高中数学必修4三角函数的零点问题专练(解析版)
(压轴题)高中数学必修四第一章《三角函数》测试卷(有答案解析)(2)
一、选择题1.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞ B .(4,)+∞ C .(0,2)D .(0,4)2.在平面直角坐标系中,AB 是单位圆上的一段弧(如右图),点P 是圆弧AB 上的动点,角α以Ox 为始边,OP 为终边.以下结论正确的是( )A .tan α<cos α<sin αB .cos α<tan α<sin αC .sin α<cos α<tan αD .以上答案都不对3.函数()()2sin f x x ωϕ=+(0>ω,2πϕ<)的部分图象如图所示,则()fπ=( )A .3B .3C .32D 34.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .455.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称; ③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增. 其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④6.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭7.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向左平移π6个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =对称 D .关于直线π12x =-对称 8.已知()()sin 6f x x a b x ππ⎛⎫=--+ ⎪⎝⎭,若()0f x ≤在[]1,1x ∈-上恒成立,则a b +=( ) A .56B .23C .1D .29.使函数())cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π10.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A .34310- B .34310+ C .43310- D .43310-- 11.设()sin 24f x x π⎛⎫=+⎪⎝⎭,90,8x π⎡⎤∈⎢⎥⎣⎦,若函数()y f x a =-恰好有三个不同的零点,分别为1x 、2x 、()3123x x x x <<,则1232x x x ++的值为( ) A .πB .34π C .32π D .74π 12.当5,2,2παβπ⎛⎫∈ ⎪⎝⎭时,若αβ>,则以下不正确的是( ) A .sin sin tan tan αββα->-B .cos tan cos tan αββα+<+C .sin tan sin tan αββα> D .tan sin tan sin αββα<二、填空题13.2020年是苏颂诞辰1000周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,当点P 从枢轮最高处随枢轮开始转动时,退水壶内水面位于枢轮中心下方1.19米处.此时打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动,则点P 至少经过______分钟(结果取整数)进入水中.(参考数据:cos0.9815π≈,2cos0.9115π≈,cos 0.815π≈)14.函数()2sin(2),0,32f x x x ππ⎡⎤=-∈⎢⎥⎣⎦的单调减区间___________ 15.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.16.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .17.函数(x)Asin(x )f ωϕ=+ (0A >,0>ω,0ϕπ<< )的部分图象如图所示,则4f π⎛⎫= ⎪⎝⎭________.18.若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为212⎡⎤-⎢⎥⎣⎦,,则w 的取值范围是______19.已知函数()2sin()(0)f x x ωϕω=+>满足()24f π=,()0f π=,且()f x 在区间(,)43ππ上单调,则ω的值有_________个.20.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.三、解答题21.广东省清远市美林湖摩天轮是国内最大的屋顶摩天轮,该摩天轮直径为84米,摩天轮的最高点距地面101米,摩天轮匀速转动,每转动一圈需要t 分钟,若小明从摩天轮的最低点处登上摩天轮,从小明登上摩天轮的时刻开始计时.(1)求小明与地面的距离y (米)与时间x (分钟)的函数关系式;(2)在摩天轮转动一圈过程中,小明的高度在距地面80米以上的时间不少于5分钟,求t 的最小值.22.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()gx 的图象,讨论关于x 的方程()3()0f x g x m -⋅-=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.23.已知sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)化简()f α,并求3f π⎛⎫⎪⎝⎭; (2)若tan 2α=,求224sin 3sin cos 5cos αααα--的值;(3)求函数2()2()12g x f x f x π⎛⎫=-++⎪⎝⎭的值域. 24.游客乘坐位于长沙贺龙体育场的摩天轮可近观长沙中心城区城市美景,远眺岳麓山,俯瞰橘子洲,饱览湘江风光.据工作人员介绍,该摩天轮直径约100米,摩天轮的最低处P 与地面的距离为20米,设有60个座舱,游客先乘坐直升电梯到入口(人口在摩天轮距地面的最低处)处等待,当座舱到达最低处P 时有序进入座舱,摩天轮逆时针方向匀速运行一周约需20分钟.以摩天轮的圆心为坐标原点,水平线为x 轴建立如图所示的平面直角坐标系.(1)试将游客甲离地面的距离()h t (单位:米)表示为其坐上摩天轮的时间t (单位:分钟)的函数;(2)若游客乙在甲后的5分钟也在点P 处坐上摩天轮,求在乙坐上摩天轮后的多少分钟时甲乙的离地面距离之差首次达到最大.25.已知函数()sin 2sin 2233f x x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭, (1)求函数()f x 的最小正周期; (2)当π[0,]2x ∈时,(i )求函数()f x 的单调递减区间;(ii )求函数()f x 的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量x 的值.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解2.D解析:D 【分析】根据三者的符号可得sin cos ,sin tan αααα>>,利用作差法可得tan ,cos αα大小关系不确定,从而可得正确的选项. 【详解】由题设可得AB 上的动点P 的坐标为()cos ,sin αα且()()1122cos ,sin ,cos ,sin A B θθθθ,其中122πθαθπ<<<<,12324ππθθπ<<<<, 注意到当13,4παθ⎛⎤∈ ⎥⎝⎦,tan 1α≤-,故按如下分类讨论:若1324ππθα<<≤,则sin 0,cos 1,tan 1ααα>>-≤-, 故sin cos tan ααα>>.若234παθ<≤,则sin 0,cos 0,tan 0ααα><<,且20sin sin θα<≤<所以22221sin sin 1sin sin 12θθαα+-≤+-<,因为234πθπ<<,故20sin 2θ<<,故22211sin sin 12θθ-<+-<, 所以222sin sin 1θθ+-有正有负,所以2sin sin 1αα+-有正有负,而2sin sin 1tan cos cos ααααα+--=,cos 0α<,故tan cos αα-有正有负,故tan ,cos αα大小关系不确定. 故选:D. 【点睛】方法点睛:三角函数式的大小比较,可先依据终边的位置判断出它们的符号,也可以利用作差作商法来讨论,注意根据三角函数值的范围确定代数式的符号.3.A解析:A 【分析】由函数()f x 的部分图像得到函数()f x 的最小正周期,求出ω,代入5,212π⎛⎫⎪⎝⎭求出ϕ值,则函数()f x 的解析式可求,取x π=可得()f π的值.【详解】由图像可得函数()f x 的最小正周期为521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,则22T πω==.又5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则5sin 16⎛⎫+=⎪⎝⎭πϕ, 则5262k ϕπ=π+π+,k Z ∈,则23k πϕπ=-,k Z ∈,22ππϕ-<<,则0k =,3πϕ=-,则()2sin 23f x x π⎛⎫=-⎪⎝⎭, ()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭故选:A. 【点睛】方法点睛:根据三角函数()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.4.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 5.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后 解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈,故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称, 令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确;则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误. 故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 6.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.7.B解析:B 【分析】由相邻两条对称轴之间的距离为2π,可知22T π=,从而可求出2ω=,再由()y f x =的图像向左平移6π个单位后,得到的图象关于y 轴对称,可得sin 13πϕ⎛⎫+=± ⎪⎝⎭,从而可求出ϕ的值,然后逐个分析各个选项即可 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移6π单位后,所得图像对应的解析式为()g x , 则()sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故(0)1g =±, 所以sin 13πϕ⎛⎫+=± ⎪⎝⎭,,32k k Z ππϕπ+=+∈,所以,6k k Z πϕπ=+∈, 因||2ϕπ<,所以6π=ϕ. 又()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,62x k k Z πππ+=+∈,故对称轴为直线,26k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k ππ+=∈Z ,故,212k x k Z ππ=-∈,所以对称中心为,0,212k k Z ππ⎛⎫-∈⎪⎝⎭,所以A 错误,B 正确. 故选:B 【点睛】此题考查了三角函数的图像变换和三角函数的图像和性质,属于基础题.8.A解析:A 【分析】根据题意分析可得当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦,0x a b --≥,从而可得506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解方程即可求解.【详解】当15,66x ⎡⎤∈-⎢⎥⎣⎦,sin 06x ππ⎛⎫+≥ ⎪⎝⎭, 当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,sin 06x ππ⎛⎫+≤ ⎪⎝⎭,, 故当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤时,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,0x a b --≥, 即506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩ ,所以56a b +=. 故选:A 【点睛】本题考查了三角函数的性质、不等式恒成立,考查了基本运算求解能力,属于中档题.9.B解析:B 【解析】1())cos(2)2()cos(2))2sin(2)226f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.10.A【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+ ⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯310-=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.11.C解析:C 【分析】根据三角函数的对称性,先求出函数的对称轴,结合函数与方程的关系转化为两个函数的交点问题,利用数形结合进行求解即可. 【详解】 由()242x k k Z πππ+=+∈,得对称轴()28k x k ππ=+∈Z , 90,8x π⎡⎤∈⎢⎥⎣⎦,由90288k πππ≤+≤,解得124k -≤≤,当0k =时,对称轴8x π=,1k =时,对称轴58x π=. 由()0f x a -=得()f x a =,若函数()y f x a =-恰好有三个不同的零点,等价于函数()y f x =与y a =的图象有三作出函数()f x 的图象如图,得()20f =,则21a ≤<,由图象可知,点()()11,x f x 、()()22,x f x 关于直线8x π=对称,则124x x π+=, 点()()22,x f x 、()()33,x f x 关于直线58x π=对称,则2354x x π+=, 因此,1231223532442x x x x x x x πππ++=+++=+=. 故选:C . 【点睛】关键点点睛:本题考查正弦型函数的零点之和问题的求解,解题的关键就是分析出正弦型函数图象的对称轴,结合对称性求解.12.D解析:D 【分析】对A ,由()sin tan f x x x =+在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对B ,由()cos tan f x x x =-在52,2ππ⎛⎫ ⎪⎝⎭上单调递减可判断;对C ,由()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对D ,由tan ()sin x f x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断. 【详解】A .设()sin tan f x x x =+,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以sin tan sin tan ααββ+>+,所以sin sin tan tan αββα->-,所以A 对,不符合题意;B .设()cos tan f x x x =-,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递减, 因为αβ>,所以()()f f αβ<,所以cos tan cos tan ααββ-<-, 所以cos tan cos tan αββα+<+,所以B 对,不符合题意;C .设()sin tan f x x x =,因为sin ,tan x x 在52,2ππ⎛⎫ ⎪⎝⎭都为正数,且都单调递增,所以()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>, 所以sin tan sin tan ααββ>,所以sin tan sin tan αββα>,所以C 对,不符合题意; D .设tan ()sin x f x x =,则tan 1()sin cos x f x x x ==在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以tan tan sin sin αβαβ>, 所以tan sin tan sin αββα>,所以D 错,符合题意. 故选:D. 【点睛】本题考查利用三角函数的单调性比较大小,解题的关键是恰当构造函数,判断函数的单调性,利用单调性判断大小.二、填空题13.【分析】根据题意作出示意图结合枢纽中心到初始水平面的高度水面下降的高度刚进入水面时枢纽中心到水面的高度这三者间的关系列出关于运动时间的方程结合所给数据分析的取值即可【详解】设至少经过分钟进入水中如下 解析:13【分析】根据题意作出示意图,结合枢纽中心到初始水平面的高度、水面下降的高度、P 刚进入水面时枢纽中心到水面的高度这三者间的关系,列出关于运动时间x 的方程,结合所给数据分析x 的取值即可. 【详解】设至少经过x 分钟,P 进入水中,如下图P '为刚好进入水中的位置,由条件可知: 1.7, 1.19OP OA '==,P 转过的角度为23015x x ππ⋅=,所以15xP OB ππ'∠=-,因为OA AB OB +=,所以1.170.017 1.7cos 15x x ππ⎛⎫+=- ⎪⎝⎭,所以70100cos 15x x ππ⎛⎫+=- ⎪⎝⎭(*),根据所给数据可知:当12x =时,(*)的左边82=,右边81=,此时左边>右边,说明P 还未进入水中,当13x =时,(*)的左边83=,右边91=,此时左边<右边,说明P 已经进入水中, 当14x =时,(*)的左边84=,右边98=,此时左边<右边,说明P 已经进入水中, 由上可知:x 的取值介于12和13之间,又因为x 的结果取整数,所以13x =, 故答案为:13. 【点睛】关键点点睛:解答本题的关键是通过示意图寻找到枢纽中心到水面的高度与水面下降高度之间的等量关系,通过所给的数据去分析方程的解也是很重要的一步.14.【解析】当时由得所以减区间为解析:5,122ππ⎡⎤⎢⎥⎣⎦【解析】当[0,]2x π∈时,ππ2π2[,]333x -∈-,由22233x πππ≤-≤,得5122x ππ≤≤,所以减区间为5[,]122ππ. 15.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.16.【分析】根据扇形的周长求出扇形半径再根据扇形面积公式计算即可【详解】设该扇形的半径为r 根据题意有故答案为【点睛】本题主要考查了扇形的面积公式弧长公式属于中档题解析:916【分析】根据扇形的周长求出扇形半径,再根据扇形面积公式计算即可. 【详解】设该扇形的半径为r ,根据题意,有2l r r α=+,322r r ∴=+,34r ∴=,211992221616S r α∴==⨯⨯=扇形.故答案为916. 【点睛】本题主要考查了扇形的面积公式,弧长公式,属于中档题.17.【分析】观察图象可求得进而可得然后求出的值可得;而后由可求得的值得出最后代值计算即可得解【详解】由图象可知∴∴∴又∴()∴()∵∴∴则故答案为:【点睛】本题重点考查了正弦型三角函数的图象和性质考查逻【分析】观察图象可求得2A =,311341264T πππ=-=,进而可得T π=,然后求出ω的值,可得()()22f x sin x ϕ=+;而后由26f π⎛⎫= ⎪⎝⎭,可求得ϕ的值,得出()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,最后代值计算即可得解. 【详解】由图象可知2A =,311341264T πππ=-=,∴T π=, ∴22πωπ==,∴()()22f x sin x ϕ=+,又26f π⎛⎫= ⎪⎝⎭,∴2262k ππϕπ⨯+=+(k Z ∈), ∴26k πϕπ=+(k Z ∈),∵0ϕπ<<,∴6π=ϕ, ∴()2sin 26f x x π⎛⎫=+⎪⎝⎭,则222cos 4466f sin ππππ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭【点睛】本题重点考查了正弦型三角函数的图象和性质,考查逻辑思维能力和计算能力,属于常考题.18.【分析】先根据题意计算出的范围再根据函数的单调性结合值域列出不等式即可求得【详解】因为且故可得因为在区间单调递减在单调递增且故要满足题意只需解得故答案为:【点睛】本题考查由余弦型函数在区间上的值域求解析:3342⎡⎤⎢⎥⎣⎦,【分析】先根据题意计算出4wx π+的范围,再根据函数的单调性,结合值域,列出不等式,即可求得. 【详解】因为[]0,x π∈,且0w >, 故可得1,444wx w πππ⎡⎤⎛⎫+∈+ ⎪⎢⎥⎝⎭⎣⎦, 因为y cosx =在区间,4ππ⎡⎤⎢⎥⎣⎦单调递减,在7,4ππ⎡⎤⎢⎥⎣⎦单调递增,且7coscos44ππ==,1cos π=-, 故要满足题意,只需1744w πππ⎛⎫≤+≤ ⎪⎝⎭ 解得33,42w ⎡⎤∈⎢⎥⎣⎦. 故答案为:3342⎡⎤⎢⎥⎣⎦,. 【点睛】本题考查由余弦型函数在区间上的值域,求参数范围的问题,属中档题.19.9【分析】由在区间上单调可得故进一步求出范围即可【详解】由知故;又在区间上单调故即18符合条件的的值有9个故答案为:9【点睛】本题考查三角函数的图象与性质考查转化与化归思想考查逻辑推理能力运算求解能解析:9 【分析】 由()f x 在区间(,)43ππ上单调,可得342T ππ-,故6T π,进一步求出ω范围即可. 【详解】由()24f π=,()0f π=知,34244T kT πππ+=-=,k ∈N , 故312T k π=+,2(12)3k ω+=,k ∈N ;又()f x 在区间(,)43ππ上单调,∴342T ππ-,故6T π, ∴212T πω=,即2(12)123k +, ∴172k,k ∈N , 0k ∴=,1,2⋯,8符合条件的ω的值有9个. 故答案为:9. 【点睛】本题考查三角函数的图象与性质,考查转化与化归思想,考查逻辑推理能力、运算求解能力,属中档题.20.【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题三、解答题21.(1)242cos 59y x tπ⎛⎫=-+ ⎪⎝⎭(0x ,t 为参数);(2)15. 【分析】(1)以摩天轮最低点为原点,最低点的切线为x 轴建立直角坐标系,设sin()y A x b ωϕ=++,根据最高点和最低点的距离,求得,A b 的值,进而求得,ωϕ的值,即可求解.(2)由80y ≥,得到21cos 2x t π⎛⎫≤- ⎪⎝⎭,得到2533t t -≥,即可求解.【详解】(1)如图所示,以摩天轮最低点为原点,最低点的切线为x 轴建立直角坐标系, 由题意可设sin()(0,0,0)y A x b A b ωϕω=++>>因为摩天轮的最高点距地面101m ,最低点距地面1018417(m)-=,所以101,17,A b A b +=⎧⎨-+=⎩解得42,59A b ==,又函数周期为t ,可得2t πω=,所以242sin 59(0)y x x t πϕ⎛⎫=++⎪⎝⎭. 又0x =时,17y =,所以21742sin 059t πϕ⎛⎫=⨯++ ⎪⎝⎭,即sin 1,ϕϕ=-可取2π-, 所以2242sin 5942cos 592y x x t tπππ⎛⎫⎛⎫=-+=-+⎪⎪⎝⎭⎝⎭(0x ≥,t 为参数). (2)依题意,可知242cos 5980y x tπ⎛⎫=-+≥ ⎪⎝⎭,即21cos 2x tπ⎛⎫≤- ⎪⎝⎭,不妨取第一圈,可得2242,3333t tx x t πππ≤≤≤≤, 所以持续时间为2533t t-≥,即15t ≥,所以t 的最小值为15.【点睛】三角函数实际应用问题的处理策略: 1、已知函数模型求解数学问题;2、把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题;3、根据实际问题转化为已知条件转化为三角函数的解析式和图象,然后在根据数形结合思想研究三角函数的性质,进而加深理解函数的性质. 22.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312f ππ⎛⎫+ ⎪=- ⎪ ⎪⎝⎭,故5cos 2+112πϕ⎛⎫⨯=- ⎪⎝⎭,所以526k πϕππ+=+即2,6k k Z πϕπ=+∈, 因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x x π=+. (2)()cos(2)cos 266g x x x ππ=-+=,故()()cos(2)26f xg x m x x m π-=+-cos 2cossin 2sin2cos 2666x x x m m x πππ⎛⎫=--=--- ⎪⎝⎭ 故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭图象交点的个数,cos 26y x π⎛⎫=- ⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得: 当1m -=-31m <-<即1m =或31m -<<时,方程有2个不同的解; 当31m -<-≤31m ≤<时,方程有4个不同的解; 当33m <-≤33m ≤<时,方程有3个不同的解; 【点睛】 方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x 做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论. 23.(1)()cos f αα=,π132f ;(2)1;(3)250,8⎡⎤⎢⎥⎣⎦. 【分析】(1)由诱导公式化简可得()cos f αα=,进而可得3f π⎛⎫⎪⎝⎭; (2)由平方关系和商数关系可转化条件为224tan 3tan 5tan 1ααα--+,即可得解; (3)转化条件为()21252sin 48g x x ⎛⎫=--+ ⎪⎝⎭,结合二次函数的性质即可得解. 【详解】(1)由题意可得sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭sin (sin )cos sin tan ααααα-⋅-==⋅, 故1cos 332f ππ⎛⎫==⎪⎝⎭; (2)∵tan 2α=,故224sin 3sin cos 5cos αααα--22224sin 3sin cos 5cos sin cos αααααα--=+224tan 3tan 51tan 1ααα--==+; (3)因为()cos f αα=,所以22()2cos cos 12cos sin 12g x x x x x π⎛⎫=-++=++ ⎪⎝⎭22sin sin 3x x =-++21252sin 48x ⎛⎫=--+⎪⎝⎭, 因为sin [1,1]x ∈-, 所以当1sin 4x =时,max 25()8g x =,当sin 1x =-时,min ()0g x =所以()g x 的值域为250,8⎡⎤⎢⎥⎣⎦. 【点睛】关键点点睛:解决本题的关键是利用诱导公式、同角三角函数的关系对原式进行合理变形. 24.(1)()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭;(2)52分钟. 【分析】(1)根据题意分析游客甲绕原点作匀速圆周运动,根据三角函数定义可把他离地面的距离()h t 表示出来;(2)先求出游客乙离地面距离的函数()g t ,则()()h h t g t =-△即为甲乙的离地面距离之差,利用函数求最值. 【详解】(1)法1:据题意,游客甲绕原点按逆时针方向作角速度为22010ππ=弧度/分钟的匀速圆周运动,设经过t 分钟后甲到达Q ,则以OP 为始边,OQ 为终边的角的大小是10t π, 因为圆的半径为50r =米,由三角函数定义知点Q 的纵坐标为50sin 102y t ππ⎛⎫=-⎪⎝⎭, 则其离地面的距离为:()()205050sin 7050cos 010210h t t t t πππ⎛⎫=++-=-≥⎪⎝⎭. 法2:因为摩天轮是作匀速圆周运动,故可设()()()sin 0,0h t A t b A ωϕω=++>>, 据题意有12050,2070,A b A A b b ⎧+==⎧⇒⎨⎨-+==⎩⎩又周期20T =,所以10πω=,由在最低点入舱得01022πππϕϕ⋅+=-⇒=-,故得()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭. (2)由(1)可知游客乙离地面的距离:()()7050cos 57050sin 1010g t t t ππ⎡⎤=--=-⎢⎥⎣⎦,其中时间t 表示游客甲坐上摩天轮的时间,则甲乙的离地面距离之差为:()()50sin cos 1010104h h t g t t t t ππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭△,当()21042t k k ππππ-=+∈Z ,即()15202t k k =+∈Z 时,甲乙离地面距离之差达到最大,所以152t =,即游客乙坐上摩天轮552t -=分钟后,甲乙的离地面距离之差首次达到最大. 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2) 数学模型(解析式)建立后,不仅要考虑函数本身的定义域,还要结合实际问题确定自变量的取值范围.25.(1)最小正周期为π;(2)(i )ππ[,]122;(ii )当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【分析】(1)利用和差公式展开合并,再利用辅助角公式计算可得()2sin (2+)3f x x π=,可得最小正周期为π;(2)(i )通过换元法令π23t x =+,求出sin y t =的范围,然后再根据sin y t =的单调递减区间求解即可;(ii )根据函数单调性求得最大值,然后计算端点值,比较大小之后可得函数的最小值. 【详解】 解:(1)πππ()=sin(2+)sin(2)2=sin 22=2sin(2+)333f x x x x x x x +-.2π==π2T ,∴()f x 的最小正周期为π.(2)(i )π[0,]2x ∈,∴ππ4π2[,]333t x =+∈,sin y t =,π4π[,]33t ∈的单调递减区间是π4π[,]23t ∈,且由ππ4π2233x ≤+≤,得ππ122x ≤≤, 所以函数()f x 的单调递减区间为ππ[,]122. (ii )由(i )知,()f x 在ππ[,]122上单调递减,在π[0,]12上单调递增.且π(0)=2sin 3f =ππ()=2sin 2122f =,π4π()=2sin 23f =所以,当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【点睛】思路点睛:(1)关于三角函数解析式化简问题,首先利用和差公式或者诱导公式展开合并化为同角,然后再利用降幂公式进行降次,最后需要运用辅助角公式进行合一化简运算;(2)三角函数的单调区间以及最值求解,需要利用整体法计算,可通过换元利用sin y t =的单调区间以及最值求解. 26.(1) 2.5sin()56y x π=+;(2)该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【分析】(1)由表格中数据可得, 2.5,5,12A B T ===,26T ππω==,取3x =代入可得2,k k Z ϕπ=∈,则解析式可得;(2)由(1)得计算2.5sin()5 6.256x π+≥解x 范围即可得结果.【详解】解:(1)由表格中数据可得, 2.5,5,12A B T ===. 因为0>ω,所以22126T πππω===. 因为3x =时y 取得最大值,所以32,62k k Z ππϕπ⨯+=+∈,解得2,k k Z ϕπ=∈.所以这个函数解析式为 2.5sin()56y x π=+(2)因为货船的吃水深度为5米,安全间隙至少要有1.25米, 所以2.5sin()5 6.256x π+≥,即1sin()562x π+≥, 所以522,666m x m m N πππππ+≤≤+∈,解得112512,m x m m N +≤≤+∈.取0,1,m m ==得15,1317x x ≤≤≤≤.答:该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.。
(好题)高中数学必修四第一章《三角函数》检测卷(含答案解析)(2)
一、选择题1.在平面直角坐标系中,AB 是单位圆上的一段弧(如右图),点P 是圆弧AB 上的动点,角α以Ox 为始边,OP 为终边.以下结论正确的是( )A .tan α<cos α<sin αB .cos α<tan α<sin αC .sin α<cos α<tan αD .以上答案都不对2.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称; ③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增;④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增.其中,正确判断的序号是( ) A .②③ B .①②C .②④D .③④3.已知点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴.若()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,则ϕ=( ) A .6πB .3π C .23π D .56π 4.设函数()cos 23f x x π⎛⎫=+⎪⎝⎭,则下列结论错误的是( ) A .()f x 的一个对称中心为5,012π⎛⎫-⎪⎝⎭B .()f x 的图象关于直线116x π=对称 C .()f x π+的一个零点为12x π=D .()f x 在5,36ππ⎛⎫⎪⎝⎭单调递减5.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 6.函数()3sin 22xf x x =-的部分图象大致为( ) A . B .C .D .7.设()sin 24f x x π⎛⎫=+⎪⎝⎭,90,8x π⎡⎤∈⎢⎥⎣⎦,若函数()y f x a =-恰好有三个不同的零点,分别为1x 、2x 、()3123x x x x <<,则1232x x x ++的值为( )A .πB .34π C .32π D .74π 8.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =9.:sin 3cos 1p x x +>的一个充分不必要条件是( ) A .02x π<<B .203x π<<C .32x ππ-<<D .566x ππ<<10.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为( )A .12πB .6πC .3π D .18π 11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度C .向左平移3π个单位长度 D .向左平移4π个单位长度 12.已知函数()()()()2sin 0,0,f x x ωϕωϕπ=+>∈的部分图像如图所示,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变),所得图像对应的函数()g x 解析式为( )A .()2sin 46g x x π⎛⎫=+ ⎪⎝⎭B .()2sin 43g x x π⎛⎫=+ ⎪⎝⎭C .()2sin 23g x x π⎛⎫=+⎪⎝⎭D .()2sin 3g x x π⎛⎫=+⎪⎝⎭二、填空题13.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______. 14.函数f (x )=A sin(ωx +φ)(00)2A πωϕ>><,,的部分图象如图所示,则f (0)的值为___________.15.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____.16.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.17.已知函数()sin 2sin 23f x x x π⎛⎫=++⎪⎝⎭,将其图象向左平移(0)ϕϕ>个单位长度后,得到的图象为偶函数,则ϕ的最小值是_______18.设函数()y f x =的定义域为D ,若对任意的1x ∈D ,总存在2x ∈D ,使得()()121f x f x ⋅=,则称函数()f x 具有性质M .下列结论:①函数3y x x =-具有性质M ; ②函数35x x y =+具有性质M ;③若函数()[]8log 2,0,y x x t =+∈具有性质M ,则510t =; ④若3sin y x a =+具有性质M ,则5a =. 其中正确结论的序号是____________.19.若函数()f x 是定义域为R 的奇函数,且()1f x -为偶函数,当[]0,1x ∈时,()2f x x =,则292f ⎛⎫= ⎪⎝⎭______.20.已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是____. 三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式; (2)当113,33x ⎡⎤∈-⎢⎥⎣⎦时,试由实数m 的取值讨论函数()()2g x f x m =-的零点个数. 22.已知函数()sin()2cos(2)f x a x x θθ=+++,其中a R ∈,,22ππθ⎛⎫∈- ⎪⎝⎭.(1)当0a =,6πθ=时,求()f x 在区间[]0,π上的值域;(2)若关于θ的方程()0fπ=有两个不同的实数解,求a 的取值范围.23.函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间,并求()f x 取最小值时的自变量x 的集合. 24.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为()g x ,若不等式()0g x m -≤在[]0,6x ∈恒成立,求实数m 的取值范围. 25.已知函数1()sin 2126f x x a π⎛⎫=+++ ⎪⎝⎭(其中a 为常数). (1)求()f x 的单调减区间; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2,求a 的值. 26.已知函数()2sin(2)f x x ϕ=+. (1)当,0,62x ππϕ⎡⎤=∈⎢⎥⎣⎦时,求()f x 的值域和单调减区间; (2)若()f x 关于3x π=对称,且(0,)ϕπ∈,求ϕ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三者的符号可得sin cos ,sin tan αααα>>,利用作差法可得tan ,cos αα大小关系不确定,从而可得正确的选项. 【详解】由题设可得AB 上的动点P 的坐标为()cos ,sin αα且()()1122cos ,sin ,cos ,sin A B θθθθ,其中122πθαθπ<<<<,12324ππθθπ<<<<, 注意到当13,4παθ⎛⎤∈ ⎥⎝⎦,tan 1α≤-,故按如下分类讨论: 若1324ππθα<<≤,则sin 0,cos 1,tan 1ααα>>-≤-, 故sin cos tan ααα>>.若234παθ<≤,则sin 0,cos 0,tan 0ααα><<,且20sin sin 2θα<≤<所以2222sin sin 1sin sin 1θθαα+-≤+-<,因为234πθπ<<,故20sin 2θ<<,故22211sin sin 12θθ-<+-<, 所以222sin sin 1θθ+-有正有负,所以2sin sin 1αα+-有正有负,而2sin sin 1tan cos cos ααααα+--=,cos 0α<,故tan cos αα-有正有负,故tan ,cos αα大小关系不确定. 故选:D. 【点睛】方法点睛:三角函数式的大小比较,可先依据终边的位置判断出它们的符号,也可以利用作差作商法来讨论,注意根据三角函数值的范围确定代数式的符号.2.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+⎪⎝⎭的图象平移变换的性质可知: 将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈, 故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称, 令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确; 则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误.故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 3.B解析:B 【分析】 先由点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴,求出ω的范围,再由()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调求出φ. 【详解】 由题意得:62484T πππ-=≥, 得1248ππω⨯≤,所以ω4≥. 又()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,所以3662T πππ-=≤,得1226ππω⨯≥,所以ω6≤ 所以ω=4或5或6.当ω=4时, ()()cos 4f x x ϕ=+,有cos 402424460f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩解得3πϕ=.当ω=5时, ()()cos 4f x x ϕ=+,有cos 502424560f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.当ω=6时, ()()cos 4f x x ϕ=+,有cos 602424660f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.综上: 3πϕ=.故选:B 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;(3)求φ通常利用函数上的点带入即可求解.4.D解析:D 【分析】选项A 由()f x 的对称中心满足2,32x k k Z πππ+=+∈可判断;选项B ()f x 的对称轴满足:2,3x k k Z πππ+=+∈可判断;选项C 令12x π=,求得()cos02f x π==,可判断;选项D 由()f x 的增区间满足222,3k x k k Z ππππ-≤+≤∈可判断.【详解】由函数()cos 23f x x π⎛⎫=+⎪⎝⎭, 选项A. ()f x 的对称中心满足2,32x k k Z πππ+=+∈则1,212x k k Z ππ=+∈,当1k =-时,512x π=-,所以5,012π⎛⎫-⎪⎝⎭为()f x 的一个对称中心,故A 正确; 选项B :()f x 的对称轴满足:2,3x k k Z πππ+=+∈即11,23x k k Z ππ=+∈,当3k =时,116x π=,故B 正确;选项C : ()()cos 2cos 233x x x f ππππ⎡⎤⎛⎫=+++=+ ⎪⎢⎥⎣⎦⎝⎭令12x π=,得ππcos 0122f π⎛⎫+== ⎪⎝⎭,故C 正确; 选项D :由()f x 的增区间满足222,3k x k k Z ππππ-≤+≤∈2,36k x k k Z ππππ-≤≤-∈, 当1k =时,536x ππ≤≤,所以()f x 在5,36ππ⎛⎫⎪⎝⎭单调递增,故D 错误, 故选:D . 【点睛】关键点睛:本题考查三角函数的单调性、对称性和零点问题,解答本题的关键是将23x π+看成一个整体,令2,32x k k Z πππ+=+∈;2,3x k k Z πππ+=+∈和222,3k x k k Z ππππ-≤+≤∈,得出答案,属于中档题.5.C解析:C 【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫=⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+= ⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z , 所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z .【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.6.A解析:A 【分析】求得函数()y f x =的定义域,分析函数()y f x =的奇偶性,结合2f π⎛⎫⎪⎝⎭的值以及排除法可得出合适的选项. 