湘教版九年级下册数学教案(第一章 二次函数)

合集下载

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计1

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计1

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计1一. 教材分析湘教版数学九年级下册1.2《二次函数的图象与性质》是本册的重点章节,主要让学生掌握二次函数的图象与性质,为后续学习打下基础。

本节内容主要包括:二次函数的图象、顶点坐标、开口大小、对称轴等概念,以及二次函数的性质。

通过本节内容的学习,学生能更好地理解二次函数的本质,提高解决问题的能力。

二. 学情分析学生在学习本节内容前,已掌握了二次函数的定义、标准式、配方法等基本知识。

但对学生来说,二次函数的图象与性质较为抽象,不易理解。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等方式,掌握二次函数的图象与性质。

三. 教学目标1.知识与技能:让学生掌握二次函数的图象与性质,能够运用二次函数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:二次函数的图象与性质。

2.难点:二次函数的图象与性质的灵活运用。

五. 教学方法1.情境教学法:通过生活实例,引导学生认识二次函数的图象与性质。

2.启发式教学法:引导学生观察、操作、思考,发现二次函数的图象与性质。

3.小组合作学习:培养学生团队协作精神,提高解决问题的能力。

六. 教学准备1.教学课件:制作生动、形象的课件,帮助学生理解二次函数的图象与性质。

2.教学素材:准备相关的生活实例,便于引导学生运用二次函数解决实际问题。

3.练习题:设计具有一定难度的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线运动、几何图形的面积等,引导学生回顾二次函数的基本知识,为新课的学习做好铺垫。

2.呈现(10分钟)展示二次函数的图象与性质的课件,让学生直观地了解二次函数的图象与性质。

同时,引导学生观察、思考,发现二次函数的图象与性质之间的关系。

3.操练(10分钟)让学生分组讨论,运用二次函数的图象与性质解决实际问题。

湘教版数学九年级下册第1章《二次函数》教学设计

湘教版数学九年级下册第1章《二次函数》教学设计

湘教版数学九年级下册第1章《二次函数》教学设计一. 教材分析湘教版数学九年级下册第1章《二次函数》是学生在学习了初中阶段函数知识后,进一步深入研究函数性质的重要内容。

本章主要介绍二次函数的定义、性质、图象及其应用。

通过学习二次函数,学生可以更好地理解数学与实际生活的联系,提高解决问题的能力。

教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、性质有所了解。

但二次函数相对于一次函数和反比例函数,其性质和图象更具复杂性,需要学生在已有的知识基础上,通过观察、分析、归纳等方法,自主探究二次函数的性质。

此外,学生在生活中接触到的一些现象和问题,也需要用二次函数来解释和解决。

三. 教学目标1.理解二次函数的定义,掌握二次函数的表示方法。

2.掌握二次函数的性质,能够分析二次函数图象的特点。

3.会利用二次函数解决实际问题,提高数学应用能力。

4.培养学生的观察、分析、归纳、总结能力,提高学生的自主学习能力。

四. 教学重难点1.二次函数的定义和表示方法。

2.二次函数的性质及其图象特点。

3.二次函数在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的性质。

2.利用数形结合法,让学生直观地理解二次函数的图象特点。

3.运用实例分析法,让学生学会将二次函数应用于实际问题。

4.采用小组合作学习法,培养学生的团队协作能力。

六. 教学准备1.准备相关课件、图片、实例等教学资源。

2.安排适当的时间让学生进行自主学习和小组讨论。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用一个实际问题引入二次函数的概念,激发学生的兴趣。

例如:抛物线运动中,物体上升和下降的轨迹为什么是抛物线?2.呈现(10分钟)介绍二次函数的定义和表示方法,展示二次函数的一般形式:y=ax^2+bx+c(a≠0)。

通过示例,让学生理解二次函数的各项参数代表的意义。

湘教版数学九年级下册1.1《二次函数》教学设计

湘教版数学九年级下册1.1《二次函数》教学设计

湘教版数学九年级下册1.1《二次函数》教学设计一. 教材分析湘教版数学九年级下册1.1《二次函数》是本册教材中的重要内容,主要介绍了二次函数的定义、图像和性质。

通过本节课的学习,学生能够理解二次函数的概念,掌握二次函数的图像特点,了解二次函数的性质,并为后续学习二次方程和二次不等式打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念和一次函数的知识,具备了一定的函数思维。

但二次函数相对于一次函数来说,概念较为抽象,图像和性质的理解也需要一定的空间想象能力。

因此,在教学过程中,需要关注学生的学习困难,引导学生通过观察、操作、思考、交流等方式,逐步理解二次函数的概念和性质。

三. 教学目标1.理解二次函数的定义,掌握二次函数的图像特点;2.了解二次函数的性质,能够运用二次函数解决实际问题;3.培养学生的空间想象能力,提高学生的数学思维能力。

四. 教学重难点1.二次函数的定义和图像特点;2.二次函数的性质及其运用。

五. 教学方法1.情境教学法:通过生活实例引入二次函数,激发学生的学习兴趣;2.启发式教学法:引导学生主动思考、探究二次函数的性质;3.小组合作学习:培养学生团队合作精神,提高学生的交流能力;4.动手操作:让学生通过实际操作,加深对二次函数图像和性质的理解。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次函数的图像和性质;2.教学素材:准备一些实际问题,供学生练习和讨论;3.板书设计:设计清晰、简洁的板书,便于学生记录和复习。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线射击、自行车刹车等问题,引导学生思考二次函数的应用,激发学生的学习兴趣。

2.呈现(10分钟)讲解二次函数的定义,通过课件展示二次函数的图像,让学生观察和理解二次函数的图像特点。

3.操练(10分钟)让学生通过实际操作,尝试绘制一些简单的二次函数图像,加深对二次函数图像特点的理解。

4.巩固(10分钟)讲解二次函数的性质,引导学生通过思考、交流,总结二次函数的性质。

湘教版数学九年级下册教学设计:1.2 二次函数的图象与性质

湘教版数学九年级下册教学设计:1.2 二次函数的图象与性质

湘教版数学九年级下册教学设计:1.2 二次函数的图象与性质一. 教材分析湘教版数学九年级下册第1.2节“二次函数的图象与性质”是学生在学习了二次函数的定义、标准式、顶点式等基础知识后,进一步研究二次函数图象与性质的重要内容。

教材通过实例分析,引导学生探究二次函数的图象与系数的关系,掌握二次函数的增减性、对称性、最值等性质。

这部分内容既是中考的重点,也是难点,对于培养学生的数学思维能力和解决问题的能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了二次函数的基本知识,具备了一定的观察、分析、解决问题的能力。

但部分学生对二次函数图象与性质的理解仍存在困难,尤其是对二次函数的增减性、对称性、最值等性质的运用。

因此,在教学过程中,需要关注学生的学习需求,针对不同学生的实际情况进行有针对性的教学。

三. 教学目标1.理解二次函数的图象与系数的关系,掌握二次函数的增减性、对称性、最值等性质。

2.能够运用二次函数的性质解决实际问题,提高解决问题的能力。

3.培养学生的数学思维能力和团队合作精神。

四. 教学重难点1.教学重点:二次函数的图象与系数的关系,二次函数的增减性、对称性、最值等性质。

2.教学难点:二次函数性质在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、分析、归纳、总结等方式自主学习。

2.运用多媒体教学手段,展示二次函数的图象与性质,增强学生的直观感受。

3.小组讨论,鼓励学生发表自己的观点,培养学生的团队合作精神。

4.注重练习,及时反馈,帮助学生巩固所学知识。

六. 教学准备1.准备相关的教学课件、教案、练习题等教学资源。

2.确保多媒体设备正常运行,便于展示二次函数的图象与性质。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过复习二次函数的基本知识,引导学生回顾二次函数的定义、标准式、顶点式等,为新课的学习做好铺垫。

2.呈现(15分钟)利用多媒体展示二次函数的图象与性质,引导学生观察、分析,总结二次函数的增减性、对称性、最值等性质。

九年级下册《1.1二次函数》(湘教版)数学教案

九年级下册《1.1二次函数》(湘教版)数学教案

九年级下册《1.1二次函数》(湘教版)数学教案
标题:九年级下册《1.1二次函数》数学教案
一、教学目标:
1. 理解二次函数的基本概念。

2. 掌握二次函数的一般形式及特殊形式。

3. 能够运用二次函数解决实际问题。

二、教学重点与难点:
1. 教学重点:二次函数的概念和一般形式。

2. 教学难点:理解并掌握二次函数的图像和性质。

三、教学过程:
(一) 导入新课
通过回顾一次函数的相关知识,引出二次函数的概念。

(二) 新知探究
1. 二次函数的概念和表示方法
让学生自行阅读课本,然后引导他们总结二次函数的定义,并用公式表示出来。

2. 二次函数的一般形式和特殊形式
讲解二次函数的一般形式y=ax^2+bx+c(a≠0),并通过实例让学生了解二次函数的三种特殊形式:顶点式、零点式和完全平方式。

