碰撞中的弹簧问题演示教学
高中物理模型-水平方向上的碰撞+弹簧模型

模型组合讲解——水平方向上的碰撞+弹簧模型车晓红[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量了解,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
[模型讲解]一、光滑水平面上的碰撞问题例1.在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A 球向B球运动,发生正碰。
已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P,则碰前A球的速度等于()A. B. C. D.解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。
二、光滑水平面上有阻挡板参与的碰撞问题例 2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。
这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图1所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
图1(1)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。
解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度。
(2)设弹簧长度被锁定后,贮存在弹簧中的势能为E P,由能量守恒,有撞击P后,A 与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得当弹簧伸到最长时,其势能最大,设此势能为E P',由能量守恒,有解以上各式得。
弹力及弹簧问题解题方法ppt课件

校本课: 1、弹力和弹簧问题解题方法
光滑 挂钩
从P 移到Q,绳中张力 如何变?
ppt课件完整
滑轮所受力 的方向?
16
(2)貌似同根绳,实则两根
结点
ppt课件完整
有摩擦
17
例:如图,滑轮本身的重力可以忽略不计,滑轮轴 O安在一根轻木杆B上,一根轻绳AC绕过滑轮,A 端固定在墙上,且绳保持水平,C端下面挂一重物, BO与竖直方向夹角θ=450系统保持平衡,若保持滑 轮的位置不变,改变θ的大小,则滑轮受到木杆的 弹力大小变化情况是:
(2)根据物体运动情况,利用平衡条件或动力学规律判断
ppt课件完整
3
例1:标出各物体在A、B、C处所受的支持力的方向
ppt课件完整
4
例2:图中a、b、c为三个物块,M、N为两个轻质 弹簧,R为跨过定滑轮的轻绳,它们连接如图并处 于平衡状态
A.有可能N处于拉伸状态而M处于压缩状态 B.有可能N处于压缩状态而M处于拉伸状态 C.有可能N处于不伸不缩状态而M处于拉伸状态 D.有可能N处于拉伸状态而M处于不伸不缩状态
12
三、解题注意点 1、弹簧秤的读数
轻弹簧钩子上受的力即为弹簧秤的读数
5N 平衡状态
5N
读数? 5N
F=5N 读数? 5N
加速上升
ppt课件完整
13
例:如图所示,四个完全相同的弹簧都处于水平位置, 它们的右端受到大小皆为F的拉力作用,而左端的情 况各不相同:①中弹簧的左端固定在墙上,②中弹簧 的左端受大小也为F的拉力作用,③中弹簧的左端拴 一小物块,物块在光滑的桌面上滑动,④中弹簧的左 端拴一小物块,物块在有摩擦的桌面上滑动。若认为 弹簧的质量都为零,以L1、L2、L3 、L4依次表示四个 弹簧的伸长量,试比较L1 ,L2 ,L3 ,L4
高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型车晓红[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
[模型讲解]一、光滑水平面上的碰撞问题例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。
已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. mE P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得mE v P 20=,所以正确选项为C 。
二、光滑水平面上有阻挡板参与的碰撞问题例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。
这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。
图1(1)求弹簧长度刚被锁定后A 球的速度。
(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。
解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得10)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度0231v v =。
2020高三物理模型组合讲解——水平方向上的碰撞+弹簧模型

2020高三物理模型组合讲解——水平方向上的碰撞+弹簧模型车晓红[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,确实是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,因此分析解决这类咨询题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
[模型讲解]一、光滑水平面上的碰撞咨询题例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。
碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,那么碰前A 球的速度等于〔 〕A.mE PB.mE P2 C. mE P2D. mE P22解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,依照动量守恒定律得出mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m E v P 20=,因此正确选项为C 。
二、光滑水平面上有阻挡板参与的碰撞咨询题例2. 在原子核物理中,研究核子与核子关联的最有效途径是〝双电荷交换反应〞。
这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并赶忙结成一个整体D ,在它们连续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时刻,突然解除锁定〔锁定及解除锁定均无机械能缺失〕,A 、B 、C 三球的质量均为m 。
图1〔1〕求弹簧长度刚被锁定后A 球的速度。
〔2〕求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。
解析:〔1〕设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得10)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度0231v v =。
高中物理碰撞类问题—弹簧与圆弧轨道问题