【详解】 对于函数()3sin 22xf x x =-,20x -≠,得2x ≠±,所以,函数()y f x =的定义域为{}2x x ≠±.()()()sin 2sin 222x xf x f x x x --==-=----,函数()y f x =为奇函数,图象关于原点对称,排除B 、D 选项;又02f ⎛⎫= ⎪⎝⎭π,排除C 选项. 故选:A. 【点睛】本题考查利用函数的解析式选择图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.7.C解析:C 【分析】根据三角函数的对称性,先求出函数的对称轴,结合函数与方程的关系转化为两个函数的交点问题,利用数形结合进行求解即可. 【详解】 由()242x k k Z πππ+=+∈,得对称轴()28k x k ππ=+∈Z , 90,8x π⎡⎤∈⎢⎥⎣⎦,由90288k πππ≤+≤,解得124k -≤≤,当0k =时,对称轴8x π=,1k =时,对称轴58x π=. 由()0f x a -=得()f x a =,若函数()y f x a =-恰好有三个不同的零点,等价于函数()y f x =与y a =的图象有三作出函数()f x 的图象如图,得()20f =,则21a ≤<,由图象可知,点()()11,x f x 、()()22,x f x 关于直线8x π=对称,则124x x π+=, 点()()22,x f x 、()()33,x f x 关于直线58x π=对称,则2354x x π+=, 因此,1231223532442x x x x x x x πππ++=+++=+=. 故选:C . 【点睛】关键点点睛:本题考查正弦型函数的零点之和问题的求解,解题的关键就是分析出正弦型函数图象的对称轴,结合对称性求解.8.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性;(4)从图象的特殊点,排除不合要求的解析式..9.A解析:A 【分析】首先求解命题p 表示的集合,再根据集合关系表示充分不必要条件,判断选项. 【详解】:sin 2sin 13p x x x π⎛⎫+=+> ⎪⎝⎭,即1sin 32x π⎛⎫+> ⎪⎝⎭,解得:522,636k x k k Z πππππ+<+<+∈, 得22,62k x k k Z ππππ-+<<+∈,设22,62M x k x k k Z ππππ⎧⎫=-+<<+∈⎨⎬⎩⎭经分析,只有选项A 的集合是集合M 的真子集, 故选:A 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.10.D解析:D 【分析】由题先求出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,可得3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要满足题意,则332ππθ+≥,即可求出.【详解】将()f x 横坐标缩短为原来的13得到3sin(3)2y x =--,再向右平移29π个单位得到()23sin 323sin 3293g x x x ππ⎡⎤⎛⎫⎛⎫---=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=,,18x πθ⎡⎤∈-⎢⎥⎣⎦,则3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要使()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则332ππθ+≥,即18πθ≥,则θ的最小值为18π. 故选:D. 【点睛】本题考查正弦型函数的性质,解题的关键是通过图象变化得出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,再根据正弦函数的性质求解.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.B解析:B 【分析】由32341234T πππ⎛⎫=--= ⎪⎝⎭可求出T π=,进而可得2ω=,令 ()22122k k Z ππϕπ⨯+=+∈结合()0,ϕπ∈即可求得ϕ的值,再根据三角函数图象的伸缩变换即可求()g x 的解析式. 【详解】由图知32934123124T ππππ⎛⎫=--== ⎪⎝⎭, 所以T π=,可得2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+, 令()22122k k Z ππϕπ⨯+=+∈,所以()23k k Z πϕπ=+∈,因为()0,ϕπ∈,所以令0k =,可得3πϕ=,所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变), 可得()2sin 43g x x π⎛⎫=+ ⎪⎝⎭, 故选:B二、填空题13.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈,令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.14.【分析】由图可得的周期振幅即可得再将代入可解得进一步求得解析式及【详解】由图可得所以即又即又故所以故答案为:【点睛】本题考查由图象求解析式及函数值考查学生识图计算等能力是一道中档题解析: 【分析】由图可得()f x 的周期、振幅,即可得,A ω,再将(,0)6π代入可解得ϕ,进一步求得解析式及()0f . 【详解】由图可得2A =,1()46124T πππ=--=,所以2T ππω==,即2ω=,又()06f π=,即2sin(2)06πϕ⨯+=,,3k k Z πϕπ+=∈,又||2ϕπ<,故3πϕ=-,所以()sin()f x x π=-223,(0)2sin()3f π=-=故答案为:. 【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.15.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称, ∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.16.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应 解析:2114【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ ==6xRQ RQD π∠=∠=3tan336DR DQ π∴=⋅=⨯= 223,23,12921PR DP PQ PD PQ ∴===+=+=由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则33sin 212sin 21PR PRQPQR PQ⋅⋅∠∠===21【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.17.【分析】先利用两角和的正弦公式化简的解析式然后再利用图象平移变换的规律求平移后的解析式最后由奇偶性可得的最小值【详解】将其图象向左平移个单位长度后得的图象由图象为偶函数图象可得所以令得故答案为:【点 解析:6π【分析】先利用两角和的正弦公式化简()f x 的解析式,然后再利用图象平移变换的规律求平移后的解析式,最后由奇偶性可得ϕ的最小值. 【详解】13()sin 2sin 2sin 2sin 2232f x x x x x x π⎛⎫=++=++ ⎪⎝⎭33sin 2cos 23sin 2226x x x π⎛⎫=+=+ ⎪⎝⎭ ,将其图象向左平移(0)ϕϕ>个单位长度后,得()22266y x xππϕϕ⎡⎤⎛⎫=++=++⎪⎢⎥⎣⎦⎝⎭的图象,由图象为偶函数图象可得262kππϕπ+=+()k Z∈所以62kϕππ=+()k Z∈令0k=,得6π=ϕ.故答案为:6π【点睛】本题主要考查了三角函数图象的平移变换,以及三角函数的奇偶性,属于中档题. 18.②③【分析】根据函数性质的定义结合每个选项中具体函数的定义即可判断【详解】①当时显然不存在是的故①错误;②是单调增函数其值域为对任意的总存在使得故②正确;③函数在上是单调增函数其值域为要使得其具有性解析:②③【分析】根据函数性质M的定义,结合每个选项中具体函数的定义,即可判断.【详解】①当10x=时,显然不存在2x,是的()()121f x f x=,故①错误;②35x xy=+是单调增函数,其值域为()0,∞+,对任意的1x∈D,总存在2x∈D,使得()()121f x f x⋅=,故②正确;③函数()8log2y x=+在[]0,t上是单调增函数,其值域为()88log2,log2t⎡⎤+⎣⎦要使得其具有M性质,则88881log2log(2)1log(2)log2tt⎧≤⎪+⎪⎨⎪+≤⎪⎩,即()88log2log21t⨯+=,解得()328t+=,故510t=.故③正确;④若函数3y sinx a=+具有性质M,一方面函数值不可能为零,也即30sinx a+≠对任意的x恒成立,解得3a>或3a<-,在此条件下,另一方面,13ysinx a=+的值域是3y sinx a=+值域的子集.3y sinx a =+的值域为[]3,3a a -+,13y sinx a =+的值域为11,33a a ⎡⎤⎢⎥+-⎣⎦要满足题意,只需113,333a a a a ≥-≤++-,解得291a -=,故a =.故④错误. 综上所述,正确的是②③. 故答案为:②③ 【点睛】本题考查函数新定义问题,涉及正弦函数值域的求解,对数函数值域的求解,属综合中档题.19.【分析】利用已知条件得到函数的周期再利用奇偶性结合周期性将给定值转换到给定区间求得结果即可【详解】∵是定义域为的奇函数且为偶函数∴即∴则即函数是以4为周期的周期函数又∵当时∴故答案为:【点睛】本题主解析:14- 【分析】利用已知条件得到函数的周期,再利用奇偶性结合周期性将给定值转换到给定区间,求得结果即可. 【详解】∵()f x 是定义域为R 的奇函数,且()1f x -为偶函数, ∴()()()111f x f x f x -=--=-+,即()()2=-+f x f x , ∴()()2f x f x +=-,则()()()42f x f x f x +=-+=, 即函数()f x 是以4为周期的周期函数, 又∵当[]0,1x ∈时,()2f x x =,∴295112224f f f ⎛⎫⎛⎫⎛⎫==-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:14-. 【点睛】本题主要考查函数的奇偶性的应用,涉及函数的周期性,求出函数的周期是解题的关键,属于中档题.20.【分析】利用任意性与存在性原命题可转化为有且仅有一个解然后根据三角函数的性质和图像求解即可【详解】由则存在唯一的实数使即有且仅有一个解作函数图像与直线当两个图像只有一个交点时由图可知故实数的最大值是解析:34π 【分析】 利用任意性与存在性原命题可转化为()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,然后根据三角函数的性质和图像求解即可. 【详解】由()sin f x x =,(,)46αππ∈--,则()21,22f α⎛⎫∈-- ⎪ ⎪⎝⎭,存在唯一的实数(0,)m β∈,使()()0f f αβ+=, 即()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,作函数图像()y f β=与直线12,2y k k ⎛=∈ ⎝⎭,当两个图像只有一个交点时,由图可知,344m ππ<≤, 故实数m 的最大值是34π. 故答案为:34π 【点睛】本题主要考查了三角函数的图像与性质,属于较为基础题.三、解答题21.(1)()2sin 412f x x ππ⎛⎫=- ⎪⎝⎭;(2)答案见解析. 【分析】(1)结合“五点法”求函数解析式:最大值确定A ,由周期确定ω,由最高点坐标确定ϕ.(2)确定113,33x ⎡⎤∈-⎢⎥⎣⎦时()f x 的图象与性质,由2y m =与()y f x =的交点个数确定m 的范围. 【详解】解:(1)由图可知2A =. 函数()f x 最小正周期1374833T ⎛⎫=⨯-= ⎪⎝⎭,则28πω=.4πω∴=.又772sin 2312f πϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,则72122k ππϕπ+=+,Z k ∈. 212k πϕπ∴=-+,Z k ∈.又2πϕ<,12πϕ∴=-.∴函数()f x 的解析式为()2sin 412f x x ππ⎛⎫=- ⎪⎝⎭.(2)由题意,()()2g x f x m =-在113,33⎡⎤-⎢⎥⎣⎦内的零点个数即函数()y f x =与2y m =的图象在113,33x ⎡⎤∈-⎢⎥⎣⎦时公共点的个数. 由(1),知()2sin 412f x x ππ⎛⎫=-⎪⎝⎭,113,33x ⎡⎤∈-⎢⎥⎣⎦. 113f ⎛⎫-=- ⎪⎝⎭,723f ⎛⎫= ⎪⎝⎭,1303f ⎛⎫= ⎪⎝⎭, 由图,知函数()f x 在区间17,33⎛⎫- ⎪⎝⎭上单调递增,在区间713,33⎛⎫ ⎪⎝⎭上单调递减.(i )当12m <-或1m 时, ()y f x =与2y m =的图象在113,33x ⎡⎤∈-⎢⎥⎣⎦时没有公共点,(ii )当102m -≤<或1m =时, ()y f x =与2y m =的图象在113,33x ⎡⎤∈-⎢⎥⎣⎦时恰有一个公共点;(iii )当01m ≤<时,()y f x =与2y m =的图象在113,33x ⎡⎤∈-⎢⎥⎣⎦时恰有两个公共点.综上可知,当12m <-或1m 时,函数()g x 的零点个数为0; 当102m -≤<或1m =时,函数()g x 的零点个数为1; 当01m ≤<时,函数()g x 的零点个数为2. 【点睛】关键点点睛:本题考查求三角函数的解析式,考查真分数零点个数问题.解题关键是转化,函数零点个数转化为函数图象与直线的交点个数,基本方法是利用函数的性质,确定函数图象与直线交点个数得出参数范围. 22.(1)[]2,1-;(2)22a -<<. 【分析】 (1) 0a =,6πθ=代入化简函数得()2cos 3f x x π⎛⎫=+⎪⎝⎭,根据余弦函数的值域可求得答案;(2) 将问题等价于24sin sin 20a θθ--=关于θ有两个不同的解,sin t θ=换元后由一元二次方程的根的分布建立不等式组可求得a 的取值范围. 【详解】(1)当0a =,6πθ=时,()2cos 3f x x π⎛⎫=+ ⎪⎝⎭在20,3π⎡⎤⎢⎥⎣⎦上单调递减,在2π,π3上单调递增,∴min 2()()23f x f π==-,max ()(0)1f x f ==, ∴()f x 的值域为[]2,1-.(2)由sin()2cos(2)0a πθπθ+++=,得sin 2cos20a θθ--=, ∴24sin sin 20a θθ--=关于θ有两个不同的实数解, 设sin t θ=,∵,22ππθ⎛⎫∈-⎪⎝⎭,∴()1,1t ∈-. ∴2420t at --=在()1,1t ∈-有两个不同的实数解,记2()42g t t at =--,则2320118(1)420(1)420a a g a g a ⎧∆=+>⎪⎪-<<⎪⎨⎪-=+->⎪=-->⎪⎩解得:22a -<<. 【点睛】关键点点睛: 24sin sin 20a θθ--=关于θ有两个不同的实数解换元后可得2420t at --=在()1,1t ∈-有两个不同的实数解,结合二次函数2()42g t t at =--图象和性质列出不等式组求解,转化思想的应用是解题的关键. 23.(1)()22sin 23f x x π⎛⎫=+⎪⎝⎭;(2)递增区间为7,,1212ππππ⎡⎤-+-+∈⎢⎥⎣⎦k k k Z ,x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【分析】(1)先求出2A =,根据图形得出周期,可求出2ω=,再代入,06π⎛⎫⎪⎝⎭可求出ϕ;(2)令2222,232k x k k Z πππππ-+≤+≤+∈可求出增区间,当2322,32x k k Z πππ+=+∈时可得最小值. 【详解】(1)由图可知,2A =, 46124T πππ⎛⎫=--= ⎪⎝⎭,即T π=,22πωπ∴==, 则()()2sin 2f x x ϕ=+,2sin 2066f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即,3k k Z πϕπ+=∈,则,3k k Z πϕπ=-∈,0πϕ<<,23πϕ∴=, ()22sin 23f x x π⎛⎫∴=+⎪⎝⎭; (2)令2222,232k x k k Z πππππ-+≤+≤+∈,解得27,121ππππ-+≤≤-+∈k x k k Z , 故()f x 的单调递增区间为7,,1212ππππ⎡⎤-+-+∈⎢⎥⎣⎦k k k Z ,当2322,32x k k Z πππ+=+∈,即25,1ππ=+∈x k k Z 时,()f x 取得最小值为2-, 此时x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ;(2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ. 24.(1)()2cos 44f x x ππ⎛⎫=+ ⎪⎝⎭;(2)[)2,+∞.【分析】(1)由图象得出函数()f x 的最小正周期,可求得ω的值,再将点()1,0的坐标代入函数()f x 的解析式,结合ϕ的取值范围可求得ϕ的值,由此可得出函数()f x 的解析式;(2)利用三角函数图象变换求得()2cos 84g x x ππ⎛⎫=-⎪⎝⎭,由已知可得()max m g x ≥,利用余弦函数的基本性质求出函数()g x 在区间[]0,6上的最大值,进而可得出实数m 的取值范围. 【详解】(1)()f x 的周期为()2518T =⨯-=,所以284ππω==, 又因为函数()f x 的图象过点()1,0,则有2cos 04πϕ⎛⎫+= ⎪⎝⎭,且函数()f x 在1x =附近单调递减, 所以()242k k Z ππϕπ+=+∈,所以()24k k Z πϕπ=+∈,又因为0ϕπ<<,所以4πϕ=,所以()2cos 44f x x ππ⎛⎫=+⎪⎝⎭;(2)将函数()2cos 44f x x ππ⎛⎫=+⎪⎝⎭图象上每个点的横坐标变为原来的2倍,得函数2cos 84y x ππ⎛⎫=+ ⎪⎝⎭的图象,再将2cos 84y x ππ⎛⎫=+⎪⎝⎭的图象向右平移4个单位长度, 得()()2cos 42cos 8484g x x x ππππ⎡⎤⎛⎫=-+=- ⎪⎢⎥⎣⎦⎝⎭, 不等式()0g x m -≤在[]0,6x ∈恒成立,即()max g x m ≤, 因为[]0,6x ∈,所以,8442x ππππ⎡⎤-∈-⎢⎥⎣⎦, 所以当084x ππ-=,即2x =时,()g x 取最大值,最大值为2,即2m ≥.综上可得,实数m s 的取值范围实数[)2,+∞.【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或()()cos f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值. 25.(1)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)54. 【分析】(1)采用整体替换的方法令3222,262k x k k Z πππππ+≤+≤+∈,由此求解出x 的取值范围即为对应的单调递减区间; (2)先分析26x π+这个整体的范围,然后根据正弦函数的单调性求解出sin 26x的最小值,即可确定出()f x 的最小值,从而a 的值可求. 【详解】 (1)令3222,262k x k k Z πππππ+≤+≤+∈,所以2,63k x k k Z ππππ+≤≤+∈, 所以()f x 的单调递减区间为:2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦x ,令72,666t x πππ⎡⎤=+∈⎢⎥⎣⎦, 又因为sin y t =在,62ππ⎡⎫⎪⎢⎣⎭上递增,在7,26ππ⎛⎤⎥⎝⎦上递减,且171sin ,sin 6262ππ==-,所以sin y t =的最小值为12-,所以min 1sin 262x π⎡⎤⎛⎫+=- ⎪⎢⎥⎝⎭⎣⎦,此时2x π=, 所以()min111222f x a ⎛⎫=⨯-++= ⎪⎝⎭,所以54a =. 【点睛】思路点睛:求解形如sin ωφf x A x B 的函数的单调递减区间的步骤如下:(1)先令32,2+,22x k k k Z ππππωϕ⎡⎤+∈⎢⎥⎣⎦+∈; (2)解上述不等式求解出x 的取值范围即为()f x 对应的单调递减区间.26.(1)()f x 的值域为[]1,2-,单调减区间为62ππ⎡⎤⎢⎥⎣⎦, ;(2)56πϕ=【分析】(1)由条件可得72666x πππ⎡⎤+∈⎢⎥⎣⎦,,则1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,可得值域,由3222,262k x k k Z πππππ+≤+≤+∈可得答案. (2)由()f x 关于3x π=对称,则2,32k k Z ππϕπ+=+∈⨯可得答案.【详解】 (1)当6π=ϕ时,()2sin(2)6f x x π=+ 当0,2x π⎡⎤∈⎢⎥⎣⎦时,72666x πππ⎡⎤+∈⎢⎥⎣⎦,,则1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以[]()1,2f x ∈- 由3222,262k x k k Z πππππ+≤+≤+∈ 4222,33k x k k Z ππππ+≤≤+∈ 所以2,63k x k k Z ππππ+≤≤+∈ 由0,2x π⎡⎤∈⎢⎥⎣⎦,则0k =时,263x ππ⎡⎤∈⎢⎥⎣⎦,,即此时减区间为62ππ⎡⎤⎢⎥⎣⎦, 所以当,0,62x ππϕ⎡⎤=∈⎢⎥⎣⎦时,()f x 的值域为[]1,2-,单调减区间为62ππ⎡⎤⎢⎥⎣⎦,; (2)由()f x 关于3x π=对称,则2,32k k Z ππϕπ+=+∈⨯即,6k k Z πϕπ=-∈,又(0,)ϕπ∈,所以56πϕ=【点睛】关键点睛:本题考查三角函数的值域、单调性和对称性等性质,解答本题的关键是由72666x πππ⎡⎤+∈⎢⎥⎣⎦,,得出1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,,根据()f x 关于3x π=对称,得到2,32k k Z ππϕπ+=+∈⨯,属于中档题.。
(易错题)高中数学必修四第一章《三角函数》测试(含答案解析)(5)
一、选择题1.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的个数是( ) ①()f x 的最小值为2-; ②点,012π⎛⎫⎪⎝⎭是()f x 的图象的一个对称中心; ③()f x 的最小正周期为π; ④()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. A .1B .2C .3D .42.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=-- D .()sin(2)13g x x π=-+3.函数()()2sin f x x ωϕ=+(0>ω,2πϕ<)的部分图象如图所示,则()fπ=( )A .3B .3C 3D 34.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到 5.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.我国著名数学家华罗庚先生曾倡导“0.618优选法”,0.618是被公认为最具有审美意义的比例数字,我们称为黄金分割.“0.618优选法”在生产和科研实践中得到了非常广泛的应用,华先生认为底与腰之比为黄金分割比51510.61822⎛⎫≈ ⎪ ⎪⎝⎭的黄金三角形是“最美三角形”,即顶角为36°的等腰三角形.例如,中国国旗上的五角星就是由五个“最美三角形”与一个正五边形组成的.如图,在其中一个黄金ABC 中,黄金分割比为BCAC.试根据以上信息,计算sin18︒=( )A 51- B 51- C 51+ D 357.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A wt =.音有四要素:音调、响度、音长和音色,它们都与函数sin y A wt =中的参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖利.像我们平时听到乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音函数是111sin sin 2sin 3sin 4234y x x x x =++++.结合上述材料及所学知识,你认为下列说法中正确的有( ).A .函数1111sin sin 2sin3sin 4sin100234100y x x x x x =+++++不具有奇偶性; B .函数111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增; C .若某声音甲对应函数近似为111()sin sin 2sin3sin 4234f x x x x x =+++,则声音甲的响度一定比纯音1()sin 22h x x =响度大; D .若某声音甲对应函数近似为1()sin sin 22g x x x =+,则声音甲一定比纯音1()sin33h x x =更低沉.8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=- 9.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+. 同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭10.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④11.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫= ⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ=12.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .13二、填空题13.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<)的部分图象如图所示.则函数()y f x =的解析式为________.14.已知函数()f x 的定义域为R ,且()2()f x f x π+=,当[0,)x π∈时,()sin f x x =.若存在0(,]x m ∈-∞,使得0()43f x ≥m 的取值范围为________.15.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______. 16.函数f (x )=A sin(ωx +φ)(00)2A πωϕ>><,,的部分图象如图所示,则f (0)的值为___________.17.若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为212⎡-⎢⎣⎦,,则w 的取值范围是______18.已知函数()2sin()(0)f x x ωϕω=+>满足()24f π=,()0f π=,且()f x 在区间(,)43ππ上单调,则ω的值有_________个.19.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增;③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围.22.已知函数2()1ax bf x x +=+是定义在R 上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)若存在实数θ,使得不等式()2(sin 2)2sin 10f f t θθ-+++<成立,求正实数t的取值范围.23.已知函数()sin()f x x ωϕ=+,其中π0,(0,)2ωϕ>∈.从条件①、条件②、条件③这三个条件中选择两个作为已知条件,求: (Ⅰ)()f x 的单调递增区间; (Ⅱ)()f x 在区间[0,]2π的最大值和最小值.条件①:函数()f x 最小正周期为π; 条件②:函数()f x 图象关于点π(,0)6-对称; 条件③: 函数()f x 图象关于π12x =对称. 24.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式; (2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若函数()g x 在[]0,m 上单调递增,当实数m 取最大值时,求函数()f x 在[]0,m 上的最大值. 25.已知函数()3π2sin 24⎛⎫=+⎪⎝⎭f x x ,R x ∈.(1)求函数()f x 的最小正周期T 及()f x 的图象的对称轴;(2)完成表格,并在给定的坐标系中,用五点法作出函数()f x 在一个周期内的图象.x3π24u x =+()f x26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出()min f x 可判断①的正误;利用正弦型函数的对称性可判断②的正误;求出()f x 的最小正周期可判断③的正误;利用正弦型函数的单调性可判断④的正误. 【详解】 对于①,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,()()min 212f x ∴=⨯-=-,①正确;对于②,2sin 22sin 20121232f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以,点,012π⎛⎫⎪⎝⎭不是()f x 的图象的一个对称中心,②错误; 对于③,函数()f x 的最小正周期为22T ππ==,③正确; 对于④,当,06x π⎛⎫∈- ⎪⎝⎭时,2666x πππ-<+<,所以,函数()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. ④正确.因此,正确命题的序号为①③④. 故选:C. 【点睛】关键点点睛:对于正弦型函数基本性质的判断问题,一般将函数解析式化为()sin y A x b ωϕ=++或()cos y A x b ωϕ=++,将x ωϕ+视为一个整体,利用正弦函数或余弦函数的基本性质来求解.2.D解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.3.A解析:A 【分析】由函数()f x 的部分图像得到函数()f x 的最小正周期,求出ω,代入5,212π⎛⎫⎪⎝⎭求出ϕ值,则函数()f x 的解析式可求,取x π=可得()f π的值.【详解】由图像可得函数()f x 的最小正周期为521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,则22T πω==.又5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则5sin 16⎛⎫+= ⎪⎝⎭πϕ,则5262k ϕπ=π+π+,k Z ∈,则23k πϕπ=-,k Z ∈,22ππϕ-<<,则0k =,3πϕ=-,则()2sin 23f x x π⎛⎫=- ⎪⎝⎭,()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭故选:A. 【点睛】方法点睛:根据三角函数()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.4.B解析:B利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.5.B【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B 【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.B解析:B 【分析】先由ABC 是一个顶角为36°的等腰三角形,作其底边上的高,再利用sin18sin DAC ︒=∠,结合腰和底之比求其结果即可.【详解】依题意可知,黄金ABC 是一个顶角为36°的等腰三角形,如图,51,BC AB AC AC -==,36BAC ∠=︒,过A 作AD BC ⊥于D ,则AD 也是三角形的中线和角平分线,故11112sin18sin 224BCDC DAC AC AC ︒=∠===⋅=. 故选:B. 【点睛】本题解题关键在于读懂题意,将问题提取出来,变成简单的几何问题,即突破结果.7.B解析:B 【分析】A.结合奇偶性的定义判断即可B.用正弦型函数的单调性作出判断 CD 可取特值说明 【详解】 A. ()1111sin sin 2sin 3sin 4sin100234100f x x x x x x =+++++()()()()()()()1111sin sin 2sin 3sin 4sin 100234100f x x x x x x f x -=-+-+-+-++-=-,()f x 为奇函数B. ,1616x ππ⎡⎤∈-⎢⎥⎣⎦时,2,88x ππ⎡⎤∈-⎢⎥⎣⎦,333,1616x ππ⎡⎤∈-⎢⎥⎣⎦,4,44x ππ⎡⎤∈-⎢⎥⎣⎦,故sin ,sin 2,sin 3,sin 4x x x x 在,1616ππ⎡⎤-⎢⎥⎣⎦上均为增函数故111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增. C. ()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 4034g f h ππππππ=-=++=故声音甲的响度不一定比纯音1()sin 22h x x =响度大 D. ()11()()sin sin 2sin 323h x g x h x x x x =-=+- ()11()()sin sin 2sin 3023h g h ππππππ=-=+-=甲不一定比纯音1()sin33h x x =更低沉 故选:B【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.B解析:B 【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭, 故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D .因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍;故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.10.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.11.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫- ⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 084f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.12.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.二、填空题13.【分析】由最值求得由周期求得由最高点的坐标求得【详解】由题意所以又所以所以故答案为:【点睛】方法点睛:由函数图象确定三角函数的解析式主要参考正弦函数图象中五点法由最大值和最小值确定由周期确定利用点的解析:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 【分析】由最值求得A ,由周期求得ω,由最高点的坐标求得ϕ. 【详解】由题意2A =,4312T πππ⎛⎫=⨯-= ⎪⎝⎭,所以22πωπ==, 2sin 2212πϕ⎛⎫⨯+= ⎪⎝⎭,2,62k k Z ππϕπ+=+∈,又2πϕ<,所以3πϕ=.所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭. 故答案为:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 【点睛】方法点睛:由函数图象确定三角函数的解析式,主要参考正弦函数图象中“五点法”,由最大值和最小值确定A ,由周期确定ω,利用点的坐标确定ϕ,这样可得出表达式()sin()f x A x ωϕ=+.14.【分析】由f (x+)=2f (x )得f (x )=2f (x ﹣)分段求解析式结合图象可得m 的取值范围【详解】解:∵∴∵当时∴当时当时当时作出函数的图象:令解得:或若存在使得则故答案为:【点睛】本题考查函数与解析:10[,)3π+∞ 【分析】由f (x +π)=2f (x ),得f (x )=2f (x ﹣π),分段求解析式,结合图象可得m 的取值范围. 【详解】解:∵()()2f x f x π+=,∴()()2f x f x π=-,∵当0,x 时,()sin f x x =.∴当[),2x ππ∈时,()()2sin f x x π=-.当[)2,3x ππ∈时,()()4sin 2f x x π=-.当[)3,4x ππ∈时,()()8sin 3f x x π=-.作出函数的图象:令()8sin 343x π-=103x π=,或113π, 若存在(]0,x m ∈-∞,使得()043f x ≥,则103m π≥, 故答案为:10[,)3π+∞ 【点睛】本题考查函数与方程的综合运用,训练了函数解析式的求解及常用方法,考查数形结合的解题思想方法,属中档题.15.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴,故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.【分析】由图可得的周期振幅即可得再将代入可解得进一步求得解析式及【详解】由图可得所以即又即又故所以故答案为:【点睛】本题考查由图象求解析式及函数值考查学生识图计算等能力是一道中档题解析: 【分析】由图可得()f x 的周期、振幅,即可得,A ω,再将(,0)6π代入可解得ϕ,进一步求得解析式及()0f . 【详解】由图可得2A =,1()46124T πππ=--=,所以2T ππω==,即2ω=,又()06f π=,即2sin(2)06πϕ⨯+=,,3k k Z πϕπ+=∈,又||2ϕπ<,故3πϕ=-,所以()sin()f x x π=-223,(0)2sin()3f π=-=故答案为:. 【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.17.【分析】先根据题意计算出的范围再根据函数的单调性结合值域列出不等式即可求得【详解】因为且故可得因为在区间单调递减在单调递增且故要满足题意只需解得故答案为:【点睛】本题考查由余弦型函数在区间上的值域求解析:3342⎡⎤⎢⎥⎣⎦,【分析】先根据题意计算出4wx π+的范围,再根据函数的单调性,结合值域,列出不等式,即可求得. 【详解】因为[]0,x π∈,且0w >, 故可得1,444wx w πππ⎡⎤⎛⎫+∈+ ⎪⎢⎥⎝⎭⎣⎦, 因为y cosx =在区间,4ππ⎡⎤⎢⎥⎣⎦单调递减,在7,4ππ⎡⎤⎢⎥⎣⎦单调递增,且7coscos424ππ==,1cos π=-, 故要满足题意,只需1744w πππ⎛⎫≤+≤ ⎪⎝⎭ 解得33,42w ⎡⎤∈⎢⎥⎣⎦. 故答案为:3342⎡⎤⎢⎥⎣⎦,.【点睛】本题考查由余弦型函数在区间上的值域,求参数范围的问题,属中档题.18.9【分析】由在区间上单调可得故进一步求出范围即可【详解】由知故;又在区间上单调故即18符合条件的的值有9个故答案为:9【点睛】本题考查三角函数的图象与性质考查转化与化归思想考查逻辑推理能力运算求解能解析:9 【分析】 由()f x 在区间(,)43ππ上单调,可得342T ππ-,故6T π,进一步求出ω范围即可. 【详解】由()24f π=,()0f π=知,34244T kT πππ+=-=,k ∈N , 故312T k π=+,2(12)3k ω+=,k ∈N ; 又()f x 在区间(,)43ππ上单调,∴342T ππ-,故6T π, ∴212T πω=,即2(12)123k +,∴172k,k ∈N , 0k ∴=,1,2⋯,8符合条件的ω的值有9个. 故答案为:9. 【点睛】本题考查三角函数的图象与性质,考查转化与化归思想,考查逻辑推理能力、运算求解能力,属中档题.19.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩,根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.20.①③【分析】分别利用余弦函数的对称性正切函数的单调性正弦定理三角函数图象变换等知识对各个命题判断【详解】①令是函数的一个对称中心①正确;②若它们为第一象限角且但②错;③在中内角所对的边分别为若∵∴∴解析:①③ 【分析】分别利用余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识对各个命题判断. 【详解】 ①,令55()4cos()4cos()012632f ππππ-=-+=-=,5,012π⎛⎫- ⎪⎝⎭是函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心,①正确;②若136απ=,3πβ=,它们为第一象限角,且αβ>,但tan tan αβ=<=②错;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,sin sin 2sin 251a BA b==︒<,∵b a <,∴B A <,∴A 可能为锐角,也可能为钝角,则ABC ∆有两解,③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)42y x x ππ=+=+的图象,④错. 故答案为:①③. 【点睛】本题考查命题的真假判断,掌握三角函数的图象与性质是解题关键.本题需要掌握余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识,属于中档题.三、解答题21.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论;(2)由,04x π⎛⎫∈-⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围.【详解】(1)对于函数()1tan ln1tan x f x x -=+,有1tan 01tan xx->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数; (2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x ex x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x xa x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 22.(1)2()1xf x x=+;(2)(0,)+∞. 【分析】(1)由已知条件建立不等式组,解之可得函数的解析式;(2)先由函数的单调性证明函数()f x 在(1,)+∞上单调递减,再由函数的单调性和奇偶性求解不等式可得22sin 12sin t θθ++>-,运用二次函数的最值可得范围. 【详解】(1)因为函数2()1ax bf x x +=+是定义在R 上的奇函数,且1225f ⎛⎫= ⎪⎝⎭, 所以()001225f f ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,即2201+01+22511+2ba b ⎧=⎪⎪⎪⎨=⎪⎪⎛⎫ ⎪⎪⎝⎭⎩,解得01b a =⎧⎨=⎩,所以2()1x f x x =+, (2)设12x x <,由(1)得()()()()()12121212222212121()1111x x x x x x f x f x x x x x ---=-=++++, 所以当121x x <<时,221212120101>01>0x x x x x x -<-<++,,,,所以()12()>0f x f x -,所以()f x 在(1,)+∞上单调递减,又()2(sin 2)2sin10f f t θθ-+++<等价于()22sin 1(2sin )f t f θθ++<-,22sin 11t θ++>,2sin 1θ-≥,22sin 12sin t θθ∴++>-,即2212sin sin +12sin +9+84t θθθ⎛⎫>--=- ⎪⎝⎭,又1sin 1θ-≤≤,()2min2sin sin 12t θθ∴>--+=-,(0,)t ∴∈+∞.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.23.答案见解析. 【分析】若选择条件①②,(Ⅰ)根据最小正周期求出ω,根据对称中心求出ϕ,根据正弦函数的单调递增区间可求出函数()f x 的单调区间;(Ⅱ)根据正弦函数的图象可求得结果. 若选择条件①③,(Ⅰ)根据最小正周期求出ω,根据对称轴求出ϕ,根据正弦函数的单调递增区间可求出函数()f x 的单调区间;(Ⅱ)根据正弦函数的图象可求得结果.若选择②③,不能确定函数最小正周期,无法确定ω,所以无法确定函数解析式.【详解】若选择条件①②,(Ⅰ)由函数()f x 最小正周期2π=πT ω=,得2ω=.因为()f x 图象关于点π(,0)6-对称,所以πsin[2()]06ϕ⨯-+=, 所以3k πϕπ-=,k Z ∈,所以3k πϕπ=+,k Z ∈,又已知π(0,)2ϕ∈,故π3ϕ=. 因此π()sin(2)3f x x =+. πππ2π22π,232k x k k -+≤+≤+∈Z 由,解得5,1212k x k ππππ-+≤≤+k Z ∈. 所以()f x 的单调递增区间为5ππ[π,π]()1212k k k -++∈Z . (Ⅱ)因为02x π≤≤,所以ππ4π2333x ≤+≤.当ππ2=32x +,即π12x =时,()f x 取得最大值1;当π4π2=33x +,即π2x =时,()f x 取得最小值.若选择条件①③,(Ⅰ)由函数()f x 最小正周期2π=πT ω=,得2ω=. 又函数()f x 图象关于π12x =对称,所以有πsin(2)112ϕ⨯+=±,所以62k ππϕπ+=+,k Z ∈,即3k πϕπ=+,k Z ∈,又已知π(0,)2ϕ∈,故π3ϕ=. 因此π()sin(2)3f x x =+. πππ2π22π,232k x k k -+≤+≤+∈Z 由,解得5,1212k x k ππππ-+≤≤+k Z ∈. 所以()f x 的单调递增区间为5ππ[π,π]()1212k k k -++∈Z . (Ⅱ)因为02x π≤≤,所以ππ4π2333x ≤+≤.当ππ2=32x +,即π12x =时,()f x 取得最大值1;当π4π2=33x +,即π2x =时,()f x 取得最小值.若选择②③,不能确定函数最小正周期,无法确定ω,所以无法确定函数解析式.【点睛】关键点点睛:根据函数性质确定函数解析式是解题关键.24.(1) ())3f x x π=+;【分析】(1)根据函数()f x 的部分图象可得A 及周期T ,再根据周期公式可求出ω,由五点法作图的第三个点可求出ϕ的值,从而可得函数()f x 的解析式;(2)根据平移变换和伸缩变换的规律,可求出()g x 的解析式,再根据函数()g x 在[]0,m 上单调递增,可求出m 的最大值,再根据正弦函数的图象与性质,即可求出函数()f x 在[0,]m 上的最大值.【详解】(1)由已知可得A =52()63πT ππ=-=,所以22=πωT =,所以())f x x ϕ=+,根据五点法作图可得23πϕπ⨯+=,所以=3πϕ,所以())3f x x π=+(2) 将函数()f x 的图象向右平移3π个单位长度,可得22333πππy x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()43g x x π⎛⎫=- ⎪⎝⎭的图象,因为函数()g x 在[]0,m 上单调递增,所以432m ππ-≤,所以524m π≤,m 的最大值为524π,由50,24x π⎡⎤∈⎢⎥⎣⎦,可得32,334x πππ⎡⎤+∈⎢⎥⎣⎦,所以当2=32x +ππ时,()f x .故函数()f x 在[]0,m . 【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤:(1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口. 25.(1)最小正周期为π,对称性ππ28k x =-,Z k ∈;(2)答案见解析. 【分析】(1)利用函数siny A =()x ωϕ+的周期性和对称性,求得()f x 的最小正周期和对称轴.(2)利用五点法作图,结合题意即可列表,进而作出函数的一个周期内的图象. 【详解】解:(1)∵()3π2sin 24⎛⎫=+⎪⎝⎭f x x ,故它的最小正周期为2ππ2=, 令3ππ2π42x k +=+,Z k ∈, ππ28k x =-,Z k ∈(2)由题意可得表格如下:x38π-8π-8π 38π 58π 3π24u x =+0 2π π32π 2π()f x22-【点睛】本题考查求正弦型函数的周期与对称性,考查“五点法”画图,掌握正弦函数的性质是解题。