(三) 巩固练习
设计一些习题,包括基础题和提高题,帮助学生巩固所学知识。

四、课堂小结
引导学生对本节课的内容进行总结,强化记忆。

五、课后作业
布置适量的课后作业,以检查学生的学习效果。

湘教版九年级数学下册教案全册

湘教版九年级数学下册教案全册

湘教版九年级数学下册教案1.1 二次函数1.掌握二次函数的概念,能识别一个函数是不是二次函数;(重点)2.能根据实际情况建立二次函数模型,并确定自变量的取值范围.(难点)一、情境导入已知长方形窗户的周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的相关概念【类型一】二次函数的识别下列函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式,不符合二次函数的定义,故y=1x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式中自变量最高次数为2,且函数关系式中二次项系数不等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】根据二次函数的定义求待定字母的值如果函数y=(k+2)xk2-2是y关于x的二次函数,则k的值为多少?解析:紧扣二次函数定义求解,注意易错点为忽视k+2≠0.解:根据题意知⎩⎪⎨⎪⎧k 2-2=2,k +2≠0,解得⎩⎪⎨⎪⎧k =±2,k ≠-2,∴k =2.方法总结:紧扣定义中的两个特征:①二次项系数不为零;②自变量最高次数为2. 变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】 与二次函数系数有关的计算已知一个二次函数,当x =0时,y =0;当x =2时,y =12;当x =-1时,y =18.求这个二次函数中各项系数的和.解析:解:设二次函数的表达式为y =ax 2+bx +c (a ≠0).把x =0,y =0;x =2,y =12;x =-1,y =18分别代入函数表达式,得⎩⎪⎨⎪⎧c =0,4a +2b +c =12,a -b +c =18,解得⎩⎪⎨⎪⎧a =18,b =0,c =0.所以这个二次函数的表达式为y =18x 2.所以a +b +c =18+0+0=18,即这个二次函数中各项系数的和为18. 方法总结:涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y =ax 2+bx +c (a ≠0).解决这类问题要根据x ,y 的对应值,列出关于字母a ,b ,c 的方程(组),然后解方程(组),即可求得a ,b ,c 的值.探究点二:建立简单的二次函数模型一个正方形的边长是12cm ,若从中挖去一个长为2x cm ,宽为(x +1)cm 的小长方形.剩余部分的面积为y cm 2.(1)写出y 与x 之间的函数关系式,并指出y 是x 的什么函数? (2)当x 的值为2或4时,相应的剩余部分的面积是多少?解析:几何图形的面积一般需要画图分析,相关线段必须先用x 的代数式表示出来.如图所示.解:(1)y =122-2x (x +1),又∵2x ≤12,∴0<x ≤6,即y =-2x 2-2x +144(0<x ≤6),∴y 是x 的二次函数;(2)当x =2时,y =-2×22-2×2+144=132,当x =4时,y =-2×42-2×4+144=104,∴当x =2或4时,相应的剩余部分的面积分别为132cm 2或104cm 2.方法总结:二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题都可以通过分析题目中变量之间的关系,建立二次函数模型来解决.变式训练:见《学练优》本课时练习“课后巩固提升”第8题 三、板书设计本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时 二次函数y =ax 2(a >0)的图象与性质1.会用描点法画二次函数y =ax 2(a >0)的图象,理解抛物线的概念;(重点)2.掌握形如y =ax 2(a >0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢?它是什么函数?它的图象是什么形状呢?二、合作探究探究点一:二次函数y =ax 2(a >0)的图象已知y =(k +2)xk 2+k 是二次函数. (1)求k 的值;(2)画出函数的图象.解析:根据二次函数的定义,自变量x 的最高次数为2,且二次项系数不为0,这样能确定k 的值,从而确定表达式,画出图象.解:(1)∵y =(k +2)xk 2+k 为二次函数,∴⎩⎪⎨⎪⎧k 2+k =2,k +2≠0,解得k =1;(2)当k =1时,函数的表达式为y =3x 2,用描点法画出函数的图象.列表:x -1 -12 0 12 1 … y =3x 2334343…描点:(-1,3),(-12,34),(0,0),(12,34),(1,3).连线:用光滑的曲线按x 的从小到大的顺序连接各点,图象如图所示.方法总结:列表时先取原点(0,0),然后在原点两侧对称地取四个点,由于函数y =ax 2(a ≠0)图象关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,所以先计算y 轴右侧的两个点的纵坐标,左侧对应写出即可.变式训练:见《学练优》本课时练习“课后巩固提升”第7题探究点二:二次函数y =ax 2(a >0)的性质已知点(-3,y 1),(1,y 2),(2,y 3)都在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是________.解析:方法一:把x =-3,1,2分别代入y =x 2中,得y 1=9,y 2=1,y 3=2,则y 1>y 3>y 2;方法二:如图,作出函数y =x 2的图象,把各点依次在函数图象上标出.由图象可知y 1>y 3>y 2;方法三:∵该图象的对称轴为y 轴,a >0,∴在对称轴的右边,y 随x 的增大而增大,而点(-3,y 1)关于y 轴的对称点为(3,y 3).又∵3>2>1,∴y 1>y 3>y 2.方法总结:比较二次函数中函数值的大小有三种方法:①直接把自变量的值代入解析式中,求出对应函数值进行比较;②图象法;③根据函数的增减性进行比较,但当要比较的几个点在对称轴的两侧时,可根据抛物线的对称轴找出某个点的对称点,转化到同侧后,然后利用性质进行比较.变式训练:见《学练优》本课时练习“课后巩固提升”第2题 探究点三:二次函数y =ax 2(a >0)的图象与性质的简单应用已知函数y =(m +2)xm 2+m -4是关于x 的二次函数. (1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?解析:由二次函数的定义知:m 2+m -4=2且m +2≠0;抛物线有最低点,则抛物线开口向上,即m +2>0.解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0,解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2,∴当m =2或m =-3时,原函数为二次函数;(2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m >-2,∴取m =2.∴这个最低点为抛物线的顶点,其坐标为(0,0).当x >0时,y 随x 的增大而增大.方法总结:二次函数必须满足自变量的最高次数是2且二次项的系数不为0;函数有最低点即开口向上.变式训练:见《学练优》本课时练习“课堂达标训练”第9题 三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2(a >0)的图象与性质,培养学生动手、动脑、探究归纳问题的能力.第2课时 二次函数y =ax 2(a <0)的图象与性质1.会用描点法画二次函数y =ax 2(a <0)的图象;(重点)2.掌握形如y =ax 2(a <0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入上节课我们学习了a >0时二次函数y =ax 2的图象和性质,那么当a <0时,二次函数y =ax 2的图象和性质又会有怎样的变化呢?二、合作探究探究点一:二次函数y =ax 2(a <0)的图象 【类型一】 二次函数y =ax 2(a <0)的图象在直角坐标系内,作出函数y =-12x 2的图象.解析:作函数的图象采用描点法,即“列表、描点、连线”三个步骤. 解:列表:x 0 1 2 … y =-12x 2-12-2…描点和连线:画出图象在y 轴右边的部分,利用对称性,画出图象在y 轴左边的部分,如图.方法总结:(1)列表应以0为中心,选取x >0的几个点求出对应的y 值;(2)描点要准;(3)画出y 轴右边的部分,利用对称性,可画出y 轴左边的部分,连线要用平滑的曲线,不能是折线.【类型二】 同一坐标系中两种不同图象的判断当ab >0时,抛物线y =ax 2与直线y =ax +b 在同一直角坐标系中的图象大致是( )解析:根据a、b的符号来确定.当a>0时,抛物线y=ax2的开口向上.∵ab>0,∴b>0.∴直线y=ax+b过第一、二、三象限;当a<0时,抛物线y=ax2的开口向下.∵ab>0,∴b<0.∴直线y=ax+b过第二、三、四象限.故选D.方法总结:本例综合考查了一次函数y=ax+b和二次函数y=ax2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a的符号是否一致入手进行分析.变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:二次函数y=ax2(a<0)的性质【类型一】二次函数y=ax2(a<0)的性质(2015·山西模拟)抛物线y=-4x2不具有的性质是()A.开口向上B.对称轴是y轴C.在对称轴的左侧,y随x的增大而增大D.最高点是原点解析:此题应从二次函数的基本形式入手,它符合y=ax2的基本形式,根据它的性质,进行解答.因为a=-4<0,所以图象开口向下,顶点坐标为(0,0),对称轴是y轴,最高点是原点.在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.故选A.方法总结:抛物线y=ax2(a<0)的开口向下,顶点坐标为(0,0),对称轴为y轴.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.当x=0时,图象有最高点,y 有最大值0.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次函数y=ax2的开口方向、大小与系数a的关系如图,四个二次函数图象中,分别对应:①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a、b、c、d的大小关系为()A.a>b>c>dB.a>b>d>cC.b>a>c>dD .b >a >d >c 答案:A方法总结:抛物线y =ax 2的开口大小由|a |确定,|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大.变式训练:见《学练优》本课时练习“课堂达标训练”第7题 探究点三:二次函数y =ax 2的图象与几何图形的综合应用已知二次函数y =ax 2(a ≠0)与直线y =2x -3相交于点A (1,b ),求: (1)a ,b 的值;(2)函数y =ax 2的图象的顶点M 的坐标及直线与抛物线的另一个交点B 的坐标; (3)△AMB 的面积.解析:直线与二次函数y =ax 2的图象交点坐标可利用方程求解,而求△AMB 的面积,一般应画出草图进行解答.解:(1)∵点A (1,b )是直线y =2x -3与二次函数y =ax 2的图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1; (2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0). 由-x 2=2x -3,解得x 1=1,x 2=-3, ∴y 1=-1,y 2=-9,∴直线与二次函数的另一个交点B 的坐标为(-3,-9);(3)如图所示,作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C 、D ,根据点的坐标的意义,可知MD =3,MC =1,CD =1+3=4,BD =9,AC =1,∴S △AMB =S 梯形ABDC -S △ACM -S △BDM =12×(1+9)×4-12×1×1-12×3×9=6.方法总结:解答此类题目,最好画出草图,利用数形结合,解答相关问题. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课仍然是从学生画图象着手,结合上节课y =ax 2(a >0)的图象和性质,从而得出y =ax 2(a <0)的图象和性质,进而得出y =ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时 二次函数y =a (x -h )2的图象与性质1.会用描点法画出y =a (x -h )2的图象;2.掌握形如y =a (x -h )2的二次函数图象的性质,并会应用;(重点) 3.理解二次函数y =a (x -h )2与y =ax 2之间的联系.(难点)一、情境导入涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.如图建立直角坐标系,你能得到函数图象解析式吗?二、合作探究探究点一:二次函数y =a (x -h )2的图象与性质 【类型一】 y =a (x -h )2的顶点坐标已知抛物线y =a (x -h )2(a ≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a ,h 的值.解:∵抛物线y =a (x -h )2(a ≠0)的顶点坐标为(-2,0),∴h =-2.又∵抛物线y =a (x +2)2经过点(-4,2),∴a (-4+2)2=2.∴a =12.方法总结:二次函数y =a (x -h )2的顶点坐标为(h ,0). 变式训练:见《学练优》本课时练习“课堂达标训练”第2题 【类型二】 二次函数y =a (x -h )2图象的形状顶点为(-2,0),开口方向、形状与函数y =-12x 2的图象相同的抛物线的解析式为( )A .y =12(x -2)2B .y =12(x +2)2C .y =-12(x +2)2D .y =-12(x -2)2解析:因为抛物线的顶点在x 轴上,所以可设该抛物线的解析式为y =a (x -h )2(a ≠0),而二次函数y =a (x -h )2(a ≠0)与y =-12x 2的图象相同,所以a =-12,而抛物线的顶点为(-2,0),所以h =-2,把a =-12,h =-2代入y =a (x -h )2得y =-12(x +2)2.故选C.方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同.变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型三】 二次函数y =a (x -h )2的增减性及最值对于二次函数y =9(x -1)2,下列结论正确的是( ) A .y 随x 的增大而增大B .当x >0时,y 随x 的增大而增大C .当x =-1时,y 有最小值0D .当x >1时,y 随x 的增大而增大解析:因为a =9>0,所以抛物线开口向上,且h =1,顶点坐标为(1,0),所以当x >1时,y 随x 的增大而增大.故选D.变式训练:见《学练优》本课时练习“课堂达标训练”第3题 探究点二:二次函数y =a (x -h )2图象的平移 【类型一】 利用平移确定y =a (x -h )2的解析式抛物线y =ax 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.解析:y =ax 2向右平移3个单位后的关系式可表示为y =a (x -3)2,把点(-1,4)的坐标代入即可求得a 的值.解:二次函数y =ax 2的图象向右平移3个单位后的二次函数关系式可表示为y =a (x -3)2,把x =-1,y =4代入,得4=a (-1-3)2,a =14,∴平移后二次函数关系式为y =14(x -3)2.方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a 不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】 确定y =a (x -h )2与y =ax 2的关系向左或向右平移函数y =-12x 2的图象,能使得到的新的图象过点(-9,-8)吗?若能,请求出平移的方向和距离;若不能,请说明理由.解:能,理由如下:设平移后的函数为y =-12(x -h )2, 将x =-9,y =-8代入得-8=-12(-9-h )2, 所以h =-5或h =-13,所以平移后的函数为y =-12(x +5)2或y =-12(x +13)2. 即抛物线的顶点坐标为(-5,0)或(-13,0),所以应向左平移5或13个单位.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点三:二次函数y =a (x -h )2与几何图形的综合把函数y =12x 2的图象向右平移4个单位后,其顶点为C ,并与直线y =x 分别相交于A 、B 两点(点A 在点B 的左边),求△ABC 的面积.解析:利用二次函数平移规律先确定平移后的抛物线解析式,确定C 点坐标,再解由所得到的二次函数解析式与y =x 组成的方程组,确定A 、B 两点坐标,最后求△ABC 的面积.解:平移后的函数为y =12(x -4)2,顶点C 的坐标为(4,0),OC =4. 解方程组⎩⎪⎨⎪⎧y =12(x -4)2,y =x ,得⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =8,y =8. ∵点A 在点B 的左边,∴A (2,2),B (8,8),∴S △ABC =S △OBC -S △OAC =12×4×8-12×4×2=12.方法总结:两个函数交点的横、纵坐标与两个解析式组成的方程组的解是一致的. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计通过本节学习使学生认识到y =a (x -h )2的图象是由y =ax 2的图象左右平移得到的,初步认识到a ,h 对y =a (x -h )2位置的影响,a 的符号决定抛物线方向,|a |决定抛物线开口的大小,h 决定向左、向右平移,从中领会数形结合的数学思想.第4课时 二次函数y =a (x -h )2+k 的图象与性质1.会用描点法画出y =a (x -h )2+k 的图象;2.掌握形如y =a (x -h )2+k 的二次函数的图象与性质,并会应用;(重点)3.理解二次函数y =a (x -h )2+k 与y =ax 2之间的联系.(难点)一、情境导入前面我们是如何研究二次函数y =ax 2、y =a (x -h )2的图象与性质的?如何画出y =12(x -2)2+1的图象?二、合作探究探究点一:二次函数y =a (x -h )2+k 的图象与性质【类型一】 二次函数y =a (x -h )2+k 的图象已知y =12(x -3)2-2的部分图象如图所示,抛物线与x 轴交点的一个坐标是(1,0),则另一个交点的坐标是________.解析:由抛物线的对称性知,对称轴为x =3,一个交点坐标是(1,0),则另一个交点坐标是(5,0).解:(5,0)变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】 二次函数y =a (x -h )2+k 的性质试说明抛物线y =2(x -1)2与y =2(x -1)2+5的关系.解析:对抛物线的分析应从开口方向,顶点坐标,对称轴,增减性,及最大(小)值几个方面分析.解:相同点:(1)它们的形状相同,开口方向相同;(2)它们的对称轴相同,都是x =1.当x <1时都是左降,当x >1时都是右升;(3)它们都有最小值.不同点:(1)顶点坐标不同.y =2(x -1)2的顶点坐标是(1,0),y =2(x -1)2+5的顶点坐标是(1,5);(2)y =2(x -1)2的最小值是0,y =2(x -1)2+5的最小值是5.方法总结:对于y =a (x -h )2+k 类抛物线,a 决定开口方向;|a |决定开口大小;h 决定对称轴;k 决定最大(小)值的数值.变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点二:二次函数y =a (x -h )2+k 的图象的平移将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )A .y =13(x -2)2-1B .y =13(x -2)2+1 C .y =13(x +2)2+1 D .y =13(x +2)2-1 解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1.故选A. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点三:二次函数y =a (x -h )2+k 的图象与几何图形的综合如图所示,在平面直角坐标系xOy 中,抛物线y =x 2向左平移1个单位,再向下平移4个单位,得到抛物线y =(x -h )2+k .所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D .(1)求h ,k 的值;(2)判断△ACD 的形状,并说明理由.解析:(1)按照图象平移规律“左加右减,上加下减”可得到平移后的二次函数的解析式;(2)分别过点D 作x 轴和y 轴的垂线段DE ,DF ,再利用勾股定理,可说明△ACD 是直角三角形.解:(1)∵将抛物线y =x 2向左平移1个单位,再向下平移4个单位,得到抛物线y =(x +1)2-4,∴h =-1,k =-4;(2)△ACD 为直角三角形.理由如下:由(1)得y =(x +1)2-4.当y =0时,(x +1)2-4=0,x =-3或x =1,∴A (-3,0),B (1,0).当x =0时,y =(x +1)2-4=(0+1)2-4=-3,∴C 点坐标为(0,-3).顶点坐标为D (-1,-4).作出抛物线的对称轴x =-1交x 轴于点E ,过D 作DF ⊥y 轴于点F ,如图所示.在Rt △AED 中,AD 2=22+42=20;在Rt △AOC 中,AC 2=32+32=18;在Rt △CFD 中,CD 2=12+12=2.∵AC 2+CD 2=AD 2,∴△ACD 是直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计通过本节学习使学生掌握二次函数y =ax 2,y =a (x -h )2,y =a (x -h )2+k 图象的变化关系,从而体会由简单到复杂的认识规律.第5课时 二次函数y =ax 2+bx +c 的图象与性质1.会用描点法画二次函数y =ax 2+bx +c 的图象;2.会用配方法或公式法求二次函数y =ax 2+bx +c 的顶点坐标与对称轴,并掌握其性质;(重点)3.二次函数性质的综合应用.(难点)一、情境导入火箭被竖直向上发射时,它的高度h (m)与时间t (s)的关系可以用h =-5t 2+150t +10表示.经过多长时间火箭达到它的最高点?二、合作探究探究点一:化二次函数y =ax 2+bx +c 为y =a (x -h )2+k 的形式把抛物线y =x 2+bx +c 的图象向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式为y =x 2-3x +5,则( )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =21解析:y =x 2-3x +5化为顶点式为y =(x -32)2+114.将y =(x -32)2+114向左平移3个单位长度,再向上平移2个单位长度,即为y =x 2+bx +c .则y =x 2+bx +c =(x +32)2+194,化简后得y =x 2+3x +7,即b =3,c =7.故选A.方法总结:二次函数由一般式化为顶点式,平移时遵循“左正右负,上正下负”,逆向推理则相反.变式训练:见《学练优》本课时练习“课后巩固提升”第4题探究点二:二次函数y=ax2+bx+c的图象与性质【类型一】二次函数与一次函数图象的综合在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()解析:A、B中由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=-b2a=-22m=-1m>0,则对称轴应在y轴右侧,故A、B选项错误;C中由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=-b2a=-22m=-1m<0,则对称轴应在y轴左侧,故C选项错误;D中由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=-b2a=-22m=-1m>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数y=ax2+bx+c的有关性质:开口方向、对称轴、顶点坐标等.【类型二】二次函数y=ax2+bx+c的性质若点A(2,y1),B(-3,y2),C(-1,y3)三点在抛物线y=x2-4x-m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2解析:∵二次函数y=x2-4x-m中a=1>0,∴开口向上,对称轴为x=-b2a=2.∵A(2,y1)中x=2,∴y1最小.又∵B(-3,y2),C(-1,y3)都在对称轴的左侧,而在对称轴的左侧,y随x的增大而减小,故y2>y3.∴y2>y3>y1.故选C.方法总结:当二次项系数a>0时,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;a<0时,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型三】二次函数图象的位置与各项系数符号的关系已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列四个结论:①a<0;②a+b+c>0;③-b2a>0;④abc>0.其中正确的结论是________.解析:由抛物线的开口方向向下可推出a<0,抛物线与y轴的正半轴相交,可得出c >0,对称轴在y轴的右侧,a,b异号,b>0,∴abc<0;∵对称轴在y轴右侧,对称轴为-b 2a >0;由图象可知:当x =1时,y >0,∴a +b +c >0.∴①②③④都正确. 方法总结:二次函数y =ax 2+bx +c (a ≠0),a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】 二次函数y =ax 2+bx +c 的最值已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A .3B .-1C .4D .4或-1解析:∵二次函数y =ax 2+4x +a -1有最小值2,∴a >0,y 最小值=4ac -b 24a=4a (a -1)-424a=2,整理,得a 2-3a -4=0,解得a =-1或4.∵a >0,∴a =4.故选C. 方法总结:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课后巩固提升”第1题探究点三:二次函数y =ax 2+bx +c 的图象与几何图形的综合应用如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0)、B (0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.解:(1)把A (2,0)、B (0,-6)代入y =-12x 2+bx +c 得⎩⎪⎨⎪⎧-2+2b +c =0,c =-6,解得⎩⎪⎨⎪⎧b =4,c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6; (2)∵该抛物线对称轴为直线x =-42×(-12)=4, ∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2,∴S △ABC =12×AC ×OB =12×2×6=6. 变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计本节课所学的二次函数y =ax 2+bx +c 的图象和性质可以看作是y =ax 2,y =a (x -h )2,y =a (x -h )2+k 的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式1.通过对用待定系数法求二次函数解析式的探究,掌握求二次函数解析式的方法;(重点)2.会根据不同的条件,利用待定系数法求二次函数的解析式,在实际应用中体会二次函数作为一种数学模型的作用.(难点)一、情境导入某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时喷水水平距离为12米.你能写出如图所示的平面直角坐标系中抛物线水柱的解析式吗?二、合作探究探究点一:不共线三点确定二次函数的表达式【类型一】 用一般式确定二次函数解析式已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的解析式.解析:由于题目给出的是抛物线上任意三点,可设一般式y =ax 2+bx +c (a ≠0). 解:设这个二次函数的解析式为y =ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧a -b +c =-5,c =-4,a +b +c =1,解得⎩⎪⎨⎪⎧a =2,b =3,c =-4.∴这个二次函数的解析式为y=2x2+3x-4.方法总结:当题目给出函数图象上的任意三个点时,设一般式y=ax2+bx+c,转化成一个三元一次方程组,以求得a,b,c的值.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】用顶点式确定二次函数解析式已知二次函数的图象顶点坐标是(-2,3),且过点(-1,5),求这个二次函数的解析式.解:设二次函数解析式为y=a(x-h)2+k,∵图象顶点是(-2,3),∴h=-2,k=3,依题意得5=a(-1+2)2+3,解得a=2.∴二次函数的解析式为y=2(x+2)2+3=2x2+8x+11.方法总结:若已知抛物线的顶点或对称轴、极值,则设y=a(x-h)2+k.顶点坐标为(h,k),对称轴为x=h,最值为当x=h时,y最值=k.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】用交点式确定二次函数解析式已知抛物线与x轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的解析式.解析:由于已知图象与x轴的两个交点,所以可设y=a(x-x1)(x-x2)求解.解:因为点A(-1,0),B(1,0)是图象与x轴的交点,所以设二次函数的解析式为y=a(x+1)(x-1).又因为抛物线过点M(0,1),所以1=a(0+1)(0-1),解得a=-1,所以所求抛物线的解析式为y=-(x+1)(x-1),即y=-x2+1.方法总结:此题也可设y=a(x-h)2+k,因为与x轴交于(-1,0),(1,0),故对称轴为y轴.变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点二:二次函数解析式的综合运用如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:(1)求抛物线的解析式;(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.解析:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,根据对称轴是x =-3,求出b =6,即可得出答案;(2)根据CD ∥x 轴,得出点C 与点D 关于x =-3对称,根据点C 在对称轴左侧,且CD =8,求出点C 的横坐标和纵坐标,再根据点B 的坐标为(0,5),求出△BCD 中CD 边上的高,即可求出△BCD 的面积.解:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,c -4b =-19.∵对称轴是x =-3,∴-b 2=-3,∴b =6,∴c =5,∴抛物线的解析式是y =x 2+6x +5; (2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.∵点C 在对称轴左侧,且CD =8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12.∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,∴△BCD 的面积=12×8×7=28. 方法总结:此题考查了待定系数法求二次函数的解析式,以及利用解析式分析二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计教学过程中,强调用待定系数法求二次函数解析式时,要根据题目所给条件,合理设出其形式,然后求解,这样可以简化计算.1.4 二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)。