相互作用的两个物体在很多情况下运动特征与碰撞问题类似,可以运用动量、能量守恒来分析,物块弹簧模型是一类典型的问题。
我们首先结合下面的例子,说明如何分析物块弹簧模型的运动情景。
【问题】如图所示,物块B 左端固定一轻弹簧,静止在光滑的水平面上,A 物体以速度0v 向B 运动,假设A 与弹簧接触之后立即与弹簧粘连在一起不再分开,那么此后A 、B 与弹簧相互作用的过程中,运动情景如何呢?【分析】A 、B 的运动涉及追及相遇问题,重点要把握住:两物体距离最近(弹簧最短)或最远(弹簧最长)时二者的速度相等。
⑴ 弹簧刚开始被压缩的过程中,B 受到弹簧的弹力向右做加速运动,A 受到弹力做减速运动,开始时A 的速度大于B 的速度,弹簧一直被压缩;⑵ 当A B 、的速度相等时,弹簧缩短到最短,此时弹簧的弹性势能最大;⑶ 此后由于A 继续减速,B 继续加速,B 的速度开始大于A 的速度,弹簧压缩量逐渐减小;⑷ 当弹簧恢复至原长时,弹性势能为零,A 的速度减至最小,B 的速度增至最大;⑸ 此后弹簧开始伸长,A 做加速运动,B 做减速运动;⑹ 当弹簧伸长至最长时,A B 、的速度再次相等,弹簧的弹性势能最大;⑺ 此后A 继续加速,B 继续减速,弹簧逐渐缩短至原长;⑻ 当弹簧再恢复至原长时,弹性势能为零,A 的速度增至最大,B 的速度减至最小。
此后将重复上述过程。
上面我们从受力和运动的角度,分析了弹簧的运动情景。
如果两物体是在光滑水平面上运动,系统的动量守恒;在这个过程中只有两物体的动能和弹簧弹性势能的相互转化;因此,我们可以从动量和能量的角度来分析问题。
设任意时刻A 、B 的速度分别为A v 、B v ,弹簧的弹性势能为p E 。
由动量守恒可得:0A A A B B m v m v m v =+;由能量守恒可得:2220p 111222A A AB B m v m v m v E =++;由此可以求解整个运动过程中各种速度及弹性势能的极值问题,具体结果请同学们自己分析。
力学综合习题课之二 弹簧问题[1]PPT教学课件
![力学综合习题课之二 弹簧问题[1]PPT教学课件](https://img.taocdn.com/s3/m/763902f131126edb6f1a10f1.png)
• 已知物体A、B、C的质量均为M,重力加速度为g,忽
略空气阻力。
• (1)求A与B碰撞后瞬间的速度大小。
• (2)A和B一起运动达到
A
• 最大速度时,物体C
• 对水平地面的压力为多大?
• (3)开始时,物体A从距B多大的
B
• 高度自由落下时,在以后的运动中
• 才能使物体C恰好离开地面?
C
2020/12/10
4
作业:
4.在光滑的桌面上放一质量M的玩具小车,
在小车的平台上有质量可忽略的弹簧,一端
固定在平台上,另一端用质量为m的小球将弹
簧压缩一定距离后用细线捆住.用手将小车固
定在桌面上,烧断细线,小球被弹出,落在
小车上的A点,OA=s.
如果小车不固定而烧断细线, O
小020/12/10
块质量也为m时,它们恰能回到O点.若物块 质量为2m,仍从A处自由落下,
• 则物块与钢板回到O点时,
• 还具有向上的速度.求物块
• 向上运动到达的最高点
• 与O点的距离.
2020/12/10
3
• 3、如图所示,物体B和物体C用劲度系数为k的轻弹 簧连接并竖直地静置于水平地面上。将一个物体A从 物后体与B物的体正B上碰方撞距,离碰B撞的后高A度与为B粘H0合处在由一静起止并释立放刻,向下下落 运动,在以后的运动中A、B不再分离。
多大?
• 2)木块A离开墙壁后, A
• 弹簧能够具有的弹性
F B
• 势能的最大值多大?
2020/12/10
2
• 2.(97全国)质量为m的钢板与直立轻弹簧的
上端连接,弹簧下端固定在地上.平衡时,
弹簧的压缩量为x0,如图所示.一物块从钢 板正上方距离为3x0的A处自由落下,打在钢
高中物理《碰撞》ppt课件1

