人教版习题word版:第十七章 勾股定理

合集下载

第十七章勾股定理单元同步检测试题2021-2022学年人教版八年级数学下册(word版 含答案)

第十七章勾股定理单元同步检测试题2021-2022学年人教版八年级数学下册(word版 含答案)

第十七章《勾股定理》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A.3,4,5B.6,8,10C.3,2,5D.5,12,132.为迎接元的到来,同学们制作了许多美丽图案来布置教室,准备召开元旦晚会,刘旭同学搬来架长为2.5m的木梯,梯子顶端到墙根的距离为2.4m,则梯子的底端与墙根的距离应为( )A.0.7mB.0.8mC.0.9mD.1.0m3如图,在△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为( )A.5B.6C.8D.104.如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系是( )A.a<c<bB.a<b<cC.c<a<bD.c<b<a5.放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为()A.600米B.800米C.1000米D.不能确定6.如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.8米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L 1B.L 2C.L 3D.L 47.如图,平面直角坐标系中,△OAB 的边OB 落在x 轴上,顶点A 落在第一象限.若OA =AB =5,OB =8,则点A 的坐标是( )A .(8,5)B .(4,5)C .(4,3)D .(3,4)8.如图,“赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形,已知大正方形面积为25,(x +y )2=49,用x ,y 表示直角三角形的两直角边(x >y ),下列选项中正确的是( )A .小正方形面积为4B .x 2+y 2=5C .x 2﹣y 2=7D .xy =249.如图,在△ABC 中,∠C =90°,AC =4,BC =2.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2010.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,BE 平分∠ABC ,CD ⊥AB5m BCAD图1于D,BE与CD相交于F,则CF的长是()A.1 B.C.D.2二、填空题(每小题4分,共24分)11.观察下列一组勾股数:①3,4,5;②5,12,13;③7,24,25;④9,40,41;⑤15,m,n.根据你发现的规律可得m+n=.12.在Rt△ABC中,AB=n2+1,BC=n2﹣1,AC=2n,那么∠A+∠B=度.13.某花园小区有一空地(如图所示的△ABC),为美化小区,居委会准备将其开发种植花草,经测量AB=13m,BC=10m,BC边上的中线AD=12m,如果种植每平方米花草需要50元,那么种植这块三角形空地需要元.14.四根小木棒的长度分别为5cm,8cm,12cm,13cm,任选三根可组成个三角形,其中有个直角三角形.15.如图,Rt△ABC中,∠ACB=90°,AB=4,分别以AC和BC为边,向外作等腰直角三角形△ACD和△BCE,则图中的阴影部分的面积是.16.已知:如图,在四边形ABCD中,∠BAD=∠BCD=90°,M,N分别是BD,AC 的中点,且AC=8,BD=10,则MN=.17.△ABC中,AB=AC=2,∠BAC=90°,点D在直线AC上,AC=2CD,则BD=.18.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为12,直角三角形中短直角边a,较长直角边为b,那么(a+b)2的值为.三、解答题(共46分)19.(6分)有一块空白地,如图,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC =24m,试求这块空白地的面积.20.交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路l上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路l上由B向A匀速驶来,测得此车从B处行驶到A 处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).21.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,在A处有一所中学,AP=120米,此时有一辆消防车在公路MN上沿PN方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.(1)学校是否会受到影响?请说明理由.(2)如果受到影响,则影响时间是多长?22.(8分)甲、乙两位探险者今年到沙漠进行探险,没有了水,需要寻找水源,为了不至于走散,他们用两部对话机联系,已知对话机的有效距离为12千米.如图,早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进.上午10:00,甲步行到A,乙步行到B,问甲、乙二人相距多远?还能保持联系吗?23.(8分)如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?24.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.参考答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10答案 C A C C C B C C B D 二.填空题:11.解:由题意得:第n组数为(2n+1),,,∴第1个数为15时,即相当于第7组数据,∴m==112,n==113,m+n=112+113=225,故答案为:225.12.解:∵(n2+1)2=n4+2n2+1,(n2﹣1)2+(2n)2=n4+2n2+1,∴AB2=BC2+AC2,∴∠A+∠B=90°.13.解:∵AD是中线,AB=13m,BC=10m,∴BD=BC=5m.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,∴S△ABC=×AD×BC=×10×12=60(m2),∵种植每平方米花草需要50元,∴种植这块三角形空地需要:50×60=3000(元).故答案为:3000.14.解:∵5+8>12,8+12>13,5+8=13(无法构成三角形),5+12>13,∴可组成3个三角形,∵52=25,82=64,122=144,132=169,∴52+122=169=132,所以可组成1个直角三角形,故答案是:3,1.15.如图,Rt△ABC中,∠ACB=90°,AB=4,分别以AC和BC为边,向外作等腰直角三角形△ACD和△BCE,则图中的阴影部分的面积是8 .【分析】由勾股定理求出BC2+AC2=AB2=16,由等腰直角三角形的性质和三角形面积公式即可得出结果.【解答】解:∵Rt△ABC中,∠ACB=90°,AB=4,∴BC2+AC2=AB2=16,∵△ACD和△BCE是等腰直角三角形,∴图中的阴影部分的面积是BC2+AC2=×16=8.故答案为:8.16.已知:如图,在四边形ABCD中,∠BAD=∠BCD=90°,M,N分别是BD,AC 的中点,且AC=8,BD=10,则MN= 3 .【分析】连接AM、CM.根据∠BAD=∠BCD=90°,M是BD的中点,AM=CM,三角形AMC为等腰三角形,又N是AC的中点,根据等腰三角形三线合一的性质,可知MN⊥AC,AN=CN,最后由勾股定理求出MN.【解答】解:连接AM、CM.∵∠BAD=∠BCD=90°,M是BD的中点,∴AM=BD,CM=BD,∴AM=CM=,∵N分别是AC的中点,∴MN⊥AC,AN=CN=AC=,∴在Rt△CMN中,由勾股定理得,MN===3.故答案为3.17.△ABC中,AB=AC=2,∠BAC=90°,点D在直线AC上,AC=2CD,则BD=或.【分析】根据勾股定理和等腰直角三角形的性质分两种情况画图即可求解.【解答】解:根据题意分①点D在线段AC上,或点D在AC延长线上,两种情况,如图:∵AB=AC=2,∠BAC=90°,①点D′在线段AC上,AC=2CD′,∴CD′=AD′=1,在Rt△ABD′中,根据勾股定理,得BD′===;②当点D″在AC延长线上时,CD″=1,∴AD″=3在Rt△ABD″中,根据勾股定理,得BD″===.故答案为或.18.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为12,直角三角形中短直角边a,较长直角边为b,那么(a+b)2的值为23 .【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方12,也就是两条直角边的平方和是12,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12﹣1=11.根据完全平方公式即可求解.【解答】解:根据题意,并结合勾股定理得:大正方形的面积:a2+b2=12,四个直角三角形面积和为:S大正方形﹣S小正方形=12﹣1=11,∴4×ab=11,∴2ab=11,∴(a+b)2=a2+b2+2ab=12+11=23.故答案为23.三.解答题:19.解:解:连接AC,在Rt△ACD中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10米,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S空白=AC×BC﹣AD×CD=×10×24﹣×8×6=96(米2).答:这块空白地的面积是96米2.20.解:此车超速,理由:∵∠POB=90°,∠PBO=45°,∴△POB是等腰直角三角形,∴OB=OP=100米,∵∠APO=60°,∴OA=OP=100≈173米,∴AB=OA﹣OB=73米,∴≈24米/秒≈86千米/小时>80千米/小时,∴此车超速.21.解:(1)学校受到噪音影响.理由如下:作AB⊥MN于B,如图1,∵PA=120m,∠QPN=30°,∴AB=PA=60m,而60m<100m,∴消防车在公路MN上沿PN方向行驶时,学校受到噪音影响;(2)以点A为圆心,100m为半径作⊙A交MN于C、D,如图,∵AB⊥CD,∴CB=BD,在Rt△ABC中,AC=100m,AB=60m,CB==80m,∴CD=2BC=160m,∵消防车的速度5m/s,∴消防车在线段CD上行驶所需要的时间=160÷5=32(秒),∴学校受影响的时间为32秒.22.解:∵早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进,∴上午10:00时,OA=8千米,OB=6千米,(3分)∴AB=82+62=10(千米)<12千米,(6分)∴甲、乙二人相距10千米,还能保持联系.(8分)23.解:如图,连接BD.(1分)∵∠A=90°,AB=3m,AD=4m,∴在Rt△ABD中,由勾股定理得BD2=AB2+AD2=32+42=52,即BD=5m.在△CBD中,CD2=132,BC2=122,BD2=52,∵122+52=132,即BC2+BD2=CD2,∴∠DBC=90°.(5分)故S四边形ABCD=S△BAD+S△DBC=12·AD·AB+12DB·BC=12×4×3+12×5×12=36(m2).(7分)∴学校需投入的资金为36×200=7200(元).(9分) 答:学校需要投入7200元购买草皮.(10分) 24.解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.。

人教版 八年级数学 第17章 勾股定理 综合训练(含答案)

人教版 八年级数学 第17章 勾股定理 综合训练(含答案)