九年级数学下册 1_1 二次函数学案 (新版)湘教版

九年级数学下册 1_1 二次函数学案 (新版)湘教版

第1章二次函数1.1 二次函数1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.阅读教材第2至3页,理解二次函数的概念及意义.自学反馈学生独立完成后集体订正①一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a、b、c.②现在我们已学过的函数有一次函数、反比例函数、二次函数,它们的表达式分别是y=ax+b(a、b为常数,且a≠0)、y=kx(k为常数,且k≠0)、y=ax2+bx+c(a、b、c为常数,且a≠0).③下列函数中,不是二次函数的是( D )A.y=1-2x2B.y=(x-1)2-1C.y=12(x+1)(x-1) D.y=(x-2)2-x2④二次函数y=x2+4x中,二次项系数是1,一次项系数是4,常数项是0.⑤一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.解:S表=4πr2⑥n支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数m与球队数n之间的关系式.解:m=12n2-12n判断二次函数关系要紧扣定义.活动1 小组讨论例1若y=(b-1)x2+3是二次函数,则b≠1.二次项系数不为0.例2 一个正方形的边长是12 cm,若从中挖去一个长为2x cm,宽为(x+1)cm的小长方形,剩余部分的面积为y cm2.①写出y与x之间的关系表达式,并指出y是x的什么函数?②当小长方形中x的值分别为2和4时,相应的剩余部分的面积是什么?解:①y=122-2x(x+1),即y=-2x2-2x+144. ∴y是x的二次函数;②当x=2和4时,相应的y的值分别为132和104.几何图形的面积一般需画图分析,相关线段必须先用x的代数式表示出来.活动2 跟踪训练(独立完成后展示学习成果)1.如果函数y=(k+2)x22k 是y关于x的二次函数,则k的值为多少?解:k=2不要忽视k+2≠0.2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是( C )A.正比例函数B.一次函数C.二次函数D.反比例函数3.有一个人患流感,经过两轮传染后共有y人患了流感,每轮传染中,平均一个人传染了x人,则y与x之间的函数关系式为y=x2+2x+1.4.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(m2)与x(m)的函数关系式为y=-12x 2+15x(不要求写出自变量x 的取值范围).5.已知,函数y=(m+1)x 232m m --+(m-1)x(m 是常数).①m 为何值时,它是二次函数?②m 为何值时,它是一次函数?注意②要分情况讨论.解:①m=4 ②m=-1或m=3172±或m=3212±. 6.如图,在矩形ABCD 中,AB=2 cm ,BC=4 cm ,P 是BC 上的一动点, 动点Q 仅在PC 或其延长线上,且BP=PQ ,以PQ 为一边作正方形PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP=x cm ,正方形PQRS 与矩形ABCD 重叠部分面积为y cm 2,试分别写出0≤x ≤2和2≤x ≤4时,y 与x 之间的函数关系式.解:y=x 2(0≤x ≤2), y=-2x+8(2≤x ≤4).注意按自变量的取值范围写函数关系式.活动3 课堂小结学生试述:这节课你学到了些什么? 欢迎您的下载,资料仅供参考!。

九年级下册《二次函数的图像与性质(1)》(湘教版)数学教案

九年级下册《二次函数的图像与性质(1)》(湘教版)数学教案

九年级下册《二次函数的图像与性质(1)》(湘教版)数学教案标题:九年级下册《二次函数的图像与性质(1)》(湘教版)数学教案一、教学目标1. 知识与技能:理解并掌握二次函数的基本概念,能够绘制二次函数的图像,并通过观察和分析图像,掌握二次函数的基本性质。

2. 过程与方法:通过观察、讨论、总结等学习活动,培养学生的观察能力、分析能力和归纳能力。

3. 情感态度与价值观:体验从特殊到一般,从具体到抽象的数学思维过程,感受数学的简洁美。

二、教学重点和难点重点:二次函数的基本概念、图像及其基本性质。

难点:理解并掌握二次函数的图像与性质之间的关系。

三、教学准备多媒体设备、黑板、粉笔、学生用书、练习题。

四、教学过程(一) 导入新课教师引导学生回忆一次函数的图像和性质,然后提出问题:“如果一个函数的变量x的最高次数是2,这样的函数我们称之为二次函数,那么它的图像和性质会是什么样的呢?”从而引入新课。