(word完整版)高中数学必修4三角函数综合测试题和答案解析详细讲解
必修4三角函数综合测试题及答案详解一、选择题1 •下列说法中,正确的是()A. 第二象限的角是钝角B. 第三象限的角必大于第二象限的角C. —831 °是第二象限角D. —95° 20', 984° 40', 264° 40'是终边相同的角a n2.若点(a, 9)在函数y = 3x的图象上,贝U tang的值为()A. 0B. -3 C . 1 D. 33g3 .若|cos g | = cos g , |tan g | = —tan B ,则㊁的终边在()A. 第一、三象限B. 第二、四象限C•第一、三象限或x轴上D.第二、四象限或x轴上4 .如果函数f(x)= sin(n x + B )(0< B <2n )的最小正周期是T,且当x = 2时取得最大值,那么()A. T= 2, n 十g= ~ B . T= 1, g = nC. T= 2,n g = n D . T= 1, g=5 .若sin—x =—于,且n<xv2n,则x 等于()4 A.§n7 B・6nc.)小11 D.§n6 .已知a是实数,而函数f (x)= 1 + asin ax的图象不可能是()7.将函数y = sin x的图象向左平移© (0 < © <2n )个单位长度后,得到yn=sin x-~6的图象,贝U ©=( )7n 11 n8.若tan 9 = 2,则2sin B —cosBsin 9 + 2cos 9的值为(A. 0B. 1D.5tan x9.函数f(x)= 的奇偶性是()1 + cosx ' /A. 奇函数B. 偶函数C•既是奇函数又是偶函数D.既不是奇函数也不是偶函数10.函数f(x) = x —cosx 在(0,+x)内()A.没有零点B•有且仅有一个零点C. 有且仅有两个零点D. 有无穷多个零点11 _ cosA = n 贝U igsin A 的值是( B. m- n 1D ・2(m- n)n12. 函数f (x) = 3sin 2x -空 的图象为C,n 5 n② 函数f (x )在区间—12,刁2内是增函数;n③由y 二3sin2x 的图象向右平移 ㊁个单位长度可以得到图象C,其中正确命 题的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)- n 1 n ,13. ___________________________________________________ 已知 sin a +~2 = 3, a € —-^, 0,则 tan a = ________________________________ .14. 函数y = 3cosx(0 <x <n )的图象与直线y = — 3及y 轴围成的图形的面 积为 ________ .15 .已知函数f (x) = sin( 3x + © )( 3 >0)的图象如图所示,贝U 3 =16. 给出下列命题:① 函数y = cos / +专 是奇函数;11.已知 A 为锐角,lg(1 + cosA) = m ig 1A. RH-①图象C 关于直线x =11n 12 对称;②存在实数x,使sinx + cosx = 2;③若a , B是第一象限角且a <B ,贝U tan a <tan B ;④ X = nn 是函数y = sin 2X + 5n 的一条对称轴;nn⑤ 函数y = sin 2X + -3的图象关于点12, 0成中心对称.其中正确命题的序号为 __________ . 三、解答题17. (10 分)已知方程 sin( a -3n ) = 2cos( a -4n ),n 32sinn —a 3n+ 5cos 2 n — a的18.a — sin(12 分)在^ ABC 中, sin A + cosA = _22求tan A 的值.19. (12 分)已知f(x)= sin 2X+6 + 2, x€ R.(1) 求函数f(x)的最小正周期;(2) 求函数f(x)的单调减区间;(3) 函数f (x)的图象可以由函数y= sin2x(x € R的图象经过怎样变换得到?n20. (12 分)已知函数y = Asi n( ”+© )( A>0, co >0)的图象过点P^, 0 ,n图象与P点最近的一个最高点坐标为nn, 5 .(1)求函数解析式;⑵求函数的最大值,并写出相应的x的值;(3)求使y W0时,x的取值范围.21. (12 分)已知cos nn —a = 2cos 3 n+B , 3sin —an=—• 2s in — + B,且0< a <n, 0< B <n,求a , B 的值.22. (12 分)已知函数f(x) = x2+ 2xtan 9 —1, x € [—1, 3],其中n n-T , y.n(1)当9 =——时,求函数的最大值和最小值;⑵求9的取值范围,使y = f(x)在区间[—1, .3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).必修4三角函数综合测试题答案可知 COS aM 0. sin a + 5cos a•原式—一2C0S a + Sin a—2cos a + 5cos a 3COS a——2cos a — 2cos a — — 4COS a — x/2 18 .解 I sin A + cosA =-^,①1两边平方,得2sinAcosA = — 2,n 从而知 cosAvO,'./ A € —, n••• si nA — cosA = ,: sin A + cosA 2— 4s in AcosA 由①②,得 sinA -cosA — — 6+,2,sin A厂、 选择题1. D;2.;3. D;4. A ;5.6.D 7. D ;8.C ; 9.A ; 10.11. D; 12. C二_ 填空题13. —2.2 1 4. 33n; 15.2;三、 解答题17. 解 T sin( a — 3 n ) — 2cos( a — 4• — sin(3 n 一 a ) — 2cos(4 n —a•• — sin( n- —a)—2cos( — a ).①④3 4. BB 16.n )• • sin a —•tanA二cosA—2- 3.小n21.解cos ——a = 2cos 3n+ B ,即sin a = 2sin B ①3sin 3n— a=—2sin ,即,3cos a = 2cos B ②22 2 2n19. 解(1)T=_y 二n.n n 3 n(2)由2k n + — <2x + — <2 k 冗+, k € Z,n , 2 n ,得k n + x < k n + , k € Z.6 3所以所求的单调减区间为, n , 2 nk 冗+石,k n+~^(k€ Z).n3⑶把y二sin2x的图象上所有点向左平移厉个单位,再向上平移3个单位,即得n3函数f (x) = sin 2x +石+ 2的图象.T n n n20. 解(1)由题意知4="3—12="4,••• T=n.2 n . n /口n —"•①=~T = 2,由3 • 12+ © = 0,得© = —"6,又A= 5,n•y = 5sin 2x —百.n n⑵函数的最大值为5,此时2x —石=2k n+ y(k € Z).・ n .•x = k n+"3(k € Z).n ■n . .(3) - 5sin 2x —< 0,・• 2k n — n<2 x —<2 k n( k € Z)., 5 n , n ,• k n-在 < x< k n+/(k € Z).9=-_6 时, 2 2 ; 3 , 3 2 4 =x -亍-1= x -§ - v x € [ - 1, .3],二当 x = f 时,f(x)的最小值为一3 ,⑵f (x) = (x + tan 9 )2-1-tan 2 9是关于x 的二次函数.它的图象的对称轴为x =—tan 9 .又 v a € (0 ,n ) , — a n、 =N , 或 a 3 =—n 4n ■n f, 当 a ==时,COS a 4€ (0 ,n ), 5 n ,宀「 :B = -y.综上, ~6,或a 3n , 5 n B =〒 22. f(x) 当x =- 1时,f(x)的最大值为 2,3 3 . ¥,COS ⑵ cos B COS a =当v y= f(x)在区间[-1, 3]上是单调函数,/• —tan 9 <—1,或一tan 9 > _ 3,即卩tan 9 > 1,或tan 9<-,3.nnn,二9的取值范围是n n 2,一3。
(好题)高中数学必修四第一章《三角函数》测试题(有答案解析)
一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( ) A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π33.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3D 34.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( ) A .,33x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66x k x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣5.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭ C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间 D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m 6.设函数()3cos22sin cos f x x x x =+,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③7.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-8.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591699.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于010.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解11.若函数)22()sin 2cos sin f x x x x =-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数 D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.关于1()sin sin f x x x=-,有如下四个结论: ①()f x 是奇函数. ②()f x 图像关于y 轴对称.③2x π=是()f x 的一条对称轴.④()f x 有最大值和最小值. 其中说法正确的序号是________. 14.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________.15.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.16.如图,以正方形的各边为底可向外作四个腰长为1的等腰三角形,则阴影部分面积的最大值是___________.17.sin 75=______.18.已知函数()()()sin 0,πf x x ωϕωϕ=+><的图像如图所示,则ϕ=__________.19.关于函数()()4sin 23f x x x R π⎛⎫=+∈ ⎪⎝⎭,有下列命题: ①函数()y f x =的表达式可以改写为4cos 26y x π⎛⎫=- ⎪⎝⎭; ②函数()y f x =是以2π为最小正周期的周期函数; ③函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称; ④函数()y f x =的图象关于直线6x π=-对称.其中正确的序号是______.20.如图是函数()2sin(),(0,)2f x x πωφωφ=+><的图象上的一段,则ω=_________φ =____三、解答题21.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若yg x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.22.在①()f x 的图象关于直线3x π=对称,②()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,③()f x 的图象上最高点中,有一个点的横坐标为6π这三个条件中任选一个,补充在下面问题中,并解答.问题:已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭的振幅为2,初相为3π,最小正周期不小于...π,且______. (1)求()f x 的解析式;(2)求()f x 在区间[],0π-上的最大值和最小值以及取得最大值和最小值时自变量x 的值.注:如果选择多个条件分别解答,按第一个解答计分. 23.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R . (1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.24.已知函数()()sin f x A x ωϕ=+(0A >,0>ω,02πϕ<<)的部分图象如图所示,其中最高点以及与x 轴的一个交点的坐标分别为,16π⎛⎫⎪⎝⎭,5,012π⎛⎫ ⎪⎝⎭.(1)求()f x 的解析式;(2)设M ,N 为函数y t =的图象与()f x 的图象的两个交点(点M 在点N 左侧),且3MN π=,求t 的值.25.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: 时刻 0:00 1:00 2:00 3:00 4:00 5:00 水深 5.000 6.250 7.165 7.500 7.165 6.250 时刻 6:00 7:00 8:00 9:00 10:00 11:00 水深 5.000 3.754 2.835 2.500 2.835 3.754 时刻 12:00 13:00 14:00 15:00 16:00 17:00 水深 5.000 6.250 7.165 7.500 7.165 6.250 时刻 18:00 19:00 20:00 21:00 22:00 23:00 水深5.0003.7542.8352.5002.8353.754(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解.【详解】令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.3.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.4.D解析:D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点,所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数, 可得02sin 13x ≤+≤,解得:1sin 12x -≤≤, 由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤.5.B解析:B 【分析】先建立坐标系,从点0P 开始计时,建立三角函数模型()0sin h A t b ωϕ=++,通过题中条件求出参数0,,,A b ωϕ,再利用函数解析式对选项依次判断正误即可. 【详解】以水面所在直线为t 轴,过O 作OO t '⊥轴,建立坐标系如图:设点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为()0sin h A t b ωϕ=++.依题意可知, 2.4OO '=, 2.41sin 4.82OPO '∠==,6OPO π'∠=. 高度h 最大值为2.4 4.87.2+=,最小值为2.4 4.8 2.4-=-,故()()7.2 2.47.2 2.44.8, 2.422A b --+-====,周期60T =s ,则230T ππω==, 0t =时,06πϕ=-,故函数解析式为 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭,故B 正确;点P 到达最高点时 4.8sin 2.47.2306h t ππ⎛⎫=-+= ⎪⎝⎭,即sin 1306t ππ⎛⎫-= ⎪⎝⎭,故2,3062t k k Z ππππ-=+∈,即2060,t k k Z =+∈,又0t ≥,故第一次到达最高点时,0,20k t ==s ,故A 错误;在筒车转动的一圈内,点P 距离水面的高度不低于4.8m ,即4.8sin 2.4 4.8306h t ππ⎛⎫=-+≥ ⎪⎝⎭,得1sin 3062t ππ⎛⎫-≥ ⎪⎝⎭,故563066t ππππ≤-≤,解得1030t ≤≤,故共有20 s 时间,C 错误;当筒车转动50s 时,即50t =代入 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭得,34.8sin 50 2.4 4.8sin 2.4 2.43062h πππ⎛⎫=⨯-+=+=- ⎪⎝⎭,故点P 在水面下方,距离水面2.4m ,故D 错误. 故选:B. 【点睛】 关键点点睛:本题解题关键在于按照题意,建立三角函数模型()0sin h A t b ωϕ=++,并解出解析式,才能解决选项中的实际问题,突破难点.6.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+,即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确; 令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度, 得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣ 即平移后得到函数()y f x =的图象,故④正确.所以所有正确结论的编号是:①②④.故选:C.【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.7.D解析:D【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果.【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯=⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,,||,02k πϕ<∴=,6πϕ∴=-, 故选:D.【点睛】 本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.8.B解析:B【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解.【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.9.D解析:D【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫ ⎪⎝⎭和23f π⎛⎫ ⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
北师大版高中数学必修4第一章三角函数训练题(含详细答案)
高中数学《必修四》三角函数训练题一、选择题(本大题共10小题,每小题3分,共30分)1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.集合M ={x |x =42ππ±k ,k ∈Z }与N ={x |x =4πk ,k ∈Z }之间的关系是( ) A.M N B.N MC.M =ND.M ∩N=∅4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( )A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( )A.52B.-52C.51D.-51 6.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于( )A.-23 B.23 C.21 D.±237.已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin2 9.如果sin x +cos x =51,且0<x <π,那么cot x 的值是( )A.-34 B.-34或-43 C.-43 D.34或-43 10.已知①1+cos α-sin β+sin αsin β=0,②1-cos α-cos β+sin αcos β=0.则sinα的值为( )A.3101- B.351- C.212- D.221-二、填空题(本大题共4小题,每小题4分,共16分)11.tan300°+cot765°的值是_______.12.已知tan α=3,则sin 2α-3sin αcos α+4cos 2α的值是______.13.若扇形的中心角为3π,则扇形的内切圆的面积与扇形面积之比为______. 14.若θ满足cos θ>-21,则角θ的取值集合是______.三、解答题(本题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=42x , 求sin α与tan α的值.17.(本小题满分12分)已知sin α是方程5x 2-7x -6=0的根,求)(cos )2cos()2cos()2(tan )23sin()23sin(22απαπαπαπαππα-⋅+⋅--⋅-⋅--的值.已知sin α+cos α=-553,且|sin α|>|cos α|,求cos 3α-sin 3α的值.19.(本小题满分12分) 已知sin(5π-α)=2 cos(27π+β)和3cos(-α)=- 2cos(π+β), 且0<α<π,0<β<π,求α和β的值.三角函数训练题(2)参考答案:1.解析:“钝角”用集合表示为{α|90°<α<180°},令集合为A ;“第二象限角”用集合表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z },令集合为B .显然A B . 答案:B 2.解析:由sin αcos α<0知sin α与cos α异号;当cos α-sin α<0,知sin α>cos α.故sin α>0,cos α<0.∴α在第二象限.答案:B3.解法一:通过对k 的取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π²(2k ±1),k ∈Z },而2k ±1为奇数,∴M N . 答案:A4.解析:787°=2³360°+67°,-957°=-3³360°+123°. -289°=-1³360°+71°,1711°=4³360°+271°. ∴在第一象限的角是(1)、(3). 答案:C5.解析:∵r=a a a 5)4()3(22-=+-.α为第四象限.∴53cos ,54sin ==-==r x r y αα.故sin α+2cos α=52. 答案:A6.解析:∵cos(π+α)=-21,∴cos α=21,又∵23π<α<2π. ∴sin α=-23cos 12-=-α.故sin(2π-α)=-sin α=23. 答案:B7.答案:D8.解析:∵圆的半径r =1sin 2,α=2 ∴弧度l=r ²α=1sin 2. 答案:B9.分析:若把sin x 、cos x 看成两个未知数,仅有sin x +cos x =51是不够的,还要利用sin 2x +cos 2x =1这一恒等式.解析:∵0<x <π,且2sin x cos x =(sin x +cos x )2-1=-2524. ∴cos x <0.故sin x -cos x =57cos sin 4)cos (sin 2=-+x x x x ,结合sin x +cos x =51,可得sin x =54,cos x =-53,故co t x =-43. 答案:C10.分析:已知条件复杂,但所求很简单,由方程思想,只要由①、②中消去β即可.解析:由已知可得:sin β=ααsin 1cos 1-+,cos β=ααsin 1cos 1--.以上两式平方相加得:2(1+cos 2α)=1-2sin α+sin 2α. 即:3sin 2α-2sin α-3=0.故sin α=3101-或sin α=3101+ (舍). 答案:A11.解析:原式=tan(360°-60°)+cot (2³360°+45°)=-tan60°+cot45°=1-3.答案:1-312.分析:将条件式化为含sin α和cos α的式子,或者将待求式化为仅含tan α的式子.解法一:由tan α=3得sin α=3cos α,∴1-cos 2α=9cos 2α.∴cos 2α=101. 故原式=(1-cos 2α)-9cos 2α+4cos 2α=1-6cos 2α=52. 解法二:∵sin 2α+cos 2α=1.∴原式=52194991tan 4tan 3tan cos sin cos 4cos sin 3sin 222222=++-=++-=++-ααααααααα 答案:5213.分析:扇形的内切圆是指与扇形的两条半径及弧均相切的圆. 解析:设扇形的圆半径为R ,其内切圆的半径为r ,则由扇形中心角为3π知:2r +r =R ,即R =3r .∴S 扇=21αR 2=6πR 2,S 圆=9πR 2.故S 扇∶S 圆=23. 答案:23 14.分析:对于简单的三角不等式,用三角函数线写出它们的解集,是一种直观有效的方法.其过程是:一定终边,二定区域;三写表达式.解析:先作出余弦线OM =-21,过M 作垂直于x 轴的直线交单位圆于P 1、P 2两点,则OP 1、OP 2是cos θ=21时θ的终边.要cos θ>-21,M 点该沿x 轴向哪个方向移动?这是确定区域的关键.当M 点向右移动最后到达单位圆与x 轴正向的交点时,OP 1、OP 2也随之运动,它们扫过的区域就是角θ终边所在区域.从而可写出角θ的集合是{θ|2k π-32π<θ<2k π+32π,k ∈Z }. 答案:{θ|2k π-32π<θ<2k π+32π,k ∈Z }15.解:设扇形的中心角为α,半径为r ,面积为S ,弧长为l,则:l+2r =C ,即l=C -2r .∴16)4()2(212122C C r r r C lr S +--=⋅-==.故当r =4C 时,S max =162C ,此时:α=.2422=-=-=CCC rrC r l∴当α=2时,S max =162C .16.解:由三角函数的定义得:cos α=52+x x ,又cos α=42x , ∴34252±=⇒=+x x x x . 由已知可得:x <0,∴x =-3.故cos α=-46,sin α=410,ta n α=-315. 17.解:∵sin α是方程5x 2-7x -6=0的根. ∴sin α=-53或sin α=2(舍).故sin 2α=259,cos 2α=⇒2516tan 2α=169. ∴原式=169tan cot )sin (sin tan )cos (cos 222==⋅-⋅⋅-⋅ααααααα.18.分析:对于sin α+cos α,sin α-cos α及sin αcos α三个式子,只要已知其中一个就可以求出另外两个,因此本题可先求出sin αcos α,进而求出sin α-cos α,最后得到所求值.解:∵sin α+cos α=-553, ∴两边平方得:1+2sin αcos α=⇒59sin αcos α=52. 故(cos α-sin α)2=1-2sin αcos α=51.由sin α+cos α<0及sin αcos α>0知sin α<0,cos α<0. 又∵|sin α|>|cos α|,∴-sin α>-cos αcos α-sin α>0. ∴cos α-sin α=55. 因此,cos 3α-sin 3α=(cos α-sin α)(1+sin αcos α)=55³(1+52)=2557.评注:本题也可将已知式与sin 2α+cos 2α=1联解,分别求出sin α与cos α的值,然后再代入计算.19.分析:运用诱导公式、同角三角函数的关系及消元法.在三角关系式中,一般都是利用平方关系进行消元.解:由已知得sin α=2sin β ①3cos α=2cos β ②由①2+②2得sin 2α+3cos 2α=2.即:sin 2α+3(1-sin 2α)=2. ∴sin 2α=⇒21sin α=±22,由于0<α<π,所以sin α=22. 故α=4π或43π.当α=4π时,cos β=23,又0<β<π,∴β=6π, 当α=43π时,cos β=-23,又0<β<π,∴β=65π.综上可得:α=4π,β=6π或α=43π,β=65π.。
(好题)高中数学必修四第一章《三角函数》检测题(包含答案解析)(2)
一、选择题1.函数()()2sin f x x ωϕ=+(0>ω,2πϕ<)的部分图象如图所示,则()fπ=( )A .3-B .3-C .32D .32.函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,则下列结论正确的是( )A .3x π=-是()f x 图像的一条对称轴B .()f x 图像的对称中心为22,0,3k k Z ππ⎛⎫+∈⎪⎝⎭ C .()1f x ≥的解集为44,4,3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ D .()f x 的单调递减区间为282,2,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 3.已知实数a ,b 满足0<2a <b <3-2a ,则下列不等关系一定成立的是( ) A .sin sin2ba < B .()2cos >cos 3a b -C .()2sin sin3a b +<D .23cos >sin 2b a ⎛⎫-⎪⎝⎭4.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭ C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间 D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m5.已知函数()tan()0,02f x x πωϕϕω⎛⎫=+<<<⎪⎝⎭最小正周期为2π,且()f x 的图象过点,03π⎛⎫⎪⎝⎭,则方程()sin 2([0,])3f x x x π⎛⎫=+∈π ⎪⎝⎭所有解的和为( )A .76πB .56π C .2πD .3π 6.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1B .2C .3D .47.设()sin 24f x x π⎛⎫=+⎪⎝⎭,90,8x π⎡⎤∈⎢⎥⎣⎦,若函数()y f x a =-恰好有三个不同的零点,分别为1x 、2x 、()3123x x x x <<,则1232x x x ++的值为( ) A .πB .34π C .32π D .74π 8.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B .1514+ C .1916D .349.函数()13cos313xxf x x -=+的图象大致是( ) A . B .C .D .10.函数1cos y x x=+的图象可能是( ) A . B .C .D .11.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭12.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知函数()22cos f x x ω=-(0>ω)的图象关于点3,04π⎛⎫⎪⎝⎭对称,且()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,则ω的值为______. 15.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位,再向上平移1个单位,得到()g x 的图象.若()()129g x g x =,且[]12,2,2x x ππ∈-,则122x x -的最大值为_______________.16.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .17.函数(x)Asin(x )f ωϕ=+ (0A >,0>ω,0ϕπ<< )的部分图象如图所示,则4f π⎛⎫= ⎪⎝⎭________.18.已知函数()()()sin 0,πf x x ωϕωϕ=+><的图像如图所示,则ϕ=__________.19.已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是____.20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭. (1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程.22.已知函数2()3sin cos cos (0)f x x x x ωωωω=->周期是2π.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围. 23.已知sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)化简()f α,并求3f π⎛⎫⎪⎝⎭; (2)若tan 2α=,求224sin 3sin cos 5cos αααα--的值;(3)求函数2()2()12g x f x f x π⎛⎫=-++ ⎪⎝⎭的值域.24.下图是函数()()sin()0,0f x x ωϕωϕπ=+><<的部分图象.(1)求ϕ的值及()f x 单调递增区间.(2)若()f x 的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移3π个单位,最后向上平移1个单位,得到函数()g x 的图象,若()g x 在[0,](0)b b >上恰有10个零点,求b 的取值范围.25.已知函数2()3sin 22cos 1f x x x =+-.(I )求函数()f x 的最小正周期; (II )求函数()f x 的单调增区间; (III )当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最小值. 26.己知函数()sin 3cos (0, 0 )f x A x A x A ωωω=+>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数()f x 的部分图像得到函数()f x 的最小正周期,求出ω,代入5,212π⎛⎫⎪⎝⎭求出ϕ值,则函数()f x 的解析式可求,取x π=可得()f π的值.【详解】由图像可得函数()f x 的最小正周期为521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,则22T πω==. 又5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则5sin 16⎛⎫+= ⎪⎝⎭πϕ, 则5262k ϕπ=π+π+,k Z ∈,则23k πϕπ=-,k Z ∈,22ππϕ-<<,则0k =,3πϕ=-,则()2sin 23f x x π⎛⎫=-⎪⎝⎭, ()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭故选:A. 【点睛】方法点睛:根据三角函数()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.2.C解析:C 【分析】结合五点作图法和函数图像可求得函数解析式,采用代入检验法可依次判断各个选项得到结果. 【详解】()10sin 2f ϕ==且2πϕ<,6πϕ∴=,又882sin 233f ππωϕ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,由五点作图法可得:83362πππω+=,解得:12ω=, ()12sin 26f x x π⎛⎫∴=+ ⎪⎝⎭.对于A ,当3x π=-时,1026x π+=,,03π⎛⎫∴- ⎪⎝⎭是()f x 的对称中心,A 错误; 对于B ,当223x k ππ=+时,1262x k πππ+=+,223x k ππ∴=+是()f x 的对称轴,B 错误;对于C ,由()1f x ≥得:1in 2612s x π⎛⎫ ⎪⎭≥+⎝,15226266k x k πππππ∴+≤+≤+, 解得:4344k x k πππ≤+≤,C 正确;对于D ,当282,233x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,13,2622x k k πππππ⎡⎤+∈++⎢⎥⎣⎦, 当1k =时,135,2622x πππ⎡⎤+∈⎢⎥⎣⎦,不是()f x 的单调递减区间,D 错误. 故选:C. 【点睛】方法点睛:本题考查正弦型函数()sin y A ωx φ=+的性质的判断,解决此类问题常用的方法有:(1)代入检验法:将所给单调区间、对称轴或对称中心代入x ωϕ+,确定x ωϕ+的值或范围,根据x ωϕ+是否为正弦函数对应的单调区间、对称轴或对称中心来确定正误; (2)整体对应法:根据五点作图法基本原理,将x ωϕ+整体对应正弦函数的单调区间、对称轴或对称中心,从而求得()sin y A ωx φ=+的单调区间、对称轴或对称中心.3.D解析:D 【分析】对各个选项一一验证:对于A.由0<2a <b <3-2a ,可以判断出2ba <,借助于正弦函数的单调性判断; 对于B.由0<2a <b <3-2a ,可以判断出23a b <-,借助于余弦函数的单调性判断; 对于C.由0<2a <b <3-2a ,可以判断出23a b +<,借助于正弦函数的单调性判断; 对于D.先用诱导公式转化为同名三角函数,借助于余弦函数的单调性判断; 【详解】 因为0<2a <b <3-2a 对于A. 有0<2b a <, 若22b a π<<,有sin sin 2b a <;若22b a π<<,有sin sin 2ba >,故A 错; 对于B.有 23ab <-,若232a b π<<-,有()2cos >cos 3a b -,故B 错;对于C. 23a b +<,若232a b π<+<,有()2sin sin 3a b +>,故C 错;对于D. 222333sin cos cos 2222a a a ππ+⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为b <3-2a <3,所以2cos >cos(3)b a - ∵22332a a π+-<-∴()223cos 3cos 2a a π+⎛⎫->-⎪⎝⎭∴()22233cos cos 3cos sin 22a a b a π+⎛⎫⎛⎫>->-=- ⎪ ⎪⎝⎭⎝⎭,故D 对.故选:D. 【点睛】利用函数单调性比较大小,需要在同一个单调区间内.4.B解析:B 【分析】先建立坐标系,从点0P 开始计时,建立三角函数模型()0sin h A t b ωϕ=++,通过题中条件求出参数0,,,A b ωϕ,再利用函数解析式对选项依次判断正误即可. 【详解】以水面所在直线为t 轴,过O 作OO t '⊥轴,建立坐标系如图:设点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为()0sin h A t b ωϕ=++.依题意可知, 2.4OO '=, 2.41sin 4.82OPO '∠==,6OPO π'∠=. 高度h 最大值为2.4 4.87.2+=,最小值为2.4 4.8 2.4-=-,故()()7.2 2.47.2 2.44.8, 2.422A b --+-====, 周期60T =s ,则230T ππω==, 0t =时,06πϕ=-,故函数解析式为 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭,故B 正确;点P 到达最高点时 4.8sin 2.47.2306h t ππ⎛⎫=-+=⎪⎝⎭,即sin 1306t ππ⎛⎫-= ⎪⎝⎭,故2,3062t k k Z ππππ-=+∈,即2060,t k k Z =+∈,又0t ≥,故第一次到达最高点时,0,20k t ==s ,故A 错误;在筒车转动的一圈内,点P 距离水面的高度不低于4.8m ,即4.8sin 2.4 4.8306h t ππ⎛⎫=-+≥ ⎪⎝⎭,得1sin 3062t ππ⎛⎫-≥ ⎪⎝⎭,故563066t ππππ≤-≤,解得1030t ≤≤,故共有20 s 时间,C 错误;当筒车转动50s 时,即50t =代入 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭得,34.8sin 50 2.4 4.8sin 2.4 2.43062h πππ⎛⎫=⨯-+=+=- ⎪⎝⎭,故点P 在水面下方,距离水面2.4m ,故D 错误. 故选:B. 【点睛】 关键点点睛:本题解题关键在于按照题意,建立三角函数模型()0sin h A t b ωϕ=++,并解出解析式,才能解决选项中的实际问题,突破难点.5.A解析:A 【分析】先根据()f x 的最小正周期计算出ω的值,再根据图象过点,03π⎛⎫⎪⎝⎭结合ϕ的范围求解出ϕ的值,再根据条件将方程变形,先确定出tan 23x π⎛⎫+ ⎪⎝⎭的值,然后即可求解出方程的根,由此确定出方程所有解的和. 