人教版 八年级数学 第17章 勾股定理 综合训练一、选择题1. 三角形的三边长为22()2a b c ab +=+,则这个三角形是()A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.2. 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A. 0B. 1C. 2D. 33. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定4. 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )A. a b c <<B. c a b <<C. c b a <<D. b a c <<5. 如图,在由单位正方形组成的网格图中标有AB , CD , EF , GH 四条线段,其中能构成一个直角三角形三边的线段是( ) A .CD ,EF ,GH B .AB ,EF ,GH C .AB ,CD ,GH D .AB ,CD ,EF6. 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )c baC BA FHGEDBCAC .x y <D .不确定7. 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍8. 22(13)10250y z z -+-+=,以x 、y 、z 为三边长的三角形是( ). A .等腰三角形 B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm .10. 如图,在Rt △ABC 中,∠ACB =90°,BC =6,AC =8.分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E ,F.过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则CD 的长是________.11. 如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为12. 已知直角三角形两边x ,y 的长满足240x -,则第三边长为______________.13. 已知ABC ∆是边长为1的等腰直角三角形,以Rt ABC ∆的斜边AC 为直角边,画第二个等腰Rt ACD ∆,再以Rt ACD ∆的斜边AD 为直角边,画第三个等腰Rt ADE ∆,……,依此类推,第n 个等腰直角三角形的斜边长是 .14. 如图,P 是等边ABC ∆中的一个点,2,4PA PB PC ===,则ABC ∆的边长是 .CAGFED CB A三、解答题 15. 已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.(1)求证:△ACE△△BCD ; (2)求证:2CD 2=AD 2+DB 2.16. 如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.(1)记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234.....n a a a a ,,,,请求出234a a a ,,的值; (2)根据以上规律写出n a 的表达式.17. 设,,,a b c d 都是正数。

人教版八年级数学下册第十七章勾股定理练习(含答案)

人教版八年级数学下册第十七章勾股定理练习(含答案)

第十七章勾股定理一、单选题1.在Rt△ABC中,△C=90°,AC=3,BC=4,则点C到AB的距离是()A.34B.35C.45D.1252.下列各组数中,不是勾股数的为()A.3,4,5B.6,8,10C.5,12,13D.5,7,103.以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2;(3)23,24,25;(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个4.如图,点A表示的实数是()A B C.1D.15.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD△AC于点D.则BD的长为()A B C D6.如图,三角形纸片ABC ,AB=AC ,△BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A .2B .C .3D .7.如图,圆柱形玻璃板,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的A 处,则蚂蚁到达蜂蜜的最短距离( )cm .A .14B .15C .16D .178.如图,一根长5米的竹竿斜靠在一竖直的墙AO 上,这时AO 为4米.如果竹竿的顶端A 沿墙下滑1米,竹竿底端B 外移的距离BD ( )A .等于1米B .大于1米C .小于1米D .以上都不对 9.如图,在四边形ABCD 中,12AB =,17BC =,8CD =,9AD =,15BD =,则四边形ABCD 的面积为( )A .122B .114C .110D .10010.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )A .0.8米B .2米C .2.2米D .2.7米二、填空题 11.直角三角形的两条直角边分别为6cm 和8cm ,则这个直角三角形的周长为________cm . 12.在直角坐标系中,已知点A (0,2),B (1,3),则线段AB 的长度是_____. 13.如图,已知在Rt ABC △中,90ACB ∠=︒,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于____.14.如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为__,BC 的长为__,CD 的长为__,AD 的长为__;(2)连接AC ,通过计算△ACD 的形状是__;△ABC 的形状是__.三、解答题15.已知在ABC ∆中,D 是BC 的中点,DE BC ⊥,垂足为D ,交AB 于点E ,且222BE AE AC -=.(1)求A ∠的度数;(2)若3DE =,4BD =,求AE 的长.16.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A ′,那么梯子的底端在水平方向滑动了几米?17.如图,一艘船由A 港沿北偏东60°方向航行10km 至B 港,然后再沿北偏西30°方向航行10km 至C 港.(1)求A ,C 两港之间的距离(结果保留到0.1km ≈1.414);(2)确定C 港在A 港的什么方向.18.如图,把一块三角形()ABC △土地挖去一个直角三角形()90ADC ∠=︒后,测得6CD =米,8AD =米,24BC =米,26AB =米.求剩余土地(图中阴影部分)的面积.答案1.D2.D3.B4.B5.A6.B7.B8.A9.B10.D11.24.1213.2π14.(15,,(2)等腰三角形,直角三角形15.(1)90°(2)1.416.(1) 这个梯子的顶端距地面有24米;(2) 梯子的底端在水平方向滑动了8米17.(1)A、C两地之间的距离为14.1km;(2)C港在A港北偏东15°的方向上.96m 18.剩余土地(图中阴影部分)的面积为2。

人教版八年级数学下册第十七章 勾股定理练习(含答案).pdf

人教版八年级数学下册第十七章 勾股定理练习(含答案).pdf

答案 1.C 2.A 3.C 4.C 5.D 6.A 7.C 8.A 9.D 10.B
11. 13 15
12.
8
13.45. 14.36
3 15.(1) 5 ;(2) 4
16.(1) 这个梯子的顶端距地面有 24 米;(2) 梯子的底端在水平方向滑动了 8 米
7
17.AB=20,EC=
2
25 18.(1)运动 4 s 时,△APC 是等腰三角形.(2)当运动时间为 5.5 s 或 6 s 或 6.6 s 时,
A.6,12,13
B.3,4,7
C.7,24,25
D.8,15,16
4.如图,一块直角三角形的纸片,两直角边 AC=6cm,BC=8cm,现将直角边 AC 沿直线 AD 折叠,使它落在斜边 AB 上,且与 AE 重合,则 CD 等于( ).
A.2 cm
B.4 cm
C.3 cm
D.5 cm
5.如图,是一个三级台阶,它的每一级的长、宽、高分别为 20dm、3dm、2dm,A 和 B 是这 个台阶两个相对的端点,A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台阶面爬 到 B 点的最短路程是( )
16.一架梯子长 25 米,斜靠在一面墙上,梯子底端离墙 7 米, (1)这个梯子的顶端距地面有多高? (2)如果梯子的顶端下滑了 4 米到 A′,那么梯子的底端在水平方向滑动了几米?
17. 如图,在 Rt△ABC 中,∠C=90°,AC=16,BC=12,AB 的垂直平分线分别交 AB、
AC 于点 D、E.求 AB、EC 的长.
A.25 海里
B.30 海里
C.40 海里
D.50 海里
8.适合下列条件的△ABC 中,直角三角形的个数为( )