m1v1 m v m v
' 1 1
' 2 2
1 1 1 2 '2 '2 m1v1 m1v1 m2v2 2 2 2
(m1 m2 ) v v1 m1 m2
' 1
2m1 v v1 m1 m2
' 2
讨 论 若 m2 >> m1 , 则v1’ = -v1 , v2’ = 0 若 m2 << m1 , 则v1’ = v1, 若 m1 = m2 , v2’ = 2v1
例 2
如图所示,一质量为m的子弹以水平速度 v0飞向 小球,小球的质量为M,悬挂小球的绳长为L,子弹击 中小球并留在其中,求(1)子弹打小球过程中所产生 的热量(2)小球向右摆起的最大高度。
v0
m
M
例 3
如图,弧形斜面质量为M,静止于光滑 水平,曲面下端极薄一质量为m的小球以 速度VO向左运动,小球最多能升高到离 水平面h处,求该系统产生的热量。
例 4
如图所示.质量为m的小车静止在光滑 的水平桌面上,小车的光滑弧面底部与桌面 相切,一个质量为m的小球以速度v0向小车 飞来,设小球不会越过小车,求小车能获得 的最大速度?此后小球做什么运动?
例 5
用轻弹簧相连的质量均为m=2㎏的A、B 两物体都以v=6m/s的速度在光滑的水平地面上 运动,弹簧处于原长,质量M = 4㎏的物体C 静止在前方,如图所示。B与C碰撞后二者粘 在一起运动,在以后的运动中,求: (1)当弹簧的弹性势能最大时物体A的速度。 (2)弹性势能的最大值是多大?
则v1’ = 0 , v2’ = v1
二、非弹性碰撞
1、概念: 如果碰撞过程中机械能不守恒,这样的 碰撞叫非弹性碰撞。
第十六章--专题强化练--弹簧类碰撞问题、临界问题PPT课件

A.h
B.12h
C.14h
-
D.18h
高中同步新课标·物理 33
创新方案系列丛书
解析:选 C 对 A 由机械能守恒 mgh=12mv2,得 v= 2gh。碰撞过程,由动量守恒 mv=2mv′,得 v′= 22gh。 设碰撞后 A、B 整体上升的最大高度为 h′,则由机械能 守恒得 2mgh′=12×2mv′2,解得 h′=h4,C 正确。
12mv21=ΔE+12·2mv22③
联立①②③式解得 ΔE=116mv- 20④
高中同步新课标·物理 4
创新方案系列丛书
(2)由②式可知,v2<v1,A 将继续压缩弹簧, 直至 A、B、C 三者速度相同,设此速度为 v3,此 时弹簧被压缩至最短,其弹性势能为 Ep,由动量 守恒和能量守恒定律得
mv0=3mv3⑤ 12mv20-ΔE=12·3mv23+Ep⑥
创新方案系列丛书
1.如图所示,光滑的水平地面上放着一个光滑的凹槽, 槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动, 把槽、小球和弹簧视为一个系统,则在运动过程中( )
A.系统的动量守恒,机械能不守恒
B.系统的动量守恒,机械能守恒
C.系统的动量不守恒,机械能守恒
D.系统的动量不守恒,机械能不守恒
-
高中同步新课标·物理 25
创新方案系列丛书
(1)滑块 A 与滑块 B 碰撞结束瞬间的速度; (2)被压缩弹簧的最大弹性势能。
-
高中同步新课标·物理 26
创新方案系列丛书
解析:(1)滑块 A 下滑过程中机械能守恒,设 A 到 达水平面时速度为 v1,由机械能守恒定律有
mAgh=12mAv21,解得 v1= 2gh 滑块 A、B 碰撞过程中动量守恒,设滑块 A 与滑块 B 碰撞结束瞬间的速度为 v2,由动量守恒定律有 mAv1=(mA+mB)v2,解得 v2=mmA+Avm1 B=13 2gh
动量守恒定律的应用弹簧问题ppt课件

[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv
①
设 C 离开弹簧时,A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0
②
设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过
程中机械能守恒,有
12(3m)v2+Ep=12(2m)v1 2+12mv0 2
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
压缩至最短时,下列的结论中正确的应是( BD)
A.P的速度恰好为零 B.P与Q具有相同速度 C.Q刚开始运动 D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。 7
动量守恒定律的应用 —— 弹簧模型
1
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转
化为弹性势能
2
弹簧模型的特点与方法
1.注意弹簧弹力特点及运动过程。
v
AB
C
9
6.如图所示,一轻质弹簧的一端固定在滑块B上,另 一端与滑块C接触但未连接,该整体静止放在离地面 高为H的光滑水平桌面上。现有一滑块A从光滑曲面 上离桌面h高处由静止开始滑下,与滑块B发生碰撞 (时间极短)并粘在一起压缩弹簧推动滑块C向前运 动,经一段时间,滑块C脱离弹簧,继续在水平桌面 上匀速运动一段时间后从桌面边缘飞出。已知
弹簧碰撞模型

