韶山市第三中学2019-2020学年上学期高二数学12月月考试题含解析
2019-2020年高二上学期12月月考数学试题含解析.doc
2019-2020年高二上学期12月月考数学试题含解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“1,-=∈∃x e R x x ”的否定是 .2.抛物线x y 82=的焦点坐标为 .3.已知正四棱锥的底面边长是6,这个正四棱锥的侧面积是 .4.已知函数()sin f x x x =-,则()f x '= . 【答案】1cos x -. 【解析】试题分析:两函数的差求导数.分别求导再相减.故填1cos x -.正弦函数的导数是余弦函数. 考点:1.函数的差的求导方法.2.正弦函数的导数.5.一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为,x y.则x y≠的概率为.6.若双曲线221yxm-=的离心率为2,则m的值为.7.在不等式组所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能成为一个三角形的三个顶点的概率为.【答案】9 10.【解析】试题分析:如图总共有5个点,所以,每三个点一组共有10种情况.其中不能构成三角形的只有一种共线的情况.所以能够成三角形的占910.本题考查的是线性规划问题.结合概率的思想.所以了解格点的个数是关键.考点:1.线性规划问题.2.概率问题.3.格点问题.8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V9.已知椭圆22221(0)x y a b a b +=>>的离心率e =A,B 是椭圆的左、右顶点,P 是椭圆上不同于A,B的一点,直线PA,PB 倾斜角分别为,αβ,则cos()=cos +αβαβ-()10.若“2230x x -->”是 “x a <”的必要不充分条件,则a 的最大值为 .11.已知函数)0()232()(23>+--++=a d x b a c bx ax x f 的图像如图所示,且0)1(='f .则c d +的值是 .12. 设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线, 则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题...的序号 (写出所有真命题的序号).考点:1.面面平行.2.直线与平面平行.3.面面垂直.4.直线与平面垂直.13.已知可导函数)(x f )(R x ∈的导函数)(x f '满足)(x f '>)(x f ,则不等式()(1)x ef x f e >的解集是 .14.已知椭圆E:2214xy+=,椭圆E的内接平行四边形的一组对边分别经过它的两个焦点(如图),则这个平行四边形面积的最大值是.【答案】4.【解析】试题分析:当直线AB与x轴垂直的时候ABCD为矩形面积为当直线AB不垂直x轴时假设直线:(:(AB CDl y k x l y k x==.A(11,x y),B(22,x y).所以直线AB与直线CD的距离.又有22(44y k xx y⎧=⎪⎨+=⎪⎩.消去y可得:2222(41)1240x k x k+-+-=.2121224(31)41kx x x xk-+==+.所以224(1)41kABk+==+.所以平行四边形的面积S=2k t=.所以S ==因为810t -≥时.S 的最大值为4.综上S 的最大值为4.故填4.本题关键考查弦长公式点到直线的距离.考点:1.分类的思想.2.直线与椭圆的关系.3.弦长公式.4.点到直线的距离.二、解答题:(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)求实数m 的取值组成的集合M ,使当M m ∈时,“q p 或”为真,“q p 且”为假.其中:p 方程012=+-mx x 有两个不相等的负根;:q 方程01)2(442=+-+x m x 无实数根.:真q ,044)]2(4[2<⨯--=∆m 即.31<<m …………………10 分①假:真q p ;2-<m②假:真p q .31<<m …………………13分 综上所述:}.312|{<<-<=m m m M 或 …………………14分 考点:1.含连接词的复合命题.2.二次方程的根的分布. 3.集合的概念.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90︒,且AB =2AD =2DC =2PD =4,E 为PA 的中点.(1)证明:DE ∥平面PBC ; (2)证明:DE ⊥平面PAB .17.(本小题满分15分)如图,过点3(0,)a 的两直线与抛物线2y ax =-相切于A 、B 两点, AD 、BC 垂直于直线8y =-,垂足分别为D 、C .(1)若1a =,求矩形ABCD 面积;(2)若(0,2)a ∈,求矩形ABCD 面积的最大值.(2)设切点为00(,)x y ,则200y ax =-,因为2y ax '=-,所以切线方程为0002()y y ax x x -=--, 即20002()y ax ax x x +=--,18.(本小题满分15分)如图,在四棱柱1111ABCD A BC D -中,已知平面11AAC C ABCD ⊥平面,且1AB BC CA AD CD ====. (1)求证:1BD AA ⊥;(2)在棱BC 上取一点E ,使得AE ∥平面11D DCC ,求BEEC的值.【答案】(1)证明参考解析;(2)1BEEC= 【解析】试题分析:(1)由于AB=CB,AD=CD,BD=BD.可得三角形ABD 全等于三角形CBD.所以这两个三角形关于直线BD 对称.所以可得BD AC ⊥.再由面面垂直即可得直线BD 垂直于平面11ACC A .从而可得1BD AA ⊥.19.(本小题满分16分) 已知椭圆()222210x y a b a b+=>>的左右两焦点分别为12,F F ,P 是椭圆上一点,且在x 轴上方,212,PF F F ⊥ 2111,,32PF PF λλ⎡⎤=∈⎢⎥⎣⎦. (1)求椭圆的离心率e 的取值范围;(2)当e 取最大值时,过12,,F F P 的圆Q 的截y 轴的线段长为6,求椭圆的方程;(3)在(2)的条件下,过椭圆右准线l 上任一点A 引圆Q 的两条切线,切点分别为,M N .试探究直线MN 是否过定点?若过定点,请求出该定点;否则,请说明理由.(1)22222211111c b e a a λλλλ-==-=-=++,∴e =在11,32⎡⎤⎢⎥⎣⎦上单调递减.∴12λ=时,2e 最小13,13λ=时,2e 最大12,∴21132e ≤≤e ≤≤.(2) 当2e =时,2ca =,∴2cb a ==,∴222b a =.∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴1PF=6.又221322622b a PF a a a a a =-=-==,∴4,a c b ===.∴椭圆方程是221168x y += -------10分20.(本小题满分16分)已知函数2ln )(x x a x f += (a 为实常数) .(1)当4-=a 时,求函数)(x f 在[]1,e 上的最大值及相应的x 值;(2)当[]e x ,1∈时,讨论方程()0=x f 根的个数.(3)若0>a ,且对任意的[]12,1,x x e ∈,都有()()212111x x x f x f -≤-, 求实数a 的取值范围.【答案】(1)4)()(2max -==e e f x f .e x =;(2)e a e 22-<≤-时,方程()0=x f 有2个相异的根. 2e a -< 或e a 2-=时,方程()0=x f 有1个根. e a 2->时,方程()0=x f 有0个根.(3)221e ea -≤∴.(2)易知1≠x ,故[]e x ,1∈,方程()0=x f 根的个数等价于(]e x ,1∈时,方程x x a ln 2=-根的个数. 设()x g =xx ln 2, xx x x x x x x x g 222ln )1ln 2(ln 1ln 2)(-=-=' 当()e x ,1∈时,0)(<'x g ,函数)(x g 递减,当]e e x ,(∈时,0)(>'x g ,函数)(x g 递增.又2)(e e g =,e e g 2)(=,作出)(x g y =与直线a y -=的图像,由图像知:当22e a e ≤-<时,即e a e 22-<≤-时,方程()0=x f 有2个相异的根;当2e a -< 或e a 2-=时,方程()0=x f 有1个根;当e a 2->时,方程()0=x f 有0个根; -------10分(3)当0>a 时,)(x f 在],1[e x ∈时是增函数,又函数xy 1=是减函数,不妨设e x x ≤≤≤211,则()()212111x x x f x f -≤-等211211)()(x x x f x f -≤-。
2019-2020学年上学期高二数学12月月考试题含解析(74)
宝塔区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2-2. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.3. 已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ4. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( )A .[1,+∞)B .[0.2}C .[1,2]D .(﹣∞,2]5. 下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=--表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示6. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为( )A .B .C .D .7. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )8. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .9. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3 D .﹣1或﹣310.如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个11.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a 12.已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 30二、填空题13.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b ∈R .若=,则a+3b 的值为 .14.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .15.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .16.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-b y a x (0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.17.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2; ⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.18.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 .三、解答题19.(本题满分13分)已知函数x x ax x f ln 221)(2-+=. (1)当0=a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.20.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A ∪B ;(2)求(∁U A )∩B ; (3)求∁U (A ∩B ).21.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()12333xxf xg x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.22.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政7080100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望; (Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由. 2.0722.7063.8415.024(参考公式:,其中n=a+b+c+d )23.已知函数f(x)=x3﹣x2+cx+d有极值.(Ⅰ)求c的取值范围;(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求d的取值范围.24.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.宝塔区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 2. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O E P A ,所以OE ⊥底面ABCD ,则O 到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==34243316ππ=,解得72PA =,故选B .3. 【答案】B 【解析】解:∵y=x 2+2x ﹣3=(x+1)2﹣4,∴y ≥﹣4. 则A={y|y ≥﹣4}. ∵x >0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y ≥2}, ∴B ⊆A . 故选:B .【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.4. 【答案】C【解析】解:f (x )=x 2﹣2x+3=(x ﹣1)2+2,对称轴为x=1.所以当x=1时,函数的最小值为2.当x=0时,f(0)=3.由f(x)=3得x2﹣2x+3=3,即x2﹣2x=0,解得x=0或x=2.∴要使函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则1≤a≤2.故选C.【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次函数的基本方法.5.【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111]6.【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.7.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.8. 【答案】 D【解析】解:设|PF 1|=t , ∵|PF 1|=|PQ|,∠F 1PQ=60°, ∴|PQ|=t ,|F 1Q|=t ,由△F 1PQ 为等边三角形,得|F 1P|=|F 1Q|, 由对称性可知,PQ 垂直于x 轴,F 2为PQ 的中点,|PF 2|=,∴|F 1F 2|=,即2c=,由椭圆定义:|PF 1|+|PF 2|=2a ,即2a=t=t ,∴椭圆的离心率为:e===.故选D .9. 【答案】A【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得 a=﹣3,或a=1. 故选:A .10.【答案】B 【解析】 试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]11.【答案】C【解析】解:∵ a=ln2<lne 即,b=5=,c=xdx=,∴a ,b ,c 的大小关系为:b <c <a . 故选:C .【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.12.【答案】C【解析】解:an ==1+,该函数在(0,)和(,+∞)上都是递减的, 图象如图, ∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a 10,a 9.故选:C .【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.二、填空题13.【答案】 ﹣10 .【解析】解:∵f (x )是定义在R 上且周期为2的函数,f (x )=,∴f ()=f (﹣)=1﹣a ,f ()=;又=,∴1﹣a=①又f (﹣1)=f (1), ∴2a+b=0,②由①②解得a=2,b=﹣4; ∴a+3b=﹣10.故答案为:﹣10.14.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.15.【答案】 6 .【解析】解:双曲线的方程为4x 2﹣9y 2=36,即为:﹣=1,可得a=3, 则双曲线的实轴长为2a=6.故答案为:6. 【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.16.【答案】317.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.18.【答案】③.【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,故答案为:③三、解答题19.【答案】【解析】(1)函数的定义域为),0(+∞,因为x x ax x f ln 221)(2-+=,当0=a 时,x x x f ln 2)(-=,则x x f 12)('-=.令012)('=-=x x f ,得21=x .…………2分所以当2=x 时,)(x f 的极小值为2ln 1)21(+=f ,函数无极大值.………………5分20.【答案】【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)A ∪B={1,2,3,4,5,7} (2)(∁U A )={1,3,6,7} ∴(∁U A )∩B={1,3,7}(3)∵A ∩B={5}∁U (A ∩B )={1,2,3,4,6,7}.【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.21.【答案】(1)1x =-(2)①()1,-+∞,②6【解析】试题解析:(1)由题意,131331x x x +-+=+,化简得()2332310xx ⋅+⋅-=解得()13133x x =-=舍或,所以1x =-(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x x a b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1{ 3a b =-=-舍去 所以1,3a b ==,所以()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有:()()()()211212121222333313133131x x x x xx f x f x ⎛⎫-⎛⎫⎪-=-=⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x->,所以()()12f x f x >, 因此()f x 在R 上递减.因为()()2222f t t f t k -<-,所以2222t t t k ->-, 即220t t k +-<在时有解所以440t ∆=+>,解得:1t >-, 所以的取值范围为()1,-+∞②因为()()()12333x xf xg x -⎡⎤⋅+=-⎣⎦,所以()()3323x x g x f x --=-即()33xxg x -=+所以()()222233332x x x xg x --=+=+-不等式()()211g x m g x ≥⋅-恒成立, 即()()23323311x xx x m --+-≥⋅+-,即:93333x x x xm --≤+++恒成立令33,2x xt t -=+≥,则9m t t≤+在2t ≥时恒成立令()9h t t t =+,()29'1h t t=-,()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。
韶山市第三中学校2018-2019学年高二上学期第二次月考试卷数学
精选高中模拟试卷
韶山市第三中学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】A
【解析】解:由复数虚部的定义知,i﹣1 的虚部是 1,
故选 A. 【点评】该题考查复数的基本概念,属基础题. 2. 【答案】B
解析:∵(3+4i)z=25,z= =
4
5a
min
4e 5 e4 e 5
情形,分别研究函数 h x xlnx xlnb a, x 0, 的最小值,然后建立不等式进行分类讨论进行求解出
【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较
大.