习题word版:第十七章 勾股定理

习题word版:第十七章  勾股定理

第十七章 勾股定理17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,能得到勾股定理吗?解:∵梯形的面积为12(a +b)(a +b)=12ab +12ab +12c 2,∴a 2+2ab +b 2=ab +ab +c 2. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C ) A .a 2+b 2=c 2 B .b 2+c 2=a 2 C .a 2+c 2=b 2 D .c 2-a 2=b 2 4.(2019·平顶山期末)在△ABC 中,∠B =90°.若BC =3,AC =5,则AB 等于(C ) A .2 B .3 C .4 D .34 5.已知直角三角形中30°角所对的直角边的长是2 3 cm ,则另一条直角边的长是(C ) A .4 cm B .4 3 cm C .6 cm D .6 3 cm 6.(2019·毕节)如图,点E 在正方形ABCD 的边AB 上.若EB =1,EC =2,则正方形ABCD 的面积为(B ) A .3 B .3 C . 5 D .57.(2019·洛阳期中)如图,在△ABC 中,AB ⊥AC ,AB =5 cm ,BC =13 cm ,BD 是AC 边上的中线,则△BCD 的面积是15__cm 2.8.(2019·郑州高新区期末)如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为64.【变式】 如图,以Rt △ABC 的三边为直径分别向外作三个半圆S 1,S 2,S 3.若S 2=32π,S 3=18π,则斜边上半圆的面积S 1=50π.知识点3赵爽弦图9.【关注数学文化】(2019·咸宁)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(B),A) ,B) ,C) ,D)10.(2019·大庆)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是1.易错点直角边不确定时漏解11.(2019·洛阳期中)已知Rt△ABC的三边长为a,4,5,则a的值是(C)A.3 B.41C.3或41 D.9或4102中档题12.(本课时T8变式)如图,分别以Rt△ABC的三边为边长向外作等边三角形.若AB=4,则三个等边三角形的面积之和是(A)A.8 3 B.6 3C.18 D.1213.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB 上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6C.3 2 D.2114.(2019·河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为(A)A.2 2 B.4C.3 D.1015.(2018·荆州)为了比较5+1与10的大小,可以构造如图所示的图进行推算,其中∠C =90°,BC =3,D 在BC 上且BD =AC =1.通过计算可得5+1>10.(填“>”“<”或“=”)16.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为32或42. 17.如图,在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84., 03 综合题) 18.(2019·毕节改编)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,求CD 的长度.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =60°,AC =10, ∴∠ABC =30°.∴AB =2AC =20,BC =AB 2-AC 2=10 3. ∵AB ∥CF ,∴∠BCM =∠ABC =30°.∴BM =12BC =12×103=5 3.∴CM =BC 2-BM 2=15. 在△EFD 中,∠F =90°,∠E =45°, ∴∠EDF =45°. ∴MD =BM =5 3.∴CD =CM -MD =15-5 3.第2课时勾股定理的应用01基础题知识点1勾股定理在平面图形中的应用1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.2.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:①测得BD的长度为15米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高为1.6米.求风筝的高度CE.解:在Rt△CDB中,由勾股定理,得CD=CB2-BD2=252-152=20(米).∴CE=CD+DE=20+1.6=21.6(米).答:风筝的高度CE为21.6米.3.(2019·郑州管城区月考)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,它们同时出发,一个半小时后,甲、乙两渔船相距多少海里?解:由题意,得BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,AB=BO2+AO2=15(海里).答:甲、乙两渔船相距15海里.知识点2两次勾股定理的应用4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米5.(教材P25例2变式)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC 上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.知识点3利用勾股定理求两点间的距离6.(2019·常州)平面直角坐标系中,点P(-3,4)到原点的距离是5.7.(教材P26练习T2变式)如图,在平面直角坐标系中,A(4,4),B(1,0),C(0,1),则B,C两点间的距离是2;A,C两点间的距离是5;A,B两点间的距离是5.8.(2019·大庆)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km 至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1.732);(2)确定C港在A港的什么方向.解:(1)由题意,得∠PBC=30°,∠MAB=60°.∴∠CBQ=60°,∠BAN=30°.∴∠ABQ=30°.∴∠ABC=∠ABQ+∠CBQ=90°.∵AB=BC=10,∴在Rt△ABC中,AC=AB2+BC2=102≈14.1.答:A,C两港之间的距离约为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°.∴∠CAM=60°-45°=15°.∴C港在A港北偏东15°的方向上.02中档题9.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D)A.4米B.8米C.9米D.7米10.(2019·南京)无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.11.【方程思想】如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5 m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1 m,离秋千支柱AD的水平距离BE为1.5 m(不考虑支柱的直径).求秋千支柱AD的高.解:设AD=x m,则由题意可得AB=(x-0.5)m,AE=(x-1)m.在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2.解得x=3.答:秋千支柱AD的高为3 m.12.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100 m的P处.这时,一辆轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3 s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80 km/h的限制速度?解:在Rt△APO中,∠APO=60°,则∠P AO=30°.∴AP=2OP=200 m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100 m.∴AB=AO-BO=(1003-100)m.∴从A到B小车行驶的速度为(1003-100)÷3≈24.4(m/s)=87.84 km/h>80 km/h.∴此车超过80 km/h的限制速度.03综合题13.【分类讨论思想】如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC 以1 cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.∴BC=4 cm.(2)由题意,知BP=t cm,①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,∴t=4;②当∠BAP为直角时,如图2,BP=t cm,CP=(t-4)cm,AC=3 cm,在Rt△ACP中,AP2=AC2+CP2=32+(t-4)2.在Rt△BAP中,AB2+AP2=BP2,即52+[32+(t-4)2]=t2.解得t =254.∴当△ABP 为直角三角形时,t =4或254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数 1.(教材P 27练习T 1变式)(2019·河南期末)如图,数轴上点A 对应的数是0,点B 对应的数是1,BC ⊥AB ,垂足为B ,且BC =2,以点A 为圆心,AC 长为半径画弧,交数轴于点D ,则点D 表示的数为(D )A .2.2B . 2C . 3D . 52.在数轴上作出表示10的点(保留作图痕迹,不写作法). 解:略.知识点2 网格中的无理数3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),则线段AB 的长度为(C ) A . 2 B . 3 C . 5 D .34.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D ,则CD 的长为(A ) A .255 B .355 C .455 D .455.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:如图所示.知识点3 等腰三角形中的勾股定理6.将一副三角尺按如图所示叠放在一起,若AB =12 cm ,则AF =62cm .7.(2019·天水)如图,等边△OAB 的边长为2,则点B 的坐标为(B ) A .(1,1) B .(1,3) C .(3,1) D .(3,3)8.(教材P27练习T2变式)如图,在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的底边上的高与面积.解:过点A 作AD ⊥BC 于点D , ∵AB =AC =13 cm ,∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52 =12(cm),即等腰三角形底边上的高为12 cm.∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 9.(2019·驻马店汝南县期末)如图,在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D.若 AC =3,BC =4,则BD 的长是(A )A .2B .3C .4D .510.如图,图中小正方形的边长为1,△ABC 的周长为(B )A .16B .12+4 2C .7+7 2D .5+11 211.(教材P 27练习T 1变式)如图,数轴上点A 所表示的实数是5-1.12.点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离为355.13.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8, ∴BD =BE 2-DE 2=82-42=4 3.14.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点. (1)在图1中,以格点为端点,画线段MN =13;(2)在图2中,以格点为顶点,画正方形ABCD ,使它的面积为10.解:(1)如图. (2)如图.03 综合题15.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n=(n -1)2+1=n ,S n =n2(n 为正整数). (2)OA 210=(9)2+1=10, ∴OA 10=10.(3)S 21+S 22+S 23+…+S 210 =(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 利用勾股定理解决最短路径问题 ——教材P39复习题T12的变式与应用【例】 如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路程,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的直线AA ′剪开,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.解:如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根据勾股定理,得 AB 2=A ′A 2+A ′B 2=122+92=225. ∴AB =15.∴需要爬行的最短路程是15 cm.图例圆柱――→展开长方 体阶梯 问题基本 思路将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线→构造直角三角形→利用勾股定理求解.1.(2018·禹州期中)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)2.如图是一个三级台阶,它的每一级的长、宽、高分别为24 dm,3 dm,3 dm,点A和点B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是30__dm.3.如图,长方体的高为5 cm,底面长为4 cm,宽为1 cm.(1)点A1到点C2之间的距离是多少?(2)若一只蚂蚁从点A2爬到C1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm,底面长为4 cm,宽为1 cm,∴A2C2=42+12=17(cm).∴A1C2=52+(17)2=42(cm).(2)如图1所示,A2C1=52+52=52(cm).如图2所示,A2C1=92+12=82(cm).如图3所示,A2C1=62+42=213(cm).∵52<213<82,∴一只蚂蚁从点A2爬到C1,爬行的最短路程是5 2 cm.小专题(三)方程思想在勾股定理中的应用——教材P39复习题T10的解法剖析及变式应用【教材母题】一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)解:设AB=x尺,根据题意,得∠BAC=90°,AB+BC=10尺,∴BC =(10-x )尺. ∵AC 2+AB 2=BC 2, ∴32+x 2=(10-x )2,解得x =41120.答:折断处离地面41120尺.在一个直角三角形中,若已知两边长,可直接运用勾股定理求第三边长,若已知一边长,且知另两边具有一定的数量关系,可利用方程思想,设出一边长,利用数量关系表示另一边长,借助勾股定理这一等量关系列出方程解决问题,其中两边的数量关系主要有两种呈现形式:一是直角三角形中有特殊角,二是出现图形的折叠.类型1 利用直角三角形中的特殊角揭示两边的数 量关系1.求下列直角三角形中未知的边长.解:如图1,设AC =x ,∵∠ACB =90°,∠B =30°, ∴AB =2x.∵AB 2=AC 2+BC 2,∴(2x)2=x 2+32.∴x =3或-3(负值舍去). ∴AC =3,AB =2 3.如图2,设AC =x ,∵∠ACB =90°,∠A =45°,∴BC =AC =x.∵AB 2=AC 2+BC 2,∴x 2+x 2=(32)2.∴x =3或-3(负值舍去). ∴AC =BC =3.类型2 利用图形的折叠找两边的数量关系2.如图,在Rt △ABC 中,AB =6,BC =4,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为(C )A .53B .52C .83D .53.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.4.