模型分析1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。
2.弹簧连接两种形式:连接或不连接。
连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。
不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。
3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。
弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。
题型1.弹簧直接连接的两物体间的作用.【例1】质量分别为3m 和m 的两个物体, 用一根细线相连,中间夹着一个被压缩的 轻质弹簧,整个系统原来在光滑水平地面上以速度v 0向右匀速运动,如图所 示.后来细线断裂,质量为m 的物体离开弹簧时的速度变为2v 0.求:(1)质量为3m 的物体最终的速度;(2)弹簧的这个过程中做的总功.【答案】(1)032v (2) 2032mv【解析】(1)设3m 的物体离开弹簧时的速度为v 1,由动量守恒定律得:()100323v m v m v m m ⋅+⨯=+所以 0132v v =(2)由能量守恒定律得:()()202021321221321v m m v m v m E P +⋅-⋅+⨯⋅=所以弹性势能:2032mv E P =【点评】本题考查动量守恒定律和能量守恒定律的应用,解答的关键是正确确定初末状态及弹簧弹开过程的能量转化。
【例2】【2015届石家庄市高中毕业班第二次模拟考试试卷理科综合能力测试】如图所示,一辆质量M =3kg 的小车A 静止在水平面上,小车上有一质量m =lkg 的小物块B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为p E =6J ,小物块与小车右壁距离为l =0.4m ,解除锁定,小物块脱离弹簧后与小车右壁发生碰撞,碰撞过程无机械能损失,不计一切摩擦。
动量守恒定律的应用弹簧问题课件

3.动量问题:动量守恒。 4.能量问题:机械能守恒(弹性碰撞)。
动能和弹性势能之间转化.
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧
压缩,当撤去外力后,下列说法正确的是(BC)
答案
2 02 3
题型三、三个物体及综合问题
5.用轻弹簧相连的质量均为2kg的A、B两物 块都以v=6m/s的速度在光滑水平面上运动,弹 簧处于原长,质量为4kg的物块C在前方静止, 如图所示。B和C碰后二者粘在一起运动,在以 后的运动中,求:
(1)当弹簧的弹性势能最大时,物体A的速度是多大? (2)弹性势能最大值是多少?
动量守恒定律的应用弹簧问题
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转 化为弹性势能
弹簧模型的特点与方法
1.注意弹簧弹力特点及运动过程。 弹簧弹力不能瞬间变化。
理解:弹簧被压缩至最短时的临界条件。
4.质量分别为3m和m的两个物体, 用一根细线
相连,中间夹着一个被压缩的轻质弹簧,整个系
统原来在光滑水平地面上以速度v0向右匀速运 动,如图所示.后来细线断裂,质量为m的物体离
开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度
(2)弹簧的这个过程中做的总功.
v
专题三 弹簧、碰撞类问题

专题三 弹簧、碰撞类问题1.弹簧最短或最长时速度相同的分析应用 物体间的相互作用,以弹簧弹力的形式出现,是物体间相互作用的又一种非常重要的形式,在这种作用的过程中,最典型的问题是物体的动能与弹簧的势能相互转化,当弹簧的弹性势能最大时,弹簧一定是被拉伸到最长或被压缩到最短,此时作用于弹簧上的物体的速度相同。
[例1]如图所示,轻弹簧的两端连着质量分别为1m 和2m 的两物体,kg m 11=,kg m 22=,将1m 、2m 放在光滑的水平面上,弹簧自然伸长时,1m 静止在A 点,2m 靠墙,现用水平力F 推1m ,使弹簧压缩一段距离后静止,此过程中F 做功为4.5J ,当撤去F 后,求:(1)1m 越过A 点后,运动过程中弹簧伸长到最大时的弹性势能 (2)2m 的速度最大时,1m 的速度(3)1m 越过A 点后,运动过程中弹簧压缩到最短时的弹性势能2.碰撞问题碰撞问题是高考中出现频率较多的一类常规题型,碰撞是物体间相互作用的一种特殊形式,具有突发性强、持续时间短、相互作用力大等特征.在碰撞的过程中,外力作用通常远小于物体之间的相互作用,可以忽略,从而认为动量守恒.但在碰撞过程中由于物体间的相互作用发生后,动能有可能转化为其他形式的能,因此,碰撞中可能存在动能的损失.碰撞问题中典型的物理模型如下: 设光滑水平面上两个小球,质量为1m、2m ,碰前速度分别为1v 和2v ,碰后的速度分别为'1v 和'2v ,则动量变化满足:'22'112211v m v m v m v m +=+ (1) 或21P P ∆-=∆ 动能变化满足:22221122221121212121v m v m v m v m '+'≥+(2)(1)、(2)两式是解决碰撞问题的主要依据,但是许多实际问题的解决,还必须对动量变化和动能变化进行具体分析和判断,对问题的物理实际情景进行认真细致的分析,对(1)、(2)两式的数学关系进行必要的推理判断,才能找到正确和比较简捷的解决途径.【例2】(2004年天津理综卷)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动。
动量守恒定律的应用弹簧问题课件