14.已知 tan( ) 3, tan( ) 2 ,那么 tan
.
4
15.给出下列命题:
①存在实数 α,使
②函数
是偶函数
③
是函数
的一条对称轴方程
④若 α、β 是第一象限的角,且 α<β,则 sinα<sinβ
精选高中模拟试卷
韶山市第三中学校 2018-2019 学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 复数 i﹣1(i 是虚数单位)的虚部是( )
A.1
B.﹣1
C.i
D.﹣i
2. 已知复数 z 满足(3+4i)z=25,则 =( )
A.充分不必要
B.必要不充分
C.充要
二、填空题
) D.既不充分也不必要
第 1 页,共 13 页
精选高中模拟试卷
13.用 1,2,3,4,5 组成不含重复数字的五位数,要求数字 4 不出现在首位和末位,数字 1,3,5 中有且
2019-2020学年上学期高二数学12月月考试题含解析(940)
澧县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.若函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,则该函数的最大值为()A.5 B.4 C.3 D.22.将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是()A.x=πB.C.D.3.如果随机变量ξ~N (﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,则P(ξ≥1)等于()A.0.1 B.0.2 C.0.3 D.0.44.定义在[1,+∞)上的函数f(x)满足:①当2≤x≤4时,f(x)=1﹣|x﹣3|;②f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是()A.1 B.±2 C.或3 D.1或25.下列图象中,不能作为函数y=f(x)的图象的是()A .B .C .D .6. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假7. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R8. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°9. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个10.若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]11.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为()A.64 B.32 C.64 3D.32 312.函数f(x)=ax2+bx与f(x)=log x(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题13.阅读如图所示的程序框图,则输出结果S的值为.【命题意图】本题考查程序框图功能的识别,并且与数列的前n项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.14.已知△ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(c﹣b)sinC,且bc=4,则△ABC的面积为.15.抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为.16.计算sin43°cos13°﹣cos43°sin13°的值为.17.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种.18.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=.三、解答题19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.20.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长21.设函数f (x )=e mx +x 2﹣mx .(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.22.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.23.计算:(1)8+(﹣)0﹣;(2)lg25+lg2﹣log29×log32.24.(1)直线l的方程为(a+1)x+y+2﹣a=0(a∈R).若l在两坐标轴上的截距相等,求a的值;(2)已知A(﹣2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程.澧县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.2.【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cos x,再向右平移个单位得到y=cos[(x)],由(x)=kπ,得x=2kπ,即+2kπ,k∈Z,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.3.【答案】A【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,∵P(﹣3≤ξ≤﹣1)=∴∴P(ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.4.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.5.【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x>0时,有两个不同的y和x对应,所以不满足y值的唯一性.所以B不能作为函数图象.故选B.【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.6.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B . 【点评】本题考查了复合命题的真假的判断,是一道基础题.7. 【答案】B【解析】解:P={x|x=3},M={x|x >1}; ∴P ⊊M . 故选B .8. 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ), 又∵A+B+C=180°, ∴sin (B+C )=sinA , 可得2sinAcosB=sinA , ∵sinA ≠0,∴2cosB=1,即cosB=, 则B=60°. 故选:A .【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.9. 【答案】C 【解析】 试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C.考点:集合间的关系. 10.【答案】B【解析】解:由M 中y=2x,x ≤1,得到0<y ≤2,即M=(0,2],由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0, 解得:﹣1<x ≤1,即N=(﹣1,1], 则M ∩N=(0,1], 故选:B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.11.【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:1444322⨯⨯⨯=,故选B. 考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响. 12.【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f(x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.二、填空题13.【答案】20172016 【解析】根据程序框图可知,其功能是求数列})12)(12(2{+-n n 的前1008项的和,即+⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 20172016.14.【答案】 .【解析】解:∵asinA=bsinB+(c ﹣b )sinC ,∴由正弦定理得a 2=b 2+c 2﹣bc ,即:b 2+c 2﹣a 2=bc ,∴由余弦定理可得b2=a2+c2﹣2accosB,∴cosA===,A=60°.可得:sinA=,∵bc=4,∴S△ABC=bcsinA==.故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.15.【答案】8.【解析】解:∵抛物线y2=8x=2px,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10,∴x=8,故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.16.【答案】.【解析】解:sin43°cos13°﹣cos43°sin13°=sin(43°﹣13°)=sin30°=,故答案为.17.【答案】75【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.18.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1 综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y轴垂直或与y=x垂直,是解答的关键.三、解答题19.【答案】【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD . 因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD=AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面EBF ,所以平面BEF ⊥平面PAD .【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.20.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.21.【答案】【解析】解:(1)证明:f ′(x )=m (e mx﹣1)+2x .若m ≥0,则当x ∈(﹣∞,0)时,e mx﹣1≤0,f ′(x )<0;当x ∈(0,+∞)时,emx﹣1≥0,f ′(x )>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx ﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是22.【答案】【解析】解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(2)﹣f(1)=4=4×1.f(3)﹣f(2)=8=4×2,f(4)﹣f(3)=12=4×3,f(5)﹣f(4)=16=4×4∴f(5)=25+4×4=41.…(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…∴f(2)﹣f(1)=4×1,f(3)﹣f(2)=4×2,f(4)﹣f(3)=4×3,…f(n﹣1)﹣f(n﹣2)=4•(n﹣2),f(n)﹣f(n﹣1)=4•(n﹣1)…∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,∴f(n)=2n2﹣2n+1.…23.【答案】【解析】解:(1)8+(﹣)0﹣=2﹣1+1﹣(3﹣e)=e﹣.(2)lg25+lg2﹣log29×log32===1﹣2=﹣1.…(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.24.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a﹣2),(,0).∵直线l在两坐标轴上的截距相等,∴a﹣2=,解得a=2或a=0;(2)∵A(﹣2,4),B(4,0),∴线段AB的中点C坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB为直径的圆C的标准方程为(x﹣1)2+(y﹣2)2=13.。
2019-2020年高二数学12月月考试题数学.doc
2019-2020年高二数学12月月考试题数学说明:本试卷分第Ⅰ卷和第Ⅱ卷,满分150分,考试时间120分钟第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、设定点()10,3F -,()20,3F ,动点(),P x y 满足条件a PF PF =+21(a >)0,则动点P的轨迹是( ).A. 椭圆B. 线段C. 不存在D.椭圆或线段或不存在 2、抛物线21y x m=的焦点坐标为 ( ) .A .1,0m ⎛⎫ ⎪⎝⎭4B . 10,4m ⎛⎫ ⎪⎝⎭C . ,04m ⎛⎫ ⎪⎝⎭D .0,4m ⎛⎫ ⎪⎝⎭3、双曲线221mx y +=的虚轴长是实轴长的2倍,则m 的值为 ( ).A .14-B .4-C .4D .144、给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1-≤q ,则02=++q x x 有实根”的逆否命题; ④“不等边三角形的三内角相等”的逆否命题. 其中真命题是 ( )A .①②B .②③C .①③D .③④5、已知椭圆方程192522=+y x ,椭圆上点M 到该椭圆一个焦点1F 的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是 ( ) (A )2 (B )4 (C )8(D )236、设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF( )A. 1或5B. 1或9C. 1D. 97.已知p 是q 的必要条件,r 是q 的充分条件,p 是r 的充分条件,那么q 是r 的( )A .充分条件B .必要条件C .充要条件D .非充分非必要条件8.由下列各组命题构成“p 或q ”为真,“p 且q ”为假,非“p ”为真的是( )A .=0:p Φ,∈0:q ΦB .p :等腰三角形一定是锐角三角形,q :正三角形都相似C .{}a p : ≠⊂{}b a , ,{}b a a q ,:∈D .:,35:q p >12是质数 9、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( ).A.B. C. 2 D. 110.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条 A. 1B.2C. 3D.411、命题甲:“双曲线C 的方程为12222=-by a x ”,命题乙:“双曲线C 的渐近线方程为y bax =±”,那么甲是乙的-------------------------------( )(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件12、已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( )A. 抛物线B.双曲线C. 椭圆D.以上都不对第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分)13、命题“若ab =0,则a ,b 中至少有一个为零”的逆否命题是 .14、 如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x 轴上,且a -c =3, 那么椭圆的方程是 。
2019-2020学年上学期高二数学12月月考试题含解析(1109)