(二) 新课讲解1. 二次函数的基本概念:教师引导学生阅读课本内容,理解二次函数的一般形式y=ax²+bx+c(a≠0),并明确a、b、c的意义。

然后,教师举例说明如何确定二次函数的一般形式。

2. 二次函数的图像:教师利用多媒体展示几个典型的二次函数图像,引导学生观察并总结其特点。

然后,教师讲解如何绘制二次函数的图像,包括确定顶点坐标、对称轴、开口方向等。

3. 二次函数的基本性质:教师引导学生通过观察图像,总结出二次函数的基本性质,如图像是抛物线、开口方向由a决定、顶点位置和函数值最小(最大)等。

(三) 巩固练习教师给出一些二次函数的题目,让学生尝试绘制图像并分析其性质,以巩固所学知识。

(四) 小结教师引导学生回顾本节课的主要内容,总结二次函数的基本概念、图像和性质。

五、作业布置完成课本上的习题,预习下一节的内容。

六、教学反思在教学过程中,要注意引导学生主动参与,鼓励他们积极思考,通过实践操作加深对二次函数的理解。

湘教版九年级数学下册教案全

湘教版九年级数学下册教案全

湘教版九年级数学下册教案课题:二次函数【学习目标】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【学习重点】二次函数的概念及列二次函数解析式.【学习难点】在实际问题中,会写简单变量之间的二次函数关系式.情景导入生成问题旧知回顾:1.什么是一次函数?答:如果函数表达式是自变量的一次多项式,这样的函数称为一次函数,它的一般形式是y=kx+b(k,b是常数,k≠0).2.写出下列函数的表达式,它们是一次函数吗?(1)正方形边长为a(cm),它的面积S与a的函数关系式为__S=a2__;(2)已知正方体棱长为x(cm),其表面积y(cm2)与x的函数关系式为__y=6x2__;(3)矩形长是4cm,宽是3cm,如果将其长与宽都增加x cm,则面积增加y cm2,那么y与x的函数关系式为__y=x2+7x__.它们都不是一次函数.自学互研生成能力知识模块一二次函数定义及自变量的取值范围阅读教材P2~P3,完成下列问题:1.什么是二次函数?它的一般形式是什么?答:以上所列出的函数表达式是自变量的二次多项式,那么,这样的函数称为二次函数,它的一般形式是y=ax2+bx+c(a,b,c是常数,a≠0).2.如何求二次函数的自变量的取值范围?答:二次函数的自变量的取值范围是所有实数.但在实际问题中,它的自变量的取值范围会有一些限制.【例1】下列函数是二次函数的是(C)A.y=3x-1B.y=-2 xC.y=x2+2 D.y=2(x-1)2-2x2【变例1】已知y=(m-1)xm2+2m-1是关于x的二次函数,则m=__-3__.【变例2】已知函数y=(a+2)x2+x-3是关于x的二次函数,则常数a的取值范围是__a≠-2__.【例2】 有长为24m 的篱笆,如图所示,一面利用墙(墙的最大可用长度a 为10m )围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB 为x m ,面积为S m 2.求S 与x 的函数关系式,并写出自变量的取值范围.解:S =-3x 2+24x.(143<x<8) 【变例1】 若等边三角形的边长为x ,它的面积y 与x 之间的函数关系式为y =34x 2,则x 的取值范围是__x>0__.【变例2】 用一根长为60m 的绳子围成一个矩形,请写出这个矩形的面积y(m 2)关于一条边长x(m )的函数表达式,并指出自变量x 的取值范围.解:y =-x 2+30x.(0<x<30)知识模块二 实际问题中的二次函数【例3】 (安徽中考)某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y(元)关于x 的函数关系式为y =__a(1+x)2__.【变例1】 某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式:__y =x (x -1)2__它__是__(选填“是”或“不是”)二次函数. 【变例2】 某商人将进价为每件8元的商品按每件10元出售,每天可售出100件,经试验,把这种商品每件提价1元,每天的销售量会减少10件,则每天所得的利润y(元)与售价x(元/件)之间的函数关系式为__y=-10x2+280x-1600(8≤x≤20)__.【变例3】如图所示,农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房,则需要塑料布y(m2)与其半径R(m)的函数关系式为(不考虑塑料埋在土里的部分)__y=πR2+30πR(R>0)__.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次函数定义及自变量的取值范围知识模块二实际问题中的二次函数检测反馈达成目标见光盘课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:____________________________________________________________ ____________课题:二次函数的图象与性质——y=ax2(a>0)的图象与性质【学习目标】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【学习重点】理解并掌握图象的性质,会画y=ax2(a>0)的图象.【学习难点】二次函数图象及性质探究过程和方法的体会教学过程.情景导入生成问题旧知回顾:1.什么是二次函数?答:二次函数的定义:如果函数的表达式是自变量的二次多项式,那么,这样的函数称为二次函数,它的一般形式是y=ax2+bx+c(a,b,c是常数,a≠0).2.描点法画函数图象一般步骤是什么?答:列表,描点,连线.自学互研生成能力知识模块一二次函数y=ax2(a>0)的图象阅读教材P5~P7,完成下列问题:二次函数y=ax2(a>0)的图象是怎样的?答:二次函数y=ax2(a>0)的图象是一条抛物线,它的开口向上,对称轴是y轴,对称轴与图象的交点是原点.【例1】函数y=ax2(a≠0)的图象与a的符号有关的是(C) A.对称轴B.顶点坐标C.开口方向D.开口大小【变例1】如图,函数y=2x2的图象大致为(C),A),B),C),D)【变例2】若二次函数y=ax2的图象过点P(-2,4),则该图象必经过点(A)A.(2,4)B.(-2,-4)C.(-4,2) D.(4,-2)【变例3】(柳州中考)抛物线①y=3x2;②y=23x2;③y=43x2的开口大小的次序应为(C)A.①>②>③B.①>③>②C .②>③>①D .②>①>③知识模块二 二次函数y =ax 2(a>0)的性质二次函数y =ax 2(a >0)的图象的性质有哪些?答:二次函数y =ax 2(a>0)的图象的性质:二次函数y =ax 2(a>0)的图象在对称轴右边的部分,函数值随自变量取值的增大而增大,简称为右升;图象在对称轴左边的部分,函数值随自变量取值的增大而减小,简称为左降;当x =0时,函数值有最小值,值为0.【例2】 已知原点是二次函数y =(m -3)x 2的图象上的最低点,则m 的取值范围是( A )A .m>3B .m>-3C .m<3D .m<0【变例1】 已知点A(-3,y 1),B(-1,y 2),C(2,y 3)在二次函数y =2x 2的图象上,则y 1,y 2,y 3的大小关系是( D )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 2<y 3<y 1【变例2】 下列函数中,当x>0时,y 值随x 值的增大而减小的是( C )A .y =xB .y =2x -1C .y =1xD .y =x 2【变例3】 二次函数y =ax 2与直线y =2x -3交于点P(b ,1).(1)求a ,b 的值;(2)写出二次函数的表达式,并指出x 取何值时,该函数y 随x 的增大而增大.解:(1)a =14,b =2;(2)y=14x2,x>0.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次函数y=ax2(a>0)的图象知识模块二二次函数y=ax2(a>0)的性质检测反馈达成目标见光盘课后反思查漏补缺1.收获:____________________________________________________________ ____________2.存在困惑:____________________________________________________________ ____________课题:y=ax2(a<0)的图象与性质【学习目标】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验.【学习重点】类比y=ax2(a>0)的图象性质,理解掌握y=ax2(a<0)的图象性质.【学习难点】二次函数图象的性质及其探究过程和方法的体会.情景导入生成问题旧知回顾:二次函数y=ax2(a>0)的图象性质是怎样的?答:(1)函数图象开口向上,并且有最低点(0,0);(2)对称轴为y轴;(3)在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y 随x的增大而增大,简记为“左降右升”;(4)当x=0时,函数有最小值,其最小值为0.自学互研生成能力知识模块一二次函数y=ax2(a<0)的图象阅读教材P8~P9,完成下列问题:二次函数y=ax2(a<0)的图象是怎样的?答:二次函数y=ax2(a<0)的图象是一条曲线,像这样的曲线叫作抛物线,它的开口向下,对称轴是y轴,对称轴与图象的交点坐标是(0,0),又叫作抛物线的顶点.【例1】若把函数y=4x2沿x轴翻折,则所得函数对应的解析式是(D)A.y=-14x2B.y=14x2C.y=4x2D.y=-4x2【变例1】下列各点:(-1,2),(-1,-2),(-2,-4),(-2,4),其中在二次函数y=-2x2的图象上的是__(-1,-2)__.【变例2】已知抛物线y=(a-4)x2的图象有最高点,则a的取值范围是__a<4__.知识模块二二次函数y=ax2(a<0)的性质1.二次函数y=ax2(a<0)的图象性质是怎样的?答:二次函数y=ax2(a<0)的图象的性质:二次函数y=ax2(a<0)的图象在对称轴左边的部分,函数值随自变量取值的增大而增大,简称为左升;图象在对称轴右边的部分,函数值随自变量取值的增大而减小,简称为右降;当x=0时,函数有最大值,值为0.2.二次函数y=ax2与y=-ax2(a>0)有何关系?答:(1)抛物线y=ax2与y=-ax2关于x轴对称;(2)抛物线y=ax2与y=-ax2关于原点中心对称;(3)|a|越大,抛物线的开口反而越小.【例2】已知点(-1,y1),(2,y2),(-3,y3)都在y=-3x2的图象上,则y1,y2,y3的大小关系为__y1>y2>y3__.【变例1】已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象可能是(C)【变例2】已知y=nxn2-2是二次函数,且有最大值,则n的值为(B)A.2B.-2C.±2D.n ≠0【变例3】下列四个函数:①y=x2;②y=-2x2;③y=12x 2;④y=3x2.其中抛物线开口从大到小的排列顺序是__③①②④__.【变例4】抛物线y=-7x2开口__向下__,当x=__0__时,y 有最__大__值,是__0__.当x__>0__时,y随x的增大而减小.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次函数y=ax2(a<0)的图象知识模块二二次函数y=ax2(a<0)的性质检测反馈达成目标见光盘课后反思查漏补缺1.收获:____________________________________________________________ ____________2.存在困惑:____________________________________________________________ ____________课题:y=a(x-h)2(a≠0)的图象与性质【学习目标】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【学习重点】掌握y=a(x-h)2的图象及性质.【学习难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.情景导入生成问题旧知回顾:1.二次函数y=ax2的图象是怎样的?答:二次函数y=ax2图象关于y轴对称,抛物线与它的对称轴的交点(0,0)叫作抛物线的顶点.2.填写下表:自学互研生成能力知识模块二次函数y=a(x-h)2的图象与性质阅读教材P11~P12,完成下列问题:二次函数y=a(x-h)2图象是怎样的?它与y=ax2有何关系?答:(1)二次函数y=a(x-h)2的图象是抛物线,它与抛物线y=ax2的形状相同,只是位置不同;它的对称轴为直线x=h,顶点坐标为(h,0);(2)二次函数y =a(x -h)2的图象可由抛物线y =ax 2平移得到.当h>0时,抛物线y =ax 2向右平移h 个单位得y =a(x -h)2;当h<0时,抛物线y =ax 2向左平移|h|个单位得y =a(x -h)2.【例1】 抛物线y =13(x -1)2的开口向__上__,对称轴是__直线x =1__,顶点坐标是(1,0),它向__左__平移__1__个单位可得到抛物线y =13x 2.【变例1】 对函数y =-13(x +1)2,当x__>-1__时,函数值y随x 的增大而减小.当x__=-1__,函数取得最__大__值,最__大__值为__0__.【变例2】 对于抛物线y =35(x +4)2,下列结论:①抛物线的开口向上;②对称轴为直线x =4;③顶点坐标为(-4,0);④x>-4时,y 随x 的增大而减小.其中正确结论的个数为( B )A .1个B .2个C .3个D .4个【变例3】 抛物线y =-3(x -1)2的开口向__下__,对称轴是直线__x =1__,顶点坐标是__(1,0)__.【例2】 某一抛物线和y =-3x 2的图象形状相同,对称轴平行于y 轴,并且顶点坐标是(-1,0),则此抛物线的解析式是__y =-3(x +1)2__.【变例1】 已知A(-4,y 1),B(-3,y 2),C(3,y 3)三点都在二次函数y =-2(x +2)2的图象上,则y 1,y 2,y 3的大小关系为__y 3<y 1<y 2__.【变例2】 若函数y =a(x +m)2的图象是由函数y =5x 2的图象向左平移32个单位得到的,则a =__5__,m =__32__.【变例3】 一座大桥的桥拱为抛物线形,跨度AB =50m ,拱高(即顶点C 到AB 的距离)为20m ,建立如图所示的直角坐标系,顶点C 在x 轴上,点A 在y 轴上,且AB ∥x 轴,求桥拱所在抛物线的表达式.解:由题意得,顶点C(25,0),∴可设抛物线为y =a(x -25)2,又∵(0,-20)在抛物线上,∴625a =-20,∴a =-4125.∴所求抛物线的表达式为y =-4125(x -25)2.(0≤x ≤50)交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块二次函数y=a(x-h)2的图象与性质检测反馈达成目标见光盘课后反思查漏补缺1.收获:____________________________________________________________ ____________2.存在困惑:____________________________________________________________ ____________课题:y=a(x-h)2+k(a≠0)的图象与性质【学习目标】1.会用描点法画二次函数y=a(x-h)2+k的图象,掌握y=a(x -h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【学习重点】二次函数y=a(x-h)2+k的图象与性质.【学习难点】分辨几种函数平移关系,识记它们的对称轴和顶点坐标的变化.情景导入生成问题旧知回顾:1.二次函数y=a(x-h)2的图象是怎样的?答:二次函数y=a(x-h)2图象是抛物线,它的对称轴是直线x=h,它的顶点坐标是(h,0),当a>0时,图象开口向上;当a<0时,图象开口向下.2.二次函数y=-2(x+4)2开口向__下__,顶点(-4,0),当x=-4时,y有最大值0,当__x>-4__时,y随x的增大而__减小__;当__x<-4__时,y随x的增大而__增大__,它由y=-2x2向__左__平移__4__个单位得到.自学互研生成能力知识模块一抛物线y=a(x-h)2+k图象的平移阅读教材P13~P14,完成下列问题:二次函数y=a(x-h)2+k的图象与y=ax2的图象有何关系?答:二次函数y=a(x-h)2+k(a,h,k是常数,a≠0)的图象与二次函数y=ax2(a≠0)的图象形状相同,位置不同.二次函数y=a(x-h)2+k的图象可由二次函数y=ax2的图象先向左或向右平移|h|个单位,再向上或向下平移|k|个单位而得到.【例1】由y=2(x-3)2向__下__平移__5__个单位可以得到y =2(x-3)2-5,把y=2(x-3)2-5向__左__平移__3__个单位,再向__上__平移__5__个单位,可以得到y=2x2的图象.【变例1】 抛物线y =-3(x +2)2-3可由抛物线y =-3x 2平移得到,则下列平移过程正确的是( B )A .先向左平移3个单位,再向上平移2个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移3个单位,再向上平移2个单位【变例2】 抛物线y =-23(x -1)2+3的开口向__下__,顶点__(1,3)__,对称轴是__直线x =1__,它可由抛物线y =-23x 2向__右__平移__1__个单位,再向__上__平移__3__个单位得到.知识模块二 二次函数y =a (x -h )2+k 图象的性质【例2】 已知二次函数y =a(x +1)2-b(a ≠0)有最小值1,则a ,b 的大小关系为( A )A .a>bB .a<bC .a =bD .不能确定【变例1】 抛物线y =12(x +3)2-2的顶点坐标是__(-3,-2)__.二次函数y =-3(x -12)2+5的对称轴是__直线x =12__.【变例2】 如果抛物线y =(x +3)2+12经过点A(1,y 1)和点B(3,y 2),那么y 1与y 2的大小关系是y 1__<__y 2(选填“>”“<”或“=”).【变例3】 (包头中考)函数y =k x 与y =-kx 2+k(k ≠0)在同一直角坐标系中的大致图象可能是(B)【变例4】如图,把抛物线y=x2沿直线y=x平移2个单位长度后,其顶点在直线上的A处,则平移后抛物线的解析式是(C)A.y=(x+1)2-1B.y=(x+1)2+1C.y=(x-1)2+1D.y=(x-1)2-1交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一抛物线y=a(x-h)2+k图象的平移知识模块二抛物线y=a(x-h)2+k图象的性质检测反馈达成目标见光盘课后反思查漏补缺1.收获:____________________________________________________________ ____________2.存在困惑:____________________________________________________________ ____________课题:y=ax2+bx+c(a≠0)的图象与性质【学习目标】1.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.2.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【学习重点】用配方法求y=ax2+bx+c的顶点坐标;会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【学习难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.情景导入生成问题旧知回顾:1.填表:2.把抛物线y=32x2向右平移2个单位,再向上平移1个单位,所得抛物线的表达式为__y=32(x-2)2+1__.自学互研生成能力知识模块一用配方法化二次函数一般式为顶点式阅读教材P15~P17,完成下列问题:二次函数y=ax2+bx+c配成顶点式是什么?顶点坐标是什么?对称轴是什么?答:y=ax2+bx+c=a(x+b2a)2+4ac-b24a;顶点坐标⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a ;对称轴是直线x =-b 2a . 【例1】 二次函数y =2x 2+4x -1化成y =a(x -h)2+k 的形式为__y =2(x +1)2-3__,由此可知二次函数y =2x 2+4x -1的对称轴为直线__x =-1__,顶点坐标为__(-1,-3)__.【变例】 将y =2x 2-12x -12变为y =a(x -m)2+n 的形式,则mn =__-90__.知识模块二 二次函数y =ax 2+bx +c 的图象与性质【例2】 已知抛物线y =-x 2+2x -3,下列结论中不正确的是( B )A .抛物线的最大值是-2B .x<1时,y 随x 的增大而减小C .图象的对称轴是直线x =1D .图象与y 轴的交点在x 轴的下方【变例1】 在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( A )A .x<1B .x>1C .x<-1D .x>-1【变例2】 把抛物线y =x 2+bx +c 的图象向右平移3个单位再向下平移2个单位,所得图象的表达式为y =x 2+3x +5,则( C )A .b =3,c =7B .b =6,c =3C .b =9,c =25D .b =-9,c =21【变例3】 把抛物线y =ax 2+bx +c 的图象先向右平移3个单位,再向下平移2个单位,所得图象的表达式是y =x 2-3x -5,则a +b +c =__1__.知识模块三 二次函数y =ax 2+bx +c 的图象与系数关系【例3】 (贵港中考)如图所示,抛物线y =ax 2+bx +c 的对称轴是x =13,小亮通过观察得出了下面四条信息:①c<0;②abc<0;③a -b +c>0;④2a -3b =0.你认为其中正确的有( B )A .1个B .2个C .3个D .4个【变例1】 (龙岩中考)若二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列选项正确的是( C )A .a>0B .c>0C .ac>0D .bc<0【变例2】 已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b -2a =0;②abc<0;③a -2b +4c<0;④8a +c>0.其中正确的有__③④__.(填序号)交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一用配方法化二次函数一般式为顶点式知识模块二二次函数y=ax2+bx+c的图象与性质知识模块三二次函数y=ax2+bx+c的图象与系数关系检测反馈达成目标见光盘课后反思查漏补缺1.收获:____________________________________________________________ ____________2.存在困惑:____________________________________________________________ ____________课题:不共线三点确定二次函数的表达式【学习目标】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.【学习重点】用待定系数法求二次函数的解析式.【学习难点】根据题目条件设出合适的表达式.情景导入生成问题旧知回顾:1.什么是待定系数法?答:先设含有未知系数的函数解析式,再根据题目条件求出未知系数从而得到函数解析式的过程叫待定系数法.2.过点(1,4),(0,3)的一次函数为__y=x+3__.3.顶点为(2,-3),且过另一点(1,5)的二次函数表达式为__y =8x2-32x+29__.自学互研生成能力知识模块一利用不共线三点确定二次函数表达式阅读教材P21~P22,完成下列问题:如何利用不共线三点确定二次函数表达式?答:如果已知二次函数图象上的三个点的坐标,将它们代入函数表达式,列出一个关于待定系数a,b,c的三元一次方程组,求出a,b,c的值,就可以确定二次函数表达式.【例1】 已知二次函数的图象经过点(-1,-6),(1,-2)和(2,3),求这个二次函数的表达式,并求它的图象的开口方向、对称轴和顶点坐标.解:设这个二次函数的表达式为y =ax 2+bx +c ,分别把(-1,-6),(1,-2),(2,3)代入得⎩⎪⎨⎪⎧a -b +c =-6,a +b +c =-2,4a +2b +c =3.解得⎩⎪⎨⎪⎧a =1,b =2,c =-5.∴y =x 2+2x -5=(x +1)2-6.∴函数表达式为y =x 2+2x -5,开口向上,对称轴为直线x =-1,顶点坐标为(-1,-6).【变例1】 抛物线与x 轴交于点(-1,0)和(3,0),与y 轴交于点(0,-3),则此抛物线对应函数的表达式为( B )A .y =x 2+2x +3B .y =x 2-2x -3C .y =x 2-2x +3D .y =x 2+2x - 3【变例2】 如图所示,抛物线的函数表达式是( D )A .y =x 2-x +2B .y =-x 2-x +2C .y =x 2+x +2D .y =-x 2+x +2知识模块二 判断三点能否确定二次函数根据三点坐标确定二次函数表达式,这三点应满足什么条件? 答:三点在同一直线上不能确定二次函数;三点不在同一直线上且三点的横坐标两两不相等,能确定唯一一个二次函数.【例2】已知三个点的坐标,是否有一个二次函数,它的图象经过这三个点?(1)A(0,-1),B(1,2),C(-1,0);(2)A(0,-1),B(1,2),C(-1,-4).解:(1)三点不在同一直线上,所以确定函数解析式为y=2x2+x -1;(2)三点在同一直线上,不能确定一个二次函数.【变例1】抛物线y=mx2-3x+3m-m2经过原点,则m=__3__,该抛物线的解析式为__y=3x2-3x__.【变例2】抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C,且∠ACB=90°,则这条抛物线的关系式为__y=4x2-242【变例3】已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A,B两点.(1)试确定此二次函数的表达式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.解:(1)二次函数的表达式为y=-x2-2x+3;(2)∵当x=-2时,y=-(-2)2-2×(-2)+3=3,∴点P(-2,3)在这个二次函数的图象上.令-x2-2x+3=0,∴x1=-3,x2=1.∴二次函数的图象与x轴的交点为(-3,0),(1,0).∴AB=4.即S△PAB=12×4×3=6.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一利用不共线三点确定二次函数表达式知识模块二判断三点能否确定二次函数检测反馈达成目标见光盘课后反思查漏补缺1.收获:____________________________________________________________ ____________2.存在困惑:____________________________________________________________ ____________课题:二次函数与一元二次方程的联系【学习目标】1.掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系.2.理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系.3.会用二次函数图象求一元二次方程的近似根.【学习重点】理解二次函数与一元二次方程的联系,会求一元二次方程的近似根.【学习难点】一元二次方程与二次函数的综合应用.情景导入生成问题情景导入:1.一次函数y=ax+b(a≠0)与一元一次方程ax+b=0(a≠0)有何关系?答:从图象看,一次函数y=ax+b与x轴交点的横坐标即方程ax+b=0的解.2.求下列二次函数与x轴交点坐标,并判断交点个数.(1)y=x2+x-6;(2)y=x2-2x+1;(3)y=x2-2x+2.解:(1)由y=x2+x-6=0可得x1=-3,x2=2,所以有两个交点(-3,0),(2,0);(2)由y=x2-2x+1=0可得x1=x2=1,所以只有一个交点(1,0);(3)由y=x2-2x+2=0可得Δ=(-2)2-4×2<0,所以无交点.自学互研生成能力知识模块一二次函数与一元二次方程的关系阅读教材P24~P25,完成下列问题:1.二次函数与一元二次方程有何关系?答:二次函数y=ax2+bx+c(a≠0)的图象与x轴有交点时,交点的横坐标就是当y=0时,自变量x的值,即一元二次方程ax2+bx+c=0(a≠0)的根.2.如何判断二次函数与x轴交点的情况?答:二次函数的图象与x轴的关系,对应着一元二次方程根的三种情况:当b2-4ac>0时,该抛物线与x轴有两个交点;当b2-4ac =0时,该抛物线与x轴有一个交点;当b2-4ac<0时,该抛物线与x轴没有交点.【例1】二次函数y=x2-3x-1与x轴的交点个数是(C) A.0B.1C.2D.3 【变例1】若二次函数y=x2-4x+c的图象与x轴有交点,则整数c可以取下列四组中的(D)A.5,6,7 B.4,5,6C.3,4,5 D.2,3,4【变例2】已知二次函数y=-x2+4x+m的部分图象如图,则关于x的一元二次方程-x2+4x+m=0的解是__x1=-1,x2=5__.【变例3】二次函数y=x2+kx+2k-4的图象与x轴只有一个交点,则k=__4__.【变例4】(鄂州中考)二次函数y=ax2+bx+c的图象如图所示,则ax2+bx+c=0的解为__x1=-1,x2=3__,ax2+bx+c>0的解为__x<-1或x>3__.知识模块二利用二次函数图象求一元二次方程的近似解【例2】根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解的范围是(C)x 3.23 3.24 3.25 3.26ax2+bx +c-0.06-0.020.03 0.09A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.26【变例1】用图象法求一元二次方程2x2-4x-1=0的近似解.解:设y=2x2-4x-1.画出抛物线y=2x2-4x-1的图象如图所示.由图象知,当x≈2.2或x≈-0.2时,y=0.即方程2x2-4x-1=0的近似解为x1≈2.2,x2≈-0.2.【变例2】根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是(C)x 6.17 6.18 6.19 6.20y=ax2+bx+c 0.02-0.010.02 0.04A.0B.1C.2D.1或2交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次函数与一元二次方程的关系知识模块二利用二次函数图象求一元二次方程的近似解检测反馈达成目标见光盘课后反思查漏补缺1.收获:____________________________________________________________ ____________2.存在困惑:____________________________________________________________ ____________课题:二次函数的应用(1)——建立二次函数模型解决抛物线型问题【学习目标】1.学会建立适当坐标系,解决拱桥类问题.2.准确把握条件,解决抛物线型运动问题.【学习重点】列出函数解析式,找准点的坐标代入求解.【学习难点】仔细分析题目条件,选择较为简单的方法解决问题.情景导入生成问题旧知回顾:。

