定义在某区间上的奇偶函数问题训练题(含答案)

合集下载

数字的奇偶判断练习题及答案

数字的奇偶判断练习题及答案

数字的奇偶判断练习题及答案
题目一:数字奇偶判断
请判断以下数字是奇数还是偶数,并在题后的括号内写出判断依据。

1. 135 (奇数,因为末位数字5为奇数)
2. 246 (偶数,因为末位数字6为偶数)
3. 509 (奇数,因为末位数字9为奇数)
4. 722 (偶数,因为末位数字2为偶数)
5. 1007 (奇数,因为末位数字7为奇数)
题目二:奇偶性质探究
请回答以下问题:
1. 一个整数的个位是4,这个整数是奇数还是偶数?为什么?
2. 一个数的各位数字之和是18,这个数是奇数还是偶数?为什么?
3. 这个世界上有没有只有一个数字的奇数和偶数?为什么?
答案一:
1. 135 (奇数,因为末位数字5为奇数)
2. 246 (偶数,因为末位数字6为偶数)
3. 509 (奇数,因为末位数字9为奇数)
4. 722 (偶数,因为末位数字2为偶数)
5. 1007 (奇数,因为末位数字7为奇数)
答案二:
1. 一个整数的个位是4,这个整数是偶数。

因为个位数字是4,而
偶数的末位数字可以是0、2、4、6、8中的任意一个。

2. 一个数的各位数字之和是18,这个数是偶数。

因为一个数的个位数字之和为18,则个位数字一定是偶数,而偶数的末位数字可以是0、
2、4、6、8中的任意一个。

3. 这个世界上没有只有一个数字的奇数和偶数。

因为奇数和偶数是
相对的概念,奇数至少有两位数字以上,才能确定其奇偶性质。

函数的奇偶性与周期性精选习题(含解析)

函数的奇偶性与周期性精选习题(含解析)

1 / 9函数的奇偶性与周期性精选习题一、选择题1.(奇偶性与反函数结合求值)已知函数()()2g x f x x =+是奇函数,当0x >时,函数()f x 的图象与函数2y log x =的图象关于y x =对称,则()()12g g -+-=( ). A .-7B .-9C .-11D .-132.(利用奇偶函数的对称性求值)已知函数2()cos 2121x f x x x π⎛⎫=-++ ⎪+⎝⎭,则()f x 的最大值与最小值的和为 A .0B .1C .2D .43.(利用函数的奇偶性判断图象)函数()21sin 1xx e f x ⎛⎫=-⎪+⎝⎭的图象大致形状为( ) A . B .C .D .4.(利用奇偶性单调性比较大小)设函数()f x 是定义在实数集上的奇函数,在区间[1,0)-上是增函数,且(2)()f x f x +=-,则有( )A .13()()(1)32f f f <<B .31(1)()()23f f f <<C .13(1)()()32f f f <<D .31()(1)()23f f f <<5.(利用奇偶性周期性求函数值)已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =( )A .3B .-3C .2D .-26.(利用奇偶性周期性判断方程根的个数)函数()f x 对于任意实数x ,都()()f x f x -=与2 / 9(1)(1)f x f x -=+成立,并且当01x ≤≤时,()2f x x =.则方程()02019xf x -=的根的个数是( )A .2020B .2019C .1010D .10097.(利用奇偶性周期性求字母范围)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 20(1)a f x x a -+=>在区间(]2,6-内恰有三个不同实根,则实数a 的取值范围是( ) A.B.)2C.2⎤⎦D.2⎤⎦二、填空题8.(利用奇偶性解不等式)已知()f x 是R 上的偶函数,且当0x ≥时,()23f x x x =-,则不等式()22f x -≤的解集为___.9.(奇偶性与导函数结合)已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',对定义域内的任意x ,都有()()22f x xf x '+<成立,则使得()()22424x f x f x -<-成立的x 的取值范围为_____.10(由函数图象判断周期性求函数值)如图,边长为1的正方形ABCD ,其中边DA 在x 轴上,点D 与坐标原点重合,若正方形沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴上时,再以B 为中心顺时针旋转,如此继续,当正方形ABCD 的某个顶点落在x 轴上时,则以该顶点为中心顺时针旋转.设顶点C (x ,y )滚动时形成的曲线为y =f (x ),则f (2019)=________.3 / 9函数的奇偶性与周期性精选习题解析一、选择题1.(奇偶性与反函数结合求值)已知函数()()2g x f x x =+是奇函数,当0x >时,函数()f x 的图象与函数2y log x =的图象关于y x =对称,则()()12g g -+-=( ). A .-7 B .-9C .-11D .-13【答案】C【解析】∵x >0时,f (x )的图象与函数y =log 2x 的图象关于y =x 对称; ∴x >0时,f (x )=2x ;∴x >0时,g (x )=2x +x 2,又g (x )是奇函数;∴g (﹣1)+g (﹣2)=﹣[g (1)+g (2)]=﹣(2+1+4+4)=﹣11. 故选C .2.(利用奇偶函数的对称性求值)已知函数2()cos 2121x f x x x π⎛⎫=-++ ⎪+⎝⎭,则()f x 的最大值与最小值的和为 A .0 B .1C .2D .4【答案】C【解析】对()f x 整理得,()22cos 21sin 21211x x f x x x x x π⎛⎫=-++=++ ⎪++⎝⎭ 而易知2sin 2,1xy x y x ==+都是奇函数, 则可设()()21sin 21g x f x x xx =-++=,可得()g x 为奇函数,即()g x 关于点()0,0对称所以可知()()1f x g x =+关于点()0,1对称,所以()f x 的最大值和最小值也关于点()0,1,因此它们的和为2. 故选C 项.3.(利用函数的奇偶性判断图象)函数()21sin 1xx e f x ⎛⎫=-⎪+⎝⎭的图象大致形状为( )4 / 9A .B .C .D .【答案】A【解析】()211sin sin 11x x xe xf x x e e -⎛⎫=-=⋅ ⎪++⎝⎭, ()()()()11sin sin sin 1111x x xx x xe e e x x xf x f x e e e----=⋅-=⋅---=++⋅=+, 所以()f x 为偶函数,排除CD ;()221s 202in 1e e f -=⋅<+,排除B ,故选:A4.(利用奇偶性单调性比较大小)设函数()f x 是定义在实数集上的奇函数,在区间[1,0)-上是增函数,且(2)()f x f x +=-,则有( )A .13()()(1)32f f f <<B .31(1)()()23f f f <<C .13(1)()()32f f f <<D .31()(1)()23f f f <<【答案】A【解析】Q ()f x 为奇函数,()()f x f x ∴-=-,又Q (2)()f x f x +=-11f f ,f (1)f (1)33⎛⎫⎛⎫∴=--=-- ⎪ ⎪⎝⎭⎝⎭,3112222f f f ⎛⎫⎛⎫⎛⎫=-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5 / 9又1111023--<-<-≤Q …,且函数在区间[1,0)-上是增函数, 11f (1)f f 023⎛⎫⎛⎫∴-<-<-< ⎪ ⎪⎝⎭⎝⎭,11f (1)f f 23⎛⎫⎛⎫∴-->-->-- ⎪ ⎪⎝⎭⎝⎭31(1)23f f f ⎛⎫⎛⎫∴>> ⎪ ⎪⎝⎭⎝⎭,故选A.5.(利用奇偶性周期性求函数值)已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =( )A .3B .-3C .2D .-2【答案】C【解析】由()()53f x f x +=-,得()()8f x f x +=,所以()f x 是周期为8的周期函数,当[)0,4x ∈时,()()2log 2f x x =+,所以()()()76696822f f f =⨯-=-,又()f x 是定义在R 上的偶函数所以()()222log 42f f -===.故选C 。