轮台县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°2.设x∈R,则x>2的一个必要不充分条件是()A.x>1 B.x<1 C.x>3 D.x<33.函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数,则a的取值范围为()A.0<a≤B.0≤a≤C.0<a<D.a>4.定义行列式运算:.若将函数的图象向左平移m(m>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是()A.B.C.D.5.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为()A.②④B.③④C.①②D.①③6.设S n为等差数列{a n}的前n项和,已知在S n中有S17<0,S18>0,那么S n中最小的是()A.S10B.S9C.S8D.S77.在等差数列{a n}中,a1=2,a3+a5=8,则a7=()A.3 B.6 C.7 D.88.若函数是R上的单调减函数,则实数a的取值范围是()A .(﹣∞,2)B .C .(0,2)D .9. 在等比数列中,,前项和为,若数列也是等比数列,则等于( ) A . B .C .D .10.设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( ) A .∅B .NC .[1,+∞)D .M11.袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )A .B .C .D .12.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}可.二、填空题13.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .14.已知正四棱锥O ABCD -的体积为2, 则该正四棱锥的外接球的半径为_________15.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .16.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .17.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 . 18.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .三、解答题19.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;(2)求f(x)在[﹣2,﹣]的最值.20.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y(元)与每盒蜜饯的销售价格x 的函数关系式;(2)当每盒蜜饯销售价格x为多少时,该特产店一天内利润y(元)最大,并求出这个最大值.21.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}求:(I)A∩B;(II)(C U A)∩(C U B);(III)C U(A∪B).24.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.轮台县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.2.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.3.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.4.【答案】C【解析】解:由定义的行列式运算,得====.将函数f(x)的图象向左平移m(m>0)个单位后,所得图象对应的函数解析式为.由该函数为奇函数,得,所以,则m=.当k=0时,m有最小值.故选C.【点评】本题考查了二阶行列式与矩阵,考查了函数y=Asin(ωx+Φ)的图象变换,三角函数图象平移的原则是“左加右减,上加下减”,属中档题.5.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.6.【答案】C【解析】解:∵S16<0,S17>0,∴=8(a8+a9)<0,=17a9>0,∴a8<0,a9>0,∴公差d>0.∴S n中最小的是S8.故选:C.【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.7.【答案】B【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,∴2a4=a3+a5=8,解得a4=4,∴公差d==,∴a7=a1+6d=2+4=6故选:B.8.【答案】B【解析】解:∵函数是R上的单调减函数,∴∴故选B【点评】本题主要考查分段函数的单调性问题,要注意不连续的情况.9.【答案】D【解析】设的公比为,则,,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D10.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N中的函数y=x2≥0,∴集合N={y|y≥0},则M∩N={y|y≥0}=N.故选B11.【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P==,故选:B.【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.12.【答案】D【解析】解:由已知M={x|﹣1<x<1},N={x|x>0},则M∩N={x|0<x<1},故选D.【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,二、填空题13.【答案】 ﹣2 .【解析】解:∵曲线y=x n+1(n ∈N *), ∴y ′=(n+1)x n,∴f ′(1)=n+1,∴曲线y=xn+1(n ∈N *)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),该切线与x 轴的交点的横坐标为x n =,∵a n =lgx n ,∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2. 故答案为:﹣2.14.【答案】118【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴截面的图形可知:22211(2)8R R R =-+∴= 15.【答案】 【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数()y xR αα=∈是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断;(2)若幂函数()y x R αα=∈在()0,+∞上单调递增,则α0>,若在()0,+∞上单调递减,则0α<;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1 16.【答案】 50π .【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是: =50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.17.【答案】【解析】试题分析:因为ABC ∆中,2,60AB BC C ===︒2sin A =,1sin 2A =,又BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,12ABCS AB BC ∆=⨯⨯= 考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abcR等等. 18.【答案】 6 .【解析】解:∵|z|=1,|z ﹣3+4i|=|z ﹣(3﹣4i )|≤|z|+|3﹣4i|=1+=1+5=6,∴|z ﹣3+4i|的最大值为6,故答案为:6.【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.三、解答题19.【答案】【解析】解:(1)∵f (x )=x 3+3ax 2+bx , ∴f'(x )=3x 2+6ax+b ,又∵f(x)在x=﹣1时有极值0,∴f'(﹣1)=0且f(﹣1)=0,即3﹣6a+b=0且﹣1+3a﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x)=3x2+4x+1,令f'(x)=0得x=﹣或x=﹣1,又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,∴f(x)max=0,f(x)min=﹣2.20.【答案】【解析】解:(1)当0<x≤20时,y=[20+4(20﹣x)](x﹣8)=﹣4x2+132x﹣800,当20<x<40时,y=[20﹣(x﹣20)](x﹣8)=﹣x2+48x﹣320,∴(2)①当,∴当x=16.5时,y取得最大值为289,②当20<x<40时,y=﹣(x﹣24)2+256,∴当x=24时,y取得最大值256,综上所述,当蜜饯价格是16.5元时,该特产店一天的利润最大,最大值为289元.21.【答案】【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).故tan2a n+1==1+tan2a n,∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.∴=.∴数列{tan2a n}的前n项和=+=.(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.∴tana n=,,∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)=(tana1•cosa m)==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.22.【答案】【解析】【专题】概率与统计.【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为Y 51 48 45 42P数学期望为E(Y)=51×+48×+45×+42×=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.23.【答案】【解析】解:如图:(I)A∩B={x|1<x≤2};(II)C U A={x|x≤0或x>2},C U B={x|﹣3≤x≤1}(C U A)∩(C U B)={x|﹣3≤x≤0};(III)A∪B={x|x<﹣3或x>0},C U(A∪B)={x|﹣3≤x≤0}.【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.24.【答案】【解析】解:∵,∴f′(x)=x2﹣4,由f′(x)=x2﹣4=0,得x=2,或x=﹣2,∵x∈[0,3],∴x=2,x f x f x当x=0时,f(x)max=f(0)=4,当x=2时,.。
城区第三中学校2019-2020学年上学期高二数学12月月考试题含解析
城区第三中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设数集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b﹣a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()A.B.C.D.2.若命题p:∃x0∈R,sinx0=1;命题q:∀x∈R,x2+1<0,则下列结论正确的是()A.¬p为假命题B.¬q为假命题C.p∨q为假命题D.p∧q真命题3.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.0 C.﹣2或0 D.﹣2或24.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()A.2x+y﹣5=0 B.2x﹣y+1=0 C.x+2y﹣7=0 D.x﹣2y+5=05.有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为()A.15,10,25 B.20,15,15 C.10,10,30 D.10,20,206.求值:=()A.tan 38°B.C.D.﹣7.已知,满足不等式则目标函数的最大值为()A.3 B.C.12 D.158.函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A.2 B.3 C.7 D.99.设a是函数x的零点,若x0>a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)<0C.f(x0)>0 D.f(x0)的符号不确定10.执行右面的程序框图,若输入x=7,y=6,则输出的有数对为()A.(11,12)B.(12,13)C.(13,14)D.(13,12)11.定义:数列{a n}前n项的乘积T n=a1•a2•…•a n,数列a n=29﹣n,则下面的等式中正确的是()A.T1=T19B.T3=T17C.T5=T12D.T8=T1112.已知函数,若存在常数使得方程有两个不等的实根(),那么的取值范围为()A.B.C.D.二、填空题13.等差数列的前项和为,若,则等于_________.14.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)15.已知函数f(x)=sinx﹣cosx,则=.16.设x∈(0,π),则f(x)=cos2x+sinx的最大值是.。
2019-2020学年上学期高二数学12月月考试题含解析(449)
高唐县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数,若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,-∞B .(,-∞C .(0,D .)+∞2. 已知AC ⊥BC ,AC=BC ,D 满足=t +(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .3. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行4. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为,则这个圆的方程是( )A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 5. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .6. 如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )A .y=±xB .y=±3xC .y=±xD .y=±x7.在等差数列{a n}中,a3=5,a4+a8=22,则{}的前20项和为()A.B.C.D.8.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE 与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P﹣DCE三棱锥的外接球的体积为()A.B.C.D.9.已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是()A.B.C.D.10.如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A.B.C.D.11.如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C对隧道底AB的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB的距离是()A.2m B.2m C.4 m D.6 m12.若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()A.命题p∨q是假命题B.命题p∧(¬q)是真命题C.命题p∧q是真命题 D.命题p∨(¬q)是假命题二、填空题13.曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为.14.函数f(x)=的定义域是.×的值为_______.15.如图所示,圆C中,弦AB的长度为4,则AB AC【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.16.设,则的最小值为17.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是.18.数列{a n}是等差数列,a4=7,S7=.三、解答题19.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.20.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.21.由四个不同的数字1,2,4,x组成无重复数字的三位数.(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x.22.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.23.如图,已知边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.(Ⅱ)证明:AM⊥PM.24.已知cos(+θ)=﹣,<θ<,求的值.