湘教版数学九年级下册1.1《二次函数》说课稿

湘教版数学九年级下册1.1《二次函数》说课稿
湘教版数学九年级下册1.1《二次函数》说课稿
一.教材分析
湘教版数学九年级下册1.1《二次函数》是整个九年级数学的重要内容,同时也是学生对函数知识的进一步理解和深化。本节内容通过介绍二次函数的定义、性质和图像,使学生掌握二次函数的基本概念,培养学生解决实际问题的能力。
教材从实际问题出发,引入二次函数的概念,然后通过探究二次函数的性质,使学生了解二次函数的图像特征,最后通过实际问题,让学生运用二次函数解决生活中的问题。整个内容既有理论的学习,也有实践的运用,使学生在学习过程中,既能掌握二次函数的基本知识,又能提高解决问题的能力。
j)二次函数的判别式Δ决定了函数与x轴的交点个数。()
k)二次函数的图像具有对称性,对称轴是y轴。()
24.选择题:
l)下列函数中,哪个是二次函数?
A)y=3x^2 B) y=2x+1 C) y=x^3 D) y=5
m)当a<0时,二次函数的图像开口朝()。
B)上B)下C)左D)右
n)抛物线y=2x^2+3x+1的顶点坐标是()。
17.二次函数的增减性:当a>0时,二次函数在(-∞, -b/2a)上递减,在(-b/2a, +∞)上递增;当a<0时,二次函数在(-∞, -b/2a)上递增,在(-b/2a, +∞)上递减。
18.二次函数的零点:二次函数的零点是使得y=0的x值。根据判别式Δ的值,可以判断零点的个数。
19.二次函数的实际应用:二次函数在实际生活中有广泛的应用,如抛物线射击、最优化问题等。
知识点儿整理:
13.二次函数的定义:二次函数是形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数。其中,a、b、c分别是二次项系数、一次项系数和常数项。

2018-2019学年湘教版九年级数学下册全册教案(含教学反思)

2018-2019学年湘教版九年级数学下册全册教案(含教学反思)