第03讲函数的奇偶性、对称性与周期性(含新定义解答题) (分层精练)(解析)-25年高考数学一轮复习

第03讲函数的奇偶性、对称性与周期性(含新定义解答题) (分层精练)(解析)-25年高考数学一轮复习

分层精练)数周期性转化求值即可.【详解】因为()()110f x f x -++=,所以()()110f f -+=,且()()21log 111f =+=,则()11f -=-,又可得()()20f x f x ++=,()()240f x f x +++=,故()()4f x f x +=,所以函数()f x 是周期4T =的周期函数,()()()47412111f f f =⨯-=-=-.故选:D .4.(2023·内蒙古赤峰·统考模拟预测)函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =()A .0B .1-C .2D .1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则()()157f f =,根据已知得出(7)(3)1f f =-=-,即可得出答案.【详解】 函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,()()()4f x f x f x ∴+=-=-,()()()()4484f x f x f x f x ∴++=+=-+=,则函数()y f x =是周期为8的周期函数,则()()()151587f f f =-=,令3x =-,则(43)(3)1f f +=-=-,(15)1f ∴=-,故选:B.5.(2023上·山东烟台·高一校考期末)函数e x y =-与e x y -=的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】C【分析】画出函数图像即可判断.【详解】根据如下图像即可判断出函数图像关于原点对称.故选:C10,10由上图知:增区间为[2,1),[0,1)--,减区间为零点为2,0,2x =-共3个;最大值为1,最小值为(2)由题设()7.5(80.5)(0.5)f f f =-=-=(3)令[]21,22[1,1]1n n x x n ∈⇒-∈--+且,且存在常数若()()20h x t h x t -⋅+=有8个不同的实数解,令则20n tn t -+=有两个不等的实数根2Δ400t t t ⎧=->⎪>⎪。

函数的奇偶性问题练习题(含答案)

函数的奇偶性问题练习题(含答案)

...函数的奇偶性问题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2). ∴(2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2)答案:D4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3解析:)(x ϕ、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2122)(xx x f ---=的奇偶性为____奇函数____(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为____11)(2-=xx f ___.解析:由f (x )是偶函数,g (x )是奇函数,...可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为___0 _____. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.(21<m ) 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.f (x )是定义在(-∞,-5]Y [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明. 解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, f (1)=2f (1),∴f (1)=0. 又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0, ∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数. 点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。

高常考题—函数的性质(含解析)

高常考题—函数的性质(含解析)

函数的性质一、题型选讲题型一 、 函数的奇偶性正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.填空题,可用特殊值法解答,但取特值时,要注意函数的定义域.例1、(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x --D .2x例2、(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15例3、(2020届浙江省台州市温岭中学3月模拟)若函数()2ln 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()1f x <的x 的取值范围为( ) A .11,1e e -⎛⎫- ⎪+⎝⎭B .10,1e e -⎛⎫⎪+⎝⎭C .1,11e e -⎛⎫⎪+⎝⎭D .11,(1,)1e e -⎛⎫-⋃+∞ ⎪+⎝⎭例4、【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =题型二、函数的单调性已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减.例5、(江苏省如皋市2019-2020学年高三上学期10月调研)已知函数22,1()1,1ax x x f x ax x ⎧+≤=⎨-+>⎩在R 上为单调増函数,则实数a 的取值范围为________.例6、函数()()212log 4f x x =-的单调递增区间是例7、(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.题型三、 函数的周期性1、若()f x 是一个周期函数,则()()f x T f x +=,那么()()()2f x T f x T f x +=+=,即2T 也是()f x 的一个周期,进而可得:()kT k Z ∈也是()f x 的一个周期2、函数周期性的判定:(1)()()f x a f x b +=+:可得()f x 为周期函数,其周期T b a =- (2)()()()f x a f x f x +=-⇒的周期2T a = (3)()()()1f x a f x f x +=⇒的周期2T a = (4)()()f x f x a k ++=(k 为常数)()f x ⇒的周期2T a = (5)()()f x f x a k ⋅+=(k 为常数)()f x ⇒的周期2T a =例8、(2019通州、海门、启东期末)已知函数f(x)的周期为4,且当x ∈(0,4]时,f(x)=⎩⎨⎧cos πx 2,0<x≤2,log 2⎝⎛⎭⎫x -32,2<x≤4.则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12的值为________.例9、(2017南京三模)已知函数f (x )是定义在R 上且周期为4的偶函数. 当x ∈[2,4]时,f (x )=|log 4(x -32)|,则f (12)的值为 ▲ .题型四 函数的对称性函数的对称性要注意一下三点:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。

函数的奇偶性和单调性综合训练

函数的奇偶性和单调性综合训练

偶函数
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=f(x)$,则 称$f(x)$为偶函数。
奇函数和偶函数的性质
奇函数的图像关于原点对称,即当$x$取任意值时,其对应的$y$ 值都是关于原点对称的。
偶函数的图像关于y轴对称,即当$x$取任意值时,其对应的$y$ 值都是关于y轴对称的。
利用奇偶性和单调性解题
利用奇偶性求函数值
对于奇函数,有$f(-x) = -f(x)$;对于偶函数, 有$f(-x) = f(x)$。
利用单调性比较函数值大小
在单调递增区间内,如果$x_1 < x_2$,则$f(x_1) < f(x_2)$;在单调递减区间内,如果$x_1 < x_2$,则 $f(x_1) > f(x_2)$。
奇偶性的判断方法
定义法
根据奇偶函数的定义来判断。
图像法
通过观察函数的图像来判断。
代数法
通过代入特殊值来判断。
单调性的定义
单调递增
如果对于函数$f(x)$的定义域内的任意两个数$x_1$和$x_2$($x_1<x_2$),都有$f(x_1)<f(x_2)$,则 称函数$f(x)$在定义域内单调递增。
函数的奇偶性和单调性综合训 练

CONTENCT

• 函数的奇偶性 • 函数的单调性 • 奇偶性与单调性的关系 • 综合训练题 • 总结与回顾
01
函数的奇偶性
奇函数和偶函数的定义
奇函数
如果对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=-f(x)$, 则称$f(x)$为奇函数。
100%
导数法
通过求函数的导数并判断导数的正 负来判断。如果导数大于0,则为 增函数;如果导数小于0,则为减 函数。