高唐县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:因为函数()x F x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x x xxe e e e e g x h x e g x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022x x x xe e e e a --+--≥恒成立, ()2222x x x xx x x xe e e ea e e e e -----++∴≤=-- ()2x x x x e e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,220t e e -∴<≤-, 此时不等式2tt +≥当且仅当2t t=,即t =时, 取等号,a ∴≤,故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.2. 【答案】A【解析】解:如图,根据题意知,D 在线段AB 上,过D 作DE ⊥AC ,垂足为E ,作DF ⊥BC ,垂足为F ;若设AC=BC=a ,则由得,CE=ta ,CF=(1﹣t )a ;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.3.【答案】D【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,故选D.【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.4.【答案】B【解析】考点:圆的方程.1111]5.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.6.【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m﹣1=n,②由①②解得a=1,由|F1F2|=4,则c=2,b==,由双曲线﹣=1的渐近线方程为y=±x,即有渐近线方程为y=x.故选D.【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.7.【答案】B【解析】解:在等差数列{a n}中,由a4+a8=22,得2a6=22,a6=11.又a3=5,得d=,∴a1=a3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B.8.【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C.【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.9.【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A.【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.10.【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.11.【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),将点(4,﹣4)代入,可得p=2,所以抛物线方程为x2=﹣4y,设C(x,y)(y>﹣6),则由A(﹣4,﹣6),B(4,﹣6),可得k CA=,k CB=,∴tan∠BCA===,令t=y+6(t>0),则tan∠BCA==≥∴t=2时,位置C对隧道底AB的张角最大,故选:A.【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan∠BCA,正确运用基本不等式是关键.12.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.二、填空题13.【答案】.【解析】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)∴曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为S=()dx+dx=(x﹣x3)+(x3﹣x)=.故答案为:.14.【答案】{x|x>2且x≠3}.【解析】解:根据对数函数及分式有意义的条件可得解可得,x>2且x≠3故答案为:{x|x>2且x≠3}15.【答案】816.【答案】9【解析】由柯西不等式可知17.【答案】[].【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p,∵0≤p≤1,∴,故答案为:[].18.【答案】49【解析】解:==7a 4 =49. 故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.三、解答题19.【答案】【解析】(1)证明:设x 2>x 1>0,∵f (x 1)﹣f (x 2)=(﹣1)﹣(﹣1)=,由题设可得x 2﹣x 1>0,且x 2•x 1>0,∴f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,+∞)上是减函数.(2)当x <0时,﹣x >0,f (﹣x )=﹣1=﹣f (x ),∴f (x )=+1.又f (0)=0,故函数f (x )的解析式为f (x )=.20.【答案】【解析】解:(1)∵=(sinx ,cosx ),=(sinx ,sinx ),∴f (x )=﹣=sin 2x+sinxcosx ﹣=(1﹣cos2x )+sin2x ﹣=﹣cos2x+sin2x ﹣=sin (2x ﹣),∴函数的周期为T==π,由2k π﹣≤2x ﹣≤2k π+(k ∈Z )解得k π﹣≤x ≤k π+,∴f (x )的单调递增区间为[k π﹣,k π+],(k ∈Z );(2)由(1)知f(x)=sin(2x﹣),当x∈[π,]时,2x﹣∈[,],∴﹣≤sin(2x﹣)≤1,故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.21.【答案】【解析】【专题】计算题;排列组合.【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x),解可得x的值.【解答】解:(1)若x=5,则四个数字为1,2,4,5;又由要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,即能被5整除的三位数共有6个;(2)若x=9,则四个数字为1,2,4,9;又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,取出的三个数字为1、2、9时,有A33=6种情况,取出的三个数字为2、4、9时,有A33=6种情况,则此时一共有6+6=12个能被3整除的三位数;(3)若x=0,则四个数字为1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,当末位是2或4时,有A21×A21×A21=8种情况,此时三位偶数一共有6+8=14个,(4)若x=0,可以组成C31×C31×C21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,故x=0不成立;当x≠0时,可以组成无重复三位数共有C41×C31×C21=4×3×2=24种,共用了24×3=72个数字,则每个数字用了=18次,则有252=18×(1+2+4+x),解可得x=7.【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x为0与否两种情况讨论.22.【答案】【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为.…因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.所以圆心到直线l的距离为,…因此,解得b=﹣2,或b=﹣12.…所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.即2x﹣y﹣2=0,或2x﹣y﹣12=0.…【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.23.【答案】【解析】(Ⅰ)解:在棱AD上找中点N,连接CN,则CN∥平面AMP;证明:因为M为BC的中点,四边形ABCD是矩形,所以CM平行且相等于DN,所以四边形MCNA为矩形,所以CN∥AM,又CN⊄平面AMP,AM⊂平面AMP,所以CN∥平面AMP.(Ⅱ)证明:过P作PE⊥CD,连接AE,ME,因为边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点所以PE⊥平面ABCD,CM=,所以PE⊥AM,在△AME中,AE==3,ME==,AM==,所以AE2=AM2+ME2,所以AM⊥ME,所以AM⊥平面PME所以AM⊥PM.【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想.24.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,∴sinθ+cosθ=﹣,①cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,∴cosθ﹣sinθ=﹣,②联立①②,得cosθ=﹣,sinθ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.。
韶山市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
韶山市第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.长方体ABCD﹣A1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是()A.30°B.45°C.60°D.120°2.双曲线=1(m∈Z)的离心率为()A.B.2 C.D.33.阅读下面的程序框图,则输出的S=()A.14 B.20 C.30 D.554.如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为()A .y=±xB .y=±3xC .y=±xD .y=±x5. 下列函数中,为偶函数的是( )A .y=x+1B .y=C .y=x 4D .y=x 56. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log xx y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 7. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高 杂质低 旧设备 37 121 新设备22202根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关 C .设备是否改造决定含杂质的高低D .以上答案都不对8. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.9. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为4510.在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于( )A .B .5C .3D .11.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.12.双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A .1+B .4-C .5-D .3+二、填空题13.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)14.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射;⑤1f x在定义域上是减函数.()x其中真命题的序号是.15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是.16.若双曲线的方程为4x2﹣9y2=36,则其实轴长为.17.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为.18.已知实数x,y满足约束条,则z=的最小值为.三、解答题19.求曲线y=x3的过(1,1)的切线方程.20.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.22.已知全集U 为R ,集合A={x|0<x ≤2},B={x|x <﹣3,或x >1}求:(I )A ∩B ;(II )(C U A )∩(C U B );(III )C U (A ∪B ).23.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yy af x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.24.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)韶山市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(﹣1,1,0),B(1,1,0),G(0,1,1),=(﹣1,0,1),设直线A1C1与BG所成角为θ,cosθ===,∴θ=60°.故选:C.【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.2.【答案】B【解析】解:由题意,m2﹣4<0且m≠0,∵m∈Z,∴m=1∵双曲线的方程是y2﹣x2=1∴a2=1,b2=3,∴c2=a2+b2=4∴a=1,c=2,∴离心率为e==2.故选:B.【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b2.3.【答案】C【解析】解:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故答案为C.【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.4.【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m﹣1=n,②由①②解得a=1,由|F1F2|=4,则c=2,b==,由双曲线﹣=1的渐近线方程为y=±x,即有渐近线方程为y=x.故选D.【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.5.【答案】C【解析】解:对于A,既不是奇函数,也不是偶函数,对于B,满足f(﹣x)=﹣f(x),是奇函数,对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数,对于D,满足f(﹣x)=﹣f(x),是奇函数,故选:C.【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.6.【答案】C【解析】由||)(x axf=始终满足1)(≥xf可知1>a.由函数3|| logx xy a=是奇函数,排除B;当)1,0(∈x时,||log<xa ,此时0||log3<=xxy a,排除A;当+∞→x时,0→y,排除D,因此选C.7.【答案】A【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37 121 158新设备22 202 224合计59 323 382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.8. 【答案】B【解析】9. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD 所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1 考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 10.【答案】D【解析】解:由题意可知三角形的面积为S===AC •BCsin60°,∴AC •BC=.由余弦定理AB 2=AC 2+BC 2﹣2AC •BCcos60°=(AC+BC )2﹣3AC •BC ,∴(AC+BC )2﹣3AC •BC=3,∴(AC+BC )2=11.∴AC+BC=故选:D【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.11.【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.12.