如图,把长方形纸片ABCD 折叠,使其对角顶点A 与C 重合.若长方形的长BC 为8,宽AB 为4,则折痕EF 的长度为25.类型3 利用勾股定理和方程思想求点的坐标5.如图,在平面直角坐标系中,A(1,3),试在x 轴上找一点P ,使△OAP 为等腰三角形,求出P 点的坐标.解:过点A 作AB ⊥x 轴,垂足为B. ∵A(1,3),∴OB =1,AB =3. ∴OA =12+32=10.当AO =AP 时,以A 为圆心,AO 长为半径画弧与x 轴交于点O 与点P 1, ∵AB ⊥x 轴,∴BP 1=BO =1,即P 1(2,0);当OA =OP 时,以O 为圆心,OA 长为半径画弧与x 轴交于点P 2,P 3, ∵OA =10,∴P 2(10,0),P 3(-10,0);当PA =PO 时,作OA 的垂直平分线交x 轴于点P 4. 设OP 4=x ,则BP 4=x -1,AP 4=OP 4=x.在Rt △ABP 4中,AP 24=AB 2+BP 24, ∴x 2=32+(x -1)2.解得x =5,即P 4(5,0).综上所述,使△OAP 为等腰三角形的点P 有:P 1(2,0),P 2(10,0),P 3(-10,0),P 4(5,0).17.2 勾股定理的逆定理01 基础题 知识点1 互逆命题1.下列各命题的逆命题不成立的是(C ) A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b 2.(2019·安徽)命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为如果a ,b 互为相反数,那么a +b =0.逆命题是真命题.(填“真命题”或“假命题”)知识点2 勾股定理的逆定理 3.(2019·郑州期末)下面四组数,其中是勾股数组的是(A ) A .3,4,5 B .0.3,0.4,0.5 C .32,42,52 D .6,7,8 4.(2019·洛阳洛龙区期中)由线段a ,b ,c 组成的三角形不是直角三角形的是(D ) A .a 2-b 2=c 2B .a =54,b =1,c =34C .a =2,b =3,c =7D .∠A ∶∠B ∶∠C =3∶4∶5 5.(2019·益阳)已知M ,N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出两组不同于以上所给出的基本勾股数:答案不唯一,如:5,12,13;7,24,25.7.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a=3,b=22,c=5;(2)a=5,b=7,c=9;(3)a=5,b=26,c=1.解:(1)是,∠B是直角.(2)不是.(3)是,∠A是直角.8.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,∴根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5.∵AC2+CD2=52+122=25+144=169,AD2=132=169,∴AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.02中档题9.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10 B.11 C.12 D.1310.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°11.【关注数学文化】(2018·长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为(A)A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.如图,方格中的点A,B称为格点(横线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为(B)A.3 B.4 C.5 D.613.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.14.(教材P34习题T6变式)如图,在正方形ABCD中,E,F分别BC,CD边上的一点,且BE=2EC,FC=2 9DC,连接AE,AF,EF,求证:△AEF是直角三角形.证明:设FC =2a ,则DC =9a ,DF =7a. ∴AB =BC =AD =CD =9a. ∵BE =2CE ,∴BE =6a ,EC =3a.在Rt △ECF 中,EF 2=EC 2+FC 2=(3a)2+(2a)2=13a 2. 在Rt △ADF 中,AF 2=AD 2+DF 2=(9a)2+(7a)2=130a 2. 在Rt △ABE 中,AE 2=AB 2+BE 2=(9a)2+(6a)2=117a 2. ∵13a 2+117a 2=130a 2, ∴EF 2+AE 2=AF 2.∴△AEF 是以∠AEF 为直角的直角三角形.15.(教材P 34习题T 5变式)如图,在四边形ABCD 中,AB =BC =1,CD =3,DA =1,且∠B =90°.求: (1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号);(3)将△ABC 沿AC 翻折至△AB′C ,如图所示,连接B′D ,求四边形ACB′D 的面积.解:(1)∵AB =BC =1,∠B =90°, ∴∠BAC =∠ACB =45°,AC =AB 2+BC 2= 2. 又∵CD =3,DA =1, ∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°.(2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.(3)过点D 作DE ⊥AB′,垂足为E , 由(1)知∠DAC =90°.根据折叠可知∠B′AC =∠BAC =45°,AB =AB′=1,S △AB′C =S △ABC =12.∴∠DAE =∠DAC -∠B′AC =45°. ∴AE =DE.设DE =AE =x ,在Rt △ADE 中,AE 2+DE 2=AD 2. ∴x 2+x 2=1.∴x =22.∴S △ADB′=12×1×22=24.∴S 四边形ACB′D =S △AB′C +S △ADB′=12+24=2+24.03 综合题16.(2019·呼和浩特改编)如图,在△ABC 中,内角∠A ,∠B ,∠C 所对应的边分别为a ,b ,c.(1)若a ,b ,c 满足aa -b +c=12(a +b +c )c ,求证:△ABC 是直角三角形;(2)若a =m -n ,b =2mn ,c =m +n ,(其中m ,n 都是正整数,且m>n),求证:△ABC 是直角三角形.证明:(1)原式可变形为aa +c -b=a +b +c 2c ,∴(a +c)2-b 2=2ac ,即a 2+2ac +c 2-b 2=2ac. ∴a 2+c 2=b 2.∴△ABC 是以∠B 为直角的直角三角形.(2)∵a 2=(m -n)2,b 2=(2mn)2=4mn ,c 2=(m +n)2, ∴(m -n)2+4mn =(m +n)2,即a 2+b 2=c 2. ∴△ABC 是以∠C 为直角的直角三角形.章末复习(二)勾股定理01分点突破知识点1勾股定理(河南中招2019T9选,2018T9选,2017T18(2)解,2016T6选,2015T7选,2014T7选) 1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A.6 B.6 2C.6 3 D.122.如图,阴影部分是一个正方形,则此正方形的面积为64cm2.3.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴在△ACD中,AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 mB.13 mC.16 mD.17 m5.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在宽0.9 m,长1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5__m长.6.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO 长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题及逆定理7.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用8.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形9.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且a2-b2=c2,则下列说法正确的是(C)A.∠C是直角B.∠B是直角C.∠A是直角D.∠A是锐角02易错题集训10.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是100或28.11.(2018·襄阳)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为23或27.03河南常考题型演练12.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+113.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A)A.8 cm B.6 cmC.5.5 cm D.1 cm14.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD15.(2019·信阳罗山县模拟)如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为(B)A.8 B.9.6 C.10 D.4 516.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.17.(2019·枣庄)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=6-2.18.(2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D 间的距离为13km.19.如图,有一块空白地,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2.解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°.∴S四边形ABCD=S Rt△ACB-S Rt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96 m2.04核心素养专练20.(2019·邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c=10,则小正方形ABCD的面积是4.周测(第十七章)(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(C)A.8,15,17 B.2,3, 5C.3,2, 5 D.1,2, 52.已知命题:等边三角形是等腰三角形,则下列说法正确的是(B)A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.点A(-3,-4)到原点的距离为(C)A.3 B.4 C.5 D.74.如图,数轴上点A表示的数是0,点B表示的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC 的长为半径画弧,与数轴交于点D,则点D表示的数为(B)A .1.4 B. 2 C. 3 D .25.将直角三角形的三条边长同时扩大一倍,得到的三角形是(C ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .等腰三角形6.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3.若AC =4,则AB 的长为(D ) A .8 B .6 C .433 D .8337.下面各三角形中,面积为无理数的是(C )8.如图,将边长为12的正方形ABCD 折叠,使得点A 落在CD 边上的点E 处,折痕为MN.若CE 的长为7,则MN 的长为(B )A .10B .13C .15D .无法求出9.已知直角三角形两条直角边的长之和为6,斜边长为2,则这个三角形的面积是(B ) A .0.25 B .0.5 C .1 D .2 310.已知一个直角三角形的斜边长为3,若以三边为斜边分别向外作等腰直角三角形,则所作的三个等腰直角三角形的面积和为(A )A .92B .94C .3D .9 二、填空题(每小题4分,共20分)11.直角三角形斜边长是6,一直角边的长是5,则此直角三角形的另一直角边长为11.12.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB x 轴的负半轴于点C ,则点C 的坐标为(-1,0).13.如图,每个小正方形的边长均为1,则△ABC 边AC 上的高BD 的长为85.14.如图,在△ABC 中,AB ∶BC ∶CA =3∶4∶5,且周长为36 cm ,点P 从点A 开始沿AB 边向点B 以每秒1 cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2 cm 的速度移动.若同时出发,则过3秒时,△BPQ 的面积为18cm 2.15.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4.分别以AB ,AC ,BC 为边在AB 的同侧作正方形ABEF ,ACPQ ,BCMN ,四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于18.三、解答题(共50分)16.(8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上.(1)求△ABC 的面积;(2)求AB ,AC 的长. 解:(1)S △ABC =12×7×5 =17.5.(2)由勾股定理,得AB =32+52=34,AC =42+52=41.17.(10分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,BC =6,AC =8,求AB 与CD 的长.解:在△ABC 中,∠ACB =90°,BC =6,AC =8,由勾股定理,得AB =BC 2+AC 2=10,∵S △ABC =12AB·CD =12AC·BC , ∴CD =AC·BC AB =8×610=4.8.18.(10分)如图,∠AOB =90°,OA =45 cm ,OB =15 cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?解:因为小球滚动的速度与机器人行走的速度相等,运动时间相等,所以BC =CA.设AC =BC =x ,则OC =45-x ,由勾股定理可知OB 2+OC 2=BC 2.又因为OB =15,所以152+(45-x)2=x 2.解得x =25.答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是25 cm .19.(10分)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》:用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步:S 6=n ;第二步:n =k ;第三步:分别用3,4,5乘k ,得三边长.当面积S 等于150时,请用“积求勾股法”求出这个直角三角形的三边长.解:当S =150时,k =n =S 6=1506=25=5, ∴三边长分别为3×5=15,4×5=20,5×5=25.∴这个直角三角形的三边长为15,20,25.20.(12分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H(点H 与点D 不重合),通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于点E ,延长EG 交CD 于点F.如图1,当点H 与点C 重合时,易证得FG =FD(不要求证明);如图2,当点H 为边CD 上任意一点时,求证:FG =FD.【应用】 在图2中,已知AB =5,BE =3,则FD =54,△EFC 的面积为154.(直接写结果)证明:连接AF ,由折叠的性质可得,AB =AG =AD.在Rt △AGF 和Rt △ADF 中,⎩⎪⎨⎪⎧AG =AD ,AF =AF , ∴Rt △AGF ≌Rt △ADF(HL ).∴FG =FD.。