高一函数的奇偶性和周期性知识点+例题+练习 含答案

高一函数的奇偶性和周期性知识点+例题+练习 含答案

1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。

函数的奇偶性和单调性综合训练及答案

函数的奇偶性和单调性综合训练及答案

一、选择题1.下列判断正确的是( )A .函数22)(2--=x xx x f 是奇函数 B.函数()(1f x x =-C.函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数2.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞3.函数y =)A .(]2,∞- B .(]2,0C .[)+∞,2 D .[)+∞,04.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≤D .3a ≥5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4) 1y x =+和y =其中正确命题的个数是( )A .0B .1C .2D .36.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )二、填空题1.函数x x x f -=2)(的单调递减区间是____________________。

2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = .3.若函数2()1x af x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________.4.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-=__________。

高三数学函数的奇偶性试题答案及解析

高三数学函数的奇偶性试题答案及解析

高三数学函数的奇偶性试题答案及解析1.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,(x+1),则f(-2012)+f(2013)=________________.f(x)=log2【答案】1【解析】试题分析:∵函数f(x)是(-∞,+∞)上的偶函数,∴f(-x)=f(x),又∵对于x≥0都有f(x+2)=f(x),∴T=2∴f(-2012)+f(2013)=f(2012)+f(2013)=f(1006×2)+f(1006×2+1)=f(0)+f(1)=log21+log22=1.故答案为:1.【考点】函数的周期性2.已知,分别是定义在上的偶函数和奇函数,且,则.【答案】.【解析】∵,∴,又∵,分别是定义在上的偶函数和奇函数,∴,,∴,∴.【考点】函数的奇偶性.3.已知定义在上的函数是奇函数且满足,,数列满足,且,(其中为的前项和),则( ).A.B.C.D.【答案】C【解析】由定义在上的函数是奇函数且满足知,= = =,所以= = = =,所以的周期为3,由得,,当n≥2时,=,所以=,所以=-3,=-7,=-15,=-31,=-63,所以 ====3,故选C.【考点】函数的奇偶性、周期性,数列的递推公式,转化与化归思想4.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是()A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C【解析】设,则,因为是奇函数,是偶函数,故,即是奇函数,选C.【考点】函数的奇偶性.5.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.【考点】1、分段函数;2、函数的图象和性质;3、不等式的解集.6.若是偶函数,则____________.【答案】【解析】因为函数为偶函数,所以,故填.【考点】奇偶性对数运算7. [2013·重庆高考]已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log10))=5,则f(lg(lg2))=2()A.-5B.-1C.3D.4【答案】C【解析】∵f(x)=ax3+bsinx+4,①∴f(-x)=a(-x)3+bsin(-x)+4,即f(-x)=-ax3-bsinx+4,②①+②得f(x)+f(-x)=8,③又∵lg(log10)=lg()=lg(lg2)-1=-lg(lg2),2∴f(lg(log10))=f(-lg(lg2))=5,2又由③式知f(-lg(lg2))+f(lg(lg2))=8,∴5+f(lg(lg2))=8,∴f(lg(lg2))=3.故选C.8.已知函数y=f(x)是定义在R上且以3为周期的奇函数,当x∈时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数为()A.3B.5C.7D.9【答案】C【解析】当x∈时,-x∈,f(x)=-f(-x)=-ln(x2+x+1);则f(x)在区间上有3个零点(在区间上有2个零点).根据函数周期性,可得f(x)在上也有3个零点,在上有2个零点.故函数f(x)在区间[0,6]上一共有7个零点.9.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数【答案】A【解析】由题意知f(x)与|g(x)|均为偶函数.A项,偶+偶=偶;B项,偶-偶=偶,错;C项与D项分别为偶+奇=偶,偶-奇=奇,均不恒成立.10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)=()A.﹣3B.﹣1C.1D.3【答案】A【解析】因为f(x)为定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=﹣1,所以当x≥0时,f(x)=2x+2x﹣1,又因为f(x)为定义在R上的奇函数,所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3,故选A.11.已知定义在R上的奇函数和偶函数满足 (,且),若,则()A.2B.C.D.【答案】B【解析】由条件,,即,由此解得,,所以选B.12.已知是奇函数,且,若,则= .【答案】【解析】因为为奇函数,所以.∵,∴,∴.13.设是上的奇函数,且,下面关于的判定:其中正确命题的序号为_______.①;②是以4为周期的函数;③的图象关于对称;④的图象关于对称.【答案】①②③【解析】∵,∴,即的周期为4,②正确.∴(∵为奇函数),即①正确.又∵,∴的图象关于对称,∴③正确,又∵,当时,显然的图象不关于对称,∴④错误.14.已知函数是定义在上的偶函数,且对任意,都有,当时,,设函数在区间上的反函数为,则的值为()A.B.C.D.【答案】D【解析】由得,所以函数周期为,所以时,,所以=,又函数为偶函数,所以时,则=.令==19,解得=,从而=,故选D.【考点】1、反函数;2、函数奇偶性的性质;3、函数的周期性.15.设偶函数满足,则( )A.B.C.D.【答案】B【解析】的解集为,因为是偶函数,关于轴对称,所以的解集为或,那么的解集为或,故解集为或,故选B.【考点】1.函数的奇偶性;2.解不等式.16.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.【答案】(-5,0)∪(5,+∞)【解析】作出f(x)=x2-4x(x>0)的图象,如图所示.由于f(x)是定义在R上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x表示函数y=f(x)的图象在y=x的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞)17.若函数f(x)=(a+)cosx是奇函数,则常数a的值等于()A.-1B.1C.-D.