PART 05
弹簧问题中的能量守恒
能量守恒定律的定 义
能量守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式 转化为传递过程中能量的总量保持不变。
弹性势能
物体由于发生弹性形变而具有的能,与物体的形变量大小有 关,形变量越大,弹性势能越大。
事、体育等领域,如炮弹发射、弹弓等。
THANKS
感谢观看
性。
弹射装置设计
总结词
弹射装置设计中,利用动量守恒定律和能量守恒定律,通过弹簧等弹性元件的作用,将 储存的能量瞬间释放,将物体快速弹出。
详细描述
在弹射装置设计中,通过设计合理的弹簧结构和参数,根据动量守恒定律和能量守恒定 律,将储存的能量瞬间释放,产生足够的推力将物体快速弹出。这种设计广泛应用于军
非完全弹性碰撞
总结词
非完全弹性碰撞中,弹簧的弹力作用使得部分动能转化为内能,系统动量仍然守恒。
详细描述
在非完全弹性碰撞中,弹簧的弹力作用使得部分动能转化为内能,系统动量仍然守恒。此时,两个物 体在碰撞后速度减缓,动能减小,部分能量转化为内能。这种情况下,需要通过动量守恒定律和能量 守恒定律来求解碰撞后的速度和运动状态。
弹簧问题中的能量守恒应用实例
弹簧振荡器
利用弹簧的振动来产生振荡的装 置,如钟摆、振动筛等。通过调 节弹簧的刚度和质量分布,可以
改变振荡器的频率和振幅。
减震器
利用弹簧的弹性来吸收和分散冲 击能量的装置,广泛应用于车辆、
建筑和各种机械设备中,以减少 振动和噪音。
弹簧碰撞实验
通过控制弹簧的长度和刚度,以 及物体的质量和速度等参数,可 以进行碰撞实验,研究能量守恒 定律在碰撞过程中的表现和应用。
确定相互作用
高中物理碰撞类问题—弹簧与圆弧轨道问题

相互作用的两个物体在很多情况下运动特征与碰撞问题类似,可以运用动量、能量守恒来分析,物块弹簧模型是一类典型的问题。
我们首先结合下面的例子,说明如何分析物块弹簧模型的运动情景。
【问题】如图所示,物块B 左端固定一轻弹簧,静止在光滑的水平面上,A 物体以速度0v 向B 运动,假设A 与弹簧接触之后立即与弹簧粘连在一起不再分开,那么此后A 、B 与弹簧相互作用的过程中,运动情景如何呢?【分析】A 、B 的运动涉及追及相遇问题,重点要把握住:两物体距离最近(弹簧最短)或最远(弹簧最长)时二者的速度相等。
⑴ 弹簧刚开始被压缩的过程中,B 受到弹簧的弹力向右做加速运动,A 受到弹力做减速运动,开始时A 的速度大于B 的速度,弹簧一直被压缩;⑵ 当A B 、的速度相等时,弹簧缩短到最短,此时弹簧的弹性势能最大;⑶ 此后由于A 继续减速,B 继续加速,B 的速度开始大于A 的速度,弹簧压缩量逐渐减小;⑷ 当弹簧恢复至原长时,弹性势能为零,A 的速度减至最小,B 的速度增至最大;⑸ 此后弹簧开始伸长,A 做加速运动,B 做减速运动;⑹ 当弹簧伸长至最长时,A B 、的速度再次相等,弹簧的弹性势能最大;⑺ 此后A 继续加速,B 继续减速,弹簧逐渐缩短至原长;⑻ 当弹簧再恢复至原长时,弹性势能为零,A 的速度增至最大,B 的速度减至最小。
此后将重复上述过程。
上面我们从受力和运动的角度,分析了弹簧的运动情景。
如果两物体是在光滑水平面上运动,系统的动量守恒;在这个过程中只有两物体的动能和弹簧弹性势能的相互转化;因此,我们可以从动量和能量的角度来分析问题。
设任意时刻A 、B 的速度分别为A v 、B v ,弹簧的弹性势能为p E 。
由动量守恒可得:0A A A B B m v m v m v =+;由能量守恒可得:2220p 111222A A AB B m v m v m v E =++;由此可以求解整个运动过程中各种速度及弹性势能的极值问题,具体结果请同学们自己分析。
1.3动量守恒定律在碰撞中的应用几种常见模型分析优秀课件