1.1 二次函数1.掌握二次函数的概念,能识别一个函数是不是二次函数;(重点)2.能根据实际情况建立二次函数模型,并确定自变量的取值范围.(难点)一、情境导入已知长方形窗户的周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的相关概念【类型一】二次函数的识别下列函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式,不符合二次函数的定义,故y=1x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式中自变量最高次数为2,且函数关系式中二次项系数不等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】根据二次函数的定义求待定字母的值如果函数y=(k+2)xk2-2是y关于x的二次函数,则k的值为多少?解析:紧扣二次函数定义求解,注意易错点为忽视k+2≠0.解:根据题意知⎩⎪⎨⎪⎧k 2-2=2,k +2≠0,解得⎩⎪⎨⎪⎧k =±2,k ≠-2,∴k =2.方法总结:紧扣定义中的两个特征:①二次项系数不为零;②自变量最高次数为2. 变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】 与二次函数系数有关的计算已知一个二次函数,当x =0时,y =0;当x =2时,y =12;当x =-1时,y =18.求这个二次函数中各项系数的和.解析:解:设二次函数的表达式为y =ax 2+bx +c (a ≠0).把x =0,y =0;x =2,y =12;x =-1,y =18分别代入函数表达式,得⎩⎪⎨⎪⎧c =0,4a +2b +c =12,a -b +c =18,解得⎩⎪⎨⎪⎧a =18,b =0,c =0.所以这个二次函数的表达式为y =18x 2.所以a +b +c =18+0+0=18,即这个二次函数中各项系数的和为18. 方法总结:涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y =ax 2+bx +c (a ≠0).解决这类问题要根据x ,y 的对应值,列出关于字母a ,b ,c 的方程(组),然后解方程(组),即可求得a ,b ,c 的值.探究点二:建立简单的二次函数模型一个正方形的边长是12cm ,若从中挖去一个长为2x cm ,宽为(x +1)cm 的小长方形.剩余部分的面积为y cm 2.(1)写出y 与x 之间的函数关系式,并指出y 是x 的什么函数? (2)当x 的值为2或4时,相应的剩余部分的面积是多少?解析:几何图形的面积一般需要画图分析,相关线段必须先用x 的代数式表示出来.如图所示.解:(1)y=122-2x(x+1),又∵2x≤12,∴0<x≤6,即y=-2x2-2x+144(0<x≤6),∴y 是x的二次函数;(2)当x=2时,y=-2×22-2×2+144=132,当x=4时,y=-2×42-2×4+144=104,∴当x=2或4时,相应的剩余部分的面积分别为132cm2或104cm2.方法总结:二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题都可以通过分析题目中变量之间的关系,建立二次函数模型来解决.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质1.会用描点法画二次函数y=ax2(a>0)的图象,理解抛物线的概念;(重点)2.掌握形如y=ax2(a>0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢?它是什么函数?它的图象是什么形状呢?二、合作探究探究点一:二次函数y =ax 2(a >0)的图象已知y =(k +2)xk 2+k 是二次函数. (1)求k 的值;(2)画出函数的图象.解析:根据二次函数的定义,自变量x 的最高次数为2,且二次项系数不为0,这样能确定k 的值,从而确定表达式,画出图象.解:(1)∵y =(k +2)xk 2+k 为二次函数,∴⎩⎪⎨⎪⎧k 2+k =2,k +2≠0,解得k =1;(2)当k =1时,函数的表达式为y =3x 2,用描点法画出函数的图象.列表:x -1 -12 0 12 1 … y =3x 2334343…描点:(-1,3),(-12,34),(0,0),(12,34),(1,3).连线:用光滑的曲线按x 的从小到大的顺序连接各点,图象如图所示.方法总结:列表时先取原点(0,0),然后在原点两侧对称地取四个点,由于函数y =ax 2(a ≠0)图象关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,所以先计算y 轴右侧的两个点的纵坐标,左侧对应写出即可.变式训练:见《学练优》本课时练习“课后巩固提升”第7题探究点二:二次函数y =ax 2(a >0)的性质已知点(-3,y 1),(1,y 2),(2,y 3)都在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是________.解析:方法一:把x =-3,1,2分别代入y =x 2中,得y 1=9,y 2=1,y 3=2,则y 1>y 3>y 2;方法二:如图,作出函数y =x 2的图象,把各点依次在函数图象上标出.由图象可知y 1>y 3>y 2;方法三:∵该图象的对称轴为y 轴,a >0,∴在对称轴的右边,y 随x 的增大而增大,而点(-3,y 1)关于y 轴的对称点为(3,y 3).又∵3>2>1,∴y 1>y 3>y 2.方法总结:比较二次函数中函数值的大小有三种方法:①直接把自变量的值代入解析式中,求出对应函数值进行比较;②图象法;③根据函数的增减性进行比较,但当要比较的几个点在对称轴的两侧时,可根据抛物线的对称轴找出某个点的对称点,转化到同侧后,然后利用性质进行比较.变式训练:见《学练优》本课时练习“课后巩固提升”第2题 探究点三:二次函数y =ax 2(a >0)的图象与性质的简单应用已知函数y =(m +2)xm 2+m -4是关于x 的二次函数. (1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?解析:由二次函数的定义知:m 2+m -4=2且m +2≠0;抛物线有最低点,则抛物线开口向上,即m +2>0.解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0,解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2,∴当m =2或m =-3时,原函数为二次函数;(2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m >-2,∴取m =2.∴这个最低点为抛物线的顶点,其坐标为(0,0).当x >0时,y 随x 的增大而增大.方法总结:二次函数必须满足自变量的最高次数是2且二次项的系数不为0;函数有最低点即开口向上.变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2(a>0)的图象与性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质1.会用描点法画二次函数y=ax2(a<0)的图象;(重点)2.掌握形如y=ax2(a<0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入上节课我们学习了a >0时二次函数y =ax 2的图象和性质,那么当a <0时,二次函数y =ax 2的图象和性质又会有怎样的变化呢?二、合作探究探究点一:二次函数y =ax 2(a <0)的图象 【类型一】 二次函数y =ax 2(a <0)的图象在直角坐标系内,作出函数y =-12x 2的图象.解析:作函数的图象采用描点法,即“列表、描点、连线”三个步骤. 解:列表:x 0 1 2 … y =-12x 2-12-2…描点和连线:画出图象在y 轴右边的部分,利用对称性,画出图象在y 轴左边的部分,如图.方法总结:(1)列表应以0为中心,选取x >0的几个点求出对应的y 值;(2)描点要准;(3)画出y 轴右边的部分,利用对称性,可画出y 轴左边的部分,连线要用平滑的曲线,不能是折线.【类型二】 同一坐标系中两种不同图象的判断当ab >0时,抛物线y =ax 2与直线y =ax +b 在同一直角坐标系中的图象大致是( )解析:根据a 、b 的符号来确定.当a >0时,抛物线y =ax 2的开口向上.∵ab >0,∴b >0.∴直线y =ax +b 过第一、二、三象限;当a <0时,抛物线y =ax 2的开口向下.∵ab >0,∴b <0.∴直线y=ax+b过第二、三、四象限.故选D.方法总结:本例综合考查了一次函数y=ax+b和二次函数y=ax2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a的符号是否一致入手进行分析.变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:二次函数y=ax2(a<0)的性质【类型一】二次函数y=ax2(a<0)的性质(2015·山西模拟)抛物线y=-4x2不具有的性质是()A.开口向上B.对称轴是y轴C.在对称轴的左侧,y随x的增大而增大D.最高点是原点解析:此题应从二次函数的基本形式入手,它符合y=ax2的基本形式,根据它的性质,进行解答.因为a=-4<0,所以图象开口向下,顶点坐标为(0,0),对称轴是y轴,最高点是原点.在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.故选A.方法总结:抛物线y=ax2(a<0)的开口向下,顶点坐标为(0,0),对称轴为y轴.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.当x=0时,图象有最高点,y 有最大值0.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次函数y=ax2的开口方向、大小与系数a的关系如图,四个二次函数图象中,分别对应:①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a、b、c、d的大小关系为()A.a>b>c>dB.a>b>d>cC.b>a>c>dD.b>a>d>c答案:A方法总结:抛物线y =ax 2的开口大小由|a |确定,|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大.变式训练:见《学练优》本课时练习“课堂达标训练”第7题 探究点三:二次函数y =ax 2的图象与几何图形的综合应用已知二次函数y =ax 2(a ≠0)与直线y =2x -3相交于点A (1,b ),求: (1)a ,b 的值;(2)函数y =ax 2的图象的顶点M 的坐标及直线与抛物线的另一个交点B 的坐标; (3)△AMB 的面积.解析:直线与二次函数y =ax 2的图象交点坐标可利用方程求解,而求△AMB 的面积,一般应画出草图进行解答.解:(1)∵点A (1,b )是直线y =2x -3与二次函数y =ax 2的图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1;(2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0). 由-x 2=2x -3,解得x 1=1,x 2=-3, ∴y 1=-1,y 2=-9,∴直线与二次函数的另一个交点B 的坐标为(-3,-9);(3)如图所示,作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C 、D ,根据点的坐标的意义,可知MD =3,MC =1,CD =1+3=4,BD =9,AC =1,∴S △AMB =S 梯形ABDC -S △ACM -S △BDM =12×(1+9)×4-12×1×1-12×3×9=6.方法总结:解答此类题目,最好画出草图,利用数形结合,解答相关问题. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课仍然是从学生画图象着手,结合上节课y =ax 2(a >0)的图象和性质,从而得出y =ax 2(a <0)的图象和性质,进而得出y =ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时 二次函数y =a (x -h )2的图象与性质1.会用描点法画出y =a (x -h )2的图象;2.掌握形如y =a (x -h )2的二次函数图象的性质,并会应用;(重点) 3.理解二次函数y =a (x -h )2与y =ax 2之间的联系.(难点)一、情境导入涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.如图建立直角坐标系,你能得到函数图象解析式吗?二、合作探究探究点一:二次函数y =a (x -h )2的图象与性质 【类型一】 y =a (x -h )2的顶点坐标已知抛物线y =a (x -h )2(a ≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a ,h 的值.解:∵抛物线y =a (x -h )2(a ≠0)的顶点坐标为(-2,0),∴h =-2.又∵抛物线y =a (x +2)2经过点(-4,2),∴a (-4+2)2=2.∴a =12.方法总结:二次函数y =a (x -h )2的顶点坐标为(h ,0). 变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】 二次函数y =a (x -h )2图象的形状顶点为(-2,0),开口方向、形状与函数y =-12x 2的图象相同的抛物线的解析式为( )A .y =12(x -2)2B .y =12(x +2)2 C .y =-12(x +2)2 D .y =-12(x -2)2 解析:因为抛物线的顶点在x 轴上,所以可设该抛物线的解析式为y =a (x -h )2(a ≠0),而二次函数y =a (x -h )2(a ≠0)与y =-12x 2的图象相同,所以a =-12,而抛物线的顶点为(-2,0),所以h =-2,把a =-12,h =-2代入y =a (x -h )2得y =-12(x +2)2.故选C. 方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同.变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型三】 二次函数y =a (x -h )2的增减性及最值对于二次函数y =9(x -1)2,下列结论正确的是( )A .y 随x 的增大而增大B .当x >0时,y 随x 的增大而增大C .当x =-1时,y 有最小值0D .当x >1时,y 随x 的增大而增大解析:因为a =9>0,所以抛物线开口向上,且h =1,顶点坐标为(1,0),所以当x >1时,y 随x 的增大而增大.故选D.变式训练:见《学练优》本课时练习“课堂达标训练”第3题探究点二:二次函数y =a (x -h )2图象的平移【类型一】 利用平移确定y =a (x -h )2的解析式抛物线y =ax 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.解析:y =ax 2向右平移3个单位后的关系式可表示为y =a (x -3)2,把点(-1,4)的坐标代入即可求得a 的值.解:二次函数y =ax 2的图象向右平移3个单位后的二次函数关系式可表示为y =a (x -3)2,把x =-1,y =4代入,得4=a (-1-3)2,a =14,∴平移后二次函数关系式为y =14(x -3)2.方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a 不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】 确定y =a (x -h )2与y =ax 2的关系向左或向右平移函数y =-12x 2的图象,能使得到的新的图象过点(-9,-8)吗?若能,请求出平移的方向和距离;若不能,请说明理由.解:能,理由如下:设平移后的函数为y =-12(x -h )2, 将x =-9,y =-8代入得-8=-12(-9-h )2, 所以h =-5或h =-13,所以平移后的函数为y =-12(x +5)2或y =-12(x +13)2. 即抛物线的顶点坐标为(-5,0)或(-13,0),所以应向左平移5或13个单位.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 探究点三:二次函数y =a (x -h )2与几何图形的综合把函数y =12x 2的图象向右平移4个单位后,其顶点为C ,并与直线y =x 分别相交于A 、B 两点(点A 在点B 的左边),求△ABC 的面积.解析:利用二次函数平移规律先确定平移后的抛物线解析式,确定C 点坐标,再解由所得到的二次函数解析式与y =x 组成的方程组,确定A 、B 两点坐标,最后求△ABC 的面积.解:平移后的函数为y =12(x -4)2,顶点C 的坐标为(4,0),OC =4. 解方程组⎩⎪⎨⎪⎧y =12(x -4)2,y =x ,得⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =8,y =8. ∵点A 在点B 的左边,∴A (2,2),B (8,8),∴S △ABC =S △OBC -S △OAC =12×4×8-12×4×2=12.方法总结:两个函数交点的横、纵坐标与两个解析式组成的方程组的解是一致的. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计通过本节学习使学生认识到y =a (x -h )2的图象是由y =ax 2的图象左右平移得到的,初步认识到a ,h 对y =a (x -h )2位置的影响,a 的符号决定抛物线方向,|a |决定抛物线开口的大小,h 决定向左、向右平移,从中领会数形结合的数学思想.第4课时 二次函数y =a (x -h )2+k 的图象与性质1.会用描点法画出y =a (x -h )2+k 的图象;2.掌握形如y =a (x -h )2+k 的二次函数的图象与性质,并会应用;(重点)3.理解二次函数y =a (x -h )2+k 与y =ax 2之间的联系.(难点)一、情境导入前面我们是如何研究二次函数y =ax 2、y =a (x -h )2的图象与性质的?如何画出y =12(x -2)2+1的图象?二、合作探究探究点一:二次函数y =a (x -h )2+k 的图象与性质【类型一】 二次函数y =a (x -h )2+k 的图象已知y =12(x -3)2-2的部分图象如图所示,抛物线与x 轴交点的一个坐标是(1,0),则另一个交点的坐标是________.解析:由抛物线的对称性知,对称轴为x =3,一个交点坐标是(1,0),则另一个交点坐标是(5,0).解:(5,0)变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】 二次函数y =a (x -h )2+k 的性质试说明抛物线y =2(x -1)2与y =2(x -1)2+5的关系.解析:对抛物线的分析应从开口方向,顶点坐标,对称轴,增减性,及最大(小)值几个方面分析.解:相同点:(1)它们的形状相同,开口方向相同;(2)它们的对称轴相同,都是x =1.当x <1时都是左降,当x >1时都是右升;(3)它们都有最小值.不同点:(1)顶点坐标不同.y =2(x -1)2的顶点坐标是(1,0),y =2(x -1)2+5的顶点坐标是(1,5);(2)y =2(x -1)2的最小值是0,y =2(x -1)2+5的最小值是5.方法总结:对于y =a (x -h )2+k 类抛物线,a 决定开口方向;|a |决定开口大小;h 决定对称轴;k 决定最大(小)值的数值.变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点二:二次函数y =a (x -h )2+k 的图象的平移将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( ) A .y =13(x -2)2-1 B .y =13(x -2)2+1 C .y =13(x +2)2+1 D .y =13(x +2)2-1 解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1.故选A. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点三:二次函数y =a (x -h )2+k 的图象与几何图形的综合如图所示,在平面直角坐标系xOy 中,抛物线y =x 2向左平移1个单位,再向下平移4个单位,得到抛物线y =(x -h )2+k .所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D .(1)求h ,k 的值;(2)判断△ACD 的形状,并说明理由.解析:(1)按照图象平移规律“左加右减,上加下减”可得到平移后的二次函数的解析式;(2)分别过点D 作x 轴和y 轴的垂线段DE ,DF ,再利用勾股定理,可说明△ACD 是直角三角形.解:(1)∵将抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x +1)2-4,∴h=-1,k=-4;(2)△ACD为直角三角形.理由如下:由(1)得y=(x+1)2-4.当y=0时,(x+1)2-4=0,x=-3或x=1,∴A(-3,0),B(1,0).当x=0时,y=(x+1)2-4=(0+1)2-4=-3,∴C 点坐标为(0,-3).顶点坐标为D(-1,-4).作出抛物线的对称轴x=-1交x轴于点E,过D作DF⊥y轴于点F,如图所示.在Rt△AED中,AD2=22+42=20;在Rt△AOC中,AC2=32+32=18;在Rt△CFD中,CD2=12+12=2.∵AC2+CD2=AD2,∴△ACD是直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计通过本节学习使学生掌握二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质1.会用描点法画二次函数y=ax2+bx+c的图象;2.会用配方法或公式法求二次函数y=ax2+bx+c的顶点坐标与对称轴,并掌握其性质;(重点)3.二次函数性质的综合应用.(难点)一、情境导入火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用h=-5t2+150t+10表示.经过多长时间火箭达到它的最高点?二、合作探究探究点一:化二次函数y =ax 2+bx +c 为y =a (x -h )2+k 的形式把抛物线y =x 2+bx +c 的图象向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式为y =x 2-3x +5,则( )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =21解析:y =x 2-3x +5化为顶点式为y =(x -32)2+114.将y =(x -32)2+114向左平移3个单位长度,再向上平移2个单位长度,即为y =x 2+bx +c .则y =x 2+bx +c =(x +32)2+194,化简后得y =x 2+3x +7,即b =3,c =7.故选A.方法总结:二次函数由一般式化为顶点式,平移时遵循“左正右负,上正下负”,逆向推理则相反.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题探究点二:二次函数y =ax 2+bx +c 的图象与性质【类型一】 二次函数与一次函数图象的综合在同一直角坐标系中,函数y =mx +m 和函数y =mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( )解析:A 、B 中由函数y =mx +m 的图象可知m <0,即函数y =mx 2+2x +2开口方向朝下,对称轴为x =-b 2a =-22m =-1m>0,则对称轴应在y 轴右侧,故A 、B 选项错误;C 中由函数y =mx +m 的图象可知m >0,即函数y =mx 2+2x +2开口方向朝上,对称轴为x =-b 2a =-22m =-1m<0,则对称轴应在y 轴左侧,故C 选项错误;D 中由函数y =mx +m 的图象可知m <0,即函数y =mx 2+2x +2开口方向朝下,对称轴为x =-b 2a =-22m =-1m>0,则对称轴应在y 轴右侧,与图象相符,故D 选项正确.故选D.方法总结:熟记一次函数y =kx +b 在不同情况下所在的象限,以及熟练掌握二次函数y =ax 2+bx +c 的有关性质:开口方向、对称轴、顶点坐标等.【类型二】二次函数y=ax2+bx+c的性质若点A(2,y1),B(-3,y2),C(-1,y3)三点在抛物线y=x2-4x-m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2解析:∵二次函数y=x2-4x-m中a=1>0,∴开口向上,对称轴为x=-b2a=2.∵A(2,y1)中x=2,∴y1最小.又∵B(-3,y2),C(-1,y3)都在对称轴的左侧,而在对称轴的左侧,y随x的增大而减小,故y2>y3.∴y2>y3>y1.故选C.方法总结:当二次项系数a>0时,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;a<0时,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型三】二次函数图象的位置与各项系数符号的关系已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列四个结论:①a<0;②a+b+c>0;③-b2a>0;④abc>0.其中正确的结论是________.解析:由抛物线的开口方向向下可推出a<0,抛物线与y轴的正半轴相交,可得出c >0,对称轴在y轴的右侧,a,b异号,b>0,∴abc<0;∵对称轴在y轴右侧,对称轴为-b2a>0;由图象可知:当x=1时,y>0,∴a+b+c>0.∴①②③④都正确.方法总结:二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为() A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法. 变式训练:见《学练优》本课时练习“课后巩固提升”第1题探究点三:二次函数y =ax 2+bx +c 的图象与几何图形的综合应用如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0)、B (0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.解:(1)把A (2,0)、B (0,-6)代入y =-12x 2+bx +c 得⎩⎪⎨⎪⎧-2+2b +c =0,c =-6,解得⎩⎪⎨⎪⎧b =4,c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6; (2)∵该抛物线对称轴为直线x =-42×(-12)=4, ∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2,∴S △ABC =12×AC ×OB =12×2×6=6. 变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计本节课所学的二次函数y =ax 2+bx +c 的图象和性质可以看作是y =ax 2,y =a (x -h )2,y =a (x -h )2+k 的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式1.通过对用待定系数法求二次函数解析式的探究,掌握求二次函数解析式的方法;(重点)2.会根据不同的条件,利用待定系数法求二次函数的解析式,在实际应用中体会二次函数作为一种数学模型的作用.(难点)一、情境导入某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时喷水水平距离为12米.你能写出如图所示的平面直角坐标系中抛物线水柱的解析式吗?二、合作探究探究点一:不共线三点确定二次函数的表达式【类型一】 用一般式确定二次函数解析式已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的解析式.解析:由于题目给出的是抛物线上任意三点,可设一般式y =ax 2+bx +c (a ≠0). 解:设这个二次函数的解析式为y =ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧a -b +c =-5,c =-4,a +b +c =1,解得⎩⎪⎨⎪⎧a =2,b =3,c =-4.∴这个二次函数的解析式为y =2x 2+3x -4.方法总结:当题目给出函数图象上的任意三个点时,设一般式y =ax 2+bx +c ,转化成一个三元一次方程组,以求得a ,b ,c 的值.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】 用顶点式确定二次函数解析式已知二次函数的图象顶点坐标是(-2,3),且过点(-1,5),求这个二次函数的解析式.解:设二次函数解析式为y =a (x -h )2+k ,∵图象顶点是(-2,3),∴h =-2,k =3,依题意得5=a (-1+2)2+3,解得a =2.∴二次函数的解析式为y =2(x +2)2+3=2x 2+8x +11.方法总结:若已知抛物线的顶点或对称轴、极值,则设y =a (x -h )2+k .顶点坐标为(h ,k),对称轴为x=h,最值为当x=h时,y最值=k.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】用交点式确定二次函数解析式已知抛物线与x轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的解析式.解析:由于已知图象与x轴的两个交点,所以可设y=a(x-x1)(x-x2)求解.解:因为点A(-1,0),B(1,0)是图象与x轴的交点,所以设二次函数的解析式为y=a(x+1)(x-1).又因为抛物线过点M(0,1),所以1=a(0+1)(0-1),解得a=-1,所以所求抛物线的解析式为y=-(x+1)(x-1),即y=-x2+1.方法总结:此题也可设y=a(x-h)2+k,因为与x轴交于(-1,0),(1,0),故对称轴为y轴.变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点二:二次函数解析式的综合运用如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:(1)求抛物线的解析式;(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD =8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,c -4b =-19.∵对称轴是x =-3,∴-b2=-3,∴b =6,∴c =5,∴抛物线的解析式是y =x 2+6x +5;(2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.∵点C 在对称轴左侧,且CD =8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12.∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,∴△BCD 的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式,以及利用解析式分析二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.变式训练:见《学练优》本课时练习“课后巩固提升”第7题 三、板书设计教学过程中,强调用待定系数法求二次函数解析式时,要根据题目所给条件,合理设出其形式,然后求解,这样可以简化计算.1.4 二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y =x 2-6x +c 的图象时,发现其顶点在x 轴上,请你帮小唐确定字母c 的值是多。