【答案】D【解析】设g(x)=a+,t(x)=cosx,∵t(x)=cosx为偶函数,而f(x)=(a+)cosx为奇函数,∴g(x)=a+为奇函数,又∵g(-x)=a+=a+,∴a+=-(a+)对定义域内的一切实数都成立,解得:a=.18.设a为实数,函数f(x)=x3+ax2+(a-2)x的导数是f′(x),且f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为()A.y=-2x B.y=3xC.y=-3x D.y=4x【答案】A【解析】由已知得f′(x)=3x2+2ax+a-2为偶函数,∴a=0,∴f(x)=x3-2x,f′(x)=3x2-2.又f′(0)=-2,f(0)=0,∴y=f(x)在原点处的切线方程为y=-2x.19.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】{x|-7<x<3}【解析】当x≥0时,f(x)=x2-4x<5的解集为[0,5),又f(x)为偶函数,所以f(x)<5的解集为(-5,5).由于f(x)向左平移两个单位即得f(x+2),故f(x+2)<5的解集为{x|-7<x<3}.20.已知是定义域为R的奇函数,当x≤0时,,则不等式的解集是()A.(5,5)B.(1,1)C.(5,+)D.(l,+)【答案】C【解析】因为是定义在R上的奇函数,所以对于任意实数x,都有且.又当时,则当时,,有,所以:,则,解不等式,即或或得,选C.【考点】函数的奇偶性,分段函数,一元二次不等式的解法.21.设函数()(Ⅰ)若函数是定义在R上的偶函数,求a的值;(Ⅱ)若不等式对任意,恒成立,求实数m的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)函数是定义在R上的偶函数,则恒成立,代入解析式得:,.即对任意都成立,由此得,.(Ⅱ)不等式对任意,恒成立,则小于等于的最大值,而.所以对任意恒成立,令,这是关于的一次函数,故只需取两个端点的值时不等式成立即可,即,解之即可得实数m的取值范围.试题解析:(Ⅰ)由函数是定义在R上的偶函数,则恒成立,即,所以,所以恒成立,则,故. 4分(Ⅱ).所以对任意恒成立,令,由解得,故实数m的取值范围是. 12分【考点】1、函数的奇偶性;2、不等式恒成立问题.22.函数f(x)是偶函数,则下列各点中必在y=f(x)图象上的是( )A.B.C.D.【答案】A【解析】由于函数上必过点.又因为函数是偶函数所以函数经过点 .又因为.所以函数一定经过和.故选A.本小题关键是考查函数的的奇偶性问题.【考点】1.函数的奇偶性.2.函数的对称性问题.23.已知函数是上的奇函数,且的图象关于直线对称,当时,,则 .【答案】-1【解析】∵的图象关于直线对称,∴,又是上的奇函数,∴,∴,即4为的周期,∴.由时,,得,由,得,∴,故答案为.【考点】函数的奇偶性、周期性24.已知函数.(1)当时,判断的奇偶性,并说明理由;(2)当时,若,求的值;(3)若,且对任何不等式恒成立,求实数的取值范围.【答案】(1)既不是奇函数,也不是偶函数;(2)所以或;(3)当时,的取值范围是,当时,的取值范围是;当时,的取值范围是.【解析】(1)时,为确定的函数,要证明它具有奇偶性,必须按照定义证明,若要说明它没有奇偶性,可举一特例,说明某一对值与不相等(不是偶函数)也不相反(不是奇函数).(2)当时,为,这是含有绝对值符号的方程,要解这个方程一般是分类讨论绝对值符号里的式子的正负,以根据绝对值定义去掉绝对值符号,变成通常的方程来解.(3)不等式恒成立时要求参数的取值范围,一般要把问题进行转化,例如分离参数法,或者转化为函数的最值问题.即为,可以先把绝对值式子解出来,这时注意首先把分出来,然后讨论时,不等式化为,于是有,即,这个不等式恒成立,说明,这时我们的问题就转化为求函数的最大值,求函数的最小值.试题解析:(1)当时,既不是奇函数也不是偶函数(2分)所以既不是奇函数,也不是偶函数(4分)(2)当时,,由得(1分)即(3分)解得(5分)所以或(6分)(3)当时,取任意实数,不等式恒成立,故只需考虑,此时原不等式变为(1分)即故又函数在上单调递增,所以;(2分)对于函数①当时,在上单调递减,,又,所以,此时的取值范围是(3分)②当,在上,,当时,,此时要使存在,必须有,此时的取值范围是(4分)综上,当时,的取值范围是当时,的取值范围是;当时,的取值范围是(6分)【考点】(1)函数的奇偶性;(2)含绝对值的方程;(2)含参数的不等式恒成立问题.25.如图,直角坐标平面内的正六边形ABCDEF,中心在原点,边长为a,AB平行于x轴,直线(k为常数)与正六边形交于M、N两点,记的面积为S,则关于函数的奇偶性的判断正确的是()A.一定是奇函数B.—定是偶函数C.既不是奇函数,也不是偶函数D.奇偶性与k有关【答案】B【解析】:∵当直线与边重合时,,当直线与重合时,,∴,∵正六边形即是中心对称图形又是轴对称图形,∴函数为偶函数.【考点】1.函数的奇偶性;2.数形结合思想.26.设函数是偶函数,则实数的值为___________.【答案】-1.【解析】因是偶函数,则,所以.【考点】函数的奇偶性.27.设是周期为2的奇函数,当时,=,则=.【答案】【解析】由是周期为2的奇函数可知,.【考点】函数的周期性与奇偶性.28.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.29.已知m为常数,函数为奇函数.(1)求m的值;(2)若,试判断的单调性(不需证明);(3)若,存在,使,求实数k的最大值.【答案】(1);(2)在R上单调递增;(3).【解析】(1)由奇函数的定义得:,将解析式代入化简便可得m的值;(2),结合指数函数与反比例函数的单调性,便可判定的单调性;(3)对不等式:,不宜代入解析式来化简,而应将进行如下变形:,然后利用单调性去掉,从而转化为:.进而变为:.由题设知:.这样只需求出的最大值即可.将配方得:.所以在时,取得最大值,最大值为10.∴,从而.试题解析:(1)由,得,∴,即,∴. 4分(2),在R上单调递增. 7分(3)由,得, 9分即.而在时,最大值为10.∴,从而 12分【考点】1、函数的奇偶性和单调性;2、二次函数的最值;3、不等关系.30.已知函数是上的偶函数,若对于,都有,且当时,,则=____________.【答案】1【解析】由题意可知函数的周期,于是,又函数是上的偶函数,所以,则.【考点】周期函数、奇偶性.31.若函数满足,且时,,则函数的图象与函数的图象的交点的个数为()A.3B.4C.6D.8【答案】C【解析】由题意知,函数是个周期为2的周期函数,且是个偶函数,在一个周期上,图象是两条斜率分别为1和-1的线段,且,同理可得到在其他周期上的图象.函数也是个偶函数,先看在[0,+∞)上的交点个数,则它们总的交点个数是在[0,+∞)上的交点个数的2倍,在(0,+∞)上,,图象过(1,0),和(4,1),是单调增函数,与交与3个不同点,∴函数的图象与函数的图象的交点的个数为6个,故选.【考点】函数的奇偶性、周期性,对数函数的图象和性质.32.若函数f(x) (x∈R)是奇函数,函数g(x) (x∈R)是偶函数,则 ( )A.函数f(x)g(x)是偶函数B.函数f(x)g(x)是奇函数C.函数f(x)+g(x)是偶函数D.函数f(x)+g(x)是奇函数【答案】B【解析】令,由于函数为奇函数,,由于函数为偶函数,则,,故函数为奇函数,故选;对于函数,取,,则,此时函数为非奇非偶函数,故、选项均错误.【考点】函数的奇偶性33.已知是定义域为实数集的偶函数,,,若,则.如果,,那么的取值范围为( )A.B.C.D.【答案】B【解析】∵,,,则,∴定义在实数集上的偶函数在上是减函数.∵, ∴, 即.∴或解得或.∴.故选B.【考点】函数的奇偶性、单调性.34.函数()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.35.已知函数是上的偶函数,若对于,都有,且当时,,则的值为A.B.C.1D.2【答案】C【解析】根据题意,由于函数是上的偶函数,若对于,都有,可知函数的周期为2,且当时,,那么则有,故可知答案为C。