(1)光滑水平面上的A物体以速度V0去撞 击静止的B物体,A、B物体相距最近时,两 物体速度必相等(此时弹簧最短,其压缩量最 大)。
17
课堂练习
质量均为2kg的物体A、B,在B物体上 固定一轻弹簧,则A以速度6m/s碰上弹簧并 和速度为3m/s的B相碰,则碰撞中AB相距最 近时AB的速度为多少?弹簧获得的最大弹 性势能为多少?
18
(2)物体A以速度V0滑到静止在光滑 水平面上的小车B上,当A在B上滑行的 距离最远时,A、B相对静止, A、B两 物体的速度必相等。
A V0 B
19
课堂练习
质量为M的木板静止在光滑的水平面上, 一质量为m的木块(可视为质点)以初速度 V0向右滑上木板,木板与木块间的动摩擦 因数为μ ,求:木板的最大速度?
v0
分析:第一问即是在它们有共同速度时的,发生的相对位移d 必须得小于小车的长度 第二问:由动量守恒定律即可求得
7
模型3:人船模型
例:静止在水面上的小船长为L,质量为M,在 船的最右端站有一质量为m的人,不计水的阻力, 当人从最右端走到最左端的过程中,小船移动的 距离是多大?
S2
S1
8
m M
S2
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔEK=Q = f 滑d相对
6
类似题型
如图所示,把质量m=20kg的物体以水平速度v0=5m/s抛上 静止在水平地面的平板小车的左端。小车质量M=80kg,已知 物体与平板间的动摩擦因数μ=0.8,小车与地面间的摩擦可忽略 不计,g取10m/s2,求:(1)要物块不从小车上掉下,小车至 少多长?(2)物体相对小车静止时,物体和小车相对地面的加 速度各是多大?
动量守恒定律的应用弹簧问题ppt课件

AB
C
9
6.如图所示,一轻质弹簧的一端固定在滑块B上,另 一端与滑块C接触但未连接,该整体静止放在离地面 高为H的光滑水平桌面上。现有一滑块A从光滑曲面 上离桌面h高处由静止开始滑下,与滑块B发生碰撞 (时间极短)并粘在一起压缩弹簧推动滑块C向前运 动,经一段时间,滑块C脱离弹簧,继续在水平桌面 上匀速运动一段时间后从桌面边缘飞出。已知
11
[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv
①
设 C 离开弹簧时,A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0
②
设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过
程中机械能守恒,有
12(3m)v2+Ep=12(2m)v1 2+12mv0 2
注意:状态的把握 由于弹簧的弹力随形变量变化,所以弹簧 弹力联系的“两体模型”一般都是作加速度变 化的复杂运动,所以通常需要用“动量关系” 和“能量关系”分析求解。复杂的运动过程不 容易明确,特殊的状态必须把握:弹簧最长 (短)时两体的速度相同;弹簧自由时两体的 速度最大(小)。
6
题型二、两个物体的问题
4.质量分别为3m和m的两个物体, 用一根细线
相连,中间夹着一个被压缩的轻质弹簧,整个系
统原来在光滑水平地面上以速度v0向右匀速运 动,如图所示.后来细线断裂,质量为m的物体离
开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度
(2)弹簧的这个过程中做的总功.
答案
2 mv02 3
8
动量守恒定律的应用 —— 弹簧模型
1
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
最新碰撞中的弹簧问题复习过程