【详解】因为()f x 的最小正周期为2π,所以22πωπ==,又因为()f x 的图象过点,03π⎛⎫⎪⎝⎭,所以2tan 03πϕ⎛⎫+= ⎪⎝⎭, 所以2,3k k Z ϕππ+=∈,又因为02πϕ<<,所以3πϕ=且此时1k =,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,即tan 2sin 233x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 即tan 2cos 21033x x ππ⎡⎤⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又因为tan 203x π⎛⎫+= ⎪⎝⎭时,sin 203x π⎛⎫+= ⎪⎝⎭,cos 213x π⎛⎫+=± ⎪⎝⎭, 所以tan 2cos 210tan 2=0333x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫++-=⇔+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为[]0,x π∈,所以72,333x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,当tan 2=03x π⎛⎫+⎪⎝⎭时,23x ππ+=或223x ππ+=,解得3x π=或56x π=, 所以方程()[]()sin 20,3f x x x ππ⎛⎫=+∈ ⎪⎝⎭所有解的和为57366πππ+=. 故选:A. 【点睛】关键点点睛:解答本题的关键是通过分析方程得到tan 2=03x π⎛⎫+ ⎪⎝⎭,此处需要注意不能直接约去tan 23x π⎛⎫+⎪⎝⎭,因为需要考虑tan 2=03x π⎛⎫+⎪⎝⎭的情况. 6.B解析:B 【分析】求出函数的最值,对称中心坐标,对称轴方程,以及函数的单调区间,即可判断正误. 【详解】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确; 当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即252,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④正确. 故选:B 【点睛】关键点点睛:函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭的递增区间转化为sin 34y x π⎛⎫=+ ⎪⎝⎭的递减区间.7.C解析:C 【分析】根据三角函数的对称性,先求出函数的对称轴,结合函数与方程的关系转化为两个函数的交点问题,利用数形结合进行求解即可. 【详解】 由()242x k k Z πππ+=+∈,得对称轴()28k x k ππ=+∈Z , 90,8x π⎡⎤∈⎢⎥⎣⎦,由90288k πππ≤+≤,解得124k -≤≤,当0k =时,对称轴8x π=,1k =时,对称轴58x π=. 由()0f x a -=得()f x a =,若函数()y f x a =-恰好有三个不同的零点,等价于函数()y f x =与y a =的图象有三个交点,作出函数()f x 的图象如图,得()20f =,则21a ≤<,由图象可知,点()()11,x f x 、()()22,x f x 关于直线8x π=对称,则124x x π+=, 点()()22,x f x 、()()33,x f x 关于直线58x π=对称,则2354x x π+=, 因此,1231223532442x x x x x x x πππ++=+++=+=. 故选:C . 【点睛】关键点点睛:本题考查正弦型函数的零点之和问题的求解,解题的关键就是分析出正弦型函数图象的对称轴,结合对称性求解.8.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫-⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫- ⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便. 9.A解析:A 【分析】先判断奇偶性,可排除C ,D ,由特殊值()f π,可排除B ,即可得到答案.【详解】因为()()()1331cos 3cos31331x x xx f x x x f x -----=⋅-=⋅=-++,所以函数()f x 为奇函数,排除C ,D ;又()13cos3013f ππππ-=>+,排除B , 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10.C解析:C 【分析】利用函数的奇偶性和特殊的函数值的正负排除错误选项. 【详解】函数定义域是{|0}x x ≠,关于原点对称,记1()cos f x x x=+,则11()cos()cos f x x x x x -=-+=+-()f x =,是偶函数,排除BD , 11()cos 10f ππππ=+=-+<,排除A .故选:C . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.B解析:B 【分析】先判断游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min ,结合摩天轮最高点距离地面高度为120m ,可得10t =时,120H =,再利用排除法可得答案. 【详解】因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min , 所以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min , 又因为摩天轮最高点距离地面高度为120m , 所以10t =时,120H =,对于A ,10t =时,55cos 106555cos 65651022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,不合题意;对于B ,10t =时,55sin 106555sin 651201022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,符合题意;对于C ,10t =时,355cos 106555cos65651022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 对于D ,10t =时,355sin 106555sin65101022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 故选:B. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型: (1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.12.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】根据函数图像的对称点得到的表达式根据在区间上单调得到的范围从而得到的范围再得到的值【详解】函数的图像关于点对称所以即得到在区间上单调所以即所以所以而所以故答案为:【点睛】本题考查根据余弦型函解析:23【分析】根据函数图像的对称点,得到ω的表达式,根据()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,得到T 的范围,从而得到ω的范围,再得到ω的值.函数()f x x ω=-的图像关于点3,04π⎛⎫⎪⎝⎭对称,所以304πω⎛⎫-= ⎪⎝⎭,即342k ππωπ=+,k ∈Z ,得到4233k ω=+,k ∈Z , ()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,所以223T π≥,即43T π≥, 所以243ππω≥,所以32ω≤,而0>ω,所以0k =,23ω=. 故答案为:23. 【点睛】本题考查根据余弦型函数的对称中心求参数的值,根据余弦型函数的周期求参数的值,属于中档题.15.【分析】根据图象的平移得出函数再由已知得或要使最大则最大最小可求得取得的最大值【详解】将函数的图象向左平移个单位可得的图象再向上平移1个单位得到的图象则因为所以当得或∵∴要使最大则最大最小则当最大最 解析:5512π【分析】根据图象的平移得出函数()2sin 213g x x π⎛⎫=++ ⎪⎝⎭,再由已知得()()123g x g x ==或()()123g x g x ==-.要使122x x -最大,则123x π+最大,223x π+最小.可求得122x x -取得的最大值. 【详解】将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位,可得2sin 2+2sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再向上平移1个单位,得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象.则()33g x -≤≤,因为[]12,2,2x x ππ∈-,所以当()()129g x g x =,得()()123g x g x ==或()()123g x g x ==-.∵[]12,2,2x x ππ∈-,∴1211132,2,3333x x ππππ⎡⎤++∈-⎢⎥⎣⎦, 要使122x x -最大,则123x π+最大,223x π+最小.则当17232x ππ+=最大,25232x ππ+=-最小时,即11912x π=,2176x π=-时,122x x -取得最大值为5512π. 故答案为:5512π. 【点睛】本题考查三角函数的图象平移,正弦型函数的最值,属于中档题.16.【分析】根据扇形的周长求出扇形半径再根据扇形面积公式计算即可【详解】设该扇形的半径为r 根据题意有故答案为【点睛】本题主要考查了扇形的面积公式弧长公式属于中档题 解析:916【分析】根据扇形的周长求出扇形半径,再根据扇形面积公式计算即可. 【详解】设该扇形的半径为r ,根据题意,有2l r r α=+,322r r ∴=+,34r ∴=,211992221616S r α∴==⨯⨯=扇形.故答案为916. 【点睛】本题主要考查了扇形的面积公式,弧长公式,属于中档题.17.【分析】观察图象可求得进而可得然后求出的值可得;而后由可求得的值得出最后代值计算即可得解【详解】由图象可知∴∴∴又∴()∴()∵∴∴则故答案为:【点睛】本题重点考查了正弦型三角函数的图象和性质考查逻【分析】观察图象可求得2A =,311341264T πππ=-=,进而可得T π=,然后求出ω的值,可得()()22f x sin x ϕ=+;而后由26f π⎛⎫= ⎪⎝⎭,可求得ϕ的值,得出()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,最后代值计算即可得解. 【详解】由图象可知2A =,311341264T πππ=-=,∴T π=, ∴22πωπ==,∴()()22f x sin x ϕ=+,又26f π⎛⎫= ⎪⎝⎭,∴2262k ππϕπ⨯+=+(k Z ∈), ∴26k πϕπ=+(k Z ∈),∵0ϕπ<<,∴6π=ϕ, ∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,则222cos 4466f sin ππππ⎛⎫⎛⎫=⨯+==⎪ ⎪⎝⎭⎝⎭【点睛】本题重点考查了正弦型三角函数的图象和性质,考查逻辑思维能力和计算能力,属于常考题.18.【分析】结合函数图象由解得得到进而得到然后由函数图象过点求解【详解】由图可知:所以所以所以因为函数图象过点所以所以解得又因为解得故答案为:【点睛】本题主要考查三角函数的图象和性质还考查了数形结合的思 解析:9π10【分析】 结合函数图象由352244πππ=-=T ,解得52π=T ,得到45ω=,进而得到()45sin ϕ⎛⎫⎪=+⎝⎭f x x ,然后由函数图象过点()2,1π求解.【详解】 由图可知:352244πππ=-=T , 所以52π=T , 所以245πω==T ,所以()45sin ϕ⎛⎫⎪=+⎝⎭f x x , 因为函数图象过点()2,1π, 所以sin 815πϕ⎛⎫= ⎪⎝⎭+, 所以2825ππϕπ+=+k , 解得11210ϕππ=-k , 又因为π<ϕ,解得910πϕ=. 故答案为:9π10【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.19.【分析】利用任意性与存在性原命题可转化为有且仅有一个解然后根据三角函数的性质和图像求解即可【详解】由则存在唯一的实数使即有且仅有一个解作函数图像与直线当两个图像只有一个交点时由图可知故实数的最大值是解析:34π【分析】利用任意性与存在性原命题可转化为()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,然后根据三角函数的性质和图像求解即可. 【详解】由()sin f x x =,(,)46αππ∈--,则()12f α⎛⎫∈- ⎪ ⎪⎝⎭,存在唯一的实数(0,)m β∈,使()()0f f αβ+=,即()1,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,作函数图像()y fβ=与直线1,,22y k k ⎛=∈ ⎝⎭, 当两个图像只有一个交点时,由图可知,344m ππ<≤, 故实数m 的最大值是34π. 故答案为:34π 【点睛】本题主要考查了三角函数的图像与性质,属于较为基础题.20.①③【分析】分别利用余弦函数的对称性正切函数的单调性正弦定理三角函数图象变换等知识对各个命题判断【详解】①令是函数的一个对称中心①正确;②若它们为第一象限角且但②错;③在中内角所对的边分别为若∵∴∴解析:①③ 【分析】分别利用余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识对各个命题判断. 【详解】 ①,令55()4cos()4cos()012632f ππππ-=-+=-=,5,012π⎛⎫- ⎪⎝⎭是函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心,①正确;②若136απ=,3πβ=,它们为第一象限角,且αβ>,但tan tan αβ=<=②错;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,sin sin 2sin 251a BA b==︒<,∵b a <,∴B A <,∴A 可能为锐角,也可能为钝角,则ABC ∆有两解,③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)42y x x ππ=+=+的图象,④错.故答案为:①③. 【点睛】本题考查命题的真假判断,掌握三角函数的图象与性质是解题关键.本题需要掌握余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识,属于中档题.三、解答题21.(1)答案见解析;(2)34k x ππ=+,k Z ∈. 【分析】(1)分别令x 等于0、6π、512π、23π、1112π、π,求得对应的纵坐标,确定点的坐标,列表、描点、作图即可;(2)利用放缩变换与平移变换法则可得到()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭,再令5462x k k Z πππ-=+∈,可得答案. 【详解】(1)由题意可得表格如下: 26x π+6π 2π π 32π 2π136πx6π 512π 23π 1112ππ()f x141212- 014(2)将()y f x =的图象向上平移1个单位得到1sin 2126y x π⎛⎫=++ ⎪⎝⎭的图象,再横坐标缩短为原来的12可得到1sin 4126y x π⎛⎫=++ ⎪⎝⎭的图象,再向右平移4π个单位可得115sin 41sin 412626y x x πππ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭的图象, 即()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭, 令5462x k πππ-=+,解得34k x k Z ππ=+∈,, 所以()g x 的对称轴方程是34k x ππ=+,k Z ∈. 【点睛】方法点睛:“五点法”作一个周期上的图象,主要把握三处主要位置点:1、区间端点;2、最值点;3、零点. 22.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()cos cos f x x x x ωωω=-12(cos 21)2x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω= 所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈ (2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+=⎪⎝⎭,()min 21103g x g π⎛⎫==-+= ⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m << 所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 23.(1)()cos f αα=,π132f ;(2)1;(3)250,8⎡⎤⎢⎥⎣⎦. 【分析】(1)由诱导公式化简可得()cos f αα=,进而可得3f π⎛⎫⎪⎝⎭; (2)由平方关系和商数关系可转化条件为224tan 3tan 5tan 1ααα--+,即可得解; (3)转化条件为()21252sin 48g x x ⎛⎫=--+ ⎪⎝⎭,结合二次函数的性质即可得解. 【详解】(1)由题意可得sin(2)cos 2()cos tan()2f ππαααπαπα⎛⎫-+ ⎪⎝⎭=⎛⎫-++ ⎪⎝⎭sin (sin )cos sin tan ααααα-⋅-==⋅, 故1cos 332f ππ⎛⎫== ⎪⎝⎭; (2)∵tan 2α=,故224sin 3sin cos 5cos αααα--22224sin 3sin cos 5cos sin cos αααααα--=+224tan 3tan 51tan 1ααα--==+; (3)因为()cos f αα=,所以22()2cos cos 12cos sin 12g x x x x x π⎛⎫=-++=++ ⎪⎝⎭22sin sin 3x x =-++21252sin 48x ⎛⎫=--+⎪⎝⎭, 因为sin [1,1]x ∈-, 所以当1sin 4x =时,max 25()8g x =,当sin 1x =-时,min ()0g x =所以()g x 的值域为250,8⎡⎤⎢⎥⎣⎦. 【点睛】关键点点睛:解决本题的关键是利用诱导公式、同角三角函数的关系对原式进行合理变形. 24.(1)23ϕπ=,7[,],1212k k k Z ππππ--∈;(2)59671212b ππ≤<. 【分析】(1)依题意求出函数的周期T ,再根据2Tπω=,求出ω,再根据函数过点,06π⎛⎫⎪⎝⎭,求出ϕ,即可求出函数解析式,再令222+2,232k x k k Z πππππ-≤≤+∈,求出x 的取值范围,即可求出函数的单调区间;(2)根据三角函数的变换规则求出()g x 的解析式,令()0g x =即可求出函数的零点,要使()g x 在[0,](0)b b >上恰有10个零点,则b 不小于第10个零点的横坐标,小于第11个零点的横坐标即可,即可得到不等式,解得即可; 【详解】 解:(1)由图易知22362T πππ=-=,则T π=,22T πω==,所以()()sin 2f x x ϕ=+ 因为函数过点,06π⎛⎫⎪⎝⎭所以sin 2066f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭所以2,6k k Z πϕπ⨯+=∈,又0ϕπ<<,故23ϕπ=, 则()2sin(2)3f x x π=+ 令:222+2,232k x k k Z πππππ-≤≤+∈,整理得7,1212k x k k Z ππππ-≤≤-∈, 所以()f x 的单调增区间是7,,1212k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦. (2)若()f x 的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移3π个单位,最后向上平移1个单位,得到函数()2sin 21g x x =+ 令()0g x =,得712x k ππ=+或11()12x k k Z ππ=+∈. 所以在[0,]π上恰好有两个零点,若()g x 在[0,]b 上恰有10个零点,则b 不小于第10个零点的横坐标,小于第11个零点的横坐标即可,即b 的范围为:115941212b πππ≥+=.且1111767412121212b ππππππ<++-+= 即59671212b ππ≤< 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.25.(Ⅰ)最小正周期为π;(Ⅱ),36k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(Ⅲ)-1.【分析】(I )先将解析式化为()2sin 26f x x π⎛⎫=+⎪⎝⎭,然后利用正弦型函数的周期公式可计算出该函数的最小正周期;(II )根据正弦函数的单调区间,利用整体法得出222262k x k πππππ-+≤+≤+,k Z ∈,,即可求出该函数的单调增区间;(III )由0,2x π⎡⎤∈⎢⎥⎣⎦可计算出26x π+的取值范围,再根据正弦函数的性质,即可求出函数的最大值和最小值. 【详解】解:(Ⅰ)因为2()22cos 1f x x x =+-,则()2cos2f x x x =+2sin 26x π⎛⎫=+ ⎪⎝⎭, 所以函数()f x 最小正周期为22T ππ==; (Ⅱ)因为222262k x k πππππ-+≤+≤+,k Z ∈,所以36k x k ππππ-+≤≤+,k Z ∈,函数()f x 的单调增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(Ⅲ)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 而716f π⎛⎫=-⎪⎝⎭,22f π⎛⎫= ⎪⎝⎭,所以12sin 226x π⎛⎫-≤+≤ ⎪⎝⎭,所以()f x 的最小值为1-. 【点睛】关键点点睛:本题考查正弦型函数的最小正周期,利用整体法求正弦型函数的单调增区间,以及正弦型函数在给定区间的最值,熟练掌握正弦函数的图像和性质是解题的关键,属于常考题型.26.(1)1A =,2ω=;(2)0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)根据辅助角公式和两角和的正弦公式化简得()2sin 3f x A x πω⎛⎫=+ ⎪⎝⎭,由函数图象可知()f x 的最大值为2,可求出A ,由图象可知43124T πππ=-=,结合2T πω=,即可求出ω的值;(2)由(1)得2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,利用整体代入法并结合正弦函数的单调性,即可求出()y f x =在[]0,π的单调增区间. 【详解】解:(1)由题可知,()sin cos (0,0)f x A x x A ωωω=+>>即1()2sin cos 2sin 223f x A x x A x πωωω⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 由图象可知,()f x 的最大值为2,则22A =,所以1A =, 由图象可知,43124T πππ=-=,则2T ππω==,所以2ω=; (2)由(1)得2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭, 令222,232k x k k πππ-+π≤+≤+π∈Z , 解得:5,1212k x k k Z ππππ-+≤≤+∈, 又因为[]0,x π∈,所以函数()y f x =在[]0,π的单调增区间为:0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查由函数()sin y A ωx φ=+的部分图象求解析式,由函数图象的最大值求出A ,由周期2T πω=求出ω,从而可求出函数解析式,再利用整体代入法求正弦型函数的单调性,熟练掌握正弦函数的图象和性质是解题的关键.。
(典型题)高中数学必修四第一章《三角函数》检测(含答案解析)(1)
一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+3.函数()()sin cos y x =的部分图象大致为( )A .B .C .D .4.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=-D .2sin()3y t ππ=+5.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3D 36.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 7.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫ ⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( ) A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 8.已知函数()tan()0,02f x x πωϕϕω⎛⎫=+<<< ⎪⎝⎭最小正周期为2π,且()f x 的图象过点,03π⎛⎫⎪⎝⎭,则方程()sin 2([0,])3f x x x π⎛⎫=+∈π ⎪⎝⎭所有解的和为( )A .76πB .56π C .2πD .3π 9.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B 151+C .1916D .3411.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x12.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-二、填空题13.若函数()sin (0)4f x x πωωω⎛⎫=-> ⎪⎝⎭取得最值的点到y 轴的最近距离小于6π,且()f x 在711,2020ππ⎛⎫⎪⎝⎭单调递增,则ω的取值范围为_________. 14.关于1()sin sin f x x x=-,有如下四个结论: ①()f x 是奇函数.②()f x 图像关于y 轴对称. ③2x π=是()f x 的一条对称轴.④()f x 有最大值和最小值. 其中说法正确的序号是________.15.已知函数()()3cos g x x ωϕ=+()0ω>满足04g π⎛⎫=⎪⎝⎭,()3g π=,且最小正周期3T π≥,则符合条件的ω的取值个数为___________.16.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ . 17.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .18.设函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的图象关于直线23x π=对称,它的周期为π,则下列说法正确是________(填写序号) ①()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; ②()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; ③()f x 的一个对称中心是5,012π⎛⎫⎪⎝⎭; ④将()f x 的图象向右平移ϕ个单位长度得到函数2sin 2y x =的图象. 19.若函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为________. 20.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?三、解答题21.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的相邻两个交点间的距离为2π,且________.在①函数6f x π⎛⎫+ ⎪⎝⎭为偶函数;②33f π⎛⎫=⎪⎝⎭;③x R ∀∈,()6f x f π⎛⎫≤⎪⎝⎭;这三个条件中任选一个,补充在上面问题中,并解答. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的单调递增区间.22.如图,一个水轮的半径为4米,水轮圆心O 距离水面2米,已知水轮每分钟逆时针转动1圈,当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)将点P 距离水面的距离z (单位:米,在水面以下,则z 为负数)表示为时间t (单位:秒)的函数;(2)在水轮转动1圈内,有多长时间点P 位于水面上方? 23.设函数()3sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,且以23π为最小正周期. (1)求函数()f x 的单调递减区间; (2)当,32x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 24.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫ ⎪⎝⎭. (1)求函数f(x)的最小正周期; (2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围 25.己知函数()sin 3cos (0, 0 )f x A x x A ωωω=>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间. 26.已知函数()23,4f x x x R π⎛⎫=+∈ ⎪⎝⎭.(1)求f (x )的最小正周期;(2)求f (x )的单调递增区间和单调递减区间; (3)当0,2x π⎡⎤∈⎢⎥⎣⎦,求f (x )值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】 解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.D解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.3.A解析:A 【分析】先确定奇偶性,再取特殊值确定函数值可能为负,排除三个选项后得出结论. 【详解】记()()sin cos f x x =,则()()()sin cos()sin cos ()f x x x f x -=-==,为偶函数,排除D , 当23x π=时,21()sin cos sin 032f x π⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,排除B ,C .故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可通过研究函数的性质如奇偶性、单调性等排除一些选项,再由特殊的函数值,函数值的正负,变化趋势等排除一些选项后得出正确结论.4.A解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+⎪⎝⎭, 因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.5.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.6.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 7.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A. 【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.8.A解析:A 【分析】先根据()f x 的最小正周期计算出ω的值,再根据图象过点,03π⎛⎫⎪⎝⎭结合ϕ的范围求解出ϕ的值,再根据条件将方程变形,先确定出tan 23x π⎛⎫+ ⎪⎝⎭的值,然后即可求解出方程的根,由此确定出方程所有解的和. 【详解】因为()f x 的最小正周期为2π,所以22πωπ==,又因为()f x 的图象过点,03π⎛⎫⎪⎝⎭,所以2tan 03πϕ⎛⎫+= ⎪⎝⎭, 所以2,3k k Z ϕππ+=∈,又因为02πϕ<<,所以3πϕ=且此时1k =,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,即tan 2sin 233x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 即tan 2cos 21033x x ππ⎡⎤⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,又因为tan 203x π⎛⎫+= ⎪⎝⎭时,sin 203x π⎛⎫+= ⎪⎝⎭,cos 213x π⎛⎫+=± ⎪⎝⎭, 所以tan 2cos 210tan 2=0333x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫++-=⇔+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 因为[]0,x π∈,所以72,333x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, 当tan 2=03x π⎛⎫+⎪⎝⎭时,23x ππ+=或223x ππ+=,解得3x π=或56x π=, 所以方程()[]()sin 20,3f x x x ππ⎛⎫=+∈ ⎪⎝⎭所有解的和为57366πππ+=. 故选:A. 【点睛】关键点点睛:解答本题的关键是通过分析方程得到tan 2=03x π⎛⎫+⎪⎝⎭,此处需要注意不能直接约去tan 23x π⎛⎫+ ⎪⎝⎭,因为需要考虑tan 2=03x π⎛⎫+ ⎪⎝⎭的情况.9.C解析:C 【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫=⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+= ⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z ,所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z . 故选:C. 【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.10.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.12.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 二、填空题13.【分析】根据题意可得为的一个零点且且上有且只有一个最值点从而可得再由在单调递增可得解不等式组即可求解【详解】依题意为的一个零点且所以在上有且只有一个最值点可得化简得又则所以解得当时可得又所以故答案为解析:65,53⎛⎤⎥⎝⎦【分析】 根据题意可得,04π⎛⎫⎪⎝⎭为()f x 的一个零点,且45T π≥,且,66ππ⎛⎫- ⎪⎝⎭上有且只有一个最值点,从而可得665ω<<,再由()f x 在711,2020ππ⎛⎫ ⎪⎝⎭单调递增,可得221032210k k ππωπππωπ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解不等式组即可求解. 【详解】依题意,04π⎛⎫⎪⎝⎭为()f x 的一个零点且117420205T πππ≥-=, 所以在,66ππ⎛⎫- ⎪⎝⎭上有且只有一个最值点, 可得46446T ππππ-<<+,化简得665ω<<, 又711,2020x ππ⎛⎫∈⎪⎝⎭,则3,41010x πωπωπω⎛⎫⎛⎫-∈ ⎪⎪⎝⎭⎝⎭所以221032210k k ππωπππωπ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得5520203k k ω-+≤≤+,k Z ∈,当0k =时,可得553ω-≤≤,又665ω<<,所以6553ω<≤. 故答案为:65,53⎛⎤⎥⎝⎦【点睛】关键点点睛:本题考查了三角函数的性质,解题的关键是根据三角函数的最值得665ω<<,以及函数的单调递增区间可得5520203k k ω-+≤≤+,k Z ∈,考查了分析、计算能力.14.①③【分析】借助于的性质对照四个选项一一验证【详解】的定义域对于①:定义域关于原点对称即是奇函数故①正确;是奇函数图像关于原点对称故②错误;对于③:而所以故③正确;对于④:令则无最小值无最大值故④错解析:①③ 【分析】借助于sin y x =的性质,对照四个选项,一一验证. 【详解】1()sin sin f x x x=-的定义域{}|,x x k k Z π≠∈ 对于①:定义域关于原点对称,()()11()sin sin ()sin sin f x x x f x x x ⎛⎫-=--=-+=- ⎪-⎝⎭,即()f x 是奇函数,故①正确;()f x 是奇函数,图像关于原点对称,故②错误;对于③:11()sin cos 22cos sin 2f x x x x x πππ⎛⎫-=--=-⎪⎛⎫⎝⎭- ⎪⎝⎭而11()sin cos 22cos sin 2f x x x x x πππ⎛⎫+=+-=- ⎪⎛⎫⎝⎭+ ⎪⎝⎭, 所以()()22f x f x ππ-=+,故③正确;对于④:令[)(]sin ,1,00,1t x t =∈-,则1y t t=-(),∈-∞+∞, 无最小值,无最大值,故④错误. 故答案为:①③ 【点睛】这是另一种形式的多项选择,多项选择题是2020年高考新题型,需要要对选项一一验证.15.5【分析】是零点是极大值点利用三角函数图像与性质可知它们之间相差可得到的一个关系式由可得到另一个范围解出的范围得到符合条件的的取值个数【详解】因为满足且最小正周期所以得所以解得故的取值共有5个故答案解析:5 【分析】4π是零点,π是极大值点,利用三角函数图像与性质,可知它们之间相差42T nT +,可得到,n ω的一个关系式423n ω+=,由3T π≥可得到ω另一个范围,解出n 的范围,得到符合条件的ω的取值个数. 【详解】因为()g x 满足04g π⎛⎫= ⎪⎝⎭,()3g π=, 且最小正周期3T π≥,所以()()23214422T n T n T n N ππωπππω⎧=≥⎪⎪⎨+⎪-=+=∈⎪⎩,得06ω<≤,423n ω+=, 所以42063n +<≤,解得04n ≤≤.故ω的取值共有5个. 故答案为:5 【点睛】求三角函数的解析式时,由2Tπω=即可表示出ω;确定ϕ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=或0x ωϕπ+=),即可求出ϕ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和ϕ,若对,A ω的符号或对ϕ的范围有要求,则可用诱导公式变换使其符合要求.16.【分析】根据扇形的周长求出扇形半径再根据扇形面积公式计算即可【详解】设该扇形的半径为r 根据题意有故答案为【点睛】本题主要考查了扇形的面积公式弧长公式属于中档题 解析:916【分析】根据扇形的周长求出扇形半径,再根据扇形面积公式计算即可. 【详解】设该扇形的半径为r ,根据题意,有2l r r α=+,322r r ∴=+,34r ∴=,211992221616S r α∴==⨯⨯=扇形.故答案为916. 【点睛】本题主要考查了扇形的面积公式,弧长公式,属于中档题.17.【分析】取中点连结交于点交于点连结设推导出和从而得出文化景观区域面积利用三角函数的性质解出面积最大值【详解】取中点连结交于点交于点连结设则文化景观区域面积:当即时文化景观区域面积取得最大值为故答案为 解析:()40023-【分析】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,推导出DC 和CF ,从而得出文化景观区域面积,利用三角函数的性质,解出面积最大值. 【详解】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,则20sin DN CN ϕ==,40sin DC ϕ∴=,20cos 20cos tan 30PFCF DE PN ON OP ϕϕϕ===-=-=-︒,∴文化景观区域面积:()4020EFCD S sin cos ϕϕϕ=-矩形400sin 2cos 2)ϕϕ=--800sin(2)3πϕ=+-∴当232ππϕ+=,即12πϕ=时,文化景观区域面积取得最大值为2400(2)m -.故答案为:400(2-. 【点睛】本题考查文化景观区域面积的最大值的求法,考查扇形、三角函数恒等变换等基础知识,考查运算求解能力,是中档题.18.③【分析】先根据对称轴及最小正周期求得函数的解析式再结合正弦函数的图象与性质判断点是否在函数图象上求得函数的单调区间及对称中心判断选项由平移变换求得变化后的解析式并对比即可【详解】函数的最小正周期是解析:③ 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式.再结合正弦函数的图象与性质,判断点是否在函数图象上,求得函数的单调区间及对称中心判断选项,由平移变换求得变化后的解析式并对比即可. 【详解】函数()()2sin 0,0,2f x x πωϕωϕ⎛⎫⎛⎫=+>∈ ⎪ ⎪⎝⎭⎝⎭的最小正周期是π,所以22πωπ==,则()()2sin 2f x x ϕ=+,又()()2sin 2f x x ϕ=+图象关于直线23x π=对称, 所以对称轴为2,2x k k Z πϕπ+=+∈,代入可得22,32k k Z ππϕπ⨯+=+∈,解得5,6k k Z πϕπ=-+∈, 因为0,2πϕ⎛⎫∈ ⎪⎝⎭,所以当1k =时, 6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,对于①,当0x =时,()02sin 16f π==,()f x 的图象不过点30,2⎛⎫⎪⎝⎭,所以①不正确;对于②,()2sin 26f x x π⎛⎫=+⎪⎝⎭的单调递减区间为3222,262k x k k Z πππππ+≤+≤+∈,解得2,63k x k k Z ππππ+≤≤+∈, 当0k =时,263x ππ≤≤,又因为126ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以②错误;对于③,()2sin 26f x x π⎛⎫=+⎪⎝⎭的对称中心为2,6x k k Z ππ+=∈,解得,122k x k Z ππ=-+∈,当1k =时,512x π=,所以5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心,所以③正确;对于④,将()2sin 26f x x π⎛⎫=+ ⎪⎝⎭向右平移6π个单位长度,可得2sin 22sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以不能得到2sin 2y x =的图象,所以④错误.综上可知,正确的为③. 故答案为: ③. 【点睛】本题考查了三角函数解析式的求法,正弦函数的图像与性质的综合应用,属于中档题. 19.【分析】根据函数f (x )的图象与性质求出Tω和φ的值写出f (x )的解析式再求出的值即可【详解】函数f (x )=2sin (ωx+φ)图象相邻两条对称轴间的距离为∴从而得ω=又f(x)=2sin(2x+φ【分析】根据函数f (x )的图象与性质求出T 、ω和φ的值,写出f (x )的解析式,再求出4f π⎛⎫ ⎪⎝⎭的值即可. 【详解】函数f (x )=2sin (ωx +φ)图象相邻两条对称轴间的距离为2π,∴22T π=,从而得ω=222T πππ==, 又f (x )=2sin (2x +φ)的图象经过点,26π⎛⎫⎪⎝⎭,∴2sin 26πϕ⎛⎫⨯+ ⎪⎝⎭=2,即3π+φ=2π+2k π,k ∈Z ,又因为0<φ<π,所以φ=6π,故f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭,∴2sin 2446f πππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了正弦型函数的图象与性质的应用问题,属于中档题.20.【分析】根据题意得到化简得到或得到答案【详解】设时间为根据题意:故故或故或故故答案为:【点睛】本题考查了三角函数的应用意在考查学生的应用能力解析:【分析】 根据题意得到40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,化简得到124t k =+或128t k =+,得到答案. 