最新湘教版九年级数学初三下册第1章《二次函数》章末复习教学教案

最新湘教版九年级数学初三下册第1章《二次函数》章末复习教学教案

章末复习【知识与技能】掌握本章重要知识,能灵活运用二次函数的图象与性质解决实际问题. 【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的数形结合思想,转化化归思想的过程,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,激发学习兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用二次函数的相关知识解决具体问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统了解本章知识及它们之间的关系,教学时,边回顾边建立结构框图.二、释疑解惑,加深理解1.由于y=ax2+bx+c配方后可得y=224()24b ac ba xa a-++,所以y=ax2+bx+c的图象总可由y=ax2平移得到.2.对于现实生活中的许多问题,可以通过建立二次函数模型来解决.3.利用二次函数解法实际问题时,自变量的取值范围要结合具体问题来确定.三、典例精析,复习新知例1下列函数中,是二次函数的是( )A.y=8x2+1B.y=x2+1xC.y=(x-2)(x+2)-x2D.y=ax2【解析】选A.选项A符合二次函数的一般形式,是二次函数,正确;选项B 不是整式形式,错误;选项C不含二次项,错误;选项D,二次项系数a=0时,不是二次函数,错误.例2 抛物线y=-(x-1)2是由抛物线y=-(x+3)2向平移个单位得到的;平移后的抛物线对称轴是,顶点坐标是,当x=时,函数y有最值,其值是.【解析】本题因为a=-1<0,所以抛物线开口向下,函数有最大值;掌握“左加右减”的平移规律时,关键是把握平移方向.答案:右 4 直线x=1 (1,0) 1 大 0例3如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x的增大而增大.正确的说法有.(请写出所有正确说法的序号) 【解析】∵抛物线开口向上,即a>0;与y轴的交点在x轴下方,即c<0,∴ac<0,①正确;由函数图象与x轴的交点坐标(-1,0),(3,0),可得方程ax2+bx+c=0的根为x1=-1,x2=3,②正确;由函数图象与x=1的交点位置位于x 轴下方,即a+b+c<0,③错误;由函数图象可得抛物线的对称轴为x=1,当x>1时,y随着x的增大而增大,故正确的说法有①②④.例4 如图,利用一面墙(墙长为15m)和30m长的篱笆来围矩形场地,若设垂直墙的一边长为x(m),围成的矩形场地的面积为y(m2).(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)怎样围成一个面积为112m2的矩形场地?(3)若要围成一个面积最大的矩形场地,则矩形场地的长和宽各应是多少?【解析】(1)∵AD=BC=x,∴AB=30-2x,由题意得y=x(30-2x),=-2x2+30x(7.5≤x<15);(2)当y=112时,-2x2+30x=112,解得:x1=7,x2=8,当x=7时,AD=BC=7m,AB=30-27=16m(大于围墙的长度,舍去).当x=8时,AD=BC=8cm,AB=30-28=14m(符合题意)∴当垂直于墙面的边长为8m时,可以围成面积为112m2的矩形场地.(3)y=-2x2+30x=-2(x-152)2+2252∴当x=152m时,围成的面积最大,此时矩形的宽为152m,长为15m.四、运用新知,深化理解1.(江苏扬州中考)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数解析式是()A.y=(x+2)2+2B.y=(x+2)2-2C.y=(x-2)2+2D.y=(x-2)2-22.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:点A(x1,y1),B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y23.(湖北咸宁中考)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时,y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)4.如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S,求点D的坐标.5.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.经市场调查发现;若以每箱50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出售价x(元)与平均每天所得利润W(元)之间的函数关系式;(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?【答案】1.B 2.B 3.①④4.(1)m=3 (2)y=-x2+2x+3 令y=0解得x=3或-1,∴B(-1,0)(3)∵S△ABD =S△ABC,点D在第一象限.∴点C,D关于二次函数对称轴对称.∵对称轴x=1,C(0,3),∴D(2,3)5.解:(1)设销售量为y箱,则y=240-3x,所以W=(x-40)y=(x-40)(240-3x)=-3(x-60)2+1200(40≤x≤70).(2)当x=60时,W最大=1200.∴每箱定价为60元时,才能使平均每天的利润最大,最大利润是1200元.五、师生互动,课堂小结本堂课你能完整地回顾本章所学的二次函数的有关知识吗?你能用二次函数知识解决实际问题吗?你还有哪些疑问?第3~6题.1.教材P372.完成同步练习册中本课时的练习.本节通过学习归纳本章内容,建立二次函数模型,掌握二次函数性质,并利用二次函数性质去解决实际问题,查漏补缺,使学生对本章知识有通盘了解和掌握.。

湘教版九年级数学下册《二次函数》精品教案

湘教版九年级数学下册《二次函数》精品教案

节内容的认知。
(2)当圆的半径分别增加 1cm, cm,2cm 时, 圆的面积各增加多少?
4. 物 体 从 某 一 高 度 落 下 , 已 知 下 落 的 高 度
和下落的时间
的关系是:
度。
,填表表示物体在前 5 下落的高
拓展练习
1.某超市欲购进一种今年新上市的产品,购进价为 20 元/件.为了调查这种新产品的销路,该超市进行
计划在田地中修 2 条互相垂直且宽度为 (m)的 小路, 剩余面积种植庄稼, 设剩余面积为 ( ),
求 关于 的函数表达式, 并写出自变量的取值 范围.
学生探索,小组展示,教师引导,最后出示答案
课堂小结
这节课你收获了什么?
学生自主交 培养学生的归
学生自由发言,教师引导归纳。
流、归纳、总 纳、总结能力。
结。
板书
重难点突出,一
目了然。
组加分,理解 对二次函数的理
并记忆
解。
3.出示例题 1:如图 , 一块矩形木板, 长为 120 cm、 宽 为 80 cm, 在木板 4 个角上各截去
边长为
(cm)的正方 形, 求余下面积 S
师引导学生分 析问题,找出 等量关系式,
2. 这 一 情 境 的 目 的是让学生能够 表示简单变量之

)与
之间的函数表达式.
列方程,并求 间的二次函数关
例题 2: 自变量的二次函数?
解。 为何值时,函数
系,从中体会函
引导学生自主 数的模型思想。
是以
为 探究,进一步
明确二次函数
的定义。
巩固练习
巩固练习,出示幻灯片 14-18。
学生独立完成 提供不同背景的
1.下列函数中,哪些是二次函数, 哪些是一次 函数,哪些是反比例函数?

湘教版数学九年级下册《1.1 二次函数》教学设计

湘教版数学九年级下册《1.1 二次函数》教学设计

湘教版数学九年级下册《1.1 二次函数》教学设计一. 教材分析湘教版数学九年级下册《1.1 二次函数》是学生在学习了函数、方程等知识后,进一步对函数的性质进行探究。

本节内容主要介绍二次函数的定义、性质及图象。

教材通过生活中的实例引入二次函数的概念,让学生感受数学与实际的联系,提高学习兴趣。

教材内容由浅入深,逐步引导学生掌握二次函数的图象和性质,为后续学习打下基础。

二. 学情分析九年级的学生已经掌握了函数、方程等基本知识,具备一定的逻辑思维能力和抽象思维能力。

但二次函数的内容较为抽象,学生对其理解和运用可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际水平进行教学。

三. 教学目标1.理解二次函数的定义,掌握二次函数的一般形式。

2.了解二次函数的图象特征,会绘制二次函数的图象。

3.掌握二次函数的性质,会运用二次函数解决实际问题。

四. 教学重难点1.二次函数的定义和一般形式。

2.二次函数的图象特征和性质。

五. 教学方法1.情境教学法:通过生活中的实例引入二次函数,让学生感受数学与实际的联系。

2.引导发现法:教师引导学生发现二次函数的图象和性质,培养学生的观察能力和发现能力。

3.实践操作法:让学生动手绘制二次函数的图象,提高学生的动手能力。

六. 教学准备1.教学课件:制作二次函数的图象和性质的课件,便于学生直观理解。

2.练习题:准备相应的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如抛物线运动,引出二次函数的概念。

让学生思考:二次函数是如何描述实际问题的?2.呈现(10分钟)呈现二次函数的一般形式,引导学生观察二次函数的图象,了解二次函数的顶点、开口方向等特征。

3.操练(10分钟)让学生动手绘制二次函数的图象,观察图象的变化,体会二次函数的性质。

同时,教师进行讲解,解答学生的疑问。

4.巩固(10分钟)针对所学内容,进行课堂练习,让学生运用二次函数的知识解决问题。

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计4

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计4

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计4一. 教材分析湘教版数学九年级下册1.2《二次函数的图象与性质》是本节课的教学内容。

这部分内容是在学生已经掌握了二次函数的一般形式和几何性质的基础上进行讲解的。

本节课的主要内容是让学生进一步了解二次函数的图象与性质,包括开口方向、对称轴、顶点、零点等,并通过实例让学生学会如何运用这些性质解决问题。

二. 学情分析学生在学习本节课之前,已经掌握了二次函数的一般形式和几何性质,对二次函数有了初步的认识。

但是,对于二次函数的图象与性质的深入理解还需要加强。

此外,学生对于实际问题的解决能力也需要进一步提高。

三. 教学目标1.让学生掌握二次函数的图象与性质,包括开口方向、对称轴、顶点、零点等。

2.培养学生运用二次函数的性质解决问题的能力。

3.提高学生的数学思维能力和数学素养。

四. 教学重难点1.二次函数的图象与性质的理解和运用。

2.实际问题的解决。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过问题驱动,引导学生自主学习;通过案例教学,让学生直观地理解二次函数的图象与性质;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过复习二次函数的一般形式和几何性质,引导学生回忆起已学的知识,为新课的学习做好铺垫。

2.呈现(10分钟)利用PPT课件,展示二次函数的图象与性质,包括开口方向、对称轴、顶点、零点等。

通过直观的图象,让学生对这些性质有更清晰的认识。

3.操练(10分钟)让学生通过观察PPT课件上的图象,判断二次函数的开口方向、对称轴、顶点、零点等性质。

同时,让学生结合教材中的实例,自己动手画出二次函数的图象,加深对性质的理解。

4.巩固(10分钟)让学生分组讨论,每组选取一个实际的数学问题,运用二次函数的性质进行解决。

讨论结束后,各组汇报讨论成果,其他组进行评价。

九年级数学下册1.1二次函数教案(新版)湘教版

九年级数学下册1.1二次函数教案(新版)湘教版

1.1 二次函数1.掌握二次函数概念,能识别一个函数是不是二次函数;(重点)2.能根据实际情况建立二次函数模型,并确定自变量取值范围.(难点)一、情境导入长方形窗户周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y与x之间函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数相关概念【类型一】二次函数识别以下函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式,不符合二次函数定义,故y=1 x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示函数关系式为整式;②所表示函数关系式有唯一自变量;③所含自变量关系式中自变量最高次数为2,且函数关系式中二次项系数不等于0.变式训练:见?学练优?本课时练习“课堂达标训练〞第1题【类型二】根据二次函数定义求待定字母值如果函数y=(k+2)xk2-2是y 关于x二次函数,那么k值为多少?解析:紧扣二次函数定义求解,注意易错点为无视k+2≠0.解:根据题意知⎩⎪⎨⎪⎧k2-2=2,k+2≠0,解得⎩⎪⎨⎪⎧k=±2,k≠-2,∴k=2.方法总结:紧扣定义中两个特征:①二次项系数不为零;②自变量最高次数为2.变式训练:见?学练优?本课时练习“课堂达标训练〞第3题【类型三】与二次函数系数有关计算一个二次函数,当x=0时,y=0;当x=2时,y=12;当x=-1时,y=18.求这个二次函数中各项系数和.解析:解:设二次函数表达式为y=ax2+bx+c(a≠0).把x=0,y=0;x=2,y=12;x=-1,y=18分别代入函数表达式,得⎩⎪⎨⎪⎧c=0,4a+2b+c=12,a-b+c=18,解得⎩⎪⎨⎪⎧a=18,b=0,c=0.所以这个二次函数表达式为y=18x2.所以a+b+c=18+0+0=18,即这个二次函数中各项系数和为18.方法总结:涉及有关二次函数表达式问题,所设表达式一般是二次函数表达式一般形式y=ax2+bx+c(a≠0).解决这类问题要根据x,y对应值,列出关于字母a,b,c方程(组),然后解方程(组),即可求得a,b,c值.探究点二:建立简单二次函数模型一个正方形边长是12cm,假设从中挖去一个长为2x cm,宽为(x+1)cm小长方形.剩余局部面积为y cm2.(1)写出y与x之间函数关系式,并指出y是x什么函数?(2)当x值为2或4时,相应剩余局部面积是多少?解析:几何图形面积一般需要画图分析,相关线段必须先用x代数式表示出来.如下图.解:(1)y=122-2x(x+1),又∵2x≤12,∴0<x≤6,即y=-2x2-2x+144(0<x≤6),∴y是x二次函数;(2)当x=2时,y=-2×22-2×2+144=132,当x=4时,y=-2×42-2×4+144=104,∴当x=2或4时,相应剩余局部面积分别为132cm2或104cm2.方法总结:二次函数是刻画现实世界变量之间关系一种常见数学模型.许多实际问题都可以通过分析题目中变量之间关系,建立二次函数模型来解决.变式训练:见?学练优?本课时练习“课后稳固提升〞第8题三、板书设计本节课是从生活实际中引出二次函数模型,从而得出二次函数定义及一般形式,会写简单变量之间二次函数关系式,并能根据实际问题确定自变量取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.。