人教版数学八年级下册 第十七章勾股定理 易错题练习(word版含答案)

人教版数学八年级下册 第十七章勾股定理 易错题练习(word版含答案)

第十七章勾股定理易错题练习17.1 勾股定理第1课时勾股定理易错点1 对勾股定理的理解不透彻1.如图,在正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC,边长为无理数的边数有()A.0条B.1条C.2条D.3条2.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.803.如图是一棵美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形E的面积是 .易错点2 没有分清直角三角形的直角边和斜边4.在Rt△ABC中,∠B=90°,∠A,∠B,∠C所对的边分别为a,b,c,其中a=3,b=4,则以c为边的正方形的面积为 .5.已知以直角三角形的两边分别为边长的正方形的面积为7和16,则以第三边为边长的正方形的面积为 .易错点3 忽略三角形的高在三角形外部的情况6.在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.第2课时勾股定理的应用易错点1 忽略勾股定理的使用前提而出错1.已知△ABC的三边长均为整数,且较小两边的长分别为3和4.则最大边的长为()A.5B.6C.5或6D.无法确定2.如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了()米路,却踩伤了花草.A.1B.2C.5D.123.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方(BC=1.2米)时,感应门自动打开,则AD= 米.4.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.5.一架方梯AB长25米,如图所示,斜靠在一面墙上.(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了9米,那么梯子的底端在水平方向滑动了几米?易错点2 认不清立体图形展开后点或线的具体位置6.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为5 cm,底面边长为4 cm,则这圈金属丝的长度至少为()A.8 cmB.13 cmC.12 cmD.15 cm7.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()17.2 勾股定理的逆定理易错点1 运用勾股定理的逆定理时,因找错最大边而出错1.已知a,b,c是△ABC的三边长,+(c-5)2+12b-=0,则△ABC是()A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形2.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则()A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形3.有五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是()易错点2 忽略勾股数是正整数的条件4.下列各组数,是勾股数的一组是()A.3,-4,5B.5,12,13C.3,4,7D.53,54,15.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④ B.①②④ C.①② D.①④易错点3 勾股定理的逆定理在实际运用中易出错6.如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口,各自沿一固定方向航行,A舰每小时航行16海里,B舰每小时航行12海里,它们离开港口一个半小时后,相距30海里,已知A舰沿东北方向航行,问B舰沿哪个方向航行?7.景区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测得∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形的对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.参考答案第十七章勾股定理易错点题型17.1 勾股定理第1课时勾股定理易错点1 对勾股定理的理解不透彻1.如图,在正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC,边长为无理数的边数有(D)A.0条B.1条C.2条D.3条2.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C)A.48B.60C.76D.803.如图是一棵美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形E的面积是10 .易错点2 没有分清直角三角形的直角边和斜边4.在Rt△ABC中,∠B=90°,∠A,∠B,∠C所对的边分别为a,b,c,其中a=3,b=4,则以c为边的正方形的面积为 7 .5.已知以直角三角形的两边分别为边长的正方形的面积为7和16,则以第三边为边长的正方形的面积为 9或23 .易错点3 忽略三角形的高在三角形外部的情况6.在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解:①当△ABC为锐角三角形时,如图1.在Rt△ABD中在Rt△ACD中∴BC=CD+BD=5+9=14.∴△ABC的周长为15+13+14=42.②当△ABC为钝角三角形时,如图2.同理,BD=9,CD=5.∴BC=BD-CD=9-5=4.∴△ABC的周长为15+13+4=32.综上所述,△ABC的周长为42或32.第2课时勾股定理的应用易错点1 忽略勾股定理的使用前提而出错1.已知△ABC的三边长均为整数,且较小两边的长分别为3和4.则最大边的长为(C)A.5B.6C.5或6D.无法确定2.如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了( B)米路,却踩伤了花草.A.1B.2C.5D.123.如图,某自动感应门的正上方A 处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD 正对门,缓慢走到离门1.2米的地方(BC=1.2米)时,感应门自动打开,则AD= 1.5 米.4.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD 的面积. 解:如图,延长BC,AD 交于点E.∵∠A=60°,∠B=90°, ∴∠E=90°-∠A=30°.∴AE=2AB=8.根据勾股定理,得BE=43. ∵∠CDE=90°,∠E=30°.∴CE=2CD=4.根据勾股定理,得DE=23. ∴S 四边形ABCD =S △ABE -S △DCE =12AB ·BE-12CD ·DE=12×4×43-12×2×23=63.5.一架方梯AB 长25米,如图所示,斜靠在一面墙上.(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了9米,那么梯子的底端在水平方向滑动了几 米? 解:(1)在Rt △AOB 中,AB=25米,OB=7米,∴OA=22AB OB -=22257-=24(米).答:梯子的顶端距地面24米;(2)在Rt △A ′OB ′中,A ′O=24-9=15(米), ∴OB ′=22A B OA '''-=222515-=20(米). ∴BB ′=OB ′-OB=20-7=13(米).答:梯子的底端在水平方向滑动了13米.易错点2 认不清立体图形展开后点或线的具体位置6.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A 到顶点A ′镶有一圈金属丝,已知此三棱镜的高为5 cm,底面边长为4 cm,则这圈金属丝的长度至少为( B )A.8 cmB.13 cmC.12 cmD.15 cm7.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(B)17.2 勾股定理的逆定理易错点1 运用勾股定理的逆定理时,因找错最大边而出错1.已知a,b,c是△ABC的三边长,+(c-5)2+12b-=0,则△ABC是( A)A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形2.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则(A)A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形3.有五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( C)易错点2 忽略勾股数是正整数的条件4.下列各组数,是勾股数的一组是( B )A.3,-4,5B.5,12,13C.3,4,7D.53,54,15.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( C)A.②④ B.①②④ C.①② D.①④易错点3 勾股定理的逆定理在实际运用中易出错6.如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口,各自沿一固定方向航行,A舰每小时航行16海里,B舰每小时航行12海里,它们离开港口一个半小时后,相距30海里,已知A舰沿东北方向航行,问B舰沿哪个方向航行?解:根据题意,得OA=1.5×16=24,OB=1.5×12=18.∵242+182=302,∴OA2+OB2=AB2,即△AOB为直角三角形.又∵A舰沿东北方向航行,∠AOB=90°,∴B舰沿西北方向航行.7.景区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测得∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形的对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.解:(1)如图,连接AC.在Rt△ABC中,∠ABC=90°,AB=20米,BC=15米,∴==25(米).答:这个四边形对角线AC的长度为25米;(2)在△ADC中,CD=7米,AD=24米,AC=25米,∵AD2+CD2=242+72=252=AC2.∴△ADC为直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=12×15×20+12×7×24=234(平方米).答:这块空地的面积为234平方米.。

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。

(完整word版)最新人教版第十七章勾股定理整理练习题及详细解析答案

(完整word版)最新人教版第十七章勾股定理整理练习题及详细解析答案

题型一:直接考查勾股定理 例1。

在ABC ∆中,90C ∠=︒.(1)知6AC =,8BC =.求AB 的长.(2)已知17AB =,15AC =,求BC 的长。

题型二:应用勾股定理建立方程例2。

⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =__________ ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为___________ ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为_______________例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5。

如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6。

已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为直角三角形。

① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =例7。

三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8。

已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =【例1】、分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC【例2】分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC =, 2.4AC BCCD AB⋅==3k ,4k ∴222(3)(4)15k k +=,3k ∴=,⑵ 两直角边的长分别为54S =⑶ 两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm【例3】分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中90,2BED BE ∠=︒= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=【例4】答案:6【例5】分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 【例6】答案:10m【例7】解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 【例8】解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形【例9】证明:AD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=勾股定理练习题(家教课后练习)DCBADBA C1。

人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)

人教版八年级数学下册第17章《勾股定理》单元测试卷  (word版,含解析)

人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。

人教版八年级数学下册第十七章勾股定理练习(含答案)

人教版八年级数学下册第十七章勾股定理练习(含答案)

第十七章勾股定理一、单项选择题1.在Rt ABC 中,有两边的长分别为 1 和 2,则第三边的长()A.3B.5C.23或5D.3或52.在以下长度的各组线段中,能组成直角三角形的是()A.1,2,3B. 1, 2 ,3C. 3 ,2,5D.4,5,63. D 是△ABC 中 BC 边上的一点,若AC2﹣CD 2= AD 2,则 AD 是()A . BC 边上的中线B .△BAC 的角均分线C. BC 边上的高线D. AC 边上的高线4.如图,在△ ABC 中, AB=AC=5 ,BC=8 , D 是线段 BC 上的动点 (不含端点B, C).若线段 AD 长为正整数,则点 D 的个数共有 ()A.5 个B.4个C.3 个D.2 个5.有一块直角三角形纸片,两直角边AC=12cm , BC=16cm 如图,现将直角边AC 沿 AD 折叠,使它落在斜边AB 上,且与AE 重合,则DE 等于()A . 6cm B. 8cm C.10cm D. 14cm6.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、 3dm、2dm,A 和 B 是这个台阶两个相对的端点, A 点有一只蚂蚁,想到 B 点去吃爽口的食品,则蚂蚁沿着台阶面爬到 B 点的最短行程是()A.203B. 252C.20D.257.如图,在数轴上点 A 所表示的数为 a ,则 a 的值为()A.15B.15C.5D.158.如图,四边形ABCD中,AB17,BC8,CD12,AD9 ,D90 ,则四边形 ABCD 的面积为()A . 100B. 110C.114D. 1229.假如一个三角形的三边长分别为6,a, b,且( a+b)( a-b)=36 ,那么这个三角形的形状为()A .锐角三角形B .钝角三角形C.直角三角形D.等边三角形2,OC=10 ,10.如图,等腰 Rt △ ABC中,△ ABC=90°,O 是△ ABC 内一点, OA=6,OB=4O′为△ ABC 外一点,且△ CBO△△ ABO′,则四边形 AO′ BO的面积为()A . 10B. 16C.40D. 80二、填空题11.直角三角形两直角边长分别为2 3 +1,2 3 -1,则它的斜边长为____.12.如图,在一个长方形草坪ABCD上,放着一根长方体的木块,已知AD 9米, AB 10米,该木块的较长边与AD 平行,横截面是边长为 1 米的正方形,一只蚂蚁从点 A 爬过木块抵达 C 处需要走的最短行程是______米.13.如图,△ ABC 的边 BC 在数轴上, AB△ BC ,且 BC = 3, AB = 1,以 C 为圆心, AC 长为半径画圆分别交数轴于点 A′、点 A″,那么数轴上点 A′、点 A″所表示的数分别是 _____ 、_____.14.如图,直线过正方形ABCD 的极点 B,点 A、 C 到直 E 的距离分别是 1 和 2,则正方形ABCD 面积是 ____.三、解答题15.如图,已知Rt ??中,∠= 90°,AD是角均分线,CD= 15,BD= 25,求AC的长 . ABC C16.如图,一架梯子 AC 长 2.5 米,斜靠在一面墙上,梯子底端离墙0.7 米.(1)这个梯子的顶端距地面有多高?(2)假如梯子的顶端下滑了 0.4 米到 A′,那么梯子的底端在水平方向滑动了几米?17.如图, A 城气象台测得台风中心在 A 城正西方向240km 的 O 处,以每小时 30km 的速度向南偏东60°的 OB 方向挪动,距台风中心150km 的范围内是受台风影响的地区.(1)A 城能否遇到此次台风的影响?为何?(2)若 A 城遇到台风的影响,求出受台风影响的时间有多长?18.某开发区有一空地ABCD ,如下图.现计划在空地上种草皮,经丈量, B 90 ,AB 3m , BC 4m ,AD12m ,CD13m .若每栽种 1 平方米草皮需要200 元,问总合需要投入多少元?19.王伟准备用一段长30 米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为 a 米,因为受地势限制,第二条边长只好是第一条边长的 2 倍多 2 米.(1)请用 a 表示第三条边长;(2)问第一条边长能够为7 米吗?请说明原因,并求出 a 的取值范围;(3)可否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不可以,说明原因答案1. D2. B3. C4. C5. A6. D7. A8. C9. C10. C11.2612. 1513.110、 1 10.14. 5.15.AC = 30.16.( 1)这个梯子的顶端距地面有 2.4 米;( 2)梯子的底端在水平方向滑动了0.8 米.17. (1)A 城遇到此次台风的影响,原因看法析;(2) 受台风影响的时间有 6 小时.18. 7200 元13137 米. a 的取值范围是3a19.( 1) 28- 3a.( 2)第一条边长不可认为 2 .(3)能围成知足条件的小圈,它们的三边长分别为5米,12米,13米。