【详解】设时间为t ,0t >,根据题意:40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,故1sin 622t ππ⎛⎫-= ⎪⎝⎭. 故2626t k ππππ-=+或52626t k ππππ-=+,故124t k =+或128t k =+,k Z ∈. 故1234564,8,16,20,28,32t t t t t t ======. 故答案为:32. 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.三、解答题21.(1)()()2sin f x x ϕ=+;(2)答案见解析. 【分析】由已知得周期从而求得ω, 选①:(1)得出()6f x π+,根据偶函数与诱导公式求得ϕ;(2)求出()f x 的增区间,再与[0,]π求交集可得;选②:(1)解方程3f π⎛⎫= ⎪⎝⎭ϕ; (2)同选① 选③:(1)由6f π⎛⎫⎪⎝⎭是最大值可得ϕ; (2)同选① 【详解】解:∵()f x 的图象与直线2y =的相邻两个交点间的距离为2π, ∴2T π=,即22ππω=,∴1ω=,∴()()2sin f x x ϕ=+. 方案一:选条件① (1)∵2sin 66f x x ππϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭为偶函数, ∴62k ππϕπ+=+,即3k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭. (2)令22232k x k πππππ-+≤+≤+,k Z ∈,得:52266k x k ππππ-+≤≤+,k Z ∈, 令0k =,得566x ππ-≤≤, ∴函数()f x 在[]0,π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦(写成开区间也可得分) 方案二:选条件②(1)方法1:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭,∴2k 33ππϕπ+=+或2233k ππϕπ+=+,k Z ∈, ∴2k ϕ=π或23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭;方法2:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭,∵02πϕ<<,∴5336πππϕ<+<, ∴233ππϕ+=即3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;(2)同方案一. 方案三:选条件③∵x R ∀∈,()6f x f π⎛⎫≤ ⎪⎝⎭,∴6f π⎛⎫⎪⎝⎭为()f x 的最大值, ∴262k ππϕπ+=+,k Z ∈,即23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭; (2)同方案一. 【点睛】思路点睛:本题考查三角函数的图象与性质,掌握正弦函数的性质是解题关键.()sin()(0,0)f x A x A ωϕω=+>>,只要把x ωϕ+作为一个整体,用它替换sin y x =中的x 可确定函数的性质如单调性、对称中心、对称轴,最值,也可由()sin()(0,0)f x A x A ωϕω=+>>中x 的范围求出t x ωϕ=+的范围M ,然后考虑sin y x =在x M ∈时的性质得出结论.22.(1)()4sin 20306t z t ππ⎛⎫=-+≥ ⎪⎝⎭;(2)40秒.【分析】(1)以圆心为原点建立平面直角坐标系,根据O 距离水面的高度计算出0P 坐标,再利用三角函数表示出P 点坐标,将P 的纵坐标加2即可得到z 关于t 的函数;(2)根据条件可知0z >,解对应的不等式求解出t 的范围,由此确定出有多长时间点P 位于水面上方. 【详解】(1)建立如图所示平面直角坐标系,由题意可知:()023,2P -,则3tan 3ϕ=,所以6π=ϕ,因为水轮每分钟逆时针转动1圈,所以t 秒可转动的角度为26030tt ππ=,所以P 的坐标为4cos ,4sin 306306t t ππππ⎛⎫⎛⎫⎛⎫--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且P 的纵坐标加上2即为P 到水面的距离, 所以()4sin 20306t z t ππ⎛⎫=-+≥⎪⎝⎭; (2)因为[]110,60,,30666t t ππππ⎛⎫⎡⎤∈-∈- ⎪⎢⎥⎝⎭⎣⎦,令4sin 20306t ππ⎛⎫-+> ⎪⎝⎭, 所以1sin 3062t ππ⎛⎫->-⎪⎝⎭,所以763066t ππππ-<-<,所以040t <<, 所以在水轮转动1圈内,有40秒时间点P 位于水面上方 【点睛】关键点点睛:解答本题的关键是通过建立合适平面直角坐标系结合三角函数定义求解出z 关于t 的函数,其中着重去分析P 点的纵坐标值得注意.23.(1)225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)3,2⎡--⎢⎣⎦. 【分析】(1)根据()f x 的最小正周期求解出ω的值,再采用整体替换的方法结合正弦函数的单调递减区间的公式求解出()f x 的单调递减区间;(2)先求解出t x ωϕ=+的范围,然后根据3sin y t =的单调性求解出()f x 的最值,从而()f x 的值域可求. 【详解】 (1)因为2T πω=,所以22323Tππωπ===,所以()3sin 34f x x π⎛⎫=+ ⎪⎝⎭, 令3232,242k x k k Z πππππ+≤+≤+∈,所以225,312312k x k k Z ππππ+≤≤+∈, 所以()f x 的单调递减区间为:225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)因为()3sin 34f x x π⎛⎫=+⎪⎝⎭且,32x ππ⎡⎤∈⎢⎥⎣⎦,所以令573,444t x πππ⎡⎤=+∈⎢⎥⎣⎦, 又因为3sin y t =在5342ππ⎡⎫⎪⎢⎣⎭,上单调递减,在37,24ππ⎛⎤⎥⎝⎦上单调递增, 所以()min 33sin 32f x π==-,此时512x π=,又57sinsin 44ππ==()max53sin 4f x π==,此时3x π=或2π,所以()f x 的值域为:323,2⎡⎤--⎢⎥⎣⎦.【点睛】思路点睛:求解形如()sin y A ωx φ=+的函数在指定区间上的值域或最值的一般步骤如下:(1)先确定t x ωϕ=+这个整体的范围; (2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.24.(1)65π;(2)1222⎡⎤---⎣⎦, . 【解析】 试题分析:(1)整理函数的解析式可得:56ω=,利用最小正周期公式可得函数的最小正周期为65π ; (2)化简三角函数的解析式()52sin 236f x x π⎛⎫=--⎪⎝⎭,结合函数的定义域可得函数的取值范围是12,22⎡⎤---⎣⎦ .试题(1)因为f(x)=sin 2ωx -cos 2ωx +2sinωx·cosωx +λ=-cos2ωx +sin2ωx +λ =2sin+λ.由直线x =π是y =f(x)图象的一条对称轴,可得sin =±1,所以2ωπ-=kπ+ (k ∈Z),即ω=+ (k ∈Z). 又ω∈,k ∈Z ,所以k =1,故ω=.所以f(x)的最小正周期是. (2)由y =f(x)的图象过点,得f =0, 即λ=-2sin =-2sin =-,即λ=-.故f(x)=2sin -,由0≤x≤,有-≤x -≤,所以-≤sin ≤1,得-1-≤2sin x --≤2-.故函数f(x)在上的取值范围为[-1-,2-].25.(1)1A =,2ω=;(2)0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)根据辅助角公式和两角和的正弦公式化简得()2sin 3f x A x πω⎛⎫=+ ⎪⎝⎭,由函数图象可知()f x 的最大值为2,可求出A ,由图象可知43124T πππ=-=,结合2T πω=,即可求出ω的值;(2)由(1)得2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,利用整体代入法并结合正弦函数的单调性,即可求出()y f x =在[]0,π的单调增区间. 【详解】解:(1)由题可知,()sin 3cos (0,0)f x A x A x A ωωω=+>>即13()2sin 2sin 23f x A x x A x πωωω⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 由图象可知,()f x 的最大值为2,则22A =,所以1A =, 由图象可知,43124T πππ=-=,则2T ππω==,所以2ω=; (2)由(1)得2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭, 令222,232k x k k πππ-+π≤+≤+π∈Z , 解得:5,1212k x k k Z ππππ-+≤≤+∈, 又因为[]0,x π∈,所以函数()y f x =在[]0,π的单调增区间为:0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查由函数()sin y A ωx φ=+的部分图象求解析式,由函数图象的最大值求出A ,由周期2T πω=求出ω,从而可求出函数解析式,再利用整体代入法求正弦型函数的单调性,熟练掌握正弦函数的图象和性质是解题的关键. 26.(1)23π;(2)单调递增区间为22,,34312k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;单调递减区间为225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)⎡⎣. 【分析】 (1)由公式2T πω=求周期;(2)利用正弦函数的单调性求单调区间; (3)求出34x π+的范围,然后结合正弦函数的性质得值域.【详解】解:(1)由解析式得ω=3, 则函数的最小周期223T ππω==. (2)由232242k x k πππππ-≤+≤+,k ∈Z ,所以2234312k k x ππππ-≤≤+,k ∈Z , 即函数的单调递增区间为22,34312k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z , 由3232242k x k πππππ+≤+≤+k ∈Z , 得225312312k k x ππππ+≤≤+,k ∈Z , 即函数的单调递减区间为225,312312k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z . (3)当x ∈[0,2π]时,73,444x πππ⎡⎤+∈⎢⎥⎣⎦,则当3x +4π=2π时,函数f (x )取得最大值,此时f (x 2π=,当3x +342ππ=时,函数f (x )取得最小值,此时f (x 32π=即f (x )值域为[. 【点睛】关键点点睛:本题考查正弦型三角函数的性质.对于()sin()f x A x ωϕ=+(0,0)A ω>>,最小正周期为2T πω=,利用正弦函数sin y x =的性质,把x ωϕ+作为一个整体替换sin x 中的x ,可得()f x 的性质.。
必修四第一章三角函数精选练习题(有答案和解析)
4 ∏1.必修四第一章 、选择题 在0°〜3600的范围内, 330° B . 210° 2. [因为一510°= — 3600 cos 420o 的值为(1 1 32 B. — 2 c. ^2^ [cos 420°= cos(360 3.已知角θ的终边上一点 A .±孑 B . — 2 C . 亠 —1 B [由题意得tan θ==a 所以a 2= 1, 二角函数精选练习题与一510°终边相同的角是()C . 150°D . 30°× 2 + 210° ,因此与一510°终边相同的角是 210 .]5.已知 A .彳Si n + 60o ) = cos 60 1=2故选A.] P(a , — 1)(a ≠ 0),且 tan θ= — a,则 Sin θ的值是( 2 c 1 -Jt- D 一 _2 D . 2 =—a , 所以 Sin θ= a 2+(- 1) 2= 4.一个扇形的弧长与面积的数值都是 6,这个扇形中心角的弧度数是( )A . 1B . 2C . 3D . 4 C [设扇形的半径为r ,中心角为α 1 1 根据扇形面积公式S =步 得6 = 2× 6× r ,所以u 2,6= 3.]所以 CO= = ^ =θ÷ cos θ= 3C .Si n 二 1 + 2sinθosθ∈ 0, R ,则 Sin θ— cos θ 的值为( )FD ∙θ+CoS16θ=~9, 7.∙∙ 2si n fcos ="9,θ=3 θ∈ 0,故 Sin (一 cos A —p (Sin θ-COS θ) 2 =—1 — 2sin θ ∙ cos θ-^32故选 C .]6. C .函数y =tan (sin x )的值域是(∏ π 4,4 [—tan 1, tan 1]√2 √2 2, 2 [T ,1]∏ ∏ ∏ ∏[sin x ∈ [ — 1, 1],又一^<— 1v 1v"2,且 y =tan X 在一㊁,㊁上是增函数,所以 y min = tan(— 1)= — tan 1, y max =tan1.]7.将函数y = Sin x —3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 1A . y = sin^x才个单位,得到的图象对应的解析式为()1 _nB . y = Sin *—"21 πy= Sin 2x —6C BC CD CSI n T tA B Tt CD88 2C T t ∈ 8JlTO 卫I 03π 8' 2 冗π 0 3π°,8 1 π 2x —6 •] ∏ ∏8.函数f(x) = sin 2x — 4在0, 2上的单调递增区间是( )C πA . y = 2sin 2x — 4Sin 2x —π,再将所得的图象向左平移 ∏个单位,得到函数y = Sin g X ^n— ∏ = 冗2 ?3π,又 x ∈ 0,3 π t ..∙∙∙x ∈ 0, §,故选 C.]9.已知函数y= ASin(ωχ+ φ)(A>0, ω>0, |φ IV π的一段图象如图所示,贝U函数的解析式为() L t∏ ∏且 2× — 8 + φp + 2k ∏K ∈Z)∙ φ = 2k ∏+ 34(k ∈ Z),又 τ l φ<π3 π∙ φ =3π故选 C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为PoC 2,—. 2),角速度为1,那么点P 到X 轴的距离d 关于时间t 的函数图象大致为( )C ∏D . y = Sin 2x —百 ∏ [函数y = Sin x — 3的图象上所有点的横坐标伸长到原来的 2倍可得y = C ∏ 亠 C 3 π y = 2sin 2x —玄或 y =2sin 2x +43πy= 2sin 2x+~^ C 3π y=2sin2x —匸∏, ∏ 2 ∏口 C[由图可知A = 2, 4θ+8 =匚得ω= 2,C [ V P o ( .2, — 2),[令 2k ∏- 2≤ 2x —∏≤2k ∏+ ∏(k∏ 3 ∏∈ Z)得 kn — 8≤x ≤k ∏+^8(k ∈ Z), k = 0 时,XIwYZπ∠ P 0°xp按逆时针转时间t后得∏∠ PoP o= t, ∠ PoX= t — 4.∏此时P点纵坐标为2sin t—4 ,π.∙∙ d = 2 Sin t—4 .当t= 0时,d= 2,排除A , D;当t= ∏⅛, d= 0,排除 B.]11•设α是第三象限的角,且CoSa = —cog,则2的终边所在的象限是( ) A•第一象限B•第二象限C第三象限D•第四象限B [ V a是第三象限的角,3π.∙∙ ∏+ 2k∏v aV~2 + 2k∏, k∈ Z.π , a 3 π I•石+ k∏<2<才 + k∏, k∈ Z..∙∙ a在第二或第四象限.a a又V COS^ = —cos^,•COSa < o.•a是第二象限的角.]12.化简,1+ 2sin (π- 2)∙COS ∏-2)得()A . Sin 2+ COS 2B . COS 2— Sin 2C. Sin 2 —cos 2 D . ± cos 2— Sin 2C 1 + 2sin ( ∏—2) ∙COS ∏-2)=1 + 2sin 2 •(—cos 2)= (Sin 2—cos 2) 2,πV2< 2< ∏ • Sin 2— cos 2>0.•原式=Sin 2—cos 2.]13.同时具有下列性质的函数可以是( )①对任意x∈ R, f(x+ ∏ = f(x)恒成立;②图象关于直线X=3对称;∏ ∏③在—吞3上是增函数.X πA.f(x) = sin ㊁ + 6C ∏B.f(x) = Sin 2x—石C ∏C.f(x) = cos 2x+~3πD . f(x) = cos 2x—石B [依题意知,满足条件的函数的周期是∏图象以直线x=∏为对称轴,且在∏ π—6, 3上是增函数.对于A选项,函数周期为4π,因此A选项不符合;对于C选∏ ∏ ∏项,f^3 =—1,但该函数在—石,勺上不是增函数,因此C选项不符合;对于D选∏ ∏项,f 3 ≠± 1,即函数图象不以直线X =3为对称轴,因此D 选项不符合.综上可知, 应选B.]π14. 已知函数f(x)= — 2tan(2x + φ)(∣ φv∏ )若f 花=—2,贝U f(x)的一个单调递 减区间是()3π 11 π π 9 π 3 π 5 ππ 5 πA . 16,76 B. 16,16 C . —16,16 D . 16,16, ∏ ,r ∏A [由 fψ6 = — 2 得—2tan § + φ= — 2, ∏所以 tan 8 + Φ = 1,又 I ΦV ∏ ∏ ∏所以 Φ= 8,f(x) = — 2tan 2x + g , 令 kn — ∏V 2x+ ∏V k∏+ ~,k∈ Z 得k∏ 5 π k∏ 3 π 厂 2—16VX V 刁+16, k ∈L可得f(x)的单调递减区间是k ∏— 1n ,k ∏+1∏,k ∈ Z ,3 π 11 π令k = 1,可得f(x)的一个单调递减区间是36,,16π.]二、填空题315.__________________________________________________ 对于锐角a ,若tan ■ 则 cos 2 α+ 2sin 2 a= _______________________________________ .2642COS a+ 4sin OCOS a 1 + 4tan a 64[由题意可得:COS 2 a+ 2sin 2a= 2 2 = 厂=.]25cos 2 a+ sιn 2 a 1 + tan 2 a 25 J116. 已知sin a=空,且a 是第二象限角,那么cos(3 — a 的值为仃.函数y=U — tan X 的定义域是 ____________ .冗冗tk n — 2, k ∏+ 3 (k ∈ Z)[作出三角数线如图,由函数可知.3 — tan x ≥ 0中tan X ≤√3,而√3对应角为才 由图中阴影部分可得定义域为 kn —才,k ∏+扌(k ∈Z).]∏18. ____________________________________ 函数y = tan 2x —N 的定义域为 . 3 π k nπ π 3 π k nX x ≠+ ~2 , k ∈ Z[2x — 4≠2+ kn, 即 x ≠^8 +^2, k ∈ Z.]19. 若函数y = Sin(ωX φ(ω>0)的部分图象如图所示,贝U ω= ___________ .∕Γ‰I i4 [观察图象可知[cos(3 — a = — COs a= — 2晋] (—∖,i 1 —sin 2a =n 函数y= Sin(ω汁φ的半个周期为-,2n n _所以—=^2, ω= 4.]ω 24 [由条件可知,图象变换后的解析式分别为 y = Sin ω汁^^3 + Φ和y =Sin ωχ- 6 + φ ,由于两图象重合,所以 3 + Φ=— 6 + Φ+ 2k ∏ K ∈ Z).即 ω= 4K(K∈ Z),由 ω>0, ∙°∙ ωmin = 4.]C — 121. 一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则可的最大 值为 4 1 2 + cos X≤ 2— COS x ≤ 4,由此可得3≤ y ≤ 3,于是函数y = 2 — cos χ(x ∈ R)的最大值为3.]Sin X , Sin x ≤ COS X ,24•对于函数f(x)=给出下列四个命题:cos X , Sin x > cos X ,① 该函数是以π为最小正周期的周期函数;② 当且仅当X = π+ K ∏K ∈ Z)时,该函数取得最小值—1;5 ∏③ 该函数的图象关于X =^4 + 2K π K ∈ Z)对称;4 [由已知可得弧长 1I = 2r ,周长 C = 4r ,面积 S =㊁× Ir = r 2, C — 1 4r — 1 S = r 2 =④当且仅当 2K∏VXv ∏+ 2K ∏K ∈ Z)时,Ovf(x)≤今. -和 4 =- 1-22+ 4, 其中正确命题的序号是22.已知角 α终边C — 1故S 的最大值为4.]③④[作出函数f(x)的图象如图所示:点P 的坐标为sin"5?,, coS 5Π ,贝蛹的最小正值是5?[角α终边上一点P 的坐标为sin^5∏t , coS 5∏ ,即1 ,—弩, -逅―2tan α= —1 — =— 3 ,且α为第四象限角,2所以角α的最小正值是竽]由图象可知f(x)为周期函数,T = 2 ∏①错误;当X = 2K π+ π或X = 2K π+时, 取最小值—1 ,故②错误;x =∏+ 2K ∏K ∈ Z)和X =5∏+ 2K ∏K ∈ Z)都是该图象的对称轴,故③正确; ∏当 2k∏vXV - + 2K∏K∈ Z)时,∏20.已知函数f(x)= Sin(ω汁φ)( ω> 0),若将f(x)的图象向左平移空个单位长度所 得的图象与将f(x)的2+ cos X23•函数y= ------- (x ∈ R)的最大值为2— cos X43 [由题意有 y =2 — cos X — 1,因为一1 ≤ cos x ≤ 1,所以 1 ≤ 2 — cos2 .• r = |OP|= 5, X = 4, y = — 3,⑵ V α终边过点 P(4a , — 3a)(a ≠ 0),2• ∙ 2si n α+ cos α= 5. 宀 2、2 综上,2sin α+ cos a=—5或5.4 0 •丄 2Cos a= — 5, 2Sin a+ CoS a= 5;xf 2故0v f(x)≤三.故④正确.] • Sin α= y=3X 4 5, cos a=^r = 5 3 4 • 2s in a+ cos a= 2× —"5 +^5 = 25.25.已知 sin( —α ∙ C o —(8 冗一 α=π,求 Sin α与 cos α 的值.∙°∙ r = IoPl = 5∣a∣, X= 4a , y = — 3a.[解]由已知条件可得Sin CCOS a= 169,当 a>0 时,r = 5a , Si ny OC== r 3 5,2^120 289• ∙ (Sin a+ cos 0) = 1 + 2sin OCOS O= 1 +169=169,X 4cos a= r = 5 2 , C ∙. 120 49 (Sin a — cos 0 = 1 — 2s In CCOS a= 1 —169=169"∙ 2si n α+ cosα=25;π Vx∈ 4,当 a<0 时,r = — 5a , ∙ SinO=∙ Sin α> COS α, X 4cos a= ~r = — 512 5解方程组得 Sin C= 13, cos a= 13.⑶当点P 在第一象限时,Sin3α= 5,26. (1)已知角α的终边经过点P(4,— 3),求2sin α+ cos α的值; (2)已知角α的终边经过点P(4a ,— 3a)(a ≠0),求2sin α+ cos α的值; 4 .cos α= 5, 2sin α+ cos α= 2;(3)已知角α终边上一点P 到X 轴的距离与到y 轴的距离之比为3 : 4,求2sin α当点P 在第二象限时,Sin α= 35,f(x)图象在X 轴上方且f(x) max三、解答题17Sin α+ cos a=ZSin a — cos a=+ cos α的值.[解](1) V α终边过点P(4, — 3),4 c • 2COS α=匚,2sin (Ur COS C=^-.5 527.是否存在角a, β, α∈ —2’ 2 , β∈ (0, ∏)使等式Sin(3 —O =2COS~2—β , J3cos(- O = -ΛJ2COS(r β同时成立?若存在,求出a, β的值;若不存在,请说明理由.[解]假设存在角a , β满足条件,则{Sin a= 12sin β , ① 3cos a= . 2cos β , ②由①2+②2得sin2 a+ 3CO$ a= 2.π28.已知函数f(x)= 2sin 2x+^ + 1.(1)求函数f(x)的最大值,并求取得最大值时X的值;(2)求函数f(x)的单调递增区间.[解](1)当2x+ 3= 2k∏+∏,则X= k∏+ 1∏(k∈ Z)时,f(x)max= 3.⑵当2k∏-∏≤2X+3≤2k∏+ ∏,即k∏-5∏≤ x≤ k∏+ W时,函数f(x)为增函数.5∏∏故函数f(x)的单调递增区间是kn—p , k∏+p(k∈ Z).当点P在第二象限时,Sin C=3 5,COS (O=4.,2sin Crr COS U=- 2;5当点P在第四象限时,Sin U=35,'T Ov β< ∏∏∙∙∙β= 6 ,此时代入①式不成立,故舍去..∙.存在a=4 β=^6满足条件.• COS a= 2y.29.如图是函数y= ASin(ωχ+φ+ k(A>0 ,∏ω>0 , φ |<"2)的一段图象.∙.∙a∈当O= 4时,代入②得:COS β= ,T Ov β< ∏∏.∙. β= 6,代入①可知成立;当a=- π∏时,代入②得COS β=^23 , (1)求此函数解析式;(2)分析一下该函数是如何通过y= Sin X变换得来的?(1)由图象知A=.∙∙ coS2O= 2'1 3—2+ — 2k= 2 =_ 1,2 π πT=2× J-6 二∏2π 1.∙. ω= T = 2..∙∙ y=qsin(2x+ φ— 1.π π ππ当X= 6, 2× 6+ φ= 2,■ ■ φ = 6*1 ∏•••所求函数解析式为y=^sin 2x+6 —1.∏ ∏(2)把y= Sin X向左平移舌个单位得到y= sin x+石,然后纵坐标保持不变、横坐标缩短为原来的2倍,得到y=sin 2x+ 6 ,再横坐标保持不变,纵坐标变为原来的舟倍,1 ∏ 1 ∏得到y=^sin 2x+ 6 ,最后把函数y=2sin 2x+6的图象向下平移1个单位,得到y1 ∏=2sin 2x+6 — 1 的图象•∏30.已知函数f(x) = ASi n( ωX (D A> 0, ω> 0, ∣φ IV㊁的图象在y轴上的截距为1,它在y轴右侧的第一个最大值点和最小值点分别为(x o, 2)和(x o+ 3∏ —2).(1)求f(x)的解析式;1⑵将f(x)的图象上的所有点的横坐标缩短到原来的3倍(纵坐标不变),然后再将所得的图象向右平移∏个单位,得到函数g(x)的图象,写出函数g(x)的解析式,并用五点作图的方法画出g(x)在长度为一个周期的闭区间上的图象.[解](1)由f(x) = ASin(ω汁D)在y轴上的截距为1,最大值为2,得1 = 2sin D,1 ∏ ∏ 所以Sin D = 2.又IDVq,所以由题意易知T = 2[(x o + 3 π —x o] = 6 ∏2 ∏ 1 所以ω=亍=3X ∏ 所以f(x) = 2sin 3+6 .⑵将f(x)的图象上的所有点的横坐标缩短到原来的£倍(纵坐标不变),得到y=∏ ∏ ∏ ∏2sin x+6的图象;再把所得图象向右平移§个单位,得到g(x) = 2sin x—§+石=冗2sin x—石的图象.列表:描点画图:。
(完整word)高中数学必修4三角函数综合测试题及答案详解,推荐文档
必修4三角函数综合测试题及答案详解、选择题1 •下列说法中,正确的是()A •第二象限的角是钝角B. 第三象限的角必大于第二象限的角C. —831°是第二象限角D. —95° 20 , 984° 40 , 264° 40是终边相同的角a n2. 若点(a,9)在函数y= 3x的图象上,贝U tan^的值为()A. 0B.^C. 1D. 3g3. 若|cos g= cosg, |tan g= —tang,则2的终边在( )A. 第一、三象限B. 第二、四象限C. 第一、三象限或x轴上D. 第二、四象限或x轴上4. 如果函数f(x)= sin(册g)(0< g<2 n的最小正周期是T,且当x= 2时取得最大值,那么()nA. T = 2,g= 2 B . T= 1, g=nC. T = 2,n An D. T = 1, 0= 25 .若sin扌—x =—舌',且n<<2n,贝U x 等于47A.3 nB/6n511C~ n D —冗6 .已知a是实数,而函数f(x)= 1 + asinax的图象不可能是()A .奇函数 B. 偶函数C. 既是奇函数又是偶函数D. 既不是奇函数也不是偶函数 10.函数 f(x)= x — cosx 在(0,+x )内()A .没有零点B. 有且仅有一个零点C. 有且仅有两个零点D. 有无穷多个零点7.将函数y = sinx 的图象向左平移(K0<杯2 n )单位长度后,得到 y =nsin x — 6的图象,则.nA ・6 _ 5 nB W 7n C.百11 n D .T8.若 tan 0= 2,…2sin 0—B . 13 C.45 D.59. 函数f(x)= 忌的奇偶性是(111. 已知 A 为锐角,lg(1 + cosA)= m, lg^—COsA= n,则IgsinA 的值是()B . m — n1D.2(m — n )n12. 函数f (x )= 3sin 2x —3的图象为C , 11① 图象C 关于直线x = 12 n 对称;n 5 n② 函数f (x )在区间—12, 12内是增函数;冗③ 由y = 3sin2x 的图象向右平移3个单位长度可以得到图象C ,其中正确命题 的个数是()A . 0B . 1C . 2D . 3二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) ,.,n 1 n _ M .13. 已知 sin a+ 2 — 3, a€ — 2, 0,则 tan a= ________ .14. 函数y — 3cosx (0W x < n 的图象与直线y — — 3及y 轴围成的图形的面积 为 ________ .15. ________________________________________________________ 已知函数f (x ) — sin (3x+©)(CD >0)的图象如图所示,贝U 3— ________ .16. 给出下列命题:① 函数y — cos |x +才是奇函数; ② 存在实数X ,使sinx + cosx — 2;③ 若a, B 是第一象限角且a < B,则tan a <tan B;八1 A- m + ni i Cim+n④x—81是函数y—sin 2x+于的一条对称轴;n n⑤函数y—sin 2x+ 3的图象关于点衫,0成中心对称. 其中正确命题的序号为__________ .三、解答题17. (10 分)已知方程 sin (a — 3 n 2cos (a — 4n )sin n — a + 5cos 2 n — a 3n2sin ~2 — a — sin — a18. (12 分)在厶 ABC 中,sinA + cosA ^#,求 tanA 的值.n 319. (12分)已知 f(x) = sin 2x + 6 + 2, x € R. (1) 求函数f(x)的最小正周期; (2) 求函数f(x)的单调减区间;⑶函数f(x)的图象可以由函数y = sin2x(x € R)的图象经过怎样变换得到?n20. (12分)已知函数y = Asin@x+©)(A>0,心>0)的图象过点P ^, 0,图象n与P 点最近的一个最高点坐标为 3,5 .的值.(1) 求函数解析式;(2) 求函数的最大值,并写出相应的x的值;(3) 求使y w 0时,x的取值范围.21. (12 分)已知cos _a = . 2cos 3n+ p,_ 3sin 号―a =—慣sin 扌+ B,且0< a<n,0< 仟n,求a, p的值.n n 22. (12 分)已知函数f(x) = x2+2xtan B— 1,x€ [ —1, 3],其中氏一2, 2 .⑴当皓—塾寸,求函数的最大值和最小值;(2)求B的取值范围,使y=f(x)在区间[—1, 3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).必修4三角函数综合测试题答案、选择题1. D;2. D;3.D; 4. A; 5. B6. D;7. D;8. C;9.A; 10. B11 .D;12.C二_ 、填空题13 .—22;14. 3 n 15.32 16. ①④三、解答题17.解〔Sin( a—3n^2cos(a—4 n,•'•—si n(3 — a = 2cos(4 n a).•••-sin( — M = 2cos(—a).•'si n a= — 2cos a 可知 COS aM 0. sin a+ 5cos a• • •原式= '——2cos a+ sin a—2cosa+ 5cos a3cos a—2cos a — 2cos a — 4coS a18 •解・.sinA + cosA =¥,①1两边平方,得2sinAcosA = — 2,n从而知 cosA<0,.・.jA €2, n .•'sinA — cosA = " ■' sinA + cosA 2 — 4sinAcosA由①②,得 sinA =4 , cosA =4sinAl•anA=cosA= — 2—3.2 n19. 解(1)T =~2 =冗.. 冗小 冗〜3 n⑵由 2k 卄 2= 2x + 6< 2k n+~2, k^Z ,n , 2 n得 k n+ 6= x < k n+_3, kZ所以所求的单调减区间为. n , 2 n k n+ 6,k n+~3 (k@).n334.1+1# ②(3) 把y= sin2x的图象上所有点向左平移石个单位,再向上平移2个单位,即得函n 3 数 f(x) = sin 2x + 6 + 2的图象.T n n n 20. 解(1)由题意知 4 = 3— 12= ~4,'T =n.2 n n n •••3= T = 2, 由 w 12 +©= 0, 得 R — 6,又 A = 5,n•'y = 5sin 2x —召. n n (2)函数的最大值为5,此时2x —6= 2k n+ 2(k®).n•'x = k n+ 3(k^Z). n n⑶-5sin 2x — 6 w 0 ,• 2k n — 2x —©w 2k n k ^Z).5 n , n •兀―12 w x w k n+ ^(k .n 321. 解 cos a = , 2cos 2 n+ B,即卩 sin a= , 2sin 辽3si 门号冗一a = — 2sin 2+ B ,即.3cos a= 2cos 迄①2+②2得,2= sin 2 a+ 3cos a.2 2 2又 sin a+ cos a= 1 ,「COS a=又Taq O , n n•B= 6. cos a=— 2 , a=3•a=4,或 4冗. ⑵当 a= ¥时,十5冗/宀「n n 亠 3 n 5 n又R0, n , •/= -Q.综上,a4, A6,或尸N, ^~Q.22. 解⑴当皓—訥寸,f(x) = x2—爭—1= X—尹—4・••xq —1,. 3],•当x=¥时,f(x)的最小值为一3,当x= —1时,f(x)的最大值为(2)f(x) = (x+tan®2— 1 —tan20是关于x的二次函数.它的图象的对称轴为x=—tan 0••y=f(x)在区间[—1,. 3]上是单调函数,• —an (X —1,或一tan 0》一3,即卩tan0》1,或tan (X —3.n n .…n n n n2,2,••的取值范围是—2,—3 u4,2 .。
(典型题)高中数学必修四第一章《三角函数》测试(有答案解析)(1)
一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到5.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦6.如图,一个摩天轮的半径为10m ,轮子的最低处距离地面2m .如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P (点P 与摩天轮天轮中心O 的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是( )A .8分钟B .10分钟C .12分钟D .14分钟7.设函数()32sin cos f x x x x +,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③8.下列结论正确的是( )A .sin1cos1<B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭9.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x10.有以下四种变换方式: ①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍; ③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( ) A .①③B .②③C .①④D .②④11.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解 二、填空题13.函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,则ω的范围__________.14.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 15.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______.16.已知函数()sin()f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5(,0)12π成中心对称,且与点M 相邻的一个最低点为2(,3)3π-,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②函数()3y f x π=-为偶函数;③函数1y =与35()()1212y f x x ππ=-≤≤的图象的所有交点的横坐标之和为7π.其中正确的判断是__________________.(写出所有正确判断的序号)17.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上,若国歌长度约为50秒,升旗手应以__________(米 /秒)的速度匀速升旗.18.关于函数()()4sin 23f x x x π⎛⎫=-∈ ⎪⎝⎭R ,有下列命题: ①43y f x π⎛⎫=+⎪⎝⎭为偶函数; ②方程()2f x =的解集为,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; ③()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭对称;④()y f x =在[]0,2π内的增区间为50,12π⎡⎤⎢⎥⎣⎦和11,212ππ⎡⎤⎢⎥⎣⎦; ⑤()y f x =的振幅为4,频率为1π,初相为3π-. 其中真命题的序号为______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭.(1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程.22.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R . (1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.23.已知函数()sin 2sin 2233f x x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭, (1)求函数()f x 的最小正周期; (2)当π[0,]2x ∈时,(i )求函数()f x 的单调递减区间;(ii )求函数()f x 的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量x 的值.24.已知函数()()()f x g x h x =,其()g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由);(2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答, 注:如果选择多个条件分别解答.按第一个解答计分. 25.已知sin(3)(),cos x f x x R xπ-=∈(1)若α为第三象限角,且3sin 5α=-,求()f α的值. (2)若,34x ππ⎡⎤∈-⎢⎥⎣⎦,且21()2()1cos g x f x x =++,求函数()g x 的最小值,并求出此时对应的x 的值.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值.【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭,【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值.因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.5.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 6.B解析:B 【分析】由题可得此人相对于地面的高度h 与时间t 的关系是()10sin1203015h t t π=+≤≤,再令10sin121715t π+≥求出t 的范围即可得出. 【详解】设时间为t 时,此人相对于地面的高度为h , 则由题可得当0t =时,12h =, 在时间t 时,此人转过的角为23015t t ππ=, 此时此人相对于地面的高度()10sin 1203015h t t π=+≤≤,令10sin 121715t π+≥,则1sin 152t π≥, 所以56156t πππ≤≤,解得52522t ≤≤, 故在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是()25510min 22-=. 故选:B. 【点睛】本题考查三角函数的实际应用,解题的关键是得出高度与时间的关系()10sin1203015h t t π=+≤≤,再解三角函数不等式即可.7.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+, 即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确;令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.8.D解析:D【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.9.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.10.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=-⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=- ⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C【分析】 可得()()2f x f x π+=,得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 【详解】()()sin cos cos sin 222f x x x x x f x πππ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭,()f x ∴是以2π为周期的函数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则3,444x πππ⎡⎤+∈⎢⎥⎣⎦,41x π⎛⎫+ ⎝∴≤⎪⎭≤根据函数的周期性可得()f x 的最小值为1,故AB 错误,∴1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上无解,故D 错误, ()()sin cos cos sin222f x x x x x f x πππ⎛⎫⎛⎫-=-+-=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确. 故选:C. 【点睛】本题考查三角函数的应用,解题的关键是得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 二、填空题13.【分析】根据函数在区间上有50个最大值由第50个和第51个最大值满足求解【详解】因为函数在区间上有50个最大值第一个最大值为:第二个最大值为:第三个最大值为:…第50个最大值为:第51个最大值为:所解析:589601,120120ππ⎡⎫⎪⎢⎣⎭【分析】根据函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,由第50个和第51个最大值满足49220502232ππππωπ+⨯≤+<+⨯求解.