【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m -+-=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方]二、填空题13.【答案】 (0,2)【解析】解:令x=0,得y=a 0+1=2 ∴函数y=a x+1(a >0且a ≠1)的图象必经过点 (0,2)故答案为:(0,2). 【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点14.【答案】①② 【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误.考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n 个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.115.【答案】 .【解析】解:由题意,函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,∴a 取1时,b 可取2,3,4,5,6;a 取2时,b 可取4,5,6;a 取3时,b 可取6,共9种 ∵(a ,b )的取值共36种情况∴所求概率为=.故答案为:.16.【答案】 6 .【解析】解:双曲线的方程为4x 2﹣9y 2=36,即为:﹣=1,可得a=3, 则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.17.【答案】 4或 .【解析】解:设AB=2x ,则AE=x ,BC=,∴AC=,由余弦定理可得x 2=9+3x 2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.18.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.三、解答题19.【答案】【解析】解:y=x3的导数y′=3x2,①若(1,1)为切点,k=3•12=3,∴切线l:y﹣1=3(x﹣1)即3x﹣y﹣2=0;②若(1,1)不是切点,设切点P(m,m3),k=3m2=,即2m2﹣m﹣1=0,则m=1(舍)或﹣∴切线l:y﹣1=(x﹣1)即3x﹣4y+1=0.故切线方程为:3x﹣y﹣2=0或3x﹣4y+1=0.【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力.属于中档题和易错题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC,∴tanC==,由三角形内角的范围可得C=;(Ⅱ)∵c=2a,b=2,C=,∴由余弦定理可得c2=a2+b2﹣2abcosC,∴4a2=a2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去)∴△ABC的面积S=absinC==22.【答案】【解析】解:如图:(I )A ∩B={x|1<x ≤2};(II )C U A={x|x ≤0或x >2},C U B={x|﹣3≤x ≤1}(C U A )∩(C U B )={x|﹣3≤x ≤0};(III )A ∪B={x|x <﹣3或x >0},C U (A ∪B )={x|﹣3≤x ≤0}.【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.23.【答案】【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞.由|2|21x m ≤+,得1122m x m --≤≤+,……………………2分 所以,由122m +=,解得32m =.……………………4分(2)不等式()2|23|2y y a f x x ≤+++等价于|21||23|22yy a x x --+≤+,由题意知max (|21||23|)22yy a x x --+≤+.……………………6分24.【答案】【解析】(1)解:不等式f (x )+f (x+1)≤2,即|x ﹣1|+|x ﹣2|≤2. |x ﹣1|+|x ﹣2|表示数轴上的点x 到1、2对应点的距离之和, 而2.5 和0.5对应点到1、2对应点的距离之和正好等于2, ∴不等式的解集为[0.5,2.5].(2)证明:∵a <0,f (ax )﹣af (x )=|ax ﹣2|﹣a|x ﹣2|=|ax ﹣2|+|2﹣ax| ≥|ax ﹣2+2a ﹣ax|=|2a ﹣2|=f (2a ﹣2), ∴f (ax )﹣af (x )≥f (2a )成立.。
2019-2020年高二上学期第三次月考 理科数学 含答案
2019-2020年高二上学期第三次月考 理科数学 含答案时间120分 满分150分;命题:高二年级数学备课组 审题:高二年级数学备课组一、选择题:(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在括号内) 1.若复数是纯虚数,则实数的值为 ( )A . 1B .2C .1或2D .-1 2.已知是不相等的正数,,,则,的关系是( )A. B. C. D.不确定 3.用反证法证明命题:“三角形的内角中至少有一个不大于”时,反设正确的是 ( )A .假设三内角都不大于B .假设三内角都大于C .假设三内角至多有一个大于D .假设三内角至多有两个大于 4. 双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =( )A .-B .-4C .4D .5.命题:直线与圆恰有一个公共点,命题:为直角三角形的三条边,则是的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.已知点P 为抛物线y 2=4x 上一点,设P 到此抛物线的准线的距离为d 1,到直线x +2y+10=0 的距离为d 2,则d 1+d 2的最小值为 ( ) A . B . C . D . 7.点是等腰三角形所在平面外一点,ABC PA ABC PA ∆=⊥,在,平面8 中,底边BC P AB BC 到,则,56==的距离为 ( )A .B .C .D .8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是 ( ) ①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等. A .① B .①② C .③ D .①②③9.(零班同学做)设曲线在点 处的切线与轴的交点横坐标为,则20141201422014320142013log log log log x x x x +++L L 的值为 ( ) DA .B .C .D .(非零班同学做)已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为 ( )A .B .C .D .10.设双曲线的半焦距为C ,直线L 过两点,已知原点到直线L 的距离为,则双曲线的离心率为 ( ) A .2 B .2或 C . D .二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上.11.已知命题函数在上单调递增;命题不等式的解集是.若且为真命题,则实数的取值范围是______.12.设动点P 是抛物线y=2x 2+1上任意一点,定点A (0,1),点M 分所成的比为2,则点M 的轨迹方程是.13.(零班同学做)已知三次函数3221()(41)(1527)23f x x m x m m x =--+--+在上是增函数,则的取值范围为 .(非零班同学做)由数列的前四项: ,1 , ,,……归纳出通项公式a n =___ .14.一个几何体的三视图如图所示,则该几何体的表面积为______________。
2019-2020年高二上学期12月月考数学试卷(理科)含解析
2019-2020年高二上学期12月月考数学试卷(理科)含解析一、选择题:(本大题共10小题,每小题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.)1.在△ABC中,a=2,b=2,B=,则A等于()A. B. C.或D.或2.准线方程为x=2的抛物线的标准方程是()A.y2=﹣4x B.y2=8x C.y2=4x D.y2=﹣8x3.设p:x<﹣1或x>1,q:x<﹣2或x>1,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设a1,a2,a3,a4成等比数列,其公比为2,则的值为()A. B. C. D.15.若<<0,则下列不等式①a+b<ab;②|a|>|b|;③a<b;④+>2中,正确的不等式有()A.0个B.1个C.2个D.3个6.在R上定义运算,若成立,则x的取值范围是()A.(﹣4,1)B.(﹣1,4)C.(﹣∞,﹣4)∪(1,+∞) D.(﹣∞,﹣1)∪(4,+∞)7.如图,A1B1C1﹣ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是()A. B. C. D.8.如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.若,,,则下列向量中与相等的向量是()A. B. C. D.9.已知点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x﹣4)2+(y﹣1)2=1上,则|MA|+|MF|的最小值为()A.2 B.3 C.4 D.510.如图F1,F2分别是椭圆的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该左半椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为()A. B. C. D.二、填空题:(本大题5小题,每小题5分,共25分)11.与曲线共焦点并且与曲线共渐近线的双曲线方程为.12.在△ABC中,若三边长分别为a=7,b=3,c=8,则△ABC面积等于.13.设x,y满足约束条件,若z=,则实数z的取值范围为.14.若直线ax+2by﹣2=0(a,b>0)始终平分圆x2+y2﹣4x﹣2y﹣8=0的周长,则的最小值为.15.下列四个命题中①命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”②“x=4”是“x2﹣3x﹣4=0”的充分条件③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0.则m≠0且n≠0”⑤对空间任意一点O,若满足,则P,A,B,C四点一定共面.其中真命题的为(将你认为是真命题的序号都填上)三、解答题:(本大题共6题,满分75分.解答须写出文字说明、证明过程和演算步骤)16.已知函数f(x)=x2﹣ax+a.设p:方程f(x)=0有实数根;q:函数f(x)在区间上是增函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.17.△ABC中,角A,B,C的对分别为a,b,c,且a(1+cosC)+c(1+cosA)=3b.(1)求证:a,b,c成等差数列;(2)求cosB的最小值.18.如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.(Ⅰ)求证:平面PAC⊥平面ABC;(Ⅱ)求二面角M﹣AC﹣B的大小;(Ⅲ)求三棱锥P﹣MAC的体积.19.已知{a n}是等比数列,公比q>1,前n项和为,.(1)求数列{a n},{b n}的通项公式;(2)设数列{b n b n+1}的前n项和为T n,求证.20.某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.已知生产每匹布料A、B 的利润分别为120元、80元.那么如何安排生产才能够产生最大的利润?最大的利润是多少?21.已知F1,F2是椭圆+=1(a>b>0)的两个焦点,O为坐标原点,点P(﹣1,)在椭圆上,且•=0,⊙O是以F1F2为直径的圆,直线l:y=kx+m与⊙O相切,并且与椭圆交于不同的两点A,B(1)求椭圆的标准方程;(2)当•=λ,且满足≤λ≤时,求弦长|AB|的取值范围.xx山东省泰安市新泰一中高二(上)12月月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.)1.在△ABC中,a=2,b=2,B=,则A等于()A. B. C.或D.或【考点】正弦定理.【专题】解三角形.【分析】由条件利用正弦定理求得sinA的值,即可求得A的值.【解答】解:△ABC中,∵a=2,b=2,B=,∴由正弦定理可得 =,解得 sinA=,∴A=,或 A=,故选:C.【点评】本题主要考查正弦定理的应用,根据三角函数的值求角,属于基础题.2.准线方程为x=2的抛物线的标准方程是()A.y2=﹣4x B.y2=8x C.y2=4x D.y2=﹣8x【考点】抛物线的简单性质.【专题】计算题.【分析】由题意中,抛物线的准线方程易得该抛物线的焦点在x轴上,则设其标准方程是y2=2mx,由抛物线的性质,可得其准线方程为x=﹣,依题意,可得m的值,将m的值代入y2=2mx 中可得答案.【解答】解:根据题意,易得该抛物线的焦点在x轴上,则设其标准方程是y2=2mx,由抛物线的性质,可得其准线方程为x=﹣,则﹣=2,解可得m=﹣4,故其标准方程是y2=﹣8x;故选D.【点评】本题考查抛物线的简单性质,关键在于掌握由标准方程求准线方程的方法.3.设p:x<﹣1或x>1,q:x<﹣2或x>1,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】可先判p是q的什么条件,也可先写出¬p和¬q,直接判断¬p是¬q的什么条件.【解答】解:由题意q⇒p,反之不成立,故p是q的必要不充分条件,所以¬p是¬q的充分不必要条件.故选A【点评】本题考查充要条件的判断问题,属基本题.4.设a1,a2,a3,a4成等比数列,其公比为2,则的值为()A. B. C. D.1【考点】等比数列的性质.【专题】计算题.【分析】先利用等比数列的通项公式分别表示出a2,a3,a4,代入原式化简整理,进而利用公比求得答案.【解答】解:根据题意, ===故选A【点评】本题主要考查了等比数列通项公式的应用.考查了学生对等比数列基础知识的掌握和灵活利用.5.若<<0,则下列不等式①a+b<ab;②|a|>|b|;③a<b;④+>2中,正确的不等式有()A.0个B.1个C.2个D.3个【考点】基本不等式.【分析】由<<0,判断出a,b的符号和大小,再利用不等式的性质及重要不等式判断命题的正误.【解答】解:∵<<0,∴b<a<0,∴a+b<0<ab,故①正确.∴﹣b>﹣a>0,则|b|>|a|,故②错误.③显然错误.由于,,∴+>2=2,故④正确.综上,①④正确,②③错误,故选C.【点评】本题考查不等式的性质,基本不等式的应用,判断 b<a<0 是解题的关键.6.在R上定义运算,若成立,则x的取值范围是()A.(﹣4,1)B.(﹣1,4)C.(﹣∞,﹣4)∪(1,+∞) D.(﹣∞,﹣1)∪(4,+∞)【考点】二阶矩阵.【专题】计算题.【分析】根据定义运算,把化简得x2+3x<4,求出其解集即可.【解答】解:因为,所以,化简得;x2+3x<4即x2+3x﹣4<0即(x﹣1)(x+4)<0,解得:﹣4<x<1,故选A.【点评】考查二阶矩阵,以及一元二次不等式,考查运算的能力.7.如图,A1B1C1﹣ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是()A. B. C. D.【考点】异面直线及其所成的角.【专题】计算题;压轴题.【分析】先取BC的中点D,连接D1F1,F1D,将BD1平移到F1D,则∠DF1A就是异面直线BD1与AF1所成角,在△DF1A中利用余弦定理求出此角即可.【解答】解:取BC的中点D,连接D1F1,F1D∴D1B∥DF1∴∠DF1A就是BD1与AF1所成角设BC=CA=CC1=2,则AD=,AF1=,DF1=在△DF1A中,cos∠DF1A=,故选A【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.8.如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.若,,,则下列向量中与相等的向量是()A. B. C. D.【考点】空间向量的基本定理及其意义.【专题】计算题.【分析】利用向量的运算法则:三角形法则、平行四边形法则表示出.【解答】解:∵====故选A【点评】本题考查利用向量的运算法则将未知的向量用已知的基底表示从而能将未知向量间的问题转化为基底间的关系解决.9.已知点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x﹣4)2+(y﹣1)2=1上,则|MA|+|MF|的最小值为()A.2 B.3 C.4 D.5【考点】圆与圆锥曲线的综合;抛物线的简单性质.【专题】综合题;压轴题.【分析】先根据抛物线方程求得准线方程,过点M作MN⊥准线,垂足为N,根据抛物线定义可得|MN|=|MF|,问题转化为求|MA|+|MN|的最小值,根据A在圆C上,判断出当N,M,C三点共线时,|MA|+|MN|有最小值,进而求得答案.