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题

高一数学函数的奇偶性试题1.若函数是偶函数,则的递减区间是【答案】【解析】偶函数的图像关于轴对称,故,则,则的递减区间是。

【考点】(1)偶函数图像的性质;(2)二次函数单调区间的求法。

2.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断3.若函数的图像关于原点对称,则。

【答案】【解析】试题分析:由题意知恒成立,即即恒成立,所用【考点】奇函数的应用.4.已知函数为奇函数,且当时,,则()A.B.C.D.【答案】D【解析】∵为奇函数,∴.【考点】函数的性质.5.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.6.已知偶函数满足,且当时,,则.【答案】2【解析】由知此函数周期 4,因为为偶函数,所以【考点】函数奇偶性周期性7.已知函数是定义在上的奇函数,当时,,则当时, .【答案】【解析】解:由题意得:当时,时,设时,则,又是定义在上的奇函数,时,【考点】本题考查了奇偶性的应用.8.函数为定义在R上的奇函数,当上的解析式为=.【答案】【解析】设,则,所以;因为函数是奇函数,所以所以,当时,【考点】函数奇偶性的性质.9.函数f(x)=x5+x3的图象关于()对称().A.y轴B.直线y=x C.坐标原点D.直线y=-x【答案】C【解析】∵,∴函数是奇函数,它的图象关于原点对称.图象关于y轴对称的函数是偶函数。

函数单调性及奇偶性练习(含答案)

函数单调性及奇偶性练习(含答案)

1、已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 2、已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)3、函数1111)(22+++-++=x x x x x f 是( )A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数4、若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5, 则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-35、已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,且12||||x x <, 则 ( )A .12()()f x f x ->-B .12()()f x f x -<-C .12()()f x f x ->-D . 12()()f x f x -<-6、定义在(-1,1)上的函数f(x)是奇函数,并且在(-1,1)上f(x)是减函数,求满足条件f(1-a)+f(1-a2)<0的a取值范围. ( )A.(0,1) B.(-2,1) C.[0,1] D.[-2,1]7、已知函数f(x)是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,f(x) 是减函数,如果不等式f(1-m)<f(m)成立,求实数m的取值范围.( ) A.1[1,)2- B.[1,2] C.[-1,0] D.(11,2-) 8、已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是 ( ) A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞9、已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根 之和为________10、已知偶函数y =f(x)在区间[0,4]上是单调增函数,则f(-3)与f(π)的大小关系是__________11、若定义在R 上的函数f(x)满足:对任意x 1、x 2∈R 有f(x 1+x 2)=f(x 1)+f(x 2)+1,则下列 说法一定正确的序号是__________.①f(x)为奇函数 ;②f(x)为偶函数 ;③f(x)+1为奇函数 ;④f(x)+1为偶函数12、若(1)()()x x a f x x++=是奇函数,则a =___13、已知f(x)是奇函数,定义域为{x|x ∈R 且x ≠0},又f(x)在(0,+∞)上是增函数,且f(-1)=0,则满足f(x)>0的x 取值范围是________.14、已知)(x f y =是偶函数,当0>x 时,2)1()(-=x x f ;若当⎥⎦⎤⎢⎣⎡--∈21,2x 时,m x f n ≤≤)(恒成立,则n m -的最小值为15、 设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.16、设函数f(x)=21xb ax ++是定义在(-1,1)上的奇函数,且f(21)=52,(1)确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f ( t -1)+ f (t) < 0。

高中数学函数的定义域测试题(含答案)

高中数学函数的定义域测试题(含答案)

高中数学函数的定义域测试题(含答案)高二数学函数的定义域与值域、单调性与奇偶性苏教版【本讲教育信息】一. 教学内容:函数的定义域与值域、单调性与奇偶性二. 教学目标:理解函数的性质,能够运用函数的性质解决问题。

三. 教学重点:函数性质的运用.四. 教学难点:函数性质的理解。

[学习过程]一、知识归纳:1. 求函数的解析式(1)求函数解析式的常用方法:①换元法(注意新元的取值范围)②待定系数法(已知函数类型如:一次、二次函数、反比例函数等)③整体代换(配凑法)④构造方程组(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等)(2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。

(3)理解轨迹思想在求对称曲线中的应用。

2. 求函数的定义域求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.3. 求函数值域(最值)的一般方法:(1)利用基本初等函数的值域;(2)配方法(二次函数或可转化为二次函数的函数);(3)不等式法(利用基本不等式,尤其注意形如型的函数)(4)函数的单调性:特别关注的图象及性质(5)部分分式法、判别式法(分式函数)(6)换元法(无理函数)(7)导数法(高次函数)(8)反函数法(9)数形结合法4. 求函数的单调性(1)定义法:(2)导数法:(3)利用复合函数的单调性:(4)关于函数单调性还有以下一些常见结论:①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______;②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性;③互为反函数的两个函数在各自定义域上有______的单调性;(5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等(6)应用:比较大小,证明不等式,解不等式。

高中数学奇偶性训练题(带答案)

高中数学奇偶性训练题(带答案)