【详解】因为函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值, 第一个最大值为: 32x ππω+=,第二个最大值为: 232x ππωπ+=+, 第三个最大值为: 432x ππωπ+=+,…第50个最大值为: 49232x ππωπ+=+⨯, 第51个最大值为: 50232x ππωπ+=+⨯, 所以 49220502232ππππωπ+⨯≤+<+⨯,解得49512010120πππωπ+≤<+, 综上:ω的范围是589601,120120ππ⎡⎫⎪⎢⎣⎭.故答案为:589601,120120ππ⎡⎫⎪⎢⎣⎭【点睛】易错点点睛:本题容易忽视第50个和第51个最大值要满足49220502232ππππωπ+⨯≤+<+⨯.14.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.15.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数,故②错误;()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④.【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.②③【分析】根据已知条件确定函数的解析式进一步利用整体思想确定函数的对称轴方程对称中心及各个交点的特点进一步确定答案【详解】函数(其中)的图象关于点成中心对称且与点相邻的一个最低点为则:所以进一步解解析:②③ 【分析】根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案. 【详解】函数()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33π⎛⎫- ⎪⎝⎭,, 则:2543124T πππ-== , 所以T π=: ,326f x sin x π⎛⎫=+ ⎪⎝⎭(). 进一步解得:223A πωπ===, 由于()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,,所以:5212k k Z πϕπ⋅+∈=(), 解得:5,6k k Z πϕπ-∈= ,由于0ϕπ<<, 所以:当1k = 时,6πϕ=.所以: ①当2x π=时,33262f sin πππ⎛⎫=+=- ⎪⎝⎭().故错误. ②3232633f x sin x cos x πππ⎡⎤⎛⎫⎛⎫--+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=.则3y f x π⎛⎫=- ⎪⎝⎭为偶函数,故正确. ③由于:351212x ππ-≤≤,则:0266x ππ≤+≤,所以函数()f x 的图象与1y =有6个交点. 根据函数的交点设横坐标为123456x x x x x x 、、、、、, 根据函数的图象所有交点的横标和为7π.故正确. 故答案为②③ 【点睛】本题考查的知识要点:正弦型函数的解析式的求法,主要确定A ,ω、φ的值,三角函数诱导公式的变换,及相关性质得应用,属于基础题型.17.6【分析】根据题意可求得然后利用正弦定理求得最后在中利用求得答案【详解】在中由正弦定理得;在中(米)所以升旗速度(米/秒)故答案为06【点睛】本题主要考查了解三角形的实际应用此类问题的解决关键是建立解析:6 【分析】根据题意可求得,45BDC ∠=︒,30CBD ∠=︒,CD =BC ,最后在Rt ABC 中利用sin60AB BC =︒求得答案.【详解】在BCD 中,45BDC ∠=︒,30CBD ∠=︒,CD =由正弦定理,得sin 45sin 30CD BC ︒==︒在Rt ABC 中,sin?6030AB BC =︒==(米). 所以升旗速度300.650t AB v ===(米/秒). 故答案为0.6. 【点睛】本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决,属于中档题.18.③⑤【分析】①利用三角函数的奇偶性判断真假;②解三角方程来判断真假;③利用代入法判断真假;④利用单调性的知识判断真假;⑤根据的有关概念判断真假【详解】①依题意令则所以①错误②由得当即时但所以②错误③解析:③⑤ 【分析】①利用三角函数的奇偶性判断真假;②解三角方程来判断真假;③利用代入法判断真假;④利用单调性的知识判断真假;⑤根据()sin y A ωx φ=+的有关概念判断真假. 【详解】①,依题意4474sin 24sin 24sin 233333y f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,令()4sin 23g x x π⎛⎫+ ⎝=⎪⎭,则()4sin 24sin 233g x x x ππ⎛⎫⎛⎫-=-+≠+ ⎪ ⎪⎝⎭⎝⎭,所以①错误.②,由()4sin 223f x x π⎛⎫=-= ⎪⎝⎭得1sin 232x π⎛⎫-= ⎪⎝⎭.当5236x ππ-=,即712x π=时,1sin 232x π⎛⎫-= ⎪⎝⎭,但7,124x x x k k Z πππ⎧⎫=∉=+∈⎨⎬⎩⎭,所以②错误.③,()24sin 4sin 0333f ππππ⎛⎫⎛⎫-=--=-= ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭对称,即③正确. ④,由于5104sin 4sin 30333f ππππ⎛⎫⎛⎫=-==⎪⎪⎝⎭⎝⎭,()24sin 44sin 4332f ππππ⎛⎛⎫⎛⎫=-=-=⨯-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭所以11,212ππ⎡⎤⎢⎥⎣⎦不是()f x 的增区间,所以④错误. ⑤,()y f x =的振幅为4,周期22T ππ==,频率为11T π=,初相为3π-,所以⑤正确. 故答案为:③⑤ 【点睛】本小题主要考查三角函数的奇偶性、对称性、单调性、和三角函数的概念,属于中档题.19.②③【分析】根据三角函数的零点性质三角函数对称和三角函数诱导公式依次判断每个选项得到答案【详解】①中是的两个零点即是的整数倍①错误;②中②正确;故④错误;③中③正确;所以正确命题序号是②③故答案为:解析:②③ 【分析】根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案. 【详解】①中12,x x 是()f x 的两个零点,即12x x -是2π的整数倍,①错误; ②中06f π⎛⎫-= ⎪⎝⎭,②正确;故④错误;③中4sin 24cos 2cos 23236y x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,③正确; 所以正确命题序号是②③. 故答案为:②③. 【点睛】本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =, 故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)答案见解析;(2)34k x ππ=+,k Z ∈. 【分析】(1)分别令x 等于0、6π、512π、23π、1112π、π,求得对应的纵坐标,确定点的坐标,列表、描点、作图即可;(2)利用放缩变换与平移变换法则可得到()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭,再令5462x k k Z πππ-=+∈,可得答案. 【详解】(1)由题意可得表格如下:26x π+6π 2π π32π 2π136πx6π 512π 23π 1112ππ()f x141212- 014(2)将()y f x =的图象向上平移1个单位得到1sin 2126y x π⎛⎫=++ ⎪⎝⎭的图象,再横坐标缩短为原来的12可得到1sin 4126y x π⎛⎫=++ ⎪⎝⎭的图象,再向右平移4π个单位可得115sin 41sin 412626y x x πππ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭的图象, 即()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭, 令5462x k πππ-=+,解得34k x k Z ππ=+∈,, 所以()g x 的对称轴方程是34k x ππ=+,k Z ∈. 【点睛】方法点睛:“五点法”作一个周期上的图象,主要把握三处主要位置点:1、区间端点;2、最值点;3、零点.22.(1)答案见解析;(2)3,2⎡⎤⎣⎦;(3)5,6ππ⎡⎤-⎢⎥⎣⎦ 【分析】(1)利用五点法作图,按照列表、描点、连线的步骤作图即可; (2)根据x ππ-≤≤求出126x π+的范围,再利用正弦函数的性质求出1sin 26x π⎛⎫+ ⎪⎝⎭的范围即可求值域; (3)先求出()12sin 6212g x f x x ππ⎛⎫=+⎛⎫=-⎪⎝⎭ ⎪⎝⎭,再令12222122k x k πππππ-+≤+≤+, ()k Z ∈,不等式的解集与[],ππ-求交集即可.【详解】(1)利用五点法作图列表如下:126x π+ 02ππ32π 2πx3π-23π 53π 83π 113π()f x0 2 02-(2)因为x ππ-≤≤,所以123263x πππ-≤+≤, 所以31sin 1226x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()12sin 2263x f x π⎛⎫=+≤⎪⎝⎭-≤, 函数()f x 在[],ππ-内的值域为3,2⎡⎤-⎣⎦(3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象, 则()112sin 2sin 6266212g x x x x f ππππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎛⎫=-⎪⎝⎝⎦⎭⎭⎣,令12222122k x k πππππ-+≤+≤+()k Z ∈,解得:754466k x k ππππ-+≤≤+()k Z ∈, 当0k =时,7566x ππ-≤≤,当1k =时172966x ππ≤≤, 又因为[],x ππ∈-,所以56x ππ-≤≤, ()g x 在[],ππ-内的单调增区间为5,6ππ⎡⎤-⎢⎥⎣⎦,【点睛】关键点点睛:在求三角函数单调区间时,要把x ωϕ+看成一个整体让其满足正弦的单调区间,解出的x 的范围即为所求三角函数的单调区间. 23.(1)最小正周期为π;(2)(i )ππ[,]122;(ii )当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【分析】(1)利用和差公式展开合并,再利用辅助角公式计算可得()2sin (2+)3f x x π=,可得最小正周期为π;(2)(i )通过换元法令π23t x =+,求出sin y t =的范围,然后再根据sin y t =的单调递减区间求解即可;(ii )根据函数单调性求得最大值,然后计算端点值,比较大小之后可得函数的最小值. 【详解】 解:(1)πππ()=sin(2+)sin(2)2=sin 22=2sin(2+)333f x x x x x x x +-.2π==π2T ,∴()f x 的最小正周期为π. (2)(i )π[0,]2x ∈,∴ππ4π2[,]333t x =+∈,sin y t =,π4π[,]33t ∈的单调递减区间是π4π[,]23t ∈,且由ππ4π2233x ≤+≤,得ππ122x ≤≤, 所以函数()f x 的单调递减区间为ππ[,]122.(ii )由(i )知,()f x 在ππ[,]122上单调递减,在π[0,]12上单调递增.且π(0)=2sin 3f =ππ()=2sin 2122f =,π4π()=2sin 23f =所以,当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【点睛】思路点睛:(1)关于三角函数解析式化简问题,首先利用和差公式或者诱导公式展开合并化为同角,然后再利用降幂公式进行降次,最后需要运用辅助角公式进行合一化简运算;(2)三角函数的单调区间以及最值求解,需要利用整体法计算,可通过换元利用sin y t =的单调区间以及最值求解.24.若选①(1)T π=;(2)最小值2-1;若选②(1)2T π=,(2,最小值1--. 【分析】(1)结合所选选项,然后结合二倍角公式及辅助角公式进行化简,然后结合周期公式可求;(2)由已知角x 的范围,然后结合正弦函数的性质即可求解. 【详解】解:选①,(1)因为()()cos 2sin cos sin 4f x x x x x x π⎛⎫=+=- ⎪⎝⎭, 22sin cos 2sin sin 2cos 21x x x x x =-=+-214x π⎛⎫=+- ⎪⎝⎭,故函数的周期T π=; (2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,当244x ππ+=-即4πx =-时,函数取得最小值2-,当242x ππ+=即8x π=时,函数取得1,选②,(1)()2sin 24x f x x π⎛⎫=-⎪⎝⎭1cos 2x x π⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦,)2sin sin x x =-,故函数的一个周期2T π=,(2)由,44x ππ⎡⎤∈-⎢⎥⎣⎦可得sin 22x ⎡∈-⎢⎣⎦,1sin 2x =时即6x π=时,函数取得最大值4,当sin x =时即4πx =-时,函数取得最小值1-. 【点睛】此题考查二倍角公式及辅助角公式的应用,考查正弦函数性质的应用,考查计算能力,属于中档题 25.(1) 34- (2) 函数()g x 的最小值为1,此时4x π= 【分析】(1)先化简函数解析式得()tan f x x =-,则由条件可得3tan 4α=,得出答案.(2)由条件可得()2tan 2tan 2g x x x =-+,则由,34x ππ⎡⎤∈-⎢⎥⎣⎦,设tan t x ⎡⎤=∈⎣⎦,根据二次函数()222211y t t t =-+=-+即可得出答案. 【详解】 由已知有sin(3)sin(3)sin ()tan cos cos cos x x xf x x x x xππ---===-=-(1)若α为第三象限角,且3sin 5α=-,则4cos 5α=-,则3tan 4α= ()3tan 4f αα=-=-(2)()()2222cos sin 21tan 2tan 2cos x xg x f x x x x +=++=-+,34x ππ⎡⎤∈-⎢⎥⎣⎦,设tan t x ⎡⎤=∈⎣⎦即()222211y t t t =-+=-+,当1t =,即4x π= 时,有最小值1所以当4x π=时,函数()g x 有最小值1.【点睛】关键点睛:本题考查根据三角函数求值和将函数化为tan α的二次式求最值,解答本题的关键是由()()2222cos sin 21tan 2tan 2cos x x g x f x x x x +=++=-+将函数化为二次式,根据tan α⎡⎤⎣⎦∈求最小值,属于中档题.。
(易错题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)
一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④3.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+4.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 5.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 6.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A .34B .14C .32D .127.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( )A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 8.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 9.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫=⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 10.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 12.函数22y cos x sinx =- 的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2二、填空题13.当ϕ=___________时,函数()()sin f x x ϕ=+在区间4,33ππ⎛⎫⎪⎝⎭上单调(写出一个值即可).14.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.15.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.16.sin 75=______.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.已知()2sin 216f x x a π⎛⎫=-++⎪⎝⎭(a 为常数). (1)求()f x 的最小正周期和单调递增区间;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为4,求a 的值. 22.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(50203)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.23.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 24.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表: 时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米7.05.03.05.07.05.03.05.0()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?25.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.26.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯,所以211m l n≠+,故④不正确;所以①②正确,故选:A【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n的值.3.D解析:D【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x的解析式,再根据函数sin()y A xωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x xωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=.再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x xπ=+.将函数()f x的图象先向右平移3π个单位长度,可得sin(2)3y xπ=-的图象.然后向上平移1个单位长度,得到函数()g x的解析式为()sin(2)13g x xπ=-+,故选:D【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A xωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A的值,根据最值点求出ϕ的值. 4.B解析:B【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B的纵坐标满足的关系式,则吊舱到底面的距离为点B的纵坐标减2.【详解】如图所示,以点M为坐标原点,以水平方向为x轴,以OM所在直线为y轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.5.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.6.C解析:C 【分析】由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦, 由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=. 故选:C. 【点睛】关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.7.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A.【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.8.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 0842f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.10.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.故选:D. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.(集合或中的任何一个值都行)【分析】由函数的周期和区间长度可以确定和是单调区间的端点值由此列式求值【详解】的周期是而区间的长度是个单位长度则一个周期内完整的一个单调增区间或减区间当时所以解得:或解得解析:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【分析】由函数的周期,和区间长度可以确定3π和43π是单调区间的端点值,由此列式,求ϕ值. 【详解】()f x 的周期是2π,而区间4,33ππ⎛⎫ ⎪⎝⎭的长度是π个单位长度,则4,33ππ⎛⎫⎪⎝⎭一个周期内完整的一个单调增区间或减区间, 当433x ππ<<时,433x ππϕϕϕ+<+<+, 所以2324232k k ππϕπππϕπ⎧+=-+⎪⎪⎨⎪+=+⎪⎩ ,解得:52,6k k Z πϕπ=-+∈, 或23243232k k ππϕπππϕπ⎧+=+⎪⎪⎨⎪+=+⎪⎩,解得:26k πϕπ=+,k Z ∈,所以其中一个6π=ϕ, 故答案为:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【点睛】关键点点睛:本题考查三角函数的性质,求参数的取值范围,本题的关键是确定3π和43π是单调区间的端点值,列式后就比较容易求解.14.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.15.【分析】由图象知三角函数的周期结合函数图象及写出单调递增区间【详解】由图象知:∴的单调递增区间为故答案为:【点睛】思路点睛:1看图定周期特殊函数值:2结合图象由周期对称轴写出增区间解析:37[2,2],44k k k Z ++∈【分析】由图象知,三角函数的周期2T =,结合函数图象及15()()044f f ==,写出单调递增区间.【详解】 由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈, 故答案为:37[2,2],44k k k Z ++∈ 【点睛】 思路点睛:1、看图定周期、特殊函数值:2T =,15()()044f f ==.2、结合图象,由周期、对称轴写出增区间. 16.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦 解析:【解析】 试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 3022224︒︒︒︒︒︒︒=+=+=⨯+=将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法. 考点:两角和的正弦17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重 解析:120(31)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 4530231tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan156023120603DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60603DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩, 根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.(1)π,5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)2a =. 【分析】(1)利用诱导公式化简函数的解析式,再根据正弦函数的周期性和单调性求解. (2)根据0,2x π⎡⎤∈⎢⎥⎣⎦得到52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,然后利用正弦函数的性质求解. 【详解】 (1)()2sin 212sin 2166f x x a x a ππ⎛⎫⎛⎫=-++=--++ ⎪ ⎪⎝⎭⎝⎭,它的最小正周期为22ππ=. 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以函数的单调递增区间为5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时, 所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以()f x 的最大值为42sin 16a π⎡⎤⎛⎫=-⨯-++ ⎪⎢⎥⎝⎭⎣⎦, 解得2a =. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式; 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2πω,y =tan(ωx +φ)的最小正周期为πω;3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 22.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 3t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-.所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭,所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭.即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos 32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题. 23.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=, ∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦, 则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 24.(1)()2sin 566f t t ππ⎛⎫=++⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,, 则()()()()max minmax min2,522f t f t f t f t A B -+====,又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+= ⎪⎝⎭, 所以232k ππϕπ+=+,又2πϕ<,所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭.(2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭,即1sin 662t ππ⎛⎫+≥ ⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+, 又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.25.(1)()23f x x π⎛⎫=+⎪⎝⎭;(2),,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3){},66πππ⎡⎤-⋃⎢⎥⎣⎦. 【分析】(1)利用题中图象可知A =,44T π=,结合周期公式求得=2ω,再由3x π=代入计算得=3πϕ即得解析式;(2)根据三角函数平移的方法求得()g x ,再利用整体代入法求单调递减区间即可;(3)先由()32fx ≥可得sin 232x π⎛⎫+≥ ⎪⎝⎭,再由,2x ππ⎡⎤∈-⎢⎥⎣⎦得到23x π+的前提范围,结合正弦函数性质得到不等式中23x π+的范围,再计算x 范围即可.【详解】解:(1)由题中图象可知:A =,741234T πππ=-=, 2T ππω∴==,即2ω=,又由图象知,3x π=时,223k πϕππ⋅+=+,即23k πϕπ=+,k Z ∈,又02ϕπ≤<,∴=3πϕ,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()f x 向左平移12π个单位后得到函数()g x ,故()2221232g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由余弦函数性质知,令222,k x k k Z πππ≤≤+∈,得减区间,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z , ∴()g x 的单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3)由题意知:()3232fx x π⎛⎫=+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭,由,2x ππ⎡⎤∈-⎢⎥⎣⎦,知[]0,x π∈,2,2333x ππππ⎡⎤+∈+⎢⎥⎣⎦,由正弦函数图象性质可知,22333x πππ≤+≤或2233x πππ+=+ 即06x π≤≤或x =π,又,2x ππ⎡⎤∈-⎢⎥⎣⎦,得x 的取值范围为{},66x πππ⎡⎤∈-⋃⎢⎥⎣⎦.【点睛】 方法点睛:求三角函数()()sin f x A x b ωϕ=++性质问题时,通常利用整体代入法求解单调性、对称性,最值等性质,或者整体法求三角不等式的解. 26.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解; (2)根据三角函数的图象解不等式得解集. 【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=;(2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题.。
(典型题)高中数学必修四第一章《三角函数》检测卷(有答案解析)(1)
一、选择题1.已知实数a ,b 满足0<2a <b <3-2a ,则下列不等关系一定成立的是( ) A .sin sin2b a < B .()2cos >cos 3a b -C .()2sin sin3a b +<D .23cos >sin 2b a ⎛⎫-⎪⎝⎭2.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( ) A .4149,66⎡⎫⎪⎢⎣⎭B .4953,66⎡⎫⎪⎢⎣⎭C .3741,66⎡⎫⎪⎢⎣⎭D .[8,9)3.设函数()2sin cos f x x x x +,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③4.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减5.已知()f x 是定义在R 上的奇函数,()1f x +也是奇函数,当(]0,1x ∈时,()11f x x=-.若函数()()sin F x f x x π=+,则()F x 在区间[]1949,2021上的零点个数是( ) A .108 B .109 C .144 D .145 6.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+. 同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.:sin 1p x x +>的一个充分不必要条件是( ) A .02x π<<B .203x π<<C .32x ππ-<<D .566x ππ<<8.已知函数1,01()11sin ,14242x x f x x x π+≤≤⎧⎪=⎨+<≤⎪⎩,若不等式2()()20f x af x -+<在[]0,4x ∈上恒成立,则实数a 的取值范围为( )A .3a >B3a <<C.a >D .92a >9.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为( )A .12πB .6πC .3π D .18π 10.函数1cos y x x=+的图象可能是( )A .B .C .D .11.已知函数2()[sin()]3sin()cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦3二、填空题13.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.14.已知函数()sin()f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5(,0)12π成中心对称,且与点M 相邻的一个最低点为2(,3)3π-,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②函数()3y f x π=-为偶函数;③函数1y =与35()()1212y f x x ππ=-≤≤的图象的所有交点的横坐标之和为7π.其中正确的判断是__________________.(写出所有正确判断的序号)15.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .16.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 17.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?18.如图是函数()2sin(),(0,)2f x x πωφωφ=+><的图象上的一段,则ω=_________φ =____19.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.20.已知函数()y f x =是R 上的偶函数,当0x ≥时,()4242,,n 04x x f x x x ππππ⎛⎫-> ⎪⎝⎭⎛⎫≤⎧⎪⎪=≤ ⎪⎝⎭,关于x 的方程()()f x m m R =∈有且仅有四个不同的实数根,若α是四个根中的最大根,则sin()2πα+=____.三、解答题21.如图,在矩形OABC 中,22OA OC ==,将矩形OABC 绕着顶点O 逆时针旋转,得到矩形OA B C ''',记旋转的角度为θ,0,2πθ⎛⎫∈ ⎪⎝⎭旋转前后两个矩形公共部分的面积为()S θ.(1)求3S π⎛⎫⎪⎝⎭; (2)若()728S θ=,求sin θ. 22.已知函数()sin()0,0,||2f x A wx A w πϕϕ⎫⎛=+>><⎪⎝⎭的部分图像如图所示.(1)求出函数()f x 的函数解析式; (2)求函数()f x 的单调递增区间; (3)求函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上的最值. 23.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R . (1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.24.已知函数()()sin f x A x ωϕ=+(0A >,0>ω,02πϕ<<)的部分图象如图所示,其中最高点以及与x 轴的一个交点的坐标分别为,16π⎛⎫⎪⎝⎭,5,012π⎛⎫ ⎪⎝⎭.(1)求()f x 的解析式;(2)设M ,N 为函数y t =的图象与()f x 的图象的两个交点(点M 在点N 左侧),且3MN π=,求t 的值.25.已知()sin()(0,0)f x x ωϕϕπω=+<<>为偶函数,且()y f x =图像的两相邻对称中心点间的距离为2π. (1)求()f x 的解析式;(2)函数()y f x =的图像向右平移6π个单位后,再将得到的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到()y g x =的图像,求()g x 的单调递减区间. 26.已知函数()sin 2sin 23233f x x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭, (1)求函数()f x 的最小正周期; (2)当π[0,]2x ∈时,(i )求函数()f x 的单调递减区间;(ii )求函数()f x 的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】对各个选项一一验证:对于A.由0<2a <b <3-2a ,可以判断出2ba <,借助于正弦函数的单调性判断; 对于B.由0<2a <b <3-2a ,可以判断出23a b <-,借助于余弦函数的单调性判断; 对于C.由0<2a <b <3-2a ,可以判断出23a b +<,借助于正弦函数的单调性判断; 对于D.先用诱导公式转化为同名三角函数,借助于余弦函数的单调性判断; 【详解】 因为0<2a <b <3-2a 对于A. 有0<2b a <, 若22b a π<<,有sin sin 2b a <;若22b a π<<,有sin sin 2ba >,故A 错; 对于B.有 23ab <-,若232a b π<<-,有()2cos >cos 3a b -,故B 错;对于C. 23a b +<,若232a b π<+<,有()2sin sin 3a b +>,故C 错;对于D. 222333sin cos cos 2222a a a ππ+⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为b <3-2a <3,所以2cos >cos(3)b a - ∵22332a a π+-<-∴()223cos 3cos 2a a π+⎛⎫->-⎪⎝⎭∴()22233cos cos 3cos sin 22a a b a π+⎛⎫⎛⎫>->-=- ⎪ ⎪⎝⎭⎝⎭,故D 对. 故选:D. 【点睛】利用函数单调性比较大小,需要在同一个单调区间内.2.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解,∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=; 当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A3.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+, 即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确;令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.4.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.5.D解析:D 【分析】由题可得()f x 是周期为2的函数,进而判断()F x 是周期为2的函数,可求得()0=0F ,102F ⎛⎫= ⎪⎝⎭,()10F =,利用周期性即可求出零点个数.【详解】()f x 是定义在R 上的奇函数,()1f x +也是奇函数,()00f ∴=,()()()111f x f x f x +=--+=-, ()f x ∴是周期为2的函数,sin y x π=的周期为2,∴()()sin F x f x x π=+是周期为2的函数,()()00sin00=F f ∴+=,11sin 0222F f π⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()()11sin 0F f π=+=,则在区间[]1949,2021上,()()()111949194919501950202122F F F F F ⎛⎫⎛⎫=+==+== ⎪ ⎪⎝⎭⎝⎭,则()F x 在区间[]1949,2021上的零点个数是()2021194921145-⨯+=个. 故选:D. 【点睛】本题考查函数奇偶性和周期性的应用,解题的关键是判断出()F x 是周期为2的函数,根据函数的周期性即可判断出零点的个数.6.B【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+ ⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫ ⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭, 故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D . 因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=-⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.7.A解析:A首先求解命题p 表示的集合,再根据集合关系表示充分不必要条件,判断选项. 【详解】:sin 2sin 13p x x x π⎛⎫+=+> ⎪⎝⎭,即1sin 32x π⎛⎫+> ⎪⎝⎭,解得:522,636k x k k Z πππππ+<+<+∈, 得22,62k x k k Z ππππ-+<<+∈,设22,62M x k x k k Z ππππ⎧⎫=-+<<+∈⎨⎬⎩⎭经分析,只有选项A 的集合是集合M 的真子集, 故选:A 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.8.D解析:D 【分析】这是一个复合函数的问题,通过换元()t f x = ,可知新元的范围,然后分离参数,转为求函数的最大值问题,进而计算可得结果. 【详解】由题可知当[]0,1x ∈时,有[]()11,2f x x =+∈,当4](1,x ∈时,0sin14xπ≤≤,即111()sin,12422x f x π⎡⎤=+∈⎢⎥⎣⎦所以当[]0,4x ∈时,1,22()f x ⎡∈⎤⎢⎥⎣⎦,令()t f x =,则1,22t ⎡⎤∈⎢⎥⎣⎦,从而问题转化为不等式220t at -+<在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立, 即222t a t t t+>=+在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,由2y t t =+,1,22t ⎡⎤∈⎢⎥⎣⎦,设1212t t <<<()()()1212121212122220t t f t f t t t t t t t t t --=-+-=->, 所以2y t t =+在12t ⎡∈⎢⎣是单调递减函数,122t t <<<,()()()1212121212122220t t f t f t t t t t t t t t --=-+-=-<, 所以2y t t=+在2t ⎤∈⎦是单调递增函数, 在1,22t ⎡⎤∈⎢⎥⎣⎦上先减后增,而2t t +在12t =时有最大值为92,所以92a >.【点睛】本题考查含参数的恒成立问题,运用到分离参数法求参数范围,还结合双勾函数的单调性求出最值, 同时考查学生的综合分析能力和数据处理能力.9.D解析:D 【分析】由题先求出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,可得3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要满足题意,则332ππθ+≥,即可求出.【详解】将()f x 横坐标缩短为原来的13得到3sin(3)2y x =--,再向右平移29π个单位得到()23sin 323sin 3293g x x x ππ⎡⎤⎛⎫⎛⎫---=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=,,18x πθ⎡⎤∈-⎢⎥⎣⎦,则3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要使()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则332ππθ+≥,即18πθ≥,则θ的最小值为18π. 