【解答】解:抛物线y2=4x的准线方程为:x=﹣1过点M作MN⊥准线,垂足为N∵点M是抛物线y2=4x的一点,F为抛物线的焦点∴|MN|=|MF|∴|MA|+|MF|=|MA|+|MN|∵A在圆C:(x﹣4)2+(y﹣1)2=1,圆心C(4,1),半径r=1∴当N,M,C三点共线时,|MA|+|MF|最小∴(|MA|+|MF|)min=(|MA|+|MN|)min=|CN|﹣r=5﹣1=4∴(|MA|+|MF|)min=4故选C.【点评】本题的考点是圆与圆锥曲线的综合,考查抛物线的简单性质,考查距离和的最小.解题的关键是利用化归和转化的思想,将问题转化为当N,M,C三点共线时,|MA|+|MF|最小.10.如图F1,F2分别是椭圆的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该左半椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为()A. B. C. D.【考点】圆锥曲线的共同特征.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题设条件知,把A代入椭圆,得,整理,得e4﹣8e2+4=0,由此能够求出椭圆的离心率.【解答】解:由题意知,把A代入椭圆,得,∴(a2﹣c2)c2+3a2c2=4a2(a2﹣c2),整理,得e4﹣8e2+4=0,∴,∵0<e<1,∴.故选D.【点评】本题考查椭圆的性质和应用,解题时要认真审题,注意公式的灵活运用.二、填空题:(本大题5小题,每小题5分,共25分)11.与曲线共焦点并且与曲线共渐近线的双曲线方程为.【考点】双曲线的标准方程.【分析】先求出椭圆的焦点坐标,双曲线的渐近线方程,然后设双曲线的标准方程为,则根据此时双曲线的渐近线方程为y=±x,且有c2=a2+b2,可解得a、b,故双曲线方程得之.【解答】解:由题意知椭圆焦点在y轴上,且c==5,双曲线的渐近线方程为y=±x,设欲求双曲线方程为,则,解得a=4,b=3,所以欲求双曲线方程为.故答案为.【点评】本题主要考查焦点在不同坐标轴上的双曲线的标准方程与性质,同时考查椭圆的标准方程及简单性质.12.在△ABC中,若三边长分别为a=7,b=3,c=8,则△ABC面积等于.【考点】余弦定理.【专题】计算题.【分析】利用余弦定理求得cosC=,再利用同角三角函数的基本关系求得 sinC=,代入△ABC 的面积公式进行运算.【解答】解:在△ABC中,若三边长分别为a=7,b=3,c=8,由余弦定理可得64=49+9﹣2×7×3 cosC,∴cosC=,∴sinC=,∴S△ABC==,故答案为.【点评】本题考查余弦定理的应用,同角三角函数的基本关系,求出sinC=,是解题的关键.13.设x,y满足约束条件,若z=,则实数z的取值范围为.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,利用z的几何意义即可求出z 的取值范围.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).z=的几何意义为阴影部分的动点(x,y)到定点P(﹣1,3)连线的斜率的取值范围.由图象可知当点位于B时,直线的斜率最大,当点位于O时,直线的斜率最小,由,解得,即B(4,6),∴BP的斜率k=,OP的斜率k=,∴﹣3.故答案为:.【点评】本题主要考查线性规划的应用,利用z的几何意义是解决本题的关键,利用数形结合是解决线性规划问题中的基本方法.14.若直线ax+2by﹣2=0(a,b>0)始终平分圆x2+y2﹣4x﹣2y﹣8=0的周长,则的最小值为4 .【考点】基本不等式;直线与圆相交的性质.【专题】计算题.【分析】求出圆心坐标代入直线方程得到a,b的关系a+b=1;将乘以a+b展开,利用基本不等式,检验等号能否取得,求出函数的最小值.【解答】解:因为直线平分圆,所以直线过圆心圆心坐标为(2,1)∴a+b=1∴=当且仅当取等号故答案为4【点评】本题考查直线平分圆时直线过圆心、考查利用基本不等式求函数的最值需注意:一正、二定、三相等.15.下列四个命题中①命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”②“x=4”是“x2﹣3x﹣4=0”的充分条件③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0.则m≠0且n≠0”⑤对空间任意一点O,若满足,则P,A,B,C四点一定共面.其中真命题的为①②⑤(将你认为是真命题的序号都填上)【考点】命题的真假判断与应用.【专题】综合题;对应思想;综合法;简易逻辑.【分析】直接写出命题的逆否命题判断①;由充分必要条件的判定方法判断②;举例说明③错误;写出命题的否命题判断④;由空间中四点共面的条件判断⑤.【解答】解:①命题“若x2﹣3x﹣4=0,则x=4”的逆否命题为“若x≠4,则x2﹣3x﹣4≠0”,故①正确;②x=4⇒x2﹣3x﹣4=0;由x2﹣3x﹣4=0,解得:x=﹣1或x=4.∴“x=4”是“x2﹣3x﹣4=0”的充分不必要条件,故②正确;③命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为“若方程x2+x﹣m=0有实根,则m>0”,是假命题,如m=0时,方程x2+x﹣m=0有实根;④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0.则m≠0或n≠0”,故④错误;⑤∵,∴对空间任意一点O,若满足,则P,A,B,C四点一定共面,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假判断与应用,考查了命题的否命题和逆否命题,训练了充分必要条件的判定方法,考查利用向量法判断空间中四点共面的条件,属中档题.三、解答题:(本大题共6题,满分75分.解答须写出文字说明、证明过程和演算步骤)16.已知函数f(x)=x2﹣ax+a.设p:方程f(x)=0有实数根;q:函数f(x)在区间上是增函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.【考点】复合命题的真假.【专题】函数思想;综合法;简易逻辑.【分析】首先考虑命题p,q均为真命题,求出a的取值范围,再根据p,q中一真一假,分别求出a的取值范围,最后求并集.【解答】解:若p真,即方程f(x)=0有实数根,则△=a2﹣4a≥0⇔a≤0,或a≥4;…(2分)若q真,即函数f(x)在区间上是增函数,则区间在对称轴的右边即≤1⇒a≤2…(3分)因为p和q有且只有一个正确,所以p,q中一真一假.若p真q假,则⇒a≥4;若p假q真,则⇒0<a≤2.…(7分)所以实数a的取值范围为(0,2]∪分析易得答案.【解答】解:(1)依题意,由•=0,可得PF1⊥F1F2,∴c=1,将点p坐标代入椭圆方程可得+=1,又由a2=b2+c2,解得a2=2,b2=1,c2=1,∴椭圆的方程为+y2=1.(2)直线l:y=kx+m与⊙x2+y2=1相切,则=1,即m2=k2+1,由直线l与椭圆交于不同的两点A、B,设A(x1,y1),B(x2,y2),由,得(1+2k2)x2+4kmx+2m2﹣2=0,△=(4km)2﹣4×(1+2k2)(2m2﹣2)>0,化简可得2k2>1+m2,x1+x2=﹣,x1•x2=,y1•y2=(kx1+m)(kx2+m)=k2x1•x2+km(x1+x2)+m2==,=x1•x2+y1•y2==,≤≤,解可得≤k2≤1,(9分)|AB|==2设u=k4+k2(≤k2≤1),则≤u≤2,|AB|=2=2,u∈分析易得,≤|AB|≤.(13分)【点评】本题考查直线与椭圆的位置关系,解此类题目,一般要联系直线与圆锥曲线的方程,得到一元二次方程,利用根与系数的关系来求解.。
2019-2020年高二上学期12月月考数学试题 含答案
2019-2020年高二上学期12月月考数学试题含答案题号一二三总分得分评卷人得分一、选择题(共60分)B.C.D.10.(5分)已知点(m,n)在椭圆8x2+3y2=24上,则2m+4的取值范围是().A. B.C. D.11.(5分)设F1、F2是椭圆的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF1F2是()A.钝角三角形B.锐角三角形C.斜三角形D.直角三角形12.(5过椭圆=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为( )A. B. C.D.(理科做)设a>1,则双曲线的离心率e的取值范围是().A. B. C.(2,5) D.评卷人得分二、填空题(共20分)13.(5分)命题“x0R,x0≤1或”的否定为____________________________.14.(5分)已知命题p:x2-x≥6,q:x Z,“p且q”与“非q”同时为假命题,则x的取值为________.15.(5分)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________.16.(5分)已知椭圆+ =1上一点P与椭圆两焦点F1、F2连线的夹角为直角,则|PF1|·|PF2|=____________.评卷人得分三、解答题(共70分)17.(10分)已知p、q都是r的必要条件,s 是r的充分条件,q是s的充分条件,那么:(1)s是q的什么条件?(2)r是q的什么条件?(3)p是q的什么条件?18.(12分)在直角坐标系中,求点(2x+3-x2,)在第四象限的充要条件.19.(12分)椭圆过(3,0)点,离心率e=,求椭圆的标准方程.20.(12分)椭圆ax2+by2=1与直线x+y-1=0相交于A、B,C是AB的中点,若|AB|=2,OC的斜率为,求椭圆的方程.21.(12分)如图,已知椭圆的中心在原点,它在x轴上的一个焦点F与短轴的两个端点B1、B2的连线互相垂直,且这个焦点与较近的长轴的端点A的距离为,求这个椭圆的方程.22. (文科做)(12分)椭圆(a,b>0)的两个焦点为F1、F2,点P在椭圆C上,且PF1⊥F1F2,,.求椭圆C的方程.(理科做)已知直线y=ax+1与双曲线3x2-y2=1交于A、B两点,(1)若以AB为直径的圆过坐标原点,求实数a的值;(2)是否存在这样的实数a,使A、B两点关于直线对称?若存在,请求出a的值;若不存在,请说明理由.高二数学参考答案一、选择题解析:原命题为真,逆否命题为真,逆命题,否命题为假.“a=b,c=d”的否定为“a≠b或c≠d”.2.答案:B解析:若“tanα=1”,则α=kπ+,α不一定等于;而若“α=”,则tanα=1,∴“tanα=1”是“α=”的必要而不充分条件,选B.3.答案:B解析:若x2+(y-2)2=0x=0且y-2=0x(y-2)=0,但当x(y-2)=0时x2+(y-2)2=0,如x=0,y=3.4.答案:D解析:因为p:2∈(A∪B),所以p:2(A∪B),即2A且2 B.所以2∈SA且2∈ B.故2∈(A)∩(B).5.答案:C解析:原函数与反函数的图象关于y=x对称的否定是存在一个原函数与反函数的图象不关于y=x对称.6.答案:C解析:由x2+xy=x,得x(x+y-1)=0.∴x=0或x+y-1=0,它们表示两条直线.7.答案:A解析:设P点的坐标为(x,y),则,整理,得8x2+8y2+2x-4y-5=0.解析:∵方程表示焦点在y轴上的椭圆,∴∴.9.答案:C解析:由题设,知椭圆的方程为(a>b>0),则故所求的椭圆方程为10.答案:A解析:方程可化为,故椭圆焦点在y轴上,又,,所以,故.11.答案:D解析:由椭圆的定义,知|PF1|+|PF2|=2a=8.由题可得|PF1|-|PF2|=2,则|PF1|=5,|PF2|=3. 又|F1F2|=2c=4,∴△PF1F2为直角三角形.12.答案:B解析:由P,再由∠F1PF2=60°,有=2a,从而可得e=,故选B.答案:B解析:.∵a>1,∴,∴,∴,故选B.二、填空题13.答案:x R,x>1且x2≤414.答案:-1,0,1,2解析:∵“非q”为假命题,则q为真命题;又“p且q”为假命题,则p为假命题,∴x2-x<6,即x2-x-6<0且.解得-2<x<3且,∴x=-1,0,1,2.15.答案:.解析:由条件知4b=2a+2C.∴2b=a+c,4b2=a2+c2+2ac,4(a2-c2)=a2+c2+2ac,即5c2+2ac-3a2=0,解得.16.答案:48解析:两焦点的坐标分别为F1(-5,0)、F2(5,0),由PF1⊥PF2,得|PF1|2+|PF2|2=|F1F2|2=100.而|PF1|+|PF2|=14,∴(|PF1|+|PF2|)2=196,100+2|PF1|·|PF2|=196,|PF1|·|PF2|=48.三、解答题17.答案:解:(1)由图知:∵q s.s r q.∴s是q的充要条件.(2)∵p q,q s r,∴p是q的充要条件.(3)∵q s r p,∴p是q的必要不充分条件.解析:将已知r、p、q、s的关系作一个“”图(如图).18.答案:解:该点在第四象限或2<x<3.所以该点在第四象限的充要条件是或2<x<3.解析:第四象限点的横、纵坐标都小于零.19.答案:解:当椭圆的焦点在x轴上时,∵a=3,,∴c=.从而b2=a2-c2=9-6=3,∴椭圆的方程为当椭圆的焦点在y轴上时,∵b=3,,∴.∴a2=27.∴椭圆的方程为.∴所求椭圆的方程为20.答案:解法一:设A(x1,y1)、B(x2,y2),代入椭圆方程并作差得a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.而,=k OC=,代入上式可得b=a.再由|AB|=|x2-x1|=2,其中x1、x2是方程(a+b)x2-2bx+b-1=0的两根,故()2-4·=4,将b=a代入得a=,∴b=.∴所求椭圆的方程是x2+y2=3.解法二:由得(a+b)x2-2bx+b-1=0.设A(x1,y1)、B(x2,y2),则∵|AB|=2,∴.①设C(x,y),则x==,y=1-x=,∵OC的斜率为,∴=.代入①,得a=,b=.∴椭圆方程为.解析:点评:解法一利用了设点代入、作差,借助斜率的解题方法,称作“差点法”,解法二是圆锥曲线弦长的基本求法,是利用两点间的距离公式求得.21.答案:如题图,由椭圆中心在原点,焦点在x轴上知,椭圆方程的形式是(a >b>0),再根据题目条件列出关于a、b的方程组,求出a、b的值.解:设椭圆方程为(a>b>0).由椭圆的对称性知,|B1F|=|B2F|,又B1F⊥B2F,因此△B1FB2为等腰直角三角形.于是|OB2|=|OF|,即b=c.又|FA|=,即a-c=,且a2=b2+c2.将以上三式联立,得方程组解得所求椭圆方程是.解析:点评:要熟练掌握将椭圆中的某些线段长用a、b、c表示出来,例如焦点与各顶点所连线段的长等.这将有利于提高解题能力.22. 答案:(文科)解:因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3.在Rt△PF1F2中,,故椭圆的半焦距,从而b2=a2-c2=4,所以椭圆C的方程为.(理科)答案:解:(1)由消去y,得(3-a2)x2-2ax-2=0.①依题意即且. ②设A(x1,y1),B(x2,y2),则∵以AB为直径的圆过原点,∴OA⊥OB.∴x1x2+y1y2=0.但y1y2=a2x1x2+a(x1+x2)+1,由③④,,.∴.解得a=±1且满足②.(2)假设存在实数a,使A、B关于对称,则直线y=ax+1与垂直, ∴a,即a=-2.直线l的方程为y=-2x+1.将a=-2代入③得x1+x2=4.∴AB中点横坐标为2,纵坐标为y=-2×2+1=-3.但AB中点(2,-3)不在直线上,即不存在实数a,使A、B关于直线对称.。
2019-2020学年上学期高二数学12月月考试题含解析(1162)