(word)新人教版八年级下册数学第十七章勾股定理单元测试题

(word)新人教版八年级下册数学第十七章勾股定理单元测试题

第十七章勾股定理测试题1.总分120分时间120分钟一、选择题〔本大题共l0小题,每题3分.共30分〕假设直角三角形的两条直角边长分别为3cm、4cm,那么斜边上的高为()A5cm B5cmC5cmD12cm21252.在△ABC中,AB=12cm,AC=9cm,BC=15cm,那么△ABC的面积等于〔〕A108cm2B90cm2C180cm2D54cm2将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A钝角三角形B锐角三角形C直角三角形D等腰三角形4.在直角坐标系中,点P〔-2,3〕到原点的距离是〔〕A5B13C11D2如图2,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影局部的面积为S1,右边阴影局部的面积和为S2,那么〔〕AS1=S2BS1<S2CS1>S2D无法确定A AD北EA东CB BC南图4图2图3如图3,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,那么阴影局部的面积是:A16B18C19D21,如图4,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,那么两船相距〔〕A25海里B30海里C35海里D40海里8.在△ABC中,假设AB=15,AC=13,AD为△ABC边BC的高,且AD=12,那么△ABC的周长是〔〕A.42B.32C.42或32D.37或3319.2那么斜边长为〔〕一直角三角形的木版,三边的平方和为1800cm,A80cmB30cm C90cm D120cm10.在△ABC中,AC=3,BC=4,那么AB的长为〔〕.A5B10C4D大于1且小于7二、填空题〔本大题共5小题,每题3分,共15分〕11.在正方形ABCD中,对角线为22,那么正方形边长为。

12.三角形中两边的平方差恰好等于第三边的平方,那么此三角形是三角形。

飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,那么飞机每小时飞行千米。

人教版八年级数学下册第十七章勾股定理练习(包含答案)

人教版八年级数学下册第十七章勾股定理练习(包含答案)

第十七章勾股定理一、单项选择题1.如图△ ABD 中,△D= 90°, C 是 BD 上一点,已知CB = 9, AB = 17,AD = 8,则 DC 的长是()A . 8B. 9C.6D. 152.以下各组数据不是勾股数的是()A . 2,3, 4B. 3, 4, 5C.5, 12, 13D. 6, 8, 103.《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本六尺。