故选:D. 【点睛】本题考查正弦型函数的性质,解题的关键是通过图象变化得出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,再根据正弦函数的性质求解.10.C解析:C利用函数的奇偶性和特殊的函数值的正负排除错误选项. 【详解】函数定义域是{|0}x x ≠,关于原点对称,记1()cos f x x x=+,则11()cos()cos f x x x x x -=-+=+-()f x =,是偶函数,排除BD , 11()cos 10f ππππ=+=-+<,排除A .故选:C . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果.根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 2,622x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确. 故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.【分析】由图象知三角函数的周期结合函数图象及写出单调递增区间【详解】由图象知:∴的单调递增区间为故答案为:【点睛】思路点睛:1看图定周期特殊函数值:2结合图象由周期对称轴写出增区间解析:37[2,2],44k k k Z ++∈【分析】由图象知,三角函数的周期2T =,结合函数图象及15()()044f f ==,写出单调递增区间. 【详解】 由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈, 故答案为:37[2,2],44k k k Z ++∈ 【点睛】 思路点睛:1、看图定周期、特殊函数值:2T =,15()()044f f ==.2、结合图象,由周期、对称轴写出增区间.14.②③【分析】根据已知条件确定函数的解析式进一步利用整体思想确定函数的对称轴方程对称中心及各个交点的特点进一步确定答案【详解】函数(其中)的图象关于点成中心对称且与点相邻的一个最低点为则:所以进一步解解析:②③ 【分析】根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案. 【详解】函数()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33π⎛⎫- ⎪⎝⎭,, 则:2543124T πππ-== , 所以T π=: ,326f x sin x π⎛⎫=+ ⎪⎝⎭(). 进一步解得:223A πωπ===, 由于()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,,所以:5212k k Z πϕπ⋅+∈=(), 解得:5,6k k Z πϕπ-∈= ,由于0ϕπ<<,所以:当1k = 时,6πϕ=.所以: ①当2x π=时,33262f sin πππ⎛⎫=+=- ⎪⎝⎭().故错误. ②3232633f x sin x cos x πππ⎡⎤⎛⎫⎛⎫--+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=. 则3y f x π⎛⎫=- ⎪⎝⎭为偶函数,故正确. ③由于:351212x ππ-≤≤, 则:0266x ππ≤+≤,所以函数()f x 的图象与1y =有6个交点. 根据函数的交点设横坐标为123456x x x x x x 、、、、、, 根据函数的图象所有交点的横标和为7π.故正确. 故答案为②③ 【点睛】本题考查的知识要点:正弦型函数的解析式的求法,主要确定A ,ω、φ的值,三角函数诱导公式的变换,及相关性质得应用,属于基础题型.15.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重解析:1)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案.【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 453021tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan15602120DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于()12031m -故答案为:120(31)- 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.16.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称, ∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.17.【分析】根据题意得到化简得到或得到答案【详解】设时间为根据题意:故故或故或故故答案为:【点睛】本题考查了三角函数的应用意在考查学生的应用能力解析:【分析】根据题意得到40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,化简得到124t k =+或128t k =+,得到答案. 【详解】设时间为t ,0t >,根据题意:40sin 456562t ππ⎛⎫-+= ⎪⎝⎭,故1sin 622t ππ⎛⎫-= ⎪⎝⎭. 故2626t k ππππ-=+或52626t k ππππ-=+,故124t k =+或128t k =+,k Z ∈. 故1234564,8,16,20,28,32t t t t t t ======. 故答案为:32. 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.18.=2=【分析】由图像可得其周期;由特值再结合可得【详解】由图可得:周期所以:由可得:因为所以故答案为:2【点睛】本题考查了利用三角函数的图像求三角函数的参数值考查了三角函数的周期公式考查了数形结合属解析:ω=2 φ=6π 【分析】由图像可得其周期11()1212T πππ=--=,2=2T πω=;由特值()26f π=,再结合2πφ<,可得=6πφ. 【详解】 由图可得:周期11()1212T πππ=--=, 所以:22==2T ππωπ=, 由()26f π=,可得:2sin(2)=26πφ⋅+,因为2πφ<,所以=6πφ. 故答案为: 2 ,6π. 【点睛】本题考查了利用三角函数的图像求三角函数的参数值,考查了三角函数的周期公式,考查了数形结合,属于中档题.19.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:2-【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()3sin 2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 284f ππ⎛⎫⎛⎫∴-=-=- ⎪ ⎪⎝⎭⎝⎭. 故答案为:2-. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.20.【分析】作出函数的图像结合图像可得即从而可得四个不同的实数根进而可得代入即可求解【详解】当时函数在区间和上是增函数在区间上是减函数的极大值为极小值为作出函数当时的图像如图函数函数是R 上的偶函数当时的 解析:2-【分析】作出函数()y f x =的图像,结合图像可得1m =,即1y =,从而可得四个不同的实数根,进而可得34πα=,代入即可求解. 【详解】当0x ≥时,函数在区间0,4π⎡⎫⎪⎢⎣⎭和,2π⎡⎫+∞⎪⎢⎣⎭上是增函数,在区间,42ππ⎡⎫⎪⎢⎣⎭上是减函数,()f x 的极大值为4f π⎛⎫= ⎪⎝⎭极小值为02f ⎛⎫=⎪⎝⎭π, 作出函数当0x ≥时的图像如图, 函数函数()y f x =是R 上的偶函数,∴当0x <时()y f x =的图像与当0x ≥时的图像关于y 轴对称,故函数x ∈R 的图像如图所示,将()()f x m m R =∈进行平移,可得当1m =时, 两图像有且仅有四个不同的实数根, 令1y =,可得12,44x x ππ=-=,334x π=-,434x π=, 所以34πα=,3sin()cos cos 242ππαα∴+===-故答案为:2- 【点睛】本题考查了三角函数的图像以及根据方程根的个数求参数值、特殊角的三角函数值,考查了数形结合的思想,属于中档题.三、解答题21.(1)3S π⎛⎫= ⎪⎝⎭;(2)1sin 3θ=. 【分析】(1)作出图形,可知公共部分区域为直角三角形,计算出两直角边的长,由此可求得该直角三角形的面积; (2)分6πθ=、06πθ<<、62ππθ<<三种情况讨论,求出()S θ的表达式,结合()8S θ=可求得sin θ的值. 【详解】 (1)当3πθ=时,A '点在矩形OABC 外部,公共部分形状为三角形,设A O BC D '⋂=,则6COD π∠=,tan63CD CO π==,则1133132236S CD CO π⎛⎫=⨯⨯=⨯⨯=⎪⎝⎭;(2)①当6πθ=时,点A '在线段BC 上,此时,223A C A O OC ''=-=,11313622S OC A C π⎛⎫'=⨯=⨯⨯=⎪⎝⎭; ②当06πθ<<时,公共部分为四边形,A '点在矩形OABC 内部,过点A '作线段AB 的平行线,分别交线段AO 、BC 于点E 、F ,设A B BC G ''⋂=,则有如下长度:2cos OE θ=,22cos AE θ=-,2sin A E θ'=,12sin A F θ'=-,()12sin tan FG θθ=-,则()OEA A FG OABC AEFB S S S S S θ''=---△△矩形矩形, 即()()()()111222cos 2cos 2sin 12sin 12sin tan 22S θθθθθθθ=⨯---⨯⨯-⨯-- ()2sin 12sin 45sin 2cos 2sin cos 2cos 2cos θθθθθθθθ--=--=,由题知45sin 722cos θθ-=,两边同时平方得221640sin 25sin 494cos 32θθθ-+=, 由22cos 1sin θθ=-,整理得2249sin 320sin 790θθ-+=,即()()3sin 183sin 790θθ--=,因为06πθ<<,所以1sin 2θ<,故1sin 3θ=;③当62ππθ<<时,公共部分为三角形,且()11628S S πθ⎛⎫<=⨯=< ⎪⎝⎭,不合题意; 综上所述,1sin 3θ=. 【点睛】关键点点睛:解决本题第二问的关键就是找出θ的临界情况,然后对θ的取值进行分类讨论,确定公共区域的形状,计算求出()S θ的表达式,结合已知条件求解sin θ的值. 22.(1)()2sin 26f x x π⎛⎫=+⎪⎝⎭;(2)(),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)最小值为1-,最大值为2.【分析】(1)根据图像观察计算A 、ω、φ的值,求出()f x 的函数解析式;(2)利用同增异减求()f x 的单增区间;(3)用换元法求函数()f x 的最值.【详解】解:(1)由图可知:2A =,44T π=,即T π=, 根据2T πω=得:2ω=,由26f π⎛⎫=⎪⎝⎭得:2262k ππϕπ⨯+=+,k Z ∈ 6πϕ∴=,||2πϕ⎛⎫<⎪⎝⎭, 故:函数()f x 的解析式为:()2sin 26f x x π⎛⎫=+⎪⎝⎭. (2)由(1)知函数()f x 的解析式为()2sin 26f x x π⎛⎫=+⎪⎝⎭, 222262k x k πππππ∴-+≤+≤+,k Z ∈,36k x k ππππ∴-+≤≤+,k Z ∈,故:函数()f x 的单调递增区间为(),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,(3)由(2)知()f x 在,66ππ⎡⎤-⎢⎥⎣⎦上为增函数,()f x 在,63ππ⎡⎤⎢⎥⎣⎦上为减函数, ()f x ∴在6x π=-时,取得最小值16f π⎛⎫-=- ⎪⎝⎭, ()f x ∴在6x π=时,取得最大值26f π⎛⎫=⎪⎝⎭, 综上所述:()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上的最小值为1-,最大值为2. 【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②求ω通常用周期;③)求φ通常利用函数上的点代入即可求解. (2)利用同增异减求()f x 的单增区间;(3)利用换元法就可以得到()y g x =的最大值及取得最大值时x 的取值.23.(1)答案见解析;(2)2⎡⎤⎣⎦;(3)5,6ππ⎡⎤-⎢⎥⎣⎦ 【分析】(1)利用五点法作图,按照列表、描点、连线的步骤作图即可; (2)根据x ππ-≤≤求出126x π+的范围,再利用正弦函数的性质求出1sin 26x π⎛⎫+ ⎪⎝⎭的范围即可求值域; (3)先求出()12sin 6212g x f x x ππ⎛⎫=+⎛⎫=-⎪⎝⎭ ⎪⎝⎭,再令12222122k x k πππππ-+≤+≤+, ()k Z ∈,不等式的解集与[],ππ-求交集即可.【详解】(1)利用五点法作图列表如下:(2)因为x ππ-≤≤,所以123263x πππ-≤+≤, 所以31sin 1226x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()12sin 2263x f x π⎛⎫=+≤⎪⎝⎭-≤, 函数()f x 在[],ππ-内的值域为3,2⎡⎤-⎣⎦(3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象, 则()112sin 2sin 6266212g x x x x f ππππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎛⎫=- ⎪⎝⎝⎦⎭⎭⎣, 令12222122k x k πππππ-+≤+≤+()k Z ∈,解得:754466k x k ππππ-+≤≤+()k Z ∈, 当0k =时,7566x ππ-≤≤,当1k =时172966x ππ≤≤, 又因为[],x ππ∈-,所以56x ππ-≤≤, ()g x 在[],ππ-内的单调增区间为5,6ππ⎡⎤-⎢⎥⎣⎦,【点睛】关键点点睛:在求三角函数单调区间时,要把x ωϕ+看成一个整体让其满足正弦的单调区间,解出的x 的范围即为所求三角函数的单调区间. 24.(1)()sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)12±. 【分析】(1)由周期求出ω,取点,16π⎛⎫⎪⎝⎭求出ϕ,进而得出()f x 的解析式;(2)设()0,M x t ,0,3N x t π⎛⎫+⎪⎝⎭,解方程005sin 2sin 266x x ππ⎛⎫⎛⎫+=+⎪ ⎪⎝⎭⎝⎭,得出0()2k x k π=∈Z ,再由0sin 26t x π⎛⎫=+ ⎪⎝⎭求出t 的值.【详解】解:(1)由题意易知1A =,周期524126T πππω⎛⎫=-=⎪⎝⎭,所以2ω=,所以()sin(2)f x x ϕ=+.将最高点,16π⎛⎫ ⎪⎝⎭代入()sin(2)f x x ϕ=+中可得1sin 3πϕ⎛⎫=+ ⎪⎝⎭得2()32k k ππϕπ+=+∈Z ,即2()6k k πϕπ=+∈Z .又因为02πϕ<<,所以6π=ϕ,所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)设()0,M x t ,0,3N x t π⎛⎫+⎪⎝⎭,则005sin 2sin 266x x ππ⎛⎫⎛⎫+=+⎪ ⎪⎝⎭⎝⎭所以001sin 2cos 222x x ⋅+⋅001sin 2cos 22x x ⎛=⋅+⋅ ⎝⎭所以0sin 20x =,所以02()x k k π=∈Z ,即0()2k x k π=∈Z 所以1sin 62t k ππ⎛⎫=+=± ⎪⎝⎭. 【点睛】方法点睛:由图象求函数()sin y A x ωϕ=+的解析式时,有如下步骤: 1、由最值得出A 的值; 2、由周期结合2T πω=得出ω;3、取点求出ϕ.25.(1)()cos 2f x x =;(2)42,2,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【分析】(1)根据函数()sin()f x x ωϕ=+为偶函数求出ϕ,根据()y f x =图像的两相邻对称中心点间的距离求出ω,则可得()f x 的解析式;(2)根据图象变换规律求出()g x ,再根据余弦函数的递减区间列式可解得结果. 【详解】(1)由于函数()sin()f x x ωϕ=+为偶函数,则,2k k πϕπ=+∈Z .又0ϕπ<<,则2ϕπ=.又函数()f x 图象的两相邻对称中心点间的距离为2π,从而22T T ππ=⇒=,故22Tπω==. 故()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭. (2)函数()y f x =图象向右平移6π个单位得()cos 2cos 2663h x f x x x πππ⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;再由伸缩变换可得:()cos 3g x x π⎛⎫=- ⎪⎝⎭. 由223k x k ππππ-+.得4223k x k πππ≤≤+,k Z ∈, 故()g x 的单调递减区间为:42,2,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【点睛】关键点点睛:掌握三角函数的图象变换规律以及余弦函数的递减区间是解题关键. 26.(1)最小正周期为π;(2)(i )ππ[,]122;(ii )当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【分析】(1)利用和差公式展开合并,再利用辅助角公式计算可得()2sin (2+)3f x x π=,可得最小正周期为π;(2)(i )通过换元法令π23t x =+,求出sin y t =的范围,然后再根据sin y t =的单调递减区间求解即可;(ii )根据函数单调性求得最大值,然后计算端点值,比较大小之后可得函数的最小值. 【详解】 解:(1)πππ()=sin(2+)sin(2)2=sin 22=2sin(2+)333f x x x x x x x +-.2π==π2T ,∴()f x 的最小正周期为π. (2)(i )π[0,]2x ∈,∴ππ4π2[,]333t x =+∈,sin y t =,π4π[,]33t ∈的单调递减区间是π4π[,]23t ∈,且由ππ4π2233x ≤+≤,得ππ122x ≤≤, 所以函数()f x 的单调递减区间为ππ[,]122. (ii )由(i )知,()f x 在ππ[,]122上单调递减,在π[0,]12上单调递增.且π(0)=2sin 3f =ππ()=2sin 2122f =,π4π()=2sin 23f =所以,当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【点睛】思路点睛:(1)关于三角函数解析式化简问题,首先利用和差公式或者诱导公式展开合并化为同角,然后再利用降幂公式进行降次,最后需要运用辅助角公式进行合一化简运算;(2)三角函数的单调区间以及最值求解,需要利用整体法计算,可通过换元利用sin y t =的单调区间以及最值求解.。
(好题)高中数学必修四第一章《三角函数》检测题(有答案解析)(2)
一、选择题1.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( )A .35B .45-C .D .2.已知0>ω,2πϕ≤,在函数()()sin f x x ωϕ=+,()()cos g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当,64x ππ⎛⎫∈- ⎪⎝⎭时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( )A .,63ππ⎛⎫ ⎪⎝⎭B .,63ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎛⎫ ⎪⎝⎭D .,32ππ⎡⎤⎢⎥⎣⎦3.已知函数()cos2sin 2f x x x =-,将()y f x =的图象向左平移a (0a >)个单位长度可以得到一个奇函数的图象,将()y f x =的图象向右平移b (0b >)个单位长度可以得到一个偶函数的图象,则a b -的最小值等于( ) A .0B .8π C .4π D .2π 4.我国著名数学家华罗庚先生曾倡导“0.618优选法”,0.618是被公认为最具有审美意义的比例数字,我们称为黄金分割.“0.618优选法”在生产和科研实践中得到了非常广泛的应用,华先生认为底与腰之比为黄金分割比110.61822⎛⎫≈ ⎪ ⎪⎝⎭的黄金三角形是“最美三角形”,即顶角为36°的等腰三角形.例如,中国国旗上的五角星就是由五个“最美三角形”与一个正五边形组成的.如图,在其中一个黄金ABC 中,黄金分割比为BCAC.试根据以上信息,计算sin18︒=( )A 51- B 51- C 51+ D 355.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数33tan y x =-是奇函数C .函数tan 6y ax π⎛⎫=+⎪⎝⎭的最小正周期是aπ D .函数cos(sin )y x =是奇函数 6.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1B .2C .3D .47.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 8.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠<⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-9.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题: ①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .110.将函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,则以下说法正确的是( ) A .1ω=B .函数()y f x =图象的一条对称轴为12x π=C .()3f f x π⎛⎫ ⎪⎝⎭D .函数()y f x =在区间0,2π⎛⎫⎪⎝⎭,上单调递增11.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭12.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 二、填空题13.已知3cos 63απ⎛⎫-=⎪⎝⎭,则54cos sin 63ππαα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭的值为_____. 14.函数y =的定义域为________.15.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.16.已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是____.17.实数x ,y 满足121log sin 303yx ⎛⎫+-= ⎪⎝⎭,则cos 24x y +的值为________.18.如图所示为函数()sin 2y A x ωϕ=++,()ϕπ<的图像的一部分,它的解析式为________.19.给出下列4个命题:①函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数;②函数y =sin (2x +3π)的图象关于点(12π,0)成中心对称; ③x =8π是函数y =sin (2x +54π)的一条对称轴方程;④存在实数α,使得3242πα⎛⎫+= ⎪⎝⎭.把你认为正确命题的序号都填在横线上____.20.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 三、解答题21.在①()f x 的图象关于直线3x π=对称,②()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,③()f x 的图象上最高点中,有一个点的横坐标为6π这三个条件中任选一个,补充在下面问题中,并解答.问题:已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭的振幅为2,初相为3π,最小正周期不小于...π,且______. (1)求()f x 的解析式;(2)求()f x 在区间[],0π-上的最大值和最小值以及取得最大值和最小值时自变量x 的值.注:如果选择多个条件分别解答,按第一个解答计分.22.若,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan 23k x π⎛⎫+- ⎪⎝⎭的值总不大于零,求实数k 的取值范围.23.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式; (2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若函数()g x 在[]0,m 上单调递增,当实数m 取最大值时,求函数()f x 在[]0,m 上的最大值.24.已知函数()sin 2sin 23cos 233f x x x x ππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,(1)求函数()f x 的最小正周期; (2)当π[0,]2x ∈时,(i )求函数()f x 的单调递减区间;(ii )求函数()f x 的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量x 的值.25.如图,有一矩形空地ABCD ,240AB BC ==米,现计划种植甲、乙两种蔬菜,已知单位面积种植甲蔬菜的经济价值是种植乙蔬菜经济价值的3倍,但种植甲蔬菜需要有辅助光照.AB 边中点O 处处恰有一可旋转光源满足甲蔬菜生长的需要,该光源照射范围是60EOF ∠=︒,其中E 、F 分别在边BC ,CD 上.(1)若30BOE ∠=︒,求四边形OECF 的面积; (2)求该空地产生最大经济价值时种植甲种蔬菜的面积.26.已知函数()3,4f x x x R π⎛⎫=+∈ ⎪⎝⎭.(1)求f (x )的最小正周期;(2)求f (x )的单调递增区间和单调递减区间; (3)当0,2x π⎡⎤∈⎢⎥⎣⎦,求f (x )值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.2.D解析:D 【分析】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可求得()4k x k Z ππϕω+-=∈,再利用,相邻两个交点的横坐标之差的绝对值为2π,可得2x ππω∆==,即可得2ω=,再利用正弦函数图象的特点,可得032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,即可求出ϕ的取值范围. 【详解】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=, 可得:()4x k k Z πωϕπ+=+∈,所以因为相邻两个交点的横坐标之差的绝对值为2x ππω∆==, 所以2ω=,所以()()sin 2f x x ϕ=+, 当,64x ππ⎛⎫∈-⎪⎝⎭时,232x ππϕϕϕ-+<+<+,要满足函数()f x 的图象恒在x 轴的上方,需满足方程032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩ ,解得32ππϕ≤≤, 故选:D 【点睛】本题主要考查正弦函数的图象和性质,属于中档题.3.A解析:A 【分析】先整理函数,再根据平移后函数的奇偶性得到a ,b 的值,即可得结果. 【详解】解:函数()cos 2sin 22cos 24f x x x x π⎛⎫=-=+ ⎪⎝⎭,函数()2cos 24f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移a 个单位得到()5cos 224g x x a π⎛⎫=++ ⎪⎝⎭,又因为函数为奇函数,则242a k πππ+=+(k Z ∈),整理得28k a ππ=+(k Z ∈); 函数()2cos 24f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移b 个单位得到()2cos 224h x x b π⎛⎫=-+ ⎪⎝⎭,由于得到的函数的图象为偶函数,2=4b k ππ-+-,=,()82k b k Z ππ+∈; 当0k =时,min 0a b -= 故选:A. 【点睛】本题考查了三角函数的平移变换和奇偶性,属于中档题.4.B解析:B 【分析】先由ABC 是一个顶角为36°的等腰三角形,作其底边上的高,再利用sin18sin DAC ︒=∠,结合腰和底之比求其结果即可. 【详解】依题意可知,黄金ABC 是一个顶角为36°的等腰三角形,如图,51,BC AB AC AC -==,36BAC ∠=︒,过A 作AD BC ⊥于D ,则AD 也是三角形的中线和角平分线,故1151512sin18sin 224BCDC DAC AC AC ︒=∠===⋅=. 故选:B. 【点睛】本题解题关键在于读懂题意,将问题提取出来,变成简单的几何问题,即突破结果.5.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数()f x =0>得tan x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,()()f x f x -==-=-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误.故选:B . 【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω.6.B解析:B 【分析】求出函数的最值,对称中心坐标,对称轴方程,以及函数的单调区间,即可判断正误. 【详解】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确; 当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误;当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即252,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④正确. 故选:B 【点睛】关键点点睛:函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭的递增区间转化为sin 34y x π⎛⎫=+ ⎪⎝⎭的递减区间.7.C解析:C 【分析】根据弧度制与角度制的关系求解即可. 【详解】因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C8.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-=⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±.由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭, 由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 9.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称. 又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 10.C解析:C 【分析】由周期求出ω,然后由正弦函数的性质判断. 【详解】函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,所以22πωπ==,A 错; 12x π=时,206x π-=,12x π=不是对称轴,B 错;3x π=时,226x ππ-=,即23f π⎛⎫= ⎪⎝⎭为最大值,因此()3f f x π⎛⎫⎪⎝⎭正确,C 正确; 0,2x π⎛⎫∈ ⎪⎝⎭时,52,666x πππ⎛⎫-∈- ⎪⎝⎭,而sin y x =在5,66ππ⎛⎫- ⎪⎝⎭上不单调,D 错; 故选:C . 【点睛】方法点睛:本题考查三角函数的性质,对函数()sin()f x A x ωϕ=+,掌握五点法是解题关键.解题时可由x 的值或范围求得x ωϕ+的值或范围,然后结合正弦函数性质判断.11.B解析:B 【分析】先判断游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min ,结合摩天轮最高点距离地面高度为120m ,可得10t =时,120H =,再利用排除法可得答案. 【详解】因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min , 所以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min , 又因为摩天轮最高点距离地面高度为120m , 所以10t =时,120H =,对于A ,10t =时,55cos 106555cos 65651022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,不合题意;对于B ,10t =时,55sin 106555sin 651201022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,符合题意;对于C ,10t =时,355cos 106555cos65651022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 对于D ,10t =时,355sin 106555sin65101022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 故选:B. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型: (1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.12.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.二、填空题13.0【分析】由已知利用三角函数的诱导公式分别求得与的值则答案可求【详解】解:∵∴∴故答案为:0【点睛】本题主要考查三角函数的化简求值考查诱导公式的应用属于基础题解析:0 【分析】由已知利用三角函数的诱导公式分别求得5cos()6πα+与4sin()3πα+的值,则答案可求. 【详解】解:∵cos()6πα-=∴5cos()cos[()]66ππαπα+=--cos()6πα=--=,4sin()sin()33ππαα+=-+sin ()26ππα⎡⎤=---=⎢⎥⎣⎦cos()6πα--=,∴54cos()sin()63ππαα+-+(0==, 故答案为:0. 【点睛】本题主要考查三角函数的化简求值,考查诱导公式的应用,属于基础题.14.(k ∈Z)【分析】解不等式2cosx -1≥0即得函数的定义域【详解】∵2cosx -1≥0∴cosx≥由三角函数线画出x 满足条件的终边的范围(如图阴影所示)∴x ∈(k ∈Z)故答案为(k ∈Z)【点睛】(解析: (k ∈Z)【分析】解不等式2cos x -1≥0即得函数的定义域. 【详解】∵2cos x -1≥0,∴cos x≥.由三角函数线画出x 满足条件的终边的范围(如图阴影所示).∴x ∈ (k ∈Z). 故答案为 (k ∈Z)【点睛】(1)本题主要考查三角函数线和解三角不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)三角函数线是解三角不等式较好的工具,要理解掌握并灵活运用.15.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应 解析:2114【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ ==6xRQ RQD π∠=∠=3tan336DR DQ π∴=⋅=⨯= 223,23,12921PR DP PQ PD PQ ∴===+=+=由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则33sin 212sin 21PR PRQPQR PQ⋅⋅∠∠===21【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.16.【分析】利用任意性与存在性原命题可转化为有且仅有一个解然后根据三角函数的性质和图像求解即可【详解】由则存在唯一的实数使即有且仅有一个解作函数图像与直线当两个图像只有一个交点时由图可知故实数的最大值是解析:34π【分析】利用任意性与存在性原命题可转化为()12,,22f k k β⎛=∈ ⎝⎭有且仅有一个解,然后根据三角函数的性质和图像求解即可. 【详解】由()sin f x x =,(,)46αππ∈--,则()21,22f α⎛⎫∈-- ⎪ ⎪⎝⎭,存在唯一的实数(0,)m β∈,使()()0f f αβ+=, 即()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,作函数图像()y f β=与直线12,,22y k k ⎛=∈ ⎝⎭,当两个图像只有一个交点时,由图可知,344m ππ<≤, 故实数m 的最大值是34π. 故答案为:34π 【点睛】本题主要考查了三角函数的图像与性质,属于较为基础题.17.【分析】由实数满足可得从而求出结果【详解】实数xy 满足且故答案为:【点睛】本题考查函数与方程的关系属于基础题解析:54【分析】由实数满足121log sin 303yx ⎛⎫+-= ⎪⎝⎭可得sin 1,1x y ==-,从而求出结果【详解】实数x ,y 满足121log sin 303yx ⎛⎫+-= ⎪⎝⎭,且120sin 1,log sin 0x x <≤∴≥,121log sin 0,303yx ⎛⎫∴=-= ⎪⎝⎭∴sin 1,1x y ==-,cos 0x ∴=,0cos 1421524414x y -=++=+= 故答案为:54【点睛】本题考查函数与方程的关系,属于基础题18.【分析】由两最值点对应横坐标可求周期由波峰波谷可求将代入可求【详解】由图可知即将得即又当时故故答案为:【点睛】本题考查由三角函数图像求解具体解析式属于中档题解析:33sin 224y x π⎛⎫=-+⎪⎝⎭【分析】由两最值点对应横坐标可求周期,由波峰波谷可求,A 将,16π⎛⎫⎪⎝⎭代入可求ϕ【详解】 由图可知,522663T ππππ=-=,即43T π=,24332ππωω=⇒=, 3112A -==,将,16π⎛⎫⎪⎝⎭3sin 22y x ϕ⎛⎫=++ ⎪⎝⎭得2,42k k Z ππϕπ+=-+∈,即32,4k k Z πϕπ=-+∈,又ϕπ<,当0k =时,34πϕ=-,故33sin 224y x π⎛⎫=-+ ⎪⎝⎭故答案为:33sin 224y x π⎛⎫=-+ ⎪⎝⎭【点睛】本题考查由三角函数图像求解具体解析式,属于中档题19.①③【分析】根据三角函数的奇偶性对称中心对称轴和最值对四个命题逐一分析由此确定正确命题的序号【详解】①为奇函数所以①正确②由于所以②错误③由于所以③正确④由于的最大值为所以④错误故答案为:①③【点睛解析:①③ 【分析】根据三角函数的奇偶性、对称中心、对称轴和最值对四个命题逐一分析,由此确定正确命题的序号. 【详解】①,22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭为奇函数,所以①正确.②,由于sin 2sin 11232πππ⎛⎫⨯+== ⎪⎝⎭,所以②错误. ③,由于53sin 2sin 1842πππ⎛⎫⨯+==- ⎪⎝⎭,所以③正确.④4πα⎛⎫+ ⎪⎝⎭32<,所以④错误. 故答案为:①③ 【点睛】本小题主要考查三角函数的奇偶性、对称性、最值以及诱导公式,属于中档题.20.【分析】可拆分理解构造由对勾函数可得时取得最小值又当时也取到最小值即可求解【详解】令由对勾函数性质可知当时;因为当时所以当时取到最小值所以故答案为:【点睛】本题考查函数最值的求解拆分构造函数是解题关解析:52【分析】可拆分理解,构造251616()5x x g x x x x-+==+-,由对勾函数可得4x =时取得最小值,又当4x =时,12sin 236x ππ⎛⎫-- ⎪⎝⎭也取到最小值,即可求解 【详解】令251616()5x x g x x x x-+==+-,由对勾函数性质可知当4x =时,min ()3g x =;因为121sin 2362x ππ⎛⎫--- ⎪⎝⎭,当4x =时,121sin 2362x ππ⎛⎫--=-⎪⎝⎭,所以当4x =时,()f x 取到最小值,5(4)2f =,所以min 5()2f x =. 故答案为:52【点睛】本题考查函数最值的求解,拆分构造函数是解题关键,属于中档题三、解答题21.(1)见解析(2)见解析 【分析】(1)由题意可知2,3A πϕ==,选择条件①,由正弦函数的对称性求出ω,进而得出解析式;选择条件②,由正弦函数的对称性求出ω,进而得出解析式;选择条件③,由正弦函数的性质求出ω,进而得出解析式;(2)由[],0x π∈-,求出x ωϕ+的范围,再结合正弦函数的性质求出最值. 【详解】(1)由题意可知2,3A πϕ==选择条件①因为()f x 的图象关于直线3x π=对称,所以332k πππωπ+=+,解得13,2k k Z ω=+∈ 由21321302kk k Z ππ⎧≥⎪+⎪⎪⎨⎪+>⎪⎪∈⎩,解得0k =,即12ω=故1()2sin 23f x x π⎛⎫=+ ⎪⎝⎭选择条件②因为()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,所以,26,63k k k Z ππωπω-+==-∈由226260kk k Zππ⎧≥⎪-⎪⎨->⎪⎪∈⎩,解得0k =,即2ω=故()2sin 23f x x π⎛⎫=+ ⎪⎝⎭选择条件③因为()f x 的图象上最高点中,有一个点的横坐标为6π,所以2,632k k Z πππωπ+=+∈,解得112,k k Z ω=+∈由21121120kk k Zππ⎧≥⎪+⎪⎨+>⎪⎪∈⎩,解得0k =,即1ω=故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭(2)选择条件①1,2363x πππ⎡⎤+∈-⎢⎥⎣⎦当1236x ππ+=-,即x π=-时,min ()2sin 16f x π⎛⎫=-=- ⎪⎝⎭当1233x ππ+=,即0x =时,max ()2sin 3f x π== 选择条件②52,333x πππ⎡⎤+∈-⎢⎥⎣⎦当5233x ππ+=-或233x ππ+=,即x π=-或0x =时,max ()2sin 3f x π==当232x ππ+=-,即512x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭选择条件③2,333x πππ⎡⎤+∈-⎢⎥⎣⎦当33x ππ+=,即0x =时,max ()2sin3f x π==当32x ππ+=-,即65x π=-时,min ()2sin 22f x π⎛⎫=-=- ⎪⎝⎭【点睛】关键点睛:解决本题的关键是将正弦型函数的问题转化为正弦函数的性质进行求解,利用已知知识解决未知问题.22.k ≤【分析】先根据题意得tan 203k x π⎛⎫+-≤ ⎪⎝⎭,进而得πtan 23k x ⎛⎫≤-- ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立,在求函数πtan 23y x ⎛⎫=-- ⎪⎝⎭最小值即可得答案.【详解】解:根据题意得tan 203k x π⎛⎫+-≤ ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴πtan 23k x ⎛⎫≤-- ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立.∵ππ,63x ⎡⎤∈⎢⎥⎣⎦,∴ π20,33x π⎡⎤-∈⎢⎥⎣⎦,∴π0tan 23x ⎛⎫≤-≤ ⎪⎝⎭πtan 203x ⎛⎫--≤ ⎪⎝⎭,∴min πtan 23x k ⎡⎤⎛⎫--≥ ⎪⎢⎥⎝⎭⎣⎦,∴k ≤ 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.23.(1) ())3f x x π=+;【分析】(1)根据函数()f x 的部分图象可得A 及周期T ,再根据周期公式可求出ω,由五点法作图的第三个点可求出ϕ的值,从而可得函数()f x 的解析式;(2)根据平移变换和伸缩变换的规律,可求出()g x 的解析式,再根据函数()g x 在[]0,m 上单调递增,可求出m 的最大值,再根据正弦函数的图象与性质,即可求出函数()f x 在[0,]m 上的最大值.