米易县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+ B .22sin(2)3y x π=+C .2sin()23x y π=- D .2sin(2)3y x π=-2.在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .53. 已知直线l :2y kx =+过椭圆)0(12222>>=+b a by a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L,若L ≥e 的取值范围是( ) (A ) ⎥⎦⎤⎝⎛550, ( B )0⎛ ⎝⎦ (C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤ ⎝⎛5540, 4. 下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A.(ln y x = B .2y x = C .tan y x = D .xy e =5. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A .﹣B .﹣5C .5D .6. 设a ,b ,c ,∈R +,则“abc=1”是“”的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件 7. 下列函数中哪个与函数y=x 相等( )A .y=()2B .y=C .y=D .y=8. 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( ) A .10B .9C .8D .59. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )A .3B .4C .5D .610.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项. 11.已知双曲线和离心率为4sin的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26D .2712.设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .4二、填空题13.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)14.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .15.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 . 16.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .17.用“<”或“>”号填空:30.8 30.7.18.数列{a n }是等差数列,a 4=7,S 7= .三、解答题19.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T(+∈N n ).【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.20.已知函数f (x )=在(,f ())处的切线方程为8x ﹣9y+t=0(m ∈N ,t ∈R )(1)求m 和t 的值;(2)若关于x 的不等式f (x )≤ax+在[,+∞)恒成立,求实数a 的取值范围.21.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数b a x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求A B C ∆面积的最大值.22.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3﹣2a)x是增函数.若p∨q为真,p∧q为假.求实数a的取值范围.23.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.24.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p<1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.米易县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 2. 【答案】B【解析】解:对于,对于10﹣3r=4, ∴r=2, 则x 4的项的系数是C 52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.3. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d ,则L =≥解得2165d ≤。
2019-2020学年上学期高二数学12月月考试题含解析(418)
富县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}可.2. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%3. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( )A .①B .②C .③D .④4. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=5.+(a ﹣4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠46. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)7. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-8. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A.512个B.256个C.128个D.64个9.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为()A.②④B.③④C.①②D.①③10.在△ABC中,角A,B,C所对的边分别是a,b,c,若﹣+1=0,则角B的度数是()A.60°B.120°C.150°D.60°或120°11.双曲线4x2+ty2﹣4t=0的虚轴长等于()A. B.﹣2t C.D.412.已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题13.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:①在区间(﹣2,1)内f(x)是增函数;②在区间(1,3)内f(x)是减函数;③在x=2时,f(x)取得极大值;④在x=3时,f(x)取得极小值.其中正确的是.14.设函数f(x)=,则f(f(﹣2))的值为.15.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .16.已知线性回归方程=9,则b= .17.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .18.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .三、解答题19.(本小题满分12分)某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率;(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:^121()()()nii i nii uu v v uu β==--=-∑∑,^^a v u β=-.20.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.21.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,直四棱柱木梁的体积为V(单位:m3),侧面积为S(单位:m2).(Ⅰ)分别求V与S关于θ的函数表达式;(Ⅱ)求侧面积S的最大值;(Ⅲ)求θ的值,使体积V最大.22.已知函数f(x)=|x﹣a|.(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.23.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.24.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?富县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:由已知M={x|﹣1<x<1},N={x|x>0},则M∩N={x|0<x<1},故选D.【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,2.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.3.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.4.【答案】C【解析】解:A.在定义域内没有单调性,∴该选项错误;B.时,y=,x=1时,y=0;∴该函数在定义域内不是减函数,∴该选项错误;C .y=﹣x|x|的定义域为R ,且﹣(﹣x )|﹣x|=x|x|=﹣(﹣x|x|); ∴该函数为奇函数;;∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R 上为减函数,∴该选项正确;D.;∵﹣0+1>﹣0﹣1;∴该函数在定义域R 上不是减函数,∴该选项错误. 故选:C .【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.5. 【答案】B【解析】解:∵+(a ﹣4)0有意义,∴,解得2≤a <4或a >4. 故选:B .6. 【答案】B【解析】解:由于函数y=a x (a >0且a ≠1)图象一定过点(0,1),故函数y=a x+2(a >0且a ≠1)图象一定过点(0,3),故选B .【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.7. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .8. 【答案】D【解析】解:经过2个小时,总共分裂了=6次, 则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D .【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.9.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.10.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.11.【答案】C【解析】解:双曲线4x2+ty2﹣4t=0可化为:∴∴双曲线4x2+ty2﹣4t=0的虚轴长等于故选C.12.【答案】A【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.二、填空题13.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.14.【答案】﹣4.【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.15.【答案】﹣1054.【解析】解:∵2a n,a n+1是方程x2﹣3x+b n=0的两根,∴2a n+a n+1=3,2a n a n+1=b n,∵a1=2,∴a2=﹣1,同理可得a3=5,a4=﹣7,a5=17,a6=﹣31.则b5=2×17×(﹣31)=1054.故答案为:﹣1054.【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.16.【答案】4.【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.17.【答案】﹣21.【解析】解:∵等比数列{a n}的公比q=﹣,a6=1,∴a1(﹣)5=1,解得a1=﹣32,∴S6==﹣21故答案为:﹣2118.【答案】.【解析】解:∵a 是甲抛掷一枚骰子得到的点数, ∴试验发生包含的事件数6,∵方程x 2+ax+a=0 有两个不等实根, ∴a 2﹣4a >0,解得a >4, ∵a 是正整数, ∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.三、解答题19.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,24(,)A A ,21(,)A B ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =. (3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到 ^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+,∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同.20.【答案】【解析】解:(Ⅰ)该连锁分店一年的利润L (万元)与售价x 的函数关系式为:L (x )=(x ﹣7)(x ﹣10)2,x ∈[7,9],(Ⅱ)L ′(x )=(x ﹣10)2+2(x ﹣7)(x ﹣10)=3(x ﹣10)(x ﹣8),令L ′(x )=0,得x=8或x=10(舍去), ∵x ∈[7,8],L ′(x )>0,x ∈[8,9],L ′(x )<0, ∴L (x )在x ∈[7,8]上单调递增,在x ∈[8,9]上单调递减,∴L (x )max =L (8)=4;答:每件纪念品的售价为8元,该连锁分店一年的利润L 最大,最大值为4万元.【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题.21.【答案】【解析】解:(Ⅰ)木梁的侧面积S=10(AB+2BC+CD )=10(2+4sin+2cosθ)=20(cosθ+2sin+1),θ∈(0,),梯形ABCD的面积S ABCD=﹣sinθ=sinθcosθ+sinθ,θ∈(0,),体积V(θ)=10(sinθcosθ+sinθ),θ∈(0,);(Ⅱ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cos+1),θ∈(0,),设g(θ)=cos+1,g(θ)=﹣2sin2+2sin+2,∴当sin=,θ∈(0,),即θ=时,木梁的侧面积s最大.所以θ=时,木梁的侧面积s最大为40m2.(Ⅲ)V′(θ)=10(2cos2θ+cosθ﹣1)=10(2cosθ﹣1)(cosθ+1)令V′(θ)=0,得cosθ=,或cosθ=﹣1(舍)∵θ∈(0,),∴θ=.当θ∈(0,)时,<cosθ<1,V′(θ)>0,V(θ)为增函数;当θ∈(,)时,0<cosθ<,V′(θ)>0,V(θ)为减函数.∴当θ=时,体积V最大.22.【答案】【解析】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2,∵f(x)≤2的解集为[0,4],∴,∴a=2.(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,∵∃x0∈R,使得,即成立,∴4m+m2>[f(x)+f(x+5)]min,即4m+m2>5,解得m<﹣5,或m>1,∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞).23.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.24.【答案】【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,(0.0015+0.019)×20+(x﹣140)×0.025=0.5,解得:x=143.6.∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,则ξ~B(3,),∴E(ξ)=.∴最后抢答阶段甲队得分的期望为[]×20=30,∵P(η=0)=,P(η=1)=,P(η=2)=,P(η=3)=,∴Eη=.∴最后抢答阶段乙队得分的期望为[]×20=24.∴120+30>120+24,∴支持票投给甲队.【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.。
2019-2020学年上学期高二数学12月月考试题含解析(1511)