碰撞中的弹簧问题卢宗长1 •如图所示,与轻弹簧相连的物体A 停放在光滑的水平面上。
物体B 沿水平方向向右 运动,跟与A 相连的轻弹簧相碰。
在B 跟弹簧相碰后.对于儿B 和轻弹簧组成的系统,下列说法中正确的是(ABD )A. 弹簧压缩量最大时,A. B 的速度相同B. 弹簧压缩量最大时,A 、B 的动能之和最小C. 牌簧被压缩的过程中系统的总动量不断减小D. 物体A 的速度最大时,弹簧的弹性势能为零2 •如图所示,在足够大的光滑水平而上放有质量相等的物块A 和B,英中A 物块连接一个轻弹簧并处于静止状态,物块B 以速度vO 向着物块A 运动•当物块与弹簧作用时,两物块在同一条直线上运动•则在物块A 、B 与弹簧相互作用的过程中,两着竖直墙壁。
今用水平外力缓慢推A,使A 、B 间弹簧压缩,当压缩到弹簧的弹性势能为E 时撤去此水平外力,让A 和B在水平而上运动.求:(1) 当B 离开墙壁时,A 物块的速度大小:(2) 当弹簧达到最大长度时A 、B 的速度大小;(3) 当B 离开墙壁以后的运动过程中,弹簧弹性势能的最大值.解析(1)当B 离开墙壁时,A 的速度为vO,由机械能守恒有2mV ° _E(2)以后运动中•当弹簧弹性势能最大时,弹簧达到最大程度时,A 、B 速度相等,设(3)根据机械能守恒,最大弹性势能为 o 1 - 1 c • 1 uE p = — mvo" — — 2mv"= — E2 2 24. 如图所示,光滑水平而上的木板右端,有一根轻质弹簧沿水平方向与木板相连,木板 质M 为v,由动量守恒有2mv=mvo 解得【答案】(3)E 冷Ev物块A 和B 的v-t 图象正确的是(D ) 3・如图所示,光滑水平而上,轻弹簧两端分别拴住质量均为m 的小物块A 和B. B 物块靠 解得M=3.Okg e质量m=l.Okg的铁块以水平速度v^dOm/s,从木板的左端沿板而向右滑行, 压缩弹簧后又被弹回,最后恰好停在木板的左端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碰撞中的弹簧问题碰撞中的弹簧问题卢宗长1.如图所示,与轻弹簧相连的物体A停放在光滑的水平面上。
物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰。
在B跟弹簧相碰后,对于A、B 和轻弹簧组成的系统,下列说法中正确的是(ABD)A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减小D.物体A的速度最大时,弹簧的弹性势能为零2.如图所示,在足够大的光滑水平面上放有质量相等的物块A和B,其中A物块连接一个轻弹簧并处于静止状态,物块B以速度v0向着物块A运动.当物块与弹簧作用时,两物块在同一条直线上运动.则在物块A、B与弹簧相互作用的过程中,两物块A和B的v-t图象正确的是( D )3.如图所示,光滑水平面上,轻弹簧两端分别拴住质量均为m的小物块A和B,B物块靠着竖直墙壁。
今用水平外力缓慢推A,使A、B间弹簧压缩,当压缩到弹簧的弹性势能为E时撤去此水平外力,让A和B在水平面上运动.求:(1)当B离开墙壁时,A物块的速度大小;(2)当弹簧达到最大长度时A、B的速度大小;(3)当B离开墙壁以后的运动过程中,弹簧弹性势能的最大值.解析(1)当B离开墙壁时,A的速度为v0,由机械能守恒有21mv2=E 解得 v=2EmvF(2)以后运动中,当弹簧弹性势能最大时,弹簧达到最大程度时,A 、B 速度相等,设为v,由动量守恒有 2mv=mv 0 解得v=212E m(3)根据机械能守恒,最大弹性势能为E p =21mv 02-212mv 2=21E 【答案】(1)v 0=2E m (2)v=212E m(3)E p =21E 4.如图所示,光滑水平面上的木板右端,有一根轻质弹簧沿水平方向与木板相连,木板质量M=3.0kg 。
质量m=1.0kg 的铁块以水平速度v 0=4.0m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端。
在上述过程中弹簧具有的最大弹性势能为:( A )A .3.0JB .6.0JC .20JD .4.0J5.图中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。
M mv 0解:令A 、B 质量皆为m ,A 刚接触B 时速度为1v (碰前),由功能关系,有121202121mgl mv mv μ=- ① A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为.2v 有212mv mv = ②碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为3v ,在这过程中,弹簧势能始末两态都为零,利用功能关系,有)2()2()2(21)2(2122322l g m v m v m μ=- ③此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有 12321mgl mv μ= ④由以上各式,解得 )1610(210l l g v +=μ6.质量M=3.0kg 的小车放在光滑的水平面上,物块A 和B 的质量均为m=1.0kg ,且均放在小车的光滑水平底板上,物块A 和小车右侧壁用一根轻弹簧连接,不会分离,如图所示,物块A 和B 并排靠放在一起,现用力向右压B ,并保持小车静止,使弹簧处于压缩状态,在此过程中外力做功为W =135J 。
撤去外力,当A 和B 分开后,在A 达到小车底板的最左端位置之前,B 从小车左端抛出,求:(1)B 与A 分离时,小车的速度是多大?(2)从撤去外力到B 与A 分离时,A 对B 做了多少功?(3)假设弹簧伸长到最长时B 已离开小车,A 仍在小车上,求此时弹簧的弹性势能。