【详解】 (1)由已知可得A =52()63πT ππ=-=,所以22=πωT=,所以())f x x ϕ=+,根据五点法作图可得23πϕπ⨯+=,所以=3πϕ,所以())3f x x π=+(2) 将函数()f x 的图象向右平移3π个单位长度,可得22333πππy x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()43g x x π⎛⎫=- ⎪⎝⎭的图象,因为函数()g x 在[]0,m 上单调递增,所以432m ππ-≤,所以524m π≤,m 的最大值为524π,由50,24x π⎡⎤∈⎢⎥⎣⎦,可得32,334x πππ⎡⎤+∈⎢⎥⎣⎦,所以当2=32x +ππ时,()f x .故函数()f x 在[]0,m . 【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤: (1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口. 24.(1)最小正周期为π;(2)(i )ππ[,]122;(ii )当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【分析】(1)利用和差公式展开合并,再利用辅助角公式计算可得()2sin (2+)3f x x π=,可得最小正周期为π;(2)(i )通过换元法令π23t x =+,求出sin y t =的范围,然后再根据sin y t =的单调递减区间求解即可;(ii )根据函数单调性求得最大值,然后计算端点值,比较大小之后可得函数的最小值. 【详解】 解:(1)πππ()=sin(2+)sin(2)2=sin 22=2sin(2+)333f x x x x x x x +-.2π==π2T ,∴()f x 的最小正周期为π. (2)(i )π[0,]2x ∈,∴ππ4π2[,]333t x =+∈,sin y t =,π4π[,]33t ∈的单调递减区间是π4π[,]23t ∈,且由ππ4π2233x ≤+≤,得ππ122x ≤≤, 所以函数()f x 的单调递减区间为ππ[,]122. (ii )由(i )知,()f x 在ππ[,]122上单调递减,在π[0,]12上单调递增.且π(0)=2sin 3f =ππ()=2sin 2122f =,π4π()=2sin 23f =所以,当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【点睛】思路点睛:(1)关于三角函数解析式化简问题,首先利用和差公式或者诱导公式展开合并化为同角,然后再利用降幂公式进行降次,最后需要运用辅助角公式进行合一化简运算;(2)三角函数的单调区间以及最值求解,需要利用整体法计算,可通过换元利用sin y t =的单调区间以及最值求解.25.(1)4003-平方米;(2)200平方米. 【分析】(1)四边形OECF 的面积OBCF BOE S S S =-△;(2)设[0BOE α∠=∈︒,45]︒,过点F 作FM AB ⊥于点M ,利用三角函数的知识可得EOF S △;设单位面积种植乙蔬菜的经济价值为m ,该空地产生的经济价值为y ,可用含α的式子表示出y ;令()cos sin(120)f ααα=⋅︒-,结合三角恒等变换公式和余弦函数的图象与性质求出()f α取得最小值时,α的值,再将其代入EOF S △的表达式中即可得解. 【详解】解:(1)由60EOF ∠=︒,30BOE ∠=︒,可知⊥OF OB ,O 为AB 中点,2AB BC =,OB BC ∴=,∴四边形FOBC 为正方形.在Rt BOE △中,30BOE ∠=︒,20OB =米,BE ∴=,∴四边形OECF 的面积为12020204002OBCF BOE S S -=⨯-⨯=△平方米.(2)设[0BOE α∠=∈︒,45]︒,则120AOF α∠=︒-,过点F 作FM AB ⊥于点M ,在Rt OBE △中,cos OB BOE OE ∠=,20cos cos OB OE BOE α∴==∠,在Rt OMF △中,sin FMAOF OF∠=,20sin sin(120)FM OF AOF α∴==∠︒-.112020·sin sin 6022cos sin(120)EOF S OE OF EOF αα∴=∠=⨯⨯⨯︒=︒-△,设单位面积种植乙蔬菜的经济价值为m ,该空地产生的经济价值为y ,则()3EOF EOF ABCD y mS m S S =+-△△矩形3(2040m m =+⨯[800m =+.令21()cos sin(120)sin cos 22f αααααα=⋅︒-=-cos 2111sin 2cos(230)22424ααα+=-⨯=+︒+.[0α∈︒,45]︒,230[30α∴+︒∈︒,120]︒,1cos(230)[2α∴+︒∈-.若该空地产生的经济价值y 最大,则()f α应取得最小值,为12-,此时0α=︒,200EOF S ∴====△平方米. 故该空地产生最大经济价值时种植甲种蔬菜的面积为200平方米. 【点睛】本题考查函数的实际应用,还涉及三角恒等变换与三角函数的图象与性质,选择适当的函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题. 26.(1)23π;(2)单调递增区间为22,,34312k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;单调递减区间为225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)⎡⎣. 【分析】 (1)由公式2T πω=求周期;(2)利用正弦函数的单调性求单调区间; (3)求出34x π+的范围,然后结合正弦函数的性质得值域.【详解】解:(1)由解析式得ω=3, 则函数的最小周期223T ππω==. (2)由232242k x k πππππ-≤+≤+,k ∈Z ,所以2234312k k x ππππ-≤≤+,k ∈Z , 即函数的单调递增区间为22,34312k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z , 由3232242k x k πππππ+≤+≤+k ∈Z , 得225312312k k x ππππ+≤≤+,k ∈Z , 即函数的单调递减区间为225,312312k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z . (3)当x ∈[0,2π]时,73,444x πππ⎡⎤+∈⎢⎥⎣⎦,则当3x +4π=2π时,函数f (x )取得最大值,此时f (x 2π=,当3x +342ππ=时,函数f (x )取得最小值,此时f (x 32π=即f (x )值域为[. 【点睛】关键点点睛:本题考查正弦型三角函数的性质.对于()sin()f x A x ωϕ=+(0,0)A ω>>,最小正周期为2T πω=,利用正弦函数sin y x =的性质,把x ωϕ+作为一个整体替换sin x 中的x ,可得()f x 的性质.。
(压轴题)高中数学必修四第一章《三角函数》测试(有答案解析)(4)
一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 3.函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,则下列结论正确的是( )A .3x π=-是()f x 图像的一条对称轴B .()f x 图像的对称中心为22,0,3k k Z ππ⎛⎫+∈ ⎪⎝⎭C .()1f x ≥的解集为44,4,3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦D .()f x 的单调递减区间为282,2,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦4.设函数()cos 23f x x π⎛⎫=+⎪⎝⎭,则下列结论错误的是( ) A .()f x 的一个对称中心为5,012π⎛⎫- ⎪⎝⎭B .()f x 的图象关于直线116x π=对称 C .()f x π+的一个零点为12x π=D .()f x 在5,36ππ⎛⎫⎪⎝⎭单调递减 5.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减 6.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )①函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称 ②函数()y f x =的图象关于直线512x π=-对称 ③函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 ④该图象向右平移3π个单位可得2sin 2y x =的图象 A .①②B .①③C .①②③D .①②④7.已知()()sin 6f x x a b x ππ⎛⎫=--+⎪⎝⎭,若()0f x ≤在[]1,1x ∈-上恒成立,则a b +=( ) A .56B .23C .1D .28.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =9.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x10.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④11.函数()13cos313x xf x x -=+的图象大致是( ) A . B .C .D .12.函数()sin ln ||f x x x =⋅的部分图象大致为( )A .B .C .D .二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=; ④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.若将函数()cos 212f x x π⎛⎫=+⎪⎝⎭的图象向左平移8π个单位长度,得到函数()g x 的图象,则下列说法正确的是_________.①()g x 的最小正周期为π ②()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减 ③12x π=不是函数()g x 图象的对称轴 ④()g x 在,66ππ⎡⎤-⎢⎥⎣⎦上的最小值为12-15.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .16.将函数sin y x =图像上所有点向左平移4π个单位,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得到函数()y f x =图像,若函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心,则ω的取值范围为_______________.17.若函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为________. 18.已知函数()sin cos f x a x x =+的一条对称轴为3x π=,则a =______;19.如图所示为函数()sin 2y A x ωϕ=++,()ϕπ<的图像的一部分,它的解析式为________.20.将函数()sin (0)f x x ωω=>的图象向右平移6π个单位长度,得到函数()y g x =的图像,若()y g x =是偶函数,则ω的最小值为________.三、解答题21.现给出以下三个条件:①()f x 的图象与x 轴的交点中,相邻两个交点之间的距离为2π; ②()f x 的图象上的一个最低点为2,23A π⎛⎫- ⎪⎝⎭; ③()01f =.请从上述三个条件中任选两个,补充到下面试题中的横线上,并解答该试题.已知函数()()2sin 05,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足________,________.(1)根据你所选的条件,求()f x 的解析式; (2)将()f x 的图象向左平移6π个单位长度,得到()g x 的图象求函数()()1y f x g x =-的单调递增区间. 22.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围.23.已知()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>><<⎪⎝⎭的部分图象如图所示,5,212⎫⎛- ⎪⎝⎭πM 是函数()f x 图象上的一个最低点,π12-是函数()f x 的一个零点.(1)求函数()f x 的解析式; (2)当113636⎡⎤∈-⎢⎥⎣⎦,ππx 时,求函数()f x 的值域. 24.已知()sin()(0,0)f x x ωϕϕπω=+<<>为偶函数,且()y f x =图像的两相邻对称中心点间的距离为2π. (1)求()f x 的解析式;(2)函数()y f x =的图像向右平移6π个单位后,再将得到的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到()y g x =的图像,求()g x 的单调递减区间. 25.已知函数()326f x sin x π⎛⎫=+⎪⎝⎭.(1)求函数()f x 在[]0,π上的单调增区间;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数值的取值范围; (3)若将此图象向右平移()0θθ>个单位后图象关于y 轴对称,求θ的最小值. 26.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为90米,最低点距离地面10米,摩天轮上均匀设置了36个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.(1)经过t 分钟后游客甲距离地面的高度为h 米,试将h 表示为时间t 的函数; (2)问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为30米?(3)若游客乙在游客甲之后进入座舱,且中间相隔5个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为h 米,求h 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.C解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.3.C解析:C 【分析】结合五点作图法和函数图像可求得函数解析式,采用代入检验法可依次判断各个选项得到结果. 【详解】()10sin 2f ϕ==且2πϕ<,6πϕ∴=,又882sin 233f ππωϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,由五点作图法可得:83362πππω+=,解得:12ω=, ()12sin 26f x x π⎛⎫∴=+ ⎪⎝⎭.对于A ,当3x π=-时,1026x π+=,,03π⎛⎫∴- ⎪⎝⎭是()f x 的对称中心,A 错误; 对于B ,当223x k ππ=+时,1262x k πππ+=+,223x k ππ∴=+是()f x 的对称轴,B 错误;对于C ,由()1f x ≥得:1in 2612s x π⎛⎫ ⎪⎭≥+⎝,15226266k x k πππππ∴+≤+≤+, 解得:4344k x k πππ≤+≤,C 正确; 对于D ,当282,233x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,13,2622x k k πππππ⎡⎤+∈++⎢⎥⎣⎦, 当1k =时,135,2622x πππ⎡⎤+∈⎢⎥⎣⎦,不是()f x 的单调递减区间,D 错误. 故选:C. 【点睛】方法点睛:本题考查正弦型函数()sin y A ωx φ=+的性质的判断,解决此类问题常用的方法有:(1)代入检验法:将所给单调区间、对称轴或对称中心代入x ωϕ+,确定x ωϕ+的值或范围,根据x ωϕ+是否为正弦函数对应的单调区间、对称轴或对称中心来确定正误; (2)整体对应法:根据五点作图法基本原理,将x ωϕ+整体对应正弦函数的单调区间、对称轴或对称中心,从而求得()sin y A ωx φ=+的单调区间、对称轴或对称中心.4.D解析:D 【分析】选项A 由()f x 的对称中心满足2,32x k k Z πππ+=+∈可判断;选项B ()f x 的对称轴满足:2,3x k k Z πππ+=+∈可判断;选项C 令12x π=,求得()cos02f x π==,可判断;选项D 由()f x 的增区间满足222,3k x k k Z ππππ-≤+≤∈可判断.【详解】由函数()cos 23f x x π⎛⎫=+⎪⎝⎭, 选项A. ()f x 的对称中心满足2,32x k k Z πππ+=+∈则1,212x k k Z ππ=+∈,当1k =-时,512x π=-,所以5,012π⎛⎫-⎪⎝⎭为()f x 的一个对称中心,故A 正确; 选项B :()f x 的对称轴满足:2,3x k k Z πππ+=+∈即11,23x k k Z ππ=+∈,当3k =时,116x π=,故B 正确;选项C : ()()cos 2cos 233x x x f ππππ⎡⎤⎛⎫=+++=+ ⎪⎢⎥⎣⎦⎝⎭令12x π=,得ππcos 0122f π⎛⎫+== ⎪⎝⎭,故C 正确; 选项D :由()f x 的增区间满足222,3k x k k Z ππππ-≤+≤∈2,36k x k k Z ππππ-≤≤-∈, 当1k =时,536x ππ≤≤,所以()f x 在5,36ππ⎛⎫⎪⎝⎭单调递增,故D 错误, 故选:D . 【点睛】关键点睛:本题考查三角函数的单调性、对称性和零点问题,解答本题的关键是将23x π+看成一个整体,令2,32x k k Z πππ+=+∈;2,3x k k Z πππ+=+∈和222,3k x k k Z ππππ-≤+≤∈,得出答案,属于中档题.5.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,求出512f π⎛⎫ ⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.6.A解析:A 【分析】根据()f x 的图象及三角函数图像和性质,解得函数()f x 的解析式,得到()2sin(2)3f x x π=+,再结合三角函数的图像和性质逐一判定即可.【详解】由函数的图象可得2A =,周期4312T πππ⎛⎫=⨯-= ⎪⎝⎭所以222T ππωπ===, 当12x π=时函数取得最大值,即2sin 221212f ππϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭, 所以22()122k k ππϕπ⨯+=+∈Z ,则23k πϕπ=+,又||2ϕπ<,得 3πϕ=,故函数()2sin(2)3f x x π=+,对于①,当6x π=-时,()2sin(2())0663f πππ-=⨯-+=,正确; 对于②,当512x π=-时,()2sin 551212(2())23f πππ=⨯+-=--,正确; 对于③,令3222()232k x k k Z πππππ+≤+≤+∈得7()1212k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,27,,()361212k k k Z ππππππ⎡⎤⎡⎤--⊄++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以不正确; 对于④,向右平移3π个单位,()2sin(2())2sin(2)3333f x x x ππππ-=-+=-,所以不正确; 故选:A. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.7.A解析:A 【分析】根据题意分析可得当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦,0x a b --≥,从而可得506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解方程即可求解.【详解】当15,66x ⎡⎤∈-⎢⎥⎣⎦,sin 06x ππ⎛⎫+≥ ⎪⎝⎭, 当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,sin 06x ππ⎛⎫+≤ ⎪⎝⎭,, 故当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤时,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,0x a b --≥, 即506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩ ,所以56a b +=. 故选:A 【点睛】本题考查了三角函数的性质、不等式恒成立,考查了基本运算求解能力,属于中档题.8.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..9.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.10.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.11.A解析:A 【分析】先判断奇偶性,可排除C ,D ,由特殊值()f π,可排除B ,即可得到答案.【详解】因为()()()1331cos 3cos31331x x xx f x x x f x -----=⋅-=⋅=-++,所以函数()f x 为奇函数,排除C ,D ;又()13cos3013f ππππ-=>+,排除B ,故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.12.D解析:D 【分析】先根据函数的奇偶性,可排除A ,C ,根据当01x <<时,()0f x <即可排除B .得出答案. 【详解】因为()sin ln ||(0)f x x x x =⋅≠,所以()sin()ln ||sin ln ||()f x x x x x f x -=-⋅-=-=-,所以()f x 为奇函数,故排除A ,C .当01x <<时,sin 0x >,ln ||0x <,则()0f x <,故排除B , 故选:D .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.①③④【分析】由函数图像的变换可得结合余弦函数的周期性单调性对称轴等即可判断选项得出答案【详解】的最小正周期为选项A 正确;当时时故在上有增有减选项B 错误;故不是图象的一条对称轴选项C 正确;当时且当即解析:①③④ 【分析】由函数图像的变换可得()cos 23π⎛⎫=+⎪⎝⎭g x x ,结合余弦函数的周期性、单调性、对称轴等即可判断选项,得出答案. 【详解】()cos 2cos 28123g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.()g x 的最小正周期为π,选项A 正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,42,333x πππ⎡⎤+∈⎢⎥⎣⎦ 时,故()g x 在0,2π⎡⎤⎢⎥⎣⎦上有增有减,选项B 错误;012g π⎛⎫= ⎪⎝⎭,故12x π=不是()g x 图象的一条对称轴,选项C 正确;当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,220,33x ππ⎡⎤+∈⎢⎥⎣⎦,且当2233x ππ+=,即6x π=时,()g x 取最小值12-,D 正确. 故答案为:①③④. 【点睛】本题考查了三角函数图像的变换、余弦函数的周期性、单调性和对称轴等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.15.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重解析:1)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 453021tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan15602120DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1)【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.16.【分析】根据图象变换求出解析式再结合正弦函数的性质建立不等式即可求出的取值范围【详解】将函数图像上所有点向左平移个单位得到的图象再将横坐标变为原来的倍纵坐标不变得函数在上有且仅有一条对称轴和一个对称解析:35,22⎛⎤⎥⎝⎦【分析】根据图象变换求出()f x 解析式,再结合正弦函数的性质建立不等式,即可求出ω的取值范围. 【详解】将函数sin y x =图像上所有点向左平移4π个单位,得到sin 4y x π⎛⎫=+ ⎪⎝⎭的图象,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得()sin 4y f x x πω⎛⎫==+ ⎪⎝⎭,函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心, 由0,2x π⎛⎫∈ ⎪⎝⎭,得,4424x ,3242,解得3522. 故答案为:35,22⎛⎤⎥⎝⎦.【点睛】本题考查三角函数的图象变换,以及根据相关性质求参数,属于中档题.17.【分析】根据函数f (x )的图象与性质求出Tω和φ的值写出f (x )的解析式再求出的值即可【详解】函数f (x )=2sin (ωx+φ)图象相邻两条对称轴间的距离为∴从而得ω=又f(x)=2sin(2x+φ【分析】根据函数f (x )的图象与性质求出T 、ω和φ的值,写出f (x )的解析式,再求出4f π⎛⎫ ⎪⎝⎭的值即可. 【详解】函数f (x )=2sin (ωx +φ)图象相邻两条对称轴间的距离为2π,∴22T π=,从而得ω=222T πππ==, 又f (x )=2sin (2x +φ)的图象经过点,26π⎛⎫ ⎪⎝⎭,∴2sin 26πϕ⎛⎫⨯+ ⎪⎝⎭=2,即3π+φ=2π+2k π,k ∈Z ,又因为0<φ<π,所以φ=6π,故f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭,∴2sin 2446f πππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了正弦型函数的图象与性质的应用问题,属于中档题.18.【分析】根据三角函数的性质可知在取得最大值或最小值建立方程即可求解【详解】其中是辅助角是的一条对称轴整理得解得故答案为:【点睛】本题考查三角函数性质得应用利用在对称轴的函数值是最大或最小是解题的关键【分析】根据三角函数的性质可知()f x 在3x π=取得最大值或最小值,建立方程即可求解.【详解】()()sin cos f x a x x x ϕ=+=+,其中ϕ是辅助角, 3x π=是()f x 的一条对称轴,231()1322f a a ,整理得230a -+=,解得a =【点睛】本题考查三角函数性质得应用,利用在对称轴的函数值是最大或最小是解题的关键,属于中档题.19.【分析】由两最值点对应横坐标可求周期由波峰波谷可求将代入可求【详解】由图可知即将得即又当时故故答案为:【点睛】本题考查由三角函数图像求解具体解析式属于中档题解析:33sin 224y x π⎛⎫=-+ ⎪⎝⎭【分析】由两最值点对应横坐标可求周期,由波峰波谷可求,A 将,16π⎛⎫⎪⎝⎭代入可求ϕ【详解】 由图可知,522663T ππππ=-=,即43T π=,24332ππωω=⇒=, 3112A -==,将,16π⎛⎫⎪⎝⎭3sin 22y x ϕ⎛⎫=++ ⎪⎝⎭得2,42k k Z ππϕπ+=-+∈,即32,4k k Z πϕπ=-+∈,又ϕπ<,当0k =时,34πϕ=-,故33sin 224y x π⎛⎫=-+ ⎪⎝⎭ 故答案为:33sin 224y x π⎛⎫=-+ ⎪⎝⎭【点睛】本题考查由三角函数图像求解具体解析式,属于中档题20.3【分析】求出的解析式再利用函数为偶函数则从而得到的表达式进而得到其最小值【详解】由题意得因为是偶函数所以解得因为所以的最小值为3故答案为:【点睛】本题考查三角函数的平移变换及偶函数的性质考查函数与解析:3 【分析】求出()y g x =的解析式,再利用函数为偶函数,则(0)1g =±从而得到ω的表达式,进而得到其最小值. 【详解】由题意得()sin 6g x x πω⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦, 因为()y g x =是偶函数,所以(0)sin 16g πω⎛⎫=-=± ⎪⎝⎭, ∴()62k k Z ππωπ-=+∈,解得63()k k Z ω=--∈. 因为0>ω,所以ω的最小值为3.故答案为:3. 【点睛】本题考查三角函数的平移变换及偶函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.三、解答题21.答案见解析. 【分析】(1)选择①②:由①可得2ω=,再将2,23A π⎛⎫-⎪⎝⎭代入()f x 得6π=ϕ;选择①③:由①可得2ω=,又()02sin 1f ϕ==,所以6π=ϕ;选择②③:由()02sin 1f ϕ==,所以6π=ϕ,再将2,23A π⎛⎫-⎪⎝⎭代入()f x 得2ω=;所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)根据平移可得函数()2cos2g x x =,故2sin 46y x π⎛⎫=+ ⎪⎝⎭,根据三角函数图象性质可得函数的单调递增区间. 【详解】解:(1)选择①②:由已知得222T πππω==⋅=,所以2ω=,从而()2sin(2)f x x ϕ=+, 将2,23A π⎛⎫-⎪⎝⎭代入()f x 得,42sin 23πϕ⎛⎫+=- ⎪⎝⎭, 解得26k πϕπ=+,k Z ∈,又02πϕ<<,所以6π=ϕ,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;选择①③:由已知得222T πππω==⨯=,所以2ω=,从而()2sin(2)f x x ϕ=+, 又()02sin 1f ϕ==, 因为02πϕ<<,所以6π=ϕ. 所以()2sin 26f x x π⎛⎫=+⎪⎝⎭; 选择②③:由()02sin 1f ϕ==,又02πϕ<<,所以6π=ϕ, 将2,23A π⎛⎫-⎪⎝⎭代入()f x 得,22sin 236ππω⎛⎫+=- ⎪⎝⎭,解得23k ω=+,k Z ∈, 又05ω<<,所以2ω=,所以()2sin 26f x x π⎛⎫=+⎪⎝⎭; (2)由已知得()2sin 22sin 22cos 2662g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故()()1y f x g x =-4sin 2cos 216x x π⎛⎫=+- ⎪⎝⎭22cos 22cos 21x x x =+-4cos 4x x =+2sin 46x π⎛⎫=+ ⎪⎝⎭,令242262k x k πππππ-+≤+≤+,k Z ∈,得62122k k x ππππ-+≤≤+,k Z ∈,所以函数()()1y f x g x =-的单调递增区间为,62122k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈. 【点睛】求三角函数的解析式时,由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 22.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论; (2)由,04x π⎛⎫∈-⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围.【详解】(1)对于函数()1tan ln1tan x f x x -=+,有1tan 01tan xx->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数; (2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x e x x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x xa x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 23.(1)()2sin 34x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,2-. 【分析】(1)由图知最大值可以求A 的值,由35412122T πππ⎛⎫=--= ⎪⎝⎭及2Tπω=可以求出ω的值,由()5332122k k Z ππϕπ⨯+=+∈结合02πϕ<<可以求出ϕ的值,进而可得()f x 的解析式; (2)由113636ππx -≤≤求出34x π+的范围,再由正弦函数的性质即可求解. 【详解】(1)由图知:2A =,35412122T πππ⎛⎫=--= ⎪⎝⎭,解得:23T π=, 所以22323Tππωπ===,可得()()2sin 3f x x ϕ=+, 因为5,212⎫⎛-⎪⎝⎭πM 是函数()f x 图象上的一个最低点,所以()5332122k k Z ππϕπ⨯+=+∈, 当0k =时,4πϕ=,所以()2sin 34x f x π⎛⎫=+ ⎪⎝⎭,(2)因为113636ππx -≤≤,所以π7π3646x π≤+≤, 所以1sin 3124x π⎛⎫-≤+≤ ⎪⎝⎭,12sin 324x π⎛⎫-≤+≤ ⎪⎝⎭所以函数()f x 的值域[]1,2-. 【点睛】关键点点睛:本题解题的关键点是由三角函数额的周期求出ω得值,再由三角函数的谷点求出ϕ得值.24.(1)()cos 2f x x =;(2)42,2,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【分析】(1)根据函数()sin()f x x ωϕ=+为偶函数求出ϕ,根据()y f x =图像的两相邻对称中心点间的距离求出ω,则可得()f x 的解析式;(2)根据图象变换规律求出()g x ,再根据余弦函数的递减区间列式可解得结果. 【详解】(1)由于函数()sin()f x x ωϕ=+为偶函数,则,2k k πϕπ=+∈Z .又0ϕπ<<,则2ϕπ=.又函数()f x 图象的两相邻对称中心点间的距离为2π,从而22T T ππ=⇒=,故22Tπω==. 故()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭.(2)函数()y f x =图象向右平移6π个单位得()cos 2cos 2663h x f x x x πππ⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;再由伸缩变换可得:()cos 3g x x π⎛⎫=- ⎪⎝⎭. 由223k x k ππππ-+.得4223k x k πππ≤≤+,k Z ∈,故()g x 的单调递减区间为:42,2,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【点睛】关键点点睛:掌握三角函数的图象变换规律以及余弦函数的递减区间是解题关键. 25.(1)06,π⎡⎤⎢⎥⎣⎦和2π,π3;(2)3,32⎡⎤-⎢⎥⎣⎦;(3)3π. 【分析】 (1)令()222262k x k k Z πππππ-+≤+≤+∈,求得x 的范围再与[]0,π求交集即可;(2)先由,63x ππ⎡⎤∈-⎢⎥⎣⎦求出26x π+的范围,再结合正弦函数的性质求出sin 26x 的范围即可求解;(3)先求出()f x 图象向右平移()0θθ>个单位后的解析式为()3sin 226f x x πθ⎛⎫=+- ⎪⎝⎭,再利用其为偶函数即可求解.【详解】 (1)令()222262k x k k Z πππππ-+≤+≤+∈,解得:()36k x k k Z ππππ-+≤≤+∈,令0k =可得36x ππ-≤≤,令1k =可得2736x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或2ππ3x, 所以函数()f x 在[]0,π上的单调增区间为06,π⎡⎤⎢⎥⎣⎦和2π,π3; (2)因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,所以52666x πππ-≤+≤, 所以1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,33sin 2326x π⎛⎫-≤+≤ ⎪⎝⎭,所以当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数值的取值范围为3,32⎡⎤-⎢⎥⎣⎦; (3)将()326f x sin x π⎛⎫=+⎪⎝⎭图象向右平移()0θθ>个单位后可得 ()()323sin 2266f x sin x x ππθθ⎡⎤⎛⎫=-+=+- ⎪⎢⎥⎣⎦⎝⎭,因为其图象关于y 轴对称,所以()262k k Z ππθπ-=+∈,解得()62k k Z ππθ=--∈, 所以1k =-时,θ最小为623πππ-+=,【点睛】结论点睛:三角函数的奇偶性 ①对于()y Asin x ωϕ=+,若为奇函数,则()k k Z ϕπ=∈,若为偶函数,则()2k k Z πϕπ=+∈;②对于函数()cos y A x ωϕ=+ 若为奇函数,则()2k k Z πϕπ=+∈,若为偶函数,则()k k Z ϕπ=∈;③对于函数()tan y A x ωϕ=+, 若为奇函数,则()2k k Z πϕ=∈. 26.(1)()5040cos()15th t π=-;(2)5t =分钟或25t =分钟;(3)h 最大值为40米.【分析】(1)由题意可知高度h 与时间t 的关系符合()sin()h t A t B ωϕ=++,根据已知求出,,,A B ωϕ的值,写出解析式即可.(2)设()30h t =,解方程求出(0,30)t ∈即为距离地面的高度恰好为30米的时间. (3)有题意列出游客甲、游客乙距离地面的高度解析式分别为12(),()h t h t ,利用三角函数有12|()()|h t h t -的最大值为所求h 的最大值. 【详解】(1)由题意,设()sin()h t A t B ωϕ=++,得:9010A B A B +=⎧⎨-+=⎩,解得40,50A B ==,又当0t =时,(0)40sin 5010h ϕ=+=, ∴22k πϕπ=-,不妨令0k =有2πϕ=-,而230T πω==得15πω=,∴()5040cos()15th t π=-,(2)由题意有()5040cos()3015th t π=-=,即1cos()152tπ=, ∴153tππ=或5153tππ=,得5t =或25t =. (3)若游客甲高度解析式为1()5040cos()15th t π=-,则游客乙高度解析式为2()5040cos()153t h t ππ=--,∴12cos()cos()1515|()()|40|cos()cos()|40||40|cos()|1531522153ttt tt h t h t πππππππ-=--=-=+∴令153t πππ+=,解得10t =,此时12|()()|h t h t -的最大值为40米.【点睛】关键点点睛:根据实际问题构建三角函数模型,进而由题设求对应高度的时间,以及应用三角恒等变换求两游客的高度差最大值.。
(易错题)高中数学必修四第一章《三角函数》检测(答案解析)
一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .453.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦4.如图,一个摩天轮的半径为10m ,轮子的最低处距离地面2m .如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P (点P 与摩天轮天轮中心O 的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是( )A .8分钟B .10分钟C .12分钟D .14分钟5.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减6.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )①函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称 ②函数()y f x =的图象关于直线512x π=-对称 ③函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 ④该图象向右平移3π个单位可得2sin 2y x =的图象 A .①②B .①③C .①②③D .①②④7.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数33tan y x =-是奇函数C .函数tan 6y ax π⎛⎫=+⎪⎝⎭的最小正周期是aπD .函数cos(sin )y x =是奇函数8.已知函数()sin 213f x x π⎛⎫=++ ⎪⎝⎭,下列说法错误的是( )A .3π是函数()f x 的一个周期B .函数()f x 的图象关于,13π⎛⎫⎪⎝⎭成中心对称 C .函数的一条对称轴为712x π= D .函数图象向左平移6π个单位后关于y 轴对称 9.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =10.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.函数2()cos sin (R)f x x x x =+∈的最小值为( ) A .54B .1C .1-D .2-12.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭二、填空题13.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第n 个月的月平均最高气温()G n 可近似地用函数()()cos G n A n k ωϕ=++来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,n 和k 是正整数,0>ω,()0,πϕ∈.统计发现,该地区每年各个月份的月平均最高气温有以下规律:①该地区月平均最高气温最高的7月份与最低的1月份相差30摄氏度; ②1月份该地区月平均最高气温为3摄氏度,随后逐月递增直到7月份达到最高; ③每年相同的月份,该地区月平均最高气温基本相同. 根据已知信息,得到()G n 的表达式是______. 14.函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,则ω的范围__________.15.已知函数()cos (0)f x a x b a =+>的最大值为3,最小值为1,则函数(2)2()([,]3y f x f x x ππ=-∈的值域为_________.16.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 17.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.18.将函数sin y x =图像上所有点向左平移4π个单位,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得到函数()y f x =图像,若函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心,则ω的取值范围为_______________.19.设函数()y f x =的定义域为D ,若对任意的1x ∈D ,总存在2x ∈D ,使得()()121f x f x ⋅=,则称函数()f x 具有性质M .下列结论:①函数3y x x =-具有性质M ; ②函数35x x y =+具有性质M ;③若函数()[]8log 2,0,y x x t =+∈具有性质M ,则510t =; ④若3sin y x a =+具有性质M ,则5a =. 其中正确结论的序号是____________. 20.函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位后与函数()f x 的图象重合,则下列结论正确的是______.①()f x 的一个周期为2π-; ②()f x 的图象关于712x π=-对称; ③76x π=是()f x 的一个零点; ④()f x 在5,1212ππ⎛⎫- ⎪⎝⎭单调递减; 三、解答题21.已知θ为锐角,在以下三个条件中任选一个:①cos(2)sin(3)12sin()tan()2πθπθπθπθ-+=+-;②22sin cos 10θθ--=;③cos()1sin()cos()sin()224θπππθθπθ-⋅-⋅+=+;并解答以下问题