体可能是
3•将半圆绕直径旋转一周,形成的几何体是 ________________ ;将直角三角形以一条直角边为轴旋 转一周,形成的几何体是 ____________ ;假如我们把笔尖看作一个点,当笔尖在纸上移动时,就 能画出线,说明了 _______________ ._
我羊 欢 5.如
果长方体从一顶点出发的三条棱长分别为
2,3,4,则该长方体的
个正方开体的展开图,则“喜”代表的面所相对的面
的
号码是 _______
7. _________________________________________________________________ 平面内有5个点,每两个点都用直线连接起来,则最多可得 _______________________________________ 条直线,最少可得 _______直线。
平面内的三条直线可把平面分割成最少 ____________ E 分,最多 _______ E 分
8. 如下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可 能是 _________ •(把下图中正确的立体图形的序号都填在横线上)
4.如果一个几何体的主视图、左视图、俯视图都完全相同的是
表面积为
,体积为
数——
学> 6题
图
6.如图,这是
左视图
体是由若干
个相同的正方体组成的,其主视图和左视图如图所示,贝U这个几何体最多可由这样的正方体组成。
10.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长为
4cm宽为3cm的长方形,分别绕它的长、宽所在的直线旋转一周厂得到的圆柱积分别是多少?(友情提示:V r2?h,其中r代表圆柱底面半径,h代表圆柱高)(纟果保留)
11.正方体是由六个平面图形围成的立体图形, 设
想沿着正方体的一些棱将它剪开,就可以把正方体
剪成一个平面图形,但同一个正方体,按不同的方
式展开所得的平面展开图是不一样的,下面的图形
是由6个大小一样的正方形,拼接而成的,请问这
些图形中哪些
可以折成正方体?试试看
12.已知正方体的顶点A处有一只蜘蛛,B处有一只小虫,如图所示,请你在图上作出一种
由A 到B的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子
丰富的图形世界的作业
姓名: ______________ 老师评阅: ________________ 家长签字_________________
、填空题
7
1、面与面相交成___,线与线相交得到___,点动成 _____________ ,线动成 _______ ,面动成
2、下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:
4、已知三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、
12条棱,五棱柱有7个面、10个顶点、15条棱,
柱有 ______ 面, _______ 个顶点, ______ 条棱。
5、当下面这个图案被折起来组成一个正方体,数字 ________________ 在
与数字2所在的平面相对的平面上
&从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分 割成10个三角形,则这个多边形的边数为 ______________________________ 。
7、用小正方块搭一个几何体,使它的主视图、俯视图如图所示,这样的几何体只有一种 吗?最少需几块?最多需几块?
二、选择题
8、下面几何体的截面图不可能是圆的是 ( )
A 、圆柱
B 、圆锥
C 、球
D 、棱柱 9、将左边的正方体展开能得到的图形是
,由此可 以推测
棱
6
J 2 3
⑵.
10、将半圆绕它的直径旋转一周形成的几何体是( )
A、圆柱 B 、圆锥 C 、球 D 、正方体
11、用一个平面去截一个正方体,截面可能是()
A、七边形 B 、圆C、长方形 D 、圆锥
12、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是()
A长方形、圆、长方形 B 、长方形、长方形、圆C圆、长方形、长方形 D 、长方形、长主形、圆。