九年级数学下册1_1二次函数教案新版湘教版

九年级数学下册1_1二次函数教案新版湘教版

1.1 二次函数教学目标明白得二次函数的有关概念,会列二次函数的表达式.重点:明白得二次函数的有关概念.难点:明白得二次函数的有关概念的应用.本节知识点通过具体问题引入二次函数的概念,在解决问题的进程中体会二次函数的意义.教学进程(1)正方形边长为a (cm ),它的面积s (cm 2)是多少?(2)矩形的长是4厘米,宽是3厘米,若是将其长与宽都增加x 厘米,那么面积增加y 平方厘米,试写出y 与x 的关系式. 请观看上面列出的两个式子,它们是不是函数?什么缘故?若是是函数,请你结合学习一次函数概念的体会,给它下个概念.[实践与探讨]例1 m 取哪些值时,函数)1()(22+++-=m mx x m m y 是以x 为自变量的二次函数? 分析 假设函数)1()(22+++-=m mx x m m y 是二次函数,须知足的条件是:02≠-m m .解 假设函数)1()(22+++-=m mx x m m y 是二次函数,那么02≠-m m .解得 0≠m ,且1≠m .因此,当0≠m ,且1≠m 时,函数)1()(22+++-=m mx x m m y 是二次函数.回忆与反思 形如c bx ax y ++=2的函数只有在0≠a 的条件下才是二次函数.探讨 假设函数)1()(22+++-=m mx x m m y 是以x 为自变量的一次函数,那么m 取哪些值? 例2.写出以下各函数关系,并判定它们是什么类型的函数.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系;(2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,假设不计利息,求本息和y (元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系.解 (1)由题意,得 )0(62>=a a S ,其中S 是a 的二次函数; (2)由题意,得 )0(42>=x x y π,其中y 是x 的二次函数; (3)由题意,得 10000%98.110000⋅+=x y (x ≥0且是正整数),其中y 是x 的一次函数;(4)由题意,得 )260(1321)26(212<<+-=-=x x x x x S ,其中S 是x 的二次函数. 例3.正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部份做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.解 (1))2150(4225415222<<-=-=x x x S ; (2)当x=3cm 时,189342252=⨯-=S (cm 2). 课堂练习1.以下函数中,哪些是二次函数?(1)02=-x y (2)2)1()2)(2(---+=x x x y (3)xx y 12+= (4)322-+=x x y 2.当k 为何值时,函数1)1(2+-=+k kx k y 为二次函数? 3.已知正方形的面积为)(2cm y ,周长为x (cm ).(1)请写出y 与x 的函数关系式;(2)判定y 是不是为x 的二次函数.课堂小结形如)0(2≠++=a c bx ax y 的函数叫做二次函数.[本课课外作业]A 组1. 已知函数72)3(--=mx m y 是二次函数,求m 的值. 2. 已知二次函数2ax y =,当x=3时,y= -5,当x= -5时,求y 的值.3. 已知一个圆柱的高为27,底面半径为x ,求圆柱的体积y 与x 的函数关系式.假设圆柱的底面半径x 为3,求现在的y .4. 用一根长为40 cm 的铁丝围成一个半径为r 的扇形,求扇形的面积y 与它的半径x 之间的函数关系式.那个函数是二次函数吗?请写出半径r 的取值范围.B 组5.关于任意实数m ,以下函数必然是二次函数的是( )A .22)1(x m y -=B .22)1(x m y +=C .22)1(x m y +=D .22)1(x m y -=6.以下函数关系中,能够看做二次函数c bx ax y ++=2(0≠a )模型的是 ( )A . 在必然的距离内汽车的行驶速度与行驶时刻的关系B . 我国人口年自然增加率为1%,如此我国人口总数随年份的转变关系C . 竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时刻的关系(不计空气阻力)D . 圆的周长与圆的半径之间的关系。

九年级数学下册 1.1 二次函数学案 (新版)湘教版

九年级数学下册 1.1 二次函数学案 (新版)湘教版

第1章二次函数1.1 二次函数1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.阅读教材第2至3页,理解二次函数的概念及意义.自学反馈学生独立完成后集体订正①一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a、b、c.②现在我们已学过的函数有一次函数、反比例函数、二次函数,它们的表达式分别是y=ax+b(a、b为常数,且a≠0)、y=kx(k为常数,且k≠0)、y=ax2+bx+c(a、b、c为常数,且a≠0).③下列函数中,不是二次函数的是( D )2 B.y=(x-1)2-1 C.y=12(x+1)(x-1) D.y=(x-2)2-x2④二次函数y=x2+4x中,二次项系数是1,一次项系数是4,常数项是0.⑤一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.解:S表=4πr2⑥n支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数m与球队数n之间的关系式.解:m=12n2-12n判断二次函数关系要紧扣定义.活动1 小组讨论例1若y=(b-1)x2+3是二次函数,则b≠1.二次项系数不为0.例2 一个正方形的边长是12 cm,若从中挖去一个长为2x cm,宽为(x+1)cm的小长方形,剩余部分的面积为y cm2.①写出y与x之间的关系表达式,并指出y是x的什么函数?②当小长方形中x的值分别为2和4时,相应的剩余部分的面积是什么?解:①y=122-2x(x+1),即y=-2x2-2x+144. ∴y是x的二次函数;②当x=2和4时,相应的y的值分别为132和104.几何图形的面积一般需画图分析,相关线段必须先用x的代数式表示出来.活动2 跟踪训练(独立完成后展示学习成果)1.如果函数y=(k+2)x22k 是y关于x的二次函数,则k的值为多少?解:k=2不要忽视k+2≠0.2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是( C )A.正比例函数B.一次函数C.二次函数D.反比例函数3.有一个人患流感,经过两轮传染后共有y人患了流感,每轮传染中,平均一个人传染了x人,则y与x之间的函数关系式为y=x2+2x+1.4.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(m 2)与x(m)的函数关系式为y=-12x 2+15x(不要求写出自变量x 的取值范围).5.已知,函数y=(m+1)x 232m m --+(m-1)x(m 是常数).①m 为何值时,它是二次函数?②m 为何值时,它是一次函数?注意②要分情况讨论.解:①m=4 ②m=-1或m=32m=32. 6.如图,在矩形ABCD 中,AB=2 cm ,BC=4 cm ,P 是BC 上的一动点, 动点Q 仅在PC 或其延长线上,且BP=PQ ,以PQ 为一边作正方形PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP=x cm ,正方形PQRS 与矩形ABCD 重叠部分面积为y cm 2,试分别写出0≤x ≤2和2≤x ≤4时,y 与x 之间的函数关系式.解:y=x 2(0≤x ≤2), y=-2x+8(2≤x ≤4).注意按自变量的取值范围写函数关系式.活动3 课堂小结学生试述:这节课你学到了些什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下册新湘教版数学教案—81 课时
(此文件仅含第一章教案11课时)
第一部分 新课部分
第一章 二次函数
1.1 二次函数 1 1.3 不共线三点确定二次函数的表达式13 1.2 二次函数的图象与性质(1) 3 1.4 二次函数与一元二次方程的联系15 1.2 二次函数的图象与性质(2) 5 1.5 二次函数的应用17 1.2 二次函数的图象与性质(3) 7 小结与复习(1) 19
小结与复习(2) 21 1.2 二次函数的图象与性质(4) 9
1.2 二次函数的图象与性质(5) 11
第二章 圆
2.1 圆的对称性23 2.5.3 切线长定理41 2.2.1 圆心角25 2.5.4 三角形的内切圆43 2.2.2 圆周角(1) 27 2.6 弧长和扇形面积(1) 45 2.2.2 圆周角(2) 29 2.6 弧长和扇形面积(2) 47 2.3 垂径定理31 2.7 正多边形与圆49 2.4 过不共线三点作圆33 小结与复习(1) 51 2.6.1 直线与圆的位置关系35 小结与复习(2) 53
小结与复习(3) 55 2.5.2 圆的切线(1) 37
2.5.2 圆的切线(2) 39
第三章 投影与视图
3.1 投影57 3.3 三视图63
小结与复习 65 3.2 直棱柱、圆锥的侧面展开图 59
3.3 三视图61
第四章 概率
4.1 随机事件与可能性 67 4.2.2 用列举法求概率(2) 75 4.1 随机事件与可能性 69 4.3 用频率估计概率77 4.2.1 概率的概念 71
小结与复习 79 4.2.2 用列举法求概率(1) 73
第二部分 中考复习
代 数
1.1 实数及其运算 1
2.4 一元二次方程21
1.1 实数及其运算 3
2.5 整式方程的应用23 1.2 代数式与整式 5 2.6 分式方程25 1.3 因式分解7 2.6 分式方程的应用27 1.4 分 式9
3.1 平面直角坐标系及函数的有关概念 29
1.5 二次根式11 3.2 一次函数31
2.1 一元一次方程、分式方程13
3.3 反比例函数33 2.2 二元一次方程组15 3.4 二次函数35 2.3 一元一次不等式(组) 17 3.5 函数的应用37
2.3 一元一次不等式(组)的应用19
几 何
4.1.1 线段、角、相交线39 4.9 圆的有关性质59 4.1.2 平行线的判定和性质41 4.10 直线与圆的位置关系61 4.2.1 三角形的基础知识43 4.11 弧长和扇形的面积计算63 4.2.2 全等三角形45 4.12 视图与投影65 4.3 等腰三角形47
5.1图形的对称、平移和旋转67 4.4 直角三角形49 5.2相似与位似图形69 4.5 尺规作图51 5.2相似与位似图形71 4.6 多边形及多边形的内角和53 5.3锐角三角函数与解直角三角形73 4.7 平行四边形55 5.4解直角三角形及其应用75 4.8 矩形、菱形、正方形57
统 计
6.1 数据的收集与整理77 6.3概率初步81 6.2 数据的分析79
第一章 二次函数 1
课 时 教 案课题
1.1 二次函数 第1课时 总序第个教案课型新授编写时间年 月 日执行时间 月 日 执教:
教学目标: 知识与技能:使学生了解二次函数的概念和二次函数的一般表
达式;学会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.
过程与方法:在实际情境中经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.
情感、态度与价值观:通过对本节内容的研究,培养学生学习数学的严谨方法.
教学重点:
建立二次函数数学模型和理解二次函数概念. 教学难点:
建立二次函数数学模型. 教学用具:
课件. 教学方法:
启发探索法、讲授法、讨论法相结合.
教学过程: 一.创设情境 引入课题
导入一 欣赏一组录像画面:篮球场上同学们传球投篮,田径场上同学们投掷铅球,同学们课余游戏抛硬币,石拱桥的桥拱……
导入二 观察:篮球投篮时,掷铅球时,抛硬币时……在空中运行的路线是一条什么样的路线?
导入三 我们已知道,可以建立数学模型一次函数y = kx +b (k ≠0)来刻画直线,反比例函数y =kx (k ≠0)来刻画双曲线,那么像前面所看到的曲线,我们又该建立一个什么样的数学模型来刻画它们呢?
要刻画它,我们今天还需要学习一种新的函数关系——二次函数.
二.合作交流 解读探究
[回顾复习]
1.什么叫做函数?
2.说一说一次函数和反比例函数的一般表达式,自变量的取值范围. 学生回答后,点评.
[讨论探究]
[课件展示]学校准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形植物园,如图所示.已知篱笆墙的总长度
为100m .设与围墙相邻的一面篱笆墙的长
度为x (m)那么矩形植物园的面积S (m 2)与x
之间有何关系?
(1)学生阅读审题,独立思考,自主探索.
设与围墙相邻的每一面墙的长都为x m ,则与围墙相对的一面墙的长为( 100-
批 注
课时教案
第一章 二次函数 3
第一章 二次函数 4
课时教案
第一章 二次函数 5
第一章 二次函数
6
课时教案
第一章 二次函数 7
课时教案
课时教案
课时教案
课时教案
课时教案
课 时 教 案
课题 小结与复习 第1课时 总序第 1 个教案 课型 复习 编写时间 年 月 日执行时间 月 日 执教:
教学目标:知识与技能:通过对本章知识的梳理,使学生深刻理解二次函
批 注数的概念、图象与性质.
过程与方法:能灵活运用二次函数的概念与性质解决有关数学
问题.
情感、态度与价值观:进一步了解本章内容中蕴含的数学思想
与方法在解决问题时的作用,提高学生分析问题、解决问题的
能力.
教学重点:二次函数的概念、图象与性质.
教学难点:二次函数图象与性质的运用.
教学用具:课件.
教学方法:自学、探究讨论与练习相结合.
教学过程
一.回顾复习引入课题
1.归纳:
(1) 二次函数的图象都是抛物线.
(2) 画二次函数y=ax2+bx+c(a≠0)图象的步骤:
①配方,写成y=a (x-h)2+k的形式;
②写出对称轴和顶点坐标,并在平面直角坐标系内画出对称轴,描出顶点.
③列表(自变量x从顶点的横坐标开始取值),描点和连线,画出图象在对
称轴右边的部分.
④利用对称性描出对称轴左边的对应点,连线.
2.抛物线y=ax2+bx+c(a≠0)的特征与系数a,b,c的关系:
(1) a决定抛物线开口方向:a>0,开口向上;a<0,开口向下.
(2) a,b决定对称轴位置:a,b同号,对称轴在y轴左侧;a,b异号,对
称轴在y轴右侧.
(3) c决定抛物线与y轴交点位置:c>0,交点在y轴正半轴上;c=0,交点
在原点;c<0,交点在y轴负半轴上.
(4) 抛物线与横轴交点个数由b2-4ac确定:b2-4ac>0,有两个不同的交点;
b2-4ac =0,有两个重合的交点;b2-4ac<0,没有交点.
二.合作交流解读探究
1.举例复习二次函数的概念及二次函数y=ax2(a≠0)的图象与性质.
例1.已知函数y = (m +2)x24
+是关于x的二次函数,求:
m m
(1) 满足条件的m值;
(2) m为何值时,函数有最小值?最小值是什么?这时当x为何值时,y随x
增大而增大?
(3) m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x
增大而减小?
解:由题意,得:
课 时 教 案。

相关文档
最新文档