高中数学奇偶性训练题(带答案)高中数学奇偶性训练题(带答案)1.下列命题中,真命题是()A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在(-3,0)上为减函数D.函数y=ax2+c(ac0)是偶函数,且在(0,2)上为增函数解析:选C.选项A中,y=1x在定义域内不具有单调性;B 中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac0)在(0,2)上为减函数,故选C.2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为() A.10 B.-10C.-15 D.15解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.2f(-6)+f(-3)=-2f(6)-f(3)=-28+1=-15.3.f(x)=x3+1x的图象关于()A.原点对称 B.y轴对称C.y=x对称 D.y=-x对称解析:选A.x0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.解析:∵f(x)是[3-a,5]上的奇函数,区间[3-a,5]关于原点对称,3-a=-5,a=8.答案:81.函数f(x)=x的奇偶性为()A.奇函数 B.偶函数C.既是奇函数又是偶函数 D.非奇非偶函数解析:选D.定义域为{x|x0},不关于原点对称.2.下列函数为偶函数的是()A.f(x)=|x|+x B.f(x)=x2+1xC.f(x)=x2+x D.f(x)=|x|x2解析:选D.只有D符合偶函数定义.3.设f(x)是R上的任意函数,则下列叙述正确的是() A.f(x)f(-x)是奇函数B.f(x)|f(-x)|是奇函数C.f(x)-f(-x)是偶函数D.f(x)+f(-x)是偶函数解析:选D.设F(x)=f(x)f(-x)则F(-x)=F(x)为偶函数.设G(x)=f(x)|f(-x)|,则G(-x)=f(-x)|f(x)|.G(x)与G(-x)关系不定.设M(x)=f(x)-f(-x),M(-x)=f(-x)-f(x)=-M(x)为奇函数.设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).N(x)为偶函数.4.已知函数f(x)=ax2+bx+c(a0)是偶函数,那么g(x)=ax3+bx2+cx()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-xf(-x)=-xf(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.5.奇函数y=f(x)(xR)的图象必过点()A.(a,f(-a)) B.(-a,f(a))C.(-a,-f(a)) D.(a,f(1a))解析:选C.∵f(x)是奇函数,f(-a)=-f(a),即自变量取-a时,函数值为-f(a),故图象必过点(-a,-f(a)).6.f(x)为偶函数,且当x0时,f(x)2,则当x0时()A.f(x) B.f(x)2C.f(x)-2 D.f(x)R解析:选B.可画f(x)的大致图象易知当x0时,有f(x)2.故选B.7.若函数f(x)=(x+1)(x-a)为偶函数,则a=________. 解析:f(x)=x2+(1-a)x-a为偶函数,1-a=0,a=1.答案:18.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(xR)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.答案:③④9.①f(x)=x2(x2+2);②f(x)=x|x|;③f(x)=3x+x;④f(x)=1-x2x.以上函数中的奇函数是________.解析:(1)∵xR,-xR,又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),f(x)为偶函数.(2)∵xR,-xR,又∵f(-x)=-x|-x|=-x|x|=-f(x),f(x)为奇函数.(3)∵定义域为[0,+),不关于原点对称,f(x)为非奇非偶函数.(4)f(x)的定义域为[-1,0)(0,1]即有-11且x0,则-11且-x0,又∵f(-x)=1--x2-x=-1-x2x=-f(x).f(x)为奇函数.答案:②④10.判断下列函数的奇偶性:(1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+xx<0-x2+x x>0.解:(1)由1+x1-x0,得定义域为[-1,1),关于原点不对称,f(x)为非奇非偶函数.(2)当x<0时,-x>0,则f(-x)=-(-x)2-x=-(-x2+x)=-f(x),当x>0时,-x<0,则f(-x)=(-x)2-x=-(-x2+x)=-f(x),综上所述,对任意的x(-,0)(0,+),都有f(-x)=-f(x),f(x)为奇函数.11.判断函数f(x)=1-x2|x+2|-2的奇偶性.解:由1-x20得-11.由|x+2|-20得x0且x-4.定义域为[-1,0)(0,1],关于原点对称.∵x[-1,0)(0,1]时,x+2>0,f(x)=1-x2|x+2|-2=1-x2x,f(-x)=1--x2-x=-1-x2x=-f(x),f(x)=1-x2|x+2|-2是奇函数.12.若函数f(x)的定义域是R,且对任意x,yR,都有f(x +y)=f(x)+f(y)成立.试判断f(x)的奇偶性.解:在f(x+y)=f(x)+f(y)中,令x=y=0,得f(0+0)=f(0)+f(0),f(0)=0.再令y=-x,则f(x-x)=f(x)+f(-x),即f(x)+f(-x)=0,f(-x)=-f(x),故f(x)为奇函数.。

函数的单调性及奇偶性测试题(含答案)

函数的单调性及奇偶性测试题(含答案)

函数的单调性及奇偶性一、单选题(共10道,每道10分)1.已知函数是上的增函数,若,则下列不一定正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数单调性的定义2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数单调性的定义3.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( ) A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数单调性的定义4.函数的单调递减区间是( )A. B.C. D.无减区间答案:A解题思路:试题难度:三颗星知识点:含绝对值函数的单调性5.函数的单调递减区间是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递增区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:含绝对值函数的单调性7.若是奇函数,则实数a的值为( )A.1B.-1C.0D.±1答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的性质8.若是定义在上的偶函数,则a的值为( )A.±1B.1C.-1D.-3答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( )A.["-1,2"]B.C.(0,1)D.答案:B解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合10.已知是定义在上的奇函数,且在上单调递增,若,则不等式的解集为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:奇偶函数图象的对称性。

函数的性质基础题型训练(含答案)

函数的性质基础题型训练(含答案)