问折高几何?意思是:如图,一根竹子,原高一丈(一丈 =10 尺),一阵风将竹子折断,其竹梢恰巧抵地,抵地处离竹子底部 6 尺远。

问折断处离地面的高度是多少?设折断处离地面的高度为 x 尺,则可列方程为()A .2 (10 -) 2B .2 2=(10 -) 2 ?? - 6 = ?? ?? - 6 ??C.x2+6=(10 -x)2 D. x2+62=(10 -x)24.已知△ABC 的三边分别是a、b、c,以下条件中不可以判断△ABC为直角三角形的是()A .△A+△B=△CB .a= 3, b=4, c= 5C.△A:△B:△C= 3: 4: 5 D. a2﹣ b2= c25.如图,在 5×5的正方形网格中,从在格点上的点A ,B,C,D 中任取三点,所组成的三角形恰巧是直角三角形的个数为()A . 1B. 2C.3D. 46.如图,有两颗树,一颗高10 米,另一颗高 4 米,两树相距8 米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟起码飞翔A . 8 米B. 10 米C.12 米D. 14 米7.如图,一架云梯长25 米,斜靠在一面墙上,梯子底端离墙7 米,假如梯子的底部在水平方向上向右滑动了8 米,那么梯子的顶端下滑()米.A . 4 米B. 6 米C.8 米D. 10 米8.如图,在高为 3 米,斜坡长为 5 米的楼梯台阶上铺地毯,则地毯的长度起码要()A . 4 米B. 5 米C.6 米D. 7 米9.直角三角形中向来角边的长为9,另两边为连续自然数,则直角三角形的周长为()A . 121 B. 120 C.90 D.不可以确立10.已知三角形的三边长分别为a,b,c,且 a+b=10,ab=18,c=8 ,则该三角形的形状是()A .等腰三角形B.直角三角形C.钝角三角形D.等腰直角三角形二、填空题11.如图,已知OA=OB ,那么数轴上点 A 所表示的数是__.12.如图,将长方形 ABCD 的边 AD 沿折痕 AE 折叠,使点 D 落在 BC 上的 F 处,若 AB= 5, AD =13,则 EF= _____.13.在△ABC 中,a,b,c 分别是△A,△B,△C 的对边,若( a﹣ 1)2 +|b﹣5 |+ c 2 =0,则这个三角形必定是 _____.14.给出以下命题:△在直角三角形ABC 中,已知两边长为 3 和 4,则第三边长为5;△三角形的三边a、b、c 知足 a2+c2= b2,则△C=90°;△△ABC 中,若△A:△B:△C= 1:5:6,则△ABC 是直角三角形;△△ABC 中,若 a:b:c= 1:2:3 ,则这个三角形是直角三角形,此中,正确命题为_____(选填序号).三、解答题15.如图,在Rt ABC 中, C 90 , BC 6cm, AC 8cm ,按图中所示方法将BCD 沿BD 折叠,使点 C 落在边 AB 的 C '点.(1)求DC '的长度;(2)求ADC '的面积.16.如图,一架云梯AB 长 25 分米,斜靠在一面墙上,梯子底端 B 离墙 7 分米 .(1)这个梯子的顶端 A 距地面有多高?(2)假如梯子顶端下滑了 4 分米,那么梯子的底端在水平方向滑动了多少分米?17.如图,缉毒警方在基地 B 处获知有贩毒者分别在P 岛和 M 岛进行毒品交易后,缉毒艇立刻出发,已知甲艇沿北偏东60°方向以每小时40 海里的速度行进,乙艇沿南偏东30°方向以每小时30 海里的速度行进,半小时后甲艇抵达M 岛,乙艇抵达P 岛,则 M 岛与 P 岛之间的距离是多少?18.如图,在四边形ACBD 中, AC= 6,BC=8, AD = 2 5 ,BD=4 5 ,DE是△ABD的人教版八年级数学下册第十七章勾股定理练习(包含答案) 边 AB 上的高,且DE = 4,求△ABC 的边 AB 上的高.答案1. C2. A3. D4. C5. C6. B7. A8. D9. C10. B11. 51312.513.直角三角形14.△△15.( 1)DC '=3 cm( 2) 6cm2.16.( 1) 24 分米;(2) 8 分米.17. M 岛与 P 岛之间的距离是25 海里.18.△ABC 的边 AB 上的高为 4.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章勾股定理17.1 勾股定理第1课时勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a2+b2=c2.2.在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,能得到勾股定理吗?解:∵梯形的面积为12(a+b)(a+b)=12ab+12ab+12c2,∴a2+2ab+b2=ab+ab+c2.∴a2+b2=c2.知识点2 利用勾股定理进行计算3.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是(C)A.a2+b2=c2 B.b2+c2=a2C.a2+c2=b2 D.c2-a2=b24.(2019·平顶山期末)在△ABC中,∠B=90°.若BC=3,AC=5,则AB等于(C) A.2 B.3 C.4 D.345.已知直角三角形中30°角所对的直角边的长是2 3 cm,则另一条直角边的长是(C)A.4 cm B.4 3 cmC.6 cm D.6 3 cm6.(2019·毕节)如图,点E在正方形ABCD的边AB上.若EB=1,EC=2,则正方形ABCD的面积为(B)A. 3 B.3 C. 5 D.57.(2019·洛阳期中)如图,在△ABC中,AB⊥AC,AB=5 cm,BC=13 cm,BD是AC边上的中线,则△BCD的面积是15__cm2.8.(2019·郑州高新区期末)如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为64.【变式】如图,以Rt△ABC的三边为直径分别向外作三个半圆S1,S2,S3.若S2=32π,S3=18π,则斜边上半圆的面积S1=50π.知识点3 赵爽弦图9.【关注数学文化】(2019·咸宁)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(B),A) ,B) ,C) ,D)10.(2019·大庆)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是1.易错点直角边不确定时漏解11.(2019·洛阳期中)已知Rt△ABC的三边长为a,4,5,则a的值是(C)A.3 B.41C.3或41 D.9或4102 中档题12.(本课时T8变式)如图,分别以Rt△ABC的三边为边长向外作等边三角形.若AB=4,则三个等边三角形的面积之和是(A)A.8 3 B.6 3C.18 D.1213.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6C.3 2 D.2114.(2019·河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O.若点O 是AC 的中点,则CD 的长为(A)A .2 2B .4C .3 D.1015.(2018·荆州)为了比较5+1与10的大小,可以构造如图所示的图进行推算,其中∠C=90°,BC =3,D 在BC 上且BD =AC =1.通过计算可得5+1>10.(填“>”“<”或“=”)16.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为32或42.17.如图,在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.解:在△ABC 中,AB =15,BC =14,AC =13,设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2.∴152-x 2=132-(14-x)2.解得x =9.∴AD=12.∴S△ABC=12BC·AD=12×14×12=84., 03 综合题)18.(2019·毕节改编)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A =60°,AC=10,求CD的长度.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°.∴AB=2AC=20,BC=AB2-AC2=10 3.∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=12BC=12×103=5 3.∴CM=BC2-BM2=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°.∴MD=BM=5 3.∴CD=CM-MD=15-5 3.第2课时勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.2.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:①测得BD的长度为15米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高为1.6米.求风筝的高度CE.解:在Rt△CDB中,由勾股定理,得CD=CB2-BD2=252-152=20(米).∴CE=CD+DE=20+1.6=21.6(米).答:风筝的高度CE为21.6米.3.(2019·郑州管城区月考)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,它们同时出发,一个半小时后,甲、乙两渔船相距多少海里?解:由题意,得BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,AB=BO2+AO2=15(海里).答:甲、乙两渔船相距15海里.知识点2 两次勾股定理的应用4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C)A.0.7米 B.1.5米C.2.2米 D.2.4米5.(教材P25例2变式)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.知识点3 利用勾股定理求两点间的距离6.(2019·常州)平面直角坐标系中,点P(-3,4)到原点的距离是5.7.(教材P26练习T2变式)如图,在平面直角坐标系中,A(4,4),B(1,0),C(0,1),则B,C两点间的距离是2;A,C两点间的距离是5;A,B两点间的距离是5.8.(2019·大庆)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1.732);(2)确定C港在A港的什么方向.解:(1)由题意,得∠PBC=30°,∠MAB=60°.∴∠CBQ=60°,∠BAN=30°.∴∠ABQ=30°.∴∠ABC=∠ABQ+∠CBQ=90°.∵AB=BC=10,∴在Rt△ABC中,AC=AB2+BC2=102≈14.1.答:A,C两港之间的距离约为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°.∴∠CAM=60°-45°=15°.∴C港在A港北偏东15°的方向上.02 中档题9.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D)A.4米 B.8米C.9米 D.7米10.(2019·南京)无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.11.【方程思想】如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5 m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1 m,离秋千支柱AD的水平距离BE为1.5 m(不考虑支柱的直径).求秋千支柱AD的高.解:设AD=x m,则由题意可得AB=(x-0.5)m,AE=(x-1)m.在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2.解得x=3.答:秋千支柱AD的高为3 m.12.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100 m的P 处.这时,一辆轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3 s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80 km/h的限制速度?解:在Rt△APO中,∠APO=60°,则∠PAO=30°.∴AP=2OP=200 m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100 m.∴AB=AO-BO=(1003-100)m.∴从A到B小车行驶的速度为(1003-100)÷3≈24.4(m/s)=87.84 km/h>80 km/h. ∴此车超过80 km/h的限制速度.03 综合题13.【分类讨论思想】如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P 从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.∴BC=4 cm.(2)由题意,知BP=t cm,①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,∴t=4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm ,在Rt△ACP 中,AP 2=AC 2+CP 2=32+(t -4)2.在Rt△BAP 中,AB 2+AP 2=BP 2,即52+[32+(t -4)2]=t 2.解得t =254. ∴当△ABP 为直角三角形时,t =4或254. 第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.(教材P27练习T1变式)(2019·河南期末)如图,数轴上点A 对应的数是0,点B 对应的数是1,BC⊥AB,垂足为B ,且BC =2,以点A 为圆心,AC 长为半径画弧,交数轴于点D ,则点D 表示的数为(D)A .2.2B. 2C. 3D. 52.在数轴上作出表示10的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),则线段AB 的长度为(C) A. 2 B. 3 C. 5 D .34.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD⊥AC 于点D ,则CD 的长为(A)A.255B.355C.455D.455.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:如图所示.知识点3 等腰三角形中的勾股定理6.将一副三角尺按如图所示叠放在一起,若AB =12 cm ,则AF =62cm.7.(2019·天水)如图,等边△OAB 的边长为2,则点B 的坐标为(B)A .(1,1)B .(1,3)C .(3,1)D .(3,3)8.(教材P27练习T2变式)如图,在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的底边上的高与面积.解:过点A 作AD⊥BC 于点D ,∵AB=AC =13 cm ,∴BD=CD =12BC =12×10 =5(cm).∴AD=AB 2-BD 2=132-52=12(cm),即等腰三角形底边上的高为12 cm.∴S △ABC =12BC·AD=12×10×12=60(cm 2).02 中档题9.(2019·驻马店汝南县期末)如图,在Rt△ABC 中,∠ACB=90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D.若 AC =3,BC =4,则BD 的长是(A)A .2B .3C .4D .510.如图,图中小正方形的边长为1,△ABC 的周长为(B)A .16B .12+4 2C .7+7 2D .5+11 211.(教材P27练习T1变式)如图,数轴上点A 所表示的实数是5-1.12.点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离为355.13.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形,∴CB=CD ,∠CDE=∠DCE=60°.∴∠BDC=∠DBC=12∠DCE=30°. ∴∠BDE=90°.在Rt△BDE 中,DE =4,BE =8,∴BD=BE 2-DE 2=82-42=4 3.14.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图1中,以格点为端点,画线段MN=13;(2)在图2中,以格点为顶点,画正方形ABCD,使它的面积为10.解:(1)如图.(2)如图.03 综合题15.仔细观察图形,认真分析下列各式,然后解答问题.OA22=(1)2+1=2,S1=1 2;OA23=(2)2+1=3,S2=2 2;OA24=(3)2+1=4,S3=3 2;…(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S21+S22+S23+…+S210的值.解:(1)OA2n=(n-1)2+1=n,S n =n 2(n 为正整数). (2)OA 210=(9)2+1=10, ∴OA 10=10.(3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104=1+2+3+…+9+104=1+102×104=554.小专题(二) 利用勾股定理解决最短路径问题——教材P39复习题T12的变式与应用【例】 如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路程,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的直线AA′剪开,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.解:如图,由题意可得:AA′=12,A′B=12×2π×3=9.在Rt△AA′B中,根据勾股定理,得AB2=A′A2+A′B2=122+92=225.∴AB=15.∴需要爬行的最短路程是15 cm.几何体中最短路径基本模型如下:图例圆柱――→展开长方体阶梯问题基本思路将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线→构造直角三角形→利用勾股定理求解.1.(2018·禹州期中)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)2.如图是一个三级台阶,它的每一级的长、宽、高分别为24 dm,3 dm,3 dm,点A 和点B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是30__dm.3.如图,长方体的高为5 cm,底面长为4 cm,宽为1 cm.