解析:(1)当弹簧第一次恢复原长时,B 与A 恰好分离,由:动量守恒定律:2mv 1=Mv 2 能量守恒定律:222121212Mv mv W +⨯= 解得:v 1=9m/s ,v 2=6m/s(2)根据动能定理,从撤去外力至B 与A 分离时,A 对B 做的功为:J mv W BA 5.402121== (3)B 与A 分离后其水平速度v 1=9m/s 保持不变,弹簧最长时,A 与小车速度相同,设为v 3,由:动量守恒定律:312)(v M m mv Mv +=- 能量守恒:p E v M m mv W +++=2321)(2121 解得:E p =84.4J7.如图所示,水平放置的轻质弹簧,左端固定,右端与小物块P 接触而不连接,当P 到A 点时,弹簧为原长,现用水平向左的推力将P 缓慢地从A 推到B 点,需做功6J ,此时在B 点撤去外力后,P 从表此开始沿着水平桌面滑到停放在水平光滑地面上的小车Q 上(小车与桌面等高),已知P 的质量为m=1.0kg ,Q 的质量为M=4.0kg ,AB 的距离为5cm ,AC 的距离为90cm ,P 与桌面和Q 面间的动摩擦因数均为μ=0.4。
试求:(1) 使P 不会从Q 的右端滑出,则小车至少多长?(2) 从推力作用于P 到P 与Q 一起运动的全过程中产生的热量。
答案:(1)0.4m ;(2)5.6J11.(1)22121)2(c mv l l mg W =+-μ s m v c /2=(另一解舍去) 共c m)v M mv +=( 2共2)(2121v M m mv mgL +-≥μ })(2121{122共v M m mv mg L +-≥μ=0.4m (2)产生的热量为 4.0J )2(Q 211=+=l l mg μ2共2c 2)(2121v M m mv Q +-==J mv m M M c 60.1212=+ Q=Q 1+Q 2=5.6J8.固定在水平面上的竖直轻弹簧,上端与质量为M的物块B相连,整个装置处于静止状态时,物块B位于P处,如图所示.另有一质量为m的物块C,从Q处自由下落,与B 相碰撞后,立即具有相同的速度,然后B、C一起运动,将弹簧进一步压缩后,物块B、C 被反弹.下列结论中正确的是( BD )A.B、C反弹过程中,在P处物块C与B相分离B.B、C反弹过程中,在P处物C与B不分离C.C可能回到Q处D.C不可能回到Q处9.如图所示,一轻弹簧与质量为m的物体组成弹簧振子,物体在一竖直线上的A、B两点间做简谐运动,点O为平衡位置,C为O、B之间的一点.已知振子的周期为T,某时刻物体恰好经过C向上运动,则对于从该时刻起的半个周期内,以下说法中正确的是(ABD)A.物体动能变化量一定为零B.弹簧弹性势能的减小量一定等于物体重力势能的增加量C.物体受到回复力冲量的大小为mgT/2D.物体受到弹簧弹力冲量的大小一定小于mgT/2解析:这是弹簧振子在竖直方向上做简谐运动,某时刻经过C点向上运动,过半个周期时间应该在C点大于O点对称位置,速度的大小相等,所以动能的变化量为零,A选项正确;由系统机械能守恒得,弹簧弹性势能的减少量一定等于物体重力势能的增加量,B选项正确;振子在竖直方向上做简谐运动时,是重力和弹簧的弹力的合力提供回复力的,由动量定理I 合=△p ,设向下为正方向,22T I mg I mv =+=合弹,又因为C 点为BO 之间的某一点,v ≠0,所以,C 选项错误,D 选项正确.10.(1997年·全国)质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m 时,它们恰能回到O 点.若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离. 【答案】02x解析:物块自由下落3x 0的过程中,由机械能守恒定律得 200132mg x mv =g ①物块与钢板碰撞,由动量守恒定律得 012mv mv = ②设刚碰完时弹性势能为p E ,根据机械能守恒定律 2101(2)22p E m v mgx += ③设质量为2m 的物块与钢板碰后一起向下运动的速度为v 2,则 0223mv mv = ④由机械能守恒定律得 222011(3)3(3)22p E m v mgx m v '+=+ ⑤ 以上两种情况下,弹簧的初始压缩量都为x 0,故有 p p E E '= ⑥物体从O 点再向上以初速v 做竖直上抛运动.到达的最高点与O 点的距离202v l g = ⑦ 由以上各式解得02x l = 11.如图所示,物体B 和物体C 用劲度系数为k 的轻弹簧连接并竖直地静置于水平地面上,此时弹簧的势能为E 。
这时一个物体A 从物体B 的正上方由静止释放,下落后与物体B 碰撞,碰撞后A 与B 立刻一起向下运动,但A 、B 之间并不粘连。
已知物体A 、B 、C 的质量均为M ,重力加速度为g ,忽略空气阻力。
求当物体A 从距B 多大的高度自由落下时,才能使物体C 恰好离开水平地面?解:设物体A 从距B 的高度H 处自由落下,A 与B 碰撞前的速度为v 1,由机械能守恒定律得 v 1=gH 2。
设A 、B 碰撞后共同速度为v 2,则由动量守恒定律得:Mv 1=2Mv 2,解得: v 2=2gH 。
当C 刚好离开地面时,由胡克定律得弹簧伸长量为x =Mg /k ,由于对称性,所以弹簧的弹性势能仍为E 。
当弹簧恢复原长时A 、B 分离,设此时A 、B 的速度为v 3,则对A 、B 一起运动的过程中,由机械能守恒得:E Mv Mgx Mv +=22232212221+, 从A 、B 分离后到物体C 刚好离开地面的过程中,物体B 和弹簧组成的系统机械能守恒,即Mgx E Mv +=2321。
联立以上方程解得:MgE k Mg H 28+=。