函数的性质题型一:(函数的单调性)1、已知函数()f x 在R 上是单调递增函数,且2()()f m f m >-,则实数m 的取值范围为 .2、定义在(1,1)-上的函数()f x 是单调递减函数,且(1)(21)f a f a -<-,则实数a 的取 值范围为 .3、已知函数22()(41)2f x x a a x =+-++在区间(],1-∞上是单调递减函数,则实数a 的取值范围为 .4、已知函数()(0)a f x x a x =+>在区间3(,)4+∞上单调递增函数,则实数a 的取值范围 为 .5、函数x x x f -=ln )(的单调增区间是 .6、函数2()(1)xf x x x e =++()x R ∈的单调减区间为 .7、已知函数1,()|1|,x a f x x x x a⎧<⎪=⎨⎪+⎩≥在区间(,)a -∞上单调递减,在(,)a +∞上单调递增,则实数a 的取值范围是 .8、已知函数,1()3,1ax f x x x a x ⎧⎪=⎨⎪-+<⎩≥在R 上是单调函数,则实数a 的取值范围为 .9、已知函数321()33f x x x ax a =+-+在区间[1,2]上单调递增,则实数a 的取值范围是 . 10、已知函数21()2x f x x ax e =--是定义在R 上的单调递减函数,则实数a 的取值范围 是 .11、已知函数()()2x xe af x a R e =-∈在区间[]1,2上单调递增,则实数a 的取值范围是.题型二:(函数的奇偶性)12、已知函数2()3f x ax bx a b =+++是定义域为[1,2]a a -的偶函数,则a b +的值是 .13、已知函数()f x 是定义在R 上的奇函数,且当0x >时,2()2xf x x =-,则(0)(1)f f +-= .14、若函数(),0()(2),0x x b x f x ax x x -⎧=⎨+<⎩≥(,R a b ∈)为奇函数,则()f a b +的值为 .15、已知函数()1xxa e f x ae-=+(e 为自然对数的底数)在定义域上为奇函数,则实数a 的值 为 .16、已知函数()f x 的定义域为R ,且满足(2)()f x f x +=,2(cos 1)2sin f θθ-=()R θ∈,则(2017)f = .17、已知函数2221,0(),0ax x x f x x bx c x ⎧--=⎨++<⎩≥是偶函数,直线y t =与函数()y f x =的图象自左向右依次交于四个不同点,,,A B C D .若AB BC =,则实数t 的值为 .18、已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数m x x x g +-=2)(2.如果1[2,2]x ∀∈-,2[2,2]x ∃∈-,使得21()()g x f x =,则实数m 的取值范围为 .题型三:(函数的奇偶性、单调性和周期性的综合)19、已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()8xf x =,则19()3f -= .20、已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=-,当02x <<时,()2f x x =+,则(7)f = .21、已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()3f x x x =--,则不等式(1)4f x x ->-+的解集是 .22、已知函数()f x 是定义在R 上的奇函数,当0x <时,()221f x x x =-+,不等式()()232f x f x ->的解集用区间表示为 .23、已知函数()f x 为奇函数,且在区间(0,)+∞上单调递增,(2)0f =,则不等式()()0f x f x x--<的解集为 .24、已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数,且函数()f x 在区间[1,2]a --上单调递 增,则实数a 的取值范围为 .25、已知函数21,0()0,021,0x x f x x x x +>⎧⎪==⎨⎪-<⎩,则不等式2(2)()0f x f x -+<的解集是 .26、已知知函数)(11)(R x x x x f ∈++=,则不等式)43()2(2-<-x f x x f 的解集是 .27、已知函数)(x f 是定义在R 上的奇函数,当0>x 时,)12(log )(21+=x x f ,则满足不等式0)2())2((log 3>++f x f 的x 的取值范围是 .28、已知函数3()2f x x x =+,若1(1)(log 3)0af f +>(0a >且1a ≠),则实数a 的取值范围为 .29、已知函数)(x f 是定义在R 上的奇函数,且当0x <时,不等式()()0f x xf x '+<恒成立,若0.30.333113(3),(log 3)(log 3),(log )(log )99a fb fc f ππ===,则,,a b c 的大小关系是 .30、已知函数()()R f x x ∈满足(1)1f =,且函数()f x 在R 上的导函数1()2f x '<,则不 等式lg 1(lg )2x f x +<的解集为 .31、已知定义在R 上的可导函数()f x 导函数为()f x ',对于R x ∀∈,()()f x f x '<,且(1)f x +为偶函数,(2)1f =,则不等式()x f x e <的解集为 .32.连续抛掷两颗骰子得到的点数分别是,a b ,则函数()2f x ax bx =-在1x =处取得最值的概率是 .33.已知函数()3sin 4f x ax b x =++(),a b ∈R ,()()2lg log 105f =,则()()lg lg2f = . 34.已知函数()lg f x x =,若存在互不相等的实数,a b ,使()()f a f b =,则ab = .35.已知函数()()2,11,1xx f x f x x ⎧⎪=⎨->⎪⎩,则()2log 32016f += .36.若函数()log 1a f x x x =-+()01a a >≠且的最小值为2,则a = .37.若函数()3231f x x x =-+在区间(),1a a +上是减函数,则实数a 的取值范围是 . 38.已知函数()3231f x ax x x =+-+在R 上是减函数,则a 的取值范围是 . 39.已知函数()2ln 2a f x x x x x =--在定义域内为单调函数,则实数a 的取值范围是 . 40.)函数()()12,1,1x a x a x f x a x ⎧-+<=⎨⎩()01a a >≠且,在(),-∞+∞上不是单调函数......,则实数a 的取值范围是 .41.已知函数()f x =2x ,当0x ∆>时,恒有()()f x x f x +∆>,则实数a 的取值范围是 .42.已知()22cos f x x x =+,x ∈R .若()()313log log 21f a f a f ⎛⎫+ ⎪⎝⎭,则实数a 的取值范围是 . 43.设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 . 44.设函数()221ln f x x x a x =-++存在极大值和极小值,则实数a 的取值范围是 .45.已知函数()()121,022,2x x f x f x x -⎧-<⎪=⎨->⎪⎩,则关于x 的方程()2016x f x =的实数根的个数为 .46.在平面直角坐标系xOy 中,已知点P 是函数()ln f x x =()1x 的图象上的动点,该图象在P 处的切线l 交x 轴于点M ,过点P 作l 的垂线交x 轴于点N ,设线段MN 的中点的横坐标为t ,则t 的最大值是 .47.已知函数()21,01,0x x f x x x ⎧-=⎨-->⎩,若函数()()y f f x k =-有3个不同的零点,则实数k 的取值范围是 . 48.设函数()ln mf x x x=+,m ∈R ,若对任意210x x >>,()()2121f x f x x x -<-恒成立,则实数m 的取值范是 .49.设0a >,若函数()2,0ln ,0x x x f x ax x x ⎧+=⎨->⎩有且仅有两个零点,则a 的值为 .50.已知函数()32log ,031108,333x x f x x x x ⎧<<⎪=⎨-+⎪⎩,若存在实数,,,a b c d 使得()()()()f a f b f c f d ===,其中a b c d <<<,则2abc d 的取值范围是 .51.已知函数()212f x x m =+的图像与函数()lng x x =的图像有四个交点,则实数m 的取值范围是 .1.()()∞+⋃∞,,01-- 2. ⎪⎭⎫ ⎝⎛320, 3.[]31, 4.⎥⎦⎤⎝⎛1690, 5.()10, 6.()1-2-, 7.[]01-, 8.⎪⎭⎫⎢⎣⎡∞+,21 9.(]3-,∞10.[)∞+,1- 11⎥⎦⎤⎢⎣⎡2,2-22e e 12.31 13.1- 14.1- 15.1± 16.2 17.47- 18.[]2-5-, 19.2- 20.3- 21.(]∞+,4 22.()31-, 23.()()2002-,,⋃ 24.(]31, 25.()12-,26.()21, 27⎪⎭⎫ ⎝⎛917-2-, 28.()()∞+⋃,,310 29a b c >>30.()∞+,10 31.()∞+,0 32.12133.3 34.1 352336.e 37.[]10,38.(]3--,∞ 39.⎪⎭⎫⎢⎣⎡+∞,1e 40()∞+⋃⎪⎭⎫⎝⎛,,1210 41.[]44-, 42.⎥⎦⎤⎢⎣⎡331,43.()∞+,1- 44.⎪⎭⎫⎝⎛210, 45.201646.e e 212+ 47.[)1-2-, 48.⎪⎭⎫⎢⎣⎡∞+,41 49.e 1 50.()9663, 51.⎪⎭⎫ ⎝⎛∞21--,。

高一数学函数的基本性质知识点及练习题(含答案)

高一数学函数的基本性质知识点及练习题(含答案)