(1)点A1到点C2之间的距离是多少?(2)若一只蚂蚁从点A2爬到C1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm,底面长为4 cm,宽为1 cm,∴A2C2=42+12=17(cm).∴A1C2=52+(17)2=42(cm).(2)如图1所示,A2C1=52+52=52(cm).如图2所示,A2C1=92+12=82(cm).如图3所示,A2C1=62+42=213(cm).∵52<213<82,∴一只蚂蚁从点A2爬到C1,爬行的最短路程是5 2 cm.小专题(三) 方程思想在勾股定理中的应用——教材P39复习题T10的解法剖析及变式应用【教材母题】 一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)解:设AB =x 尺,根据题意,得∠BAC=90°,AB +BC =10尺,∴BC=(10-x)尺.∵AC 2+AB 2=BC 2,∴32+x 2=(10-x)2,解得x =41120. 答:折断处离地面41120尺.在一个直角三角形中,若已知两边长,可直接运用勾股定理求第三边长,若已知一边长,且知另两边具有一定的数量关系,可利用方程思想,设出一边长,利用数量关系表示另一边长,借助勾股定理这一等量关系列出方程解决问题,其中两边的数量关系主要有两种呈现形式:一是直角三角形中有特殊角,二是出现图形的折叠.类型1 利用直角三角形中的特殊角揭示两边的数量关系1.求下列直角三角形中未知的边长.解:如图1,设AC =x ,∵∠ACB=90°,∠B=30°,∴AB=2x.∵A B 2=AC 2+BC 2,∴(2x)2=x 2+32.∴x=3或-3(负值舍去). ∴AC=3,AB =2 3.如图2,设AC =x ,∵∠ACB=90°,∠A=45°,∴BC=AC =x.∵AB 2=AC 2+BC 2,∴x 2+x 2=(32)2.∴x=3或-3(负值舍去).∴AC=BC =3.类型2 利用图形的折叠找两边的数量关系2.如图,在Rt△ABC 中,AB =6,BC =4,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为(C)A.53B.52C.83D .53.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.4.如图,把长方形纸片ABCD折叠,使其对角顶点A与C重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为25.类型3 利用勾股定理和方程思想求点的坐标5.如图,在平面直角坐标系中,A(1,3),试在x轴上找一点P,使△OAP为等腰三角形,求出P点的坐标.解:过点A作AB⊥x轴,垂足为B.∵A(1,3),∴OB=1,AB=3.∴OA=12+32=10.当AO=AP时,以A为圆心,AO长为半径画弧与x轴交于点O与点P1,∵AB⊥x轴,∴BP1=BO=1,即P1(2,0);当OA=OP时,以O为圆心,OA长为半径画弧与x轴交于点P2,P3,∵OA=10,∴P2(10,0),P3(-10,0);当PA=PO时,作OA的垂直平分线交x轴于点P4.设OP4=x,则BP4=x-1,AP4=OP4=x.在Rt△ABP4中,AP24=AB2+BP24,∴x2=32+(x-1)2.解得x=5,即P4(5,0).综上所述,使△OAP为等腰三角形的点P有:P1(2,0),P2(10,0),P3(-10,0),P4(5,0).17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C)A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b2.(2019·安徽)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b 互为相反数,那么a+b=0.逆命题是真命题.(填“真命题”或“假命题”)知识点2 勾股定理的逆定理3.(2019·郑州期末)下面四组数,其中是勾股数组的是(A)A.3,4,5 B.0.3,0.4,0.5C.32,42,52 D.6,7,84.(2019·洛阳洛龙区期中)由线段a,b,c组成的三角形不是直角三角形的是(D) A.a2-b2=c2B.a=54,b=1,c=34C.a=2,b=3,c=7D.∠A∶∠B∶∠C=3∶4∶55.(2019·益阳)已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是(B)A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形6.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出两组不同于以上所给出的基本勾股数:答案不唯一,如:5,12,13;7,24,25.7.已知:在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a=3,b=22,c=5;(2)a=5,b=7,c=9;(3)a=5,b=26,c=1.解:(1)是,∠B是直角.(2)不是.(3)是,∠A是直角.8.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC =90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,∴根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5.∵AC2+CD2=52+122=25+144=169,AD2=132=169,∴AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.02 中档题9.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10 B.11 C.12 D.1310.下列定理中,没有逆定理的是(B)A .等腰三角形的两个底角相等B .对顶角相等C .三边对应相等的两个三角形全等D .直角三角形两个锐角的和等于90°11.【关注数学文化】(2018·长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为(A)A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米12.如图,方格中的点A ,B 称为格点(横线的交点),以AB 为一边画△ABC,其中是直角三角形的格点C 的个数为(B)A .3B .4C .5D .613.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.14.(教材P34习题T6变式)如图,在正方形ABCD 中,E ,F 分别BC ,CD 边上的一点,且BE =2EC ,FC =29DC ,连接AE ,AF ,EF ,求证:△AEF 是直角三角形.证明:设FC =2a ,则DC =9a ,DF =7a.∴AB=BC =AD =CD =9a.∵BE=2CE ,∴BE=6a ,EC =3a.在Rt△ECF 中,EF 2=EC 2+FC 2=(3a)2+(2a)2=13a 2.在Rt△ADF 中,AF 2=AD 2+DF 2=(9a)2+(7a)2=130a 2.在Rt△ABE 中,AE 2=AB 2+BE 2=(9a)2+(6a)2=117a 2.∵13a 2+117a 2=130a 2,∴EF 2+AE 2=AF 2.∴△AEF 是以∠AEF 为直角的直角三角形.15.(教材P34习题T5变式)如图,在四边形ABCD 中,AB =BC =1,CD =3,DA =1,且∠B=90°.求:(1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号); (3)将△ABC 沿AC 翻折至△AB′C,如图所示,连接B′D,求四边形ACB′D 的面积.解:(1)∵AB=BC =1,∠B=90°,∴∠BAC=∠ACB=45°,AC =AB 2+BC 2= 2.又∵CD=3,DA =1,∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC=90°.∴∠BAD=∠BAC+∠DAC=135°.(2)∵S △ABC =12AB·BC=12,S△ADC=12AD·AC=22,∴S四边形ABCD=S△ABC+S△ADC=1+22.(3)过点D作DE⊥AB′,垂足为E,由(1)知∠DAC=90°.根据折叠可知∠B′AC=∠BAC=45°,AB=AB′=1,S△AB′C=S△ABC=1 2 .∴∠DAE=∠DAC-∠B′AC=45°.∴AE=DE.设DE=AE=x,在Rt△ADE中,AE2+DE2=AD2. ∴x2+x2=1.∴x=2 2.∴S△ADB′=12×1×22=24.∴S四边形ACB′D=S△AB′C+S△ADB′=12+24=2+24.03 综合题16.(2019·呼和浩特改编)如图,在△ABC中,内角∠A,∠B,∠C所对应的边分别为a,b,c.(1)若a,b,c满足aa-b+c=12(a+b+c)c,求证:△ABC是直角三角形;(2)若a=m-n,b=2mn,c=m+n,(其中m,n都是正整数,且m>n),求证:△ABC 是直角三角形.证明:(1)原式可变形为a a +c -b =a +b +c 2c, ∴(a+c)2-b 2=2ac ,即a 2+2ac +c 2-b 2=2ac.∴a 2+c 2=b 2.∴△ABC 是以∠B 为直角的直角三角形.(2)∵a 2=(m -n)2,b 2=(2mn)2=4mn ,c 2=(m +n)2,∴(m-n)2+4mn =(m +n)2,即a 2+b 2=c 2.∴△ABC 是以∠C 为直角的直角三角形.章末复习(二) 勾股定理01 分点突破知识点1 勾股定理(河南中招2019T9选,2018T9选,2017T18(2)解,2016T6选,2015T7选,2014T7选)1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A.6 B.6 2C.6 3 D.122.如图,阴影部分是一个正方形,则此正方形的面积为64cm2.3.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴在△ACD中,AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2 勾股定理的应用4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 mB.13 mC.16 mD.17 m5.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在宽0.9 m,长1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5__m长.6.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3 逆命题及逆定理7.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4 勾股定理的逆定理及其应用8.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形9.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且a2-b2=c2,则下列说法正确的是(C)A.∠C是直角 B.∠B是直角C.∠A是直角 D.∠A是锐角02 易错题集训10.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是100或28.11.(2018·襄阳)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为23或27.03 河南常考题型演练12.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+113.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A)A.8 cm B.6 cmC.5.5 cm D.1 cm14.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD15.(2019·信阳罗山县模拟)如图,在△ABC中,点M是AC边上一个动点.若AB=AC =10,BC=12,则BM的最小值为(B)A.8 B.9.6 C.10 D.4 516.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.17.(2019·枣庄)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=6-2.18.(2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为13km.19.如图,有一块空白地,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2.解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°.∴S四边形ABCD=S Rt△ACB-S Rt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96 m2.04 核心素养专练20.(2019·邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是4.周测(第十七章)(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(C) A.8,15,17 B.2,3, 5C.3,2, 5 D.1,2, 52.已知命题:等边三角形是等腰三角形,则下列说法正确的是(B)A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.点A(-3,-4)到原点的距离为(C)A .3B .4C .5D .74.如图,数轴上点A 表示的数是0,点B 表示的数是1,BC⊥AB,垂足为B ,且BC =1,以A 为圆心,AC 的长为半径画弧,与数轴交于点D ,则点D 表示的数为(B)A .1.4 B. 2 C. 3D .25.将直角三角形的三条边长同时扩大一倍,得到的三角形是(C)A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形6.在△ABC 中,∠A∶∠B∶∠C=1∶2∶3.若AC =4,则AB 的长为(D)A .8B .6C.433D.8337.下面各三角形中,面积为无理数的是(C)8.如图,将边长为12的正方形ABCD 折叠,使得点A 落在CD 边上的点E 处,折痕为MN.若CE 的长为7,则MN 的长为(B)A .10B .13C .15D .无法求出9.已知直角三角形两条直角边的长之和为6,斜边长为2,则这个三角形的面积是(B) A .0.25 B .0.5C .1D .2 310.已知一个直角三角形的斜边长为3,若以三边为斜边分别向外作等腰直角三角形,则所作的三个等腰直角三角形的面积和为(A)A.92B.94C .3D .9二、填空题(每小题4分,共20分)11.直角三角形斜边长是6,一直角边的长是5,则此直角三角形的另一直角边长为11.12.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 的坐标为(-1,0).13.如图,每个小正方形的边长均为1,则△ABC 边AC 上的高BD 的长为85.14.如图,在△ABC 中,AB∶BC∶CA=3∶4∶5,且周长为36 cm ,点P 从点A 开始沿AB 边向点B 以每秒1 cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2 cm 的速度移动.若同时出发,则过3秒时,△BPQ 的面积为18cm 2.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以AB,AC,BC为边在AB 的同侧作正方形ABEF,ACPQ,BCMN,四块阴影部分的面积分别为S1,S2,S3,S4,则S1+S2+S3+S4等于18.三、解答题(共50分)16.(8分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)求△ABC的面积;(2)求AB,AC的长.解:(1)S△ABC=12×7×5=17.5.(2)由勾股定理,得AB=32+52=34,AC=42+52=41.17.(10分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BC=6,AC=8,求AB与CD的长.解:在△ABC中,∠ACB=90°,BC=6,AC=8,由勾股定理,得AB=BC2+AC2=10,∵S△ABC=12AB·CD=12AC·BC,∴CD=AC·BC AB =8×610=4.8.18.(10分)如图,∠AOB=90°,OA =45 cm ,OB =15 cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?解:因为小球滚动的速度与机器人行走的速度相等,运动时间相等,所以BC =CA. 设AC =BC =x ,则OC =45-x ,由勾股定理可知OB 2+OC 2=BC 2.又因为OB =15,所以152+(45-x)2=x 2.解得x =25.答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是25 cm.19.(10分)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》:用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步:S 6=n ;第二步:n =k ;第三步:分别用3,4,5乘k ,得三边长.当面积S 等于150时,请用“积求勾股法”求出这个直角三角形的三边长. 解:当S =150时,k =n =S 6=1506=25=5, ∴三边长分别为3×5=15,4×5=20,5×5=25.∴这个直角三角形的三边长为15,20,25.20.(12分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H(点H 与点D 不重合),通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于点E ,延长EG 交CD 于点F.如图1,当点H 与点C 重合时,易证得FG =FD(不要求证明);如图2,当点H 为边CD 上任意一点时,求证:FG =FD.【应用】 在图2中,已知AB =5,BE =3,则FD =54,△EFC 的面积为154.(直接写结果)证明:连接AF ,由折叠的性质可得,AB =AG =AD.在Rt△AGF 和Rt△ADF 中,⎩⎪⎨⎪⎧AG =AD ,AF =AF ,∴Rt△AGF≌Rt△ADF(HL).∴FG=FD.。

相关文档
最新文档