韶山市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值3. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=14. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( )A .),4(+∞B .),4[+∞C .)4,(-∞D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.5. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .36. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( )A .f (a+1)≥f (b+2)B .f (a+1)>f (b+2)C .f (a+1)≤f (b+2)D .f (a+1)<f(b+2)7. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )A .﹣B .C .﹣1D .18. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .9. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .210.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱11.如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A .B .1C .D .12.函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )A .[1,6]B .[﹣3,1]C .[﹣3,6]D .[﹣3,+∞)二、填空题13.已知()212811f x x x -=-+,则函数()f x 的解析式为_________. 14.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .15.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考的好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的两人说对了.16.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是.17.设所有方程可以写成(x﹣1)sinα﹣(y﹣2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是;①直线l的倾斜角为α;②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;③存在定圆C,使得对任意l∈L都有直线l与圆C相交;④任意l1∈L,必存在唯一l2∈L,使得l1∥l2;⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2.18.设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM,其中正确的是(把所有正确的序号都填上).三、解答题19.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O 交于点F,连接CF并延长交AB于点E.(Ⅰ)求证:AE=EB;(Ⅱ)若EF•FC=,求正方形ABCD的面积.20. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.216(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.22.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.23.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.24.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当气温(℃)14 12 8 6用电量(度)22 26 34 38(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.韶山市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.2.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC ⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A ﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选D.3.【答案】C【解析】解:如图,++().故选C.4.【答案】A5.【答案】A【解析】解:∵函数f(x)=,∴f()==﹣2,=f(﹣2)=3﹣2=.故选:A.6.【答案】B【解析】解:∵y=log a|x﹣b|是偶函数∴log a|x﹣b|=log a|﹣x﹣b|∴|x﹣b|=|﹣x﹣b|∴x2﹣2bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=log a|x|当x∈(﹣∞,0)时,由于内层函数是一个减函数,又偶函数y=log a|x﹣b|在区间(﹣∞,0)上递增故外层函数是减函数,故可得0<a<1综上得0<a<1,b=0∴a+1<b+2,而函数f(x)=log a|x﹣b|在(0,+∞)上单调递减∴f(a+1)>f(b+2)故选B.7.【答案】D【解析】解:∵a1=3,a n﹣a n•a n+1=1,∴,得,,a4=3,…∴数列{a n}是以3为周期的周期数列,且a1a2a3=﹣1,∵2016=3×672,∴A2016 =(﹣1)672=1.故选:D.8.【答案】D【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K为垂足,由翻折的特征知,连接D'K,则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK==,取O为AD′的中点,得到△OAK是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.9.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.10.【答案】A 【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 11.【答案】D【解析】解:∵Rt △O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D .12.【答案】C【解析】解:y=x 2﹣4x+1=(x ﹣2)2﹣3 ∴当x=2时,函数取最小值﹣3 当x=5时,函数取最大值6 ∴函数 y=x 2﹣4x+1,x ∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答二、填空题13.【答案】()2245f x x x =-+【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+.考点:函数的解析式.14.【答案】2.【解析】解:设等比数列的公比为q,由S3=a1+3a2,当q=1时,上式显然不成立;当q≠1时,得,即q2﹣3q+2=0,解得:q=2.故答案为:2.【点评】本题考查了等比数列的前n项和,考查了等比数列的通项公式,是基础的计算题.15.【答案】乙,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
韶山市第三中学2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(﹣3)的值为()A.﹣2 B.﹣4 C.0 D.42.设为虚数单位,则()A. B. C. D.3.设a,b∈R且a+b=3,b>0,则当+取得最小值时,实数a的值是()A.B. C.或D.34.设集合M={x|x>1},P={x|x2﹣6x+9=0},则下列关系中正确的是()A.M=P B.P⊊M C.M⊊P D.M∪P=R5.把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=对称,则φ的值为()A.﹣B.﹣C.D.6.下面各组函数中为相同函数的是()A.f(x)=,g(x)=x﹣1 B.f(x)=,g(x)=C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=7.记,那么ABCD8.已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2﹣x)的图象为()A.B.C.D.9.已知集合,,则满足条件的集合的个数为A、B、C、D、10.若函数则函数的零点个数为()A.1 B.2 C.3 D.411.设公差不为零的等差数列的前项和为,若,则()A.B.C.7 D.14【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力. 12.下列命题中正确的是()(A)若为真命题,则为真命题(B )“,”是“”的充分必要条件(C)命题“若,则或”的逆否命题为“若或,则”(D)命题,使得,则,使得二、填空题13.已知直线l过点P(﹣2,﹣2),且与以A(﹣1,1),B(3,0)为端点的线段AB 相交,则直线l的斜率的取值范围是.14.已知数列的首项,其前项和为,且满足,若对,恒成立,则的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.15.在(1+x)(x2+)6的展开式中,x3的系数是.16.若与共线,则y=.17.设所有方程可以写成(x﹣1)sinα﹣(y﹣2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是;①直线l的倾斜角为α;②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;③存在定圆C,使得对任意l∈L都有直线l与圆C相交;④任意l1∈L,必存在唯一l2∈L,使得l1∥l2;⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2.18.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M 点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.三、解答题19.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.20.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.21.已知,其中e是自然常数,a∈R(Ⅰ)讨论a=1时,函数f(x)的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.22.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.23.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.24.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R(1)当a=1,求f(x)的单调区间;(4分)(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.韶山市第三中学2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=﹣x,则f(x)+f(﹣x)=f(0)=0,所以,f(﹣x)=﹣f(x),所以,函数f(x)为奇函数.又f(3)=4,所以,f(﹣3)=﹣f(3)=﹣4,所以,f(0)+f(﹣3)=﹣4.故选:B.【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.2.【答案】C 【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C3.【答案】C【解析】解:∵a+b=3,b>0,∴b=3﹣a>0,∴a<3,且a≠0.①当0<a<3时,+==+=f(a),f′(a)=+=,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f′(a)=﹣=﹣,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C.【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.4.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.5.【答案】B【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,故选:B.6.【答案】D【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;故选:D.【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.7.【答案】B【解析】【解析1】,所以【解析2】,8.【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.9.【答案】D【解析】,.∵,∴可以为,,,.10.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.11.【答案】C.【解析】根据等差数列的性质,,化简得,∴,故选C.12.【答案】D【解析】对选项A,因为为真命题,所以中至少有一个真命题,若一真一假,则为假命题,故选项A错误;对于选项B,的充分必要条件是同号,故选项B错误;命题“若,则或”的逆否命题为“若且,则”,故选项C错误;故选D.二、填空题13.【答案】[,3].【解析】解:直线AP的斜率K==3,直线BP的斜率K′==由图象可知,则直线l的斜率的取值范围是[,3],故答案为:[,3],【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.14.【答案】15.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.16.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.17.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.18.【答案】150【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100m.在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m.在RT△MNA中,AM=100m,∠MAN=60°,由得MN=100×=150m.故答案为:150.三、解答题19.【答案】【解析】证明:(I)在三棱锥A﹣BCD中,E,G分别是AC,BC的中点.所以AB∥EG…因为EG⊂平面EFG,AB⊄平面EFG所以AB∥平面EFG…(II)因为AB⊥平面BCD,CD⊂平面BCD所以AB⊥CD…又BC⊥CD且AB∩BC=B所以CD⊥平面ABC…又E,F分别是AC,AD,的中点所以CD∥EF所以EF⊥平面ABC…又EF⊂平面EFG,所以平面平面EFG⊥平面ABC.…【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键.20.【答案】【解析】解:(Ⅰ)由曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(θ为参数),可得它的普通方程为+y2=1.(Ⅱ)把曲线C1与C2是联立方程组,化简可得5x2﹣8x=0,显然△=64>0,故曲线C1与C2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.21.【答案】【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以f(x)min﹣g(x)max>,所以在(1)的条件下,f(x)>g(x)+.【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..22.【答案】【解析】(1)证明:∵PA为圆O的切线,∴∠PAB=∠ACP,又∠P为公共角,∴△PAB∽△PCA,∴,∴AB•PC=PA•AC.…(2)解:∵PA为圆O的切线,BC是过点O的割线,∴PA2=PB•PC,∴PC=40,BC=30,又∵∠CAB=90°,∴AC2+AB2=BC2=900,又由(1)知,∴AC=12,AB=6,连接EC,则∠CAE=∠EAB,∴△ACE∽△ADB,∴,∴.【点评】本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.23.【答案】【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点∴≤1⇒a2≥1,即a≥1或a≤﹣1,命题p为真命题时,a≥1或a≤﹣1;∵点(a,1)在椭圆内部,∴,命题q为真命题时,﹣2<a<2,由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题即p真q假,则⇒a≥2或a≤﹣2.故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).24.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分),解得x=1或x=,x∈,(1,+∞),f′(x)>0,f (x)是增函数,x∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a<e时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)。