函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) (2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义在某区间上的奇偶函数问题训练题
1.已知函数f(x)是定义在区间[3a﹣5,2a]上的奇函数,则实数a的值为()
A.1 B.C.0 D.不确定
2.已知函数为定义在区间[﹣2a,3a﹣1]上的奇函数,则a+b=.
3.已知函数f(x)=,若f(x)是定义在区间[a﹣6,2a]上的奇函数,则f()=.
4.已知函数f(x)是定义在区间(﹣1,1)上的奇函数,且单调递减.若f(a2﹣a)<0,则实数a的取值范围为.
5.已知函数f(x)是定义在区间[﹣a,a](a>0)上的奇函数,若g(x)=f(x)+2019,则g(x)的最大值与最小值之和为()
A.0 B.1 C.2019 D.4038
6.已知f(x)函数是定义在(﹣3,0)∪(0,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,则不等式f(﹣x)⋅x>0的解集是()
A.(﹣1,0)∪(1,3)B.(﹣3,﹣1)∪(1,3)
C.(﹣1,0)∪(0,1)D.(﹣3,﹣1)∪(0,1)
7.已知函数f(x)是定义在区间(﹣1,1)上的奇函数,且单调递减.若f(a2﹣a)<0,试求实数a的取值范围.
8.已知函数f(x)=x2+bx为定义在区间[﹣2a,3a﹣1]上的偶函数,则a+b=.
9.已知函数f(x)=ax2+bx+3是定义在[a﹣3,2a]上的偶函数,则a+b的值是()
A.﹣1 B.1 C.﹣3 D.0
10.已知函数f(x)是定义在区间[﹣a﹣1,2a]上的偶函数,且在区间[0,2a]上单调递增,则不等式f(x﹣1)<f(a)的解集为()
A.[﹣1,3] B.(0,2) C.(0,1)∪(2,3] D.[﹣1,0)∪(1,2)
11.函数f(x)=ax2+bx+2a﹣b是定义在[a﹣1,2a]上的偶函数,则a+b=()
A.﹣B.C.0 D.1
12.已知函数f(x)是定义在区间[1﹣3m,2m]上的偶函数,且当x∈(0,+∞)时,f(x)单调递
),则a,b,c的大小关系是()
增,若a=f(m),b=f(2﹣0.4),c=f(log
4
A.a>c>b B.a>b>c C.b>c>a D.c>a>b
定义在某区间上的奇偶函数问题训练题参考答案
1.分析:根据奇偶性函数的定义域特征,得到区间端点满足的条件,得到本题结论.
解:∵函数f(x)为奇函数,∴函数f(x)的定义域关于(0,0)对称.∵函数f(x)定义在区间[3a﹣5,2a],∴3a﹣5=﹣2a,∴a=1.故选:A.
2.分析:根据奇函数定义域的特点解出a,然后奇函数的定义建立方程求解b,即可得到a+b的值.解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a﹣1=0,
∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣
b+2x,∴b=1.即a+b=2.
3.分析:由奇函数的定义域关于原点对称,可得a﹣6+2a=0,求出a的值,代入f()可得结论.解:∵f(x)在区间[a﹣6,2a]上是奇函数,∴a﹣6+2a=0,即a=2.∴f(x)==.则f()=f(1)=.
4.分析:根据f(x)是奇函数,化为f(a2﹣a)<0=f(0),再由f(x)是定义在(﹣1,1)上的单调递减函数,建立关于a的不等式组,解之即可得到实数a的取值范围.
解:不等式f(a2﹣a)<0,∵函数f(x)是奇函数,即f(a2﹣a)<f(0),又∵f(x)是定义在(﹣1,1)上的单调递减函数,∴0<a2﹣a<1,解之得1<a<或1﹣<a<0;即实数a的取值范围是(1,)∪(1﹣,0).
5.分析:根据题意,由奇函数的性质可得f(x)的图象关于原点对称,即可得g(x)的图象关于点(0,2019)对称,据此分析可得答案.
解:根据题意,函数f(x)是定义在区间[﹣a,a](a>0)上的奇函数,则f(x)的图象关于原点对称,若g(x)=f(x)+2019,则g(x)的图象关于点(0,2019)对称,即g(x)+g(﹣x)=2019×2=4038,则g(x)的最大值与最小值之和为4038,故选:D.
6.分析:结合已知图象及奇函数的对称性即可求解.
解:因为f(x)函数是定义在(﹣3,0)∪(0,3)上的奇函数,则不等式f(﹣x)可转化为﹣xf(x)>0,即xf(x)<0,所以或,结合图象可知,0<x<1或﹣1<x
<0,故选:C.
7.分析:根据f(x)是奇函数,化为f(a2﹣a)<0=f(0),再由f(x)是定义在(﹣1,1)上的单调递减函数,建立关于a的不等式组,解之即可得到实数a的取值范围.
解:不等式f(a2﹣a)<0,∵函数f(x)是奇函数,即f(a2﹣a)<f(0),又∵f(x)是定义在(﹣1,1)上的单调递减函数,∴0<a2﹣a<1,解之得1<a<或1﹣<a<0;即实数a的取值范围是(1,)∪(1﹣,0).
8.分析:由偶函数的定义域关于原点对称可求a,然后利用偶函数的性质可知对称轴x=0可求b 解:由偶函数的定义域关于原点对称可知,﹣2a+3a﹣1=0,∴a=1,函数的定义域为[﹣2,2],∵f(x)=x2﹣2ax+1在[﹣2,2]上是偶函数,∴对称轴x=﹣0.5b=0⇒b﹣0,∴a+b=1.
9.分析:由偶函数的定义域关于原点对称,f(x)=f(﹣x)进而求解;
解:∵函数f(x)=ax2+bx+3是定义在[a﹣3,2a]上的偶函数,根据偶函数的定义域关于原点对称可知,a﹣3+2a=0,解得a=1;f(x)=ax2+bx+3=f(﹣x)=a(﹣x)2﹣bx+3,得b=0,所以a+b=1,故选:B.
10.分析:利用偶函数的定义域关于原点对称,即可求得a值,再利用函数的奇偶性与单调性将不等式合理转化,即可求得结论.
解:因为函数f(x)是定义在区间[﹣a﹣1,2a]上的偶函数,所以﹣a﹣1+2a=0,解得a=1,则函数f(x)的定义域为[﹣2,2],且在区间[0,2]上单调递增,则不等式f(x﹣1)<f(a)等价
于f(|x﹣1|)<f(1),所以,解得0<x<2,即不等式的解集为(0,2).故选:
B.
11.分析:根据f(x)为定义在[a﹣1,2a]上的偶函数,得到关于a的方程,然后求出a,再根据偶函数的定义得到b的值.
解:∵f(x)=ax2+bx+2a﹣b是定义在[a﹣1,2a]上的偶函数,∴a﹣1=﹣2a,∴a=,又f(﹣x)=f(x),∴b=0,∴a+b=.故选:B.
12. 12.分析:函数f(x)是定义在区间[1﹣3m,2m]上的偶函数,可得1﹣3m+2m=0,解得m=1.由
a=f(m)=f(1),b=f(2﹣0.4),c=f(log
4)=f(﹣log
4
5)=f(log
4
5),又0<2﹣0.4<1
<log
4
5<2,且当x∈(0,+∞)时,f(x)单调递增,即可得出大小关系.
解:函数f(x)是定义在区间[1﹣3m,2m]上的偶函数,∴1﹣3m+2m=0,解得m=1.由a=f(m)
=f(1),b=f(2﹣0.4),c=f(log
4)=f(﹣log
4
5)=f(log
4
5),又0<2﹣0.4<1<log
4
5<2,
且当x∈(0,+∞)时,f(x)单调递增,则a,b,c的大小关系是c>a>b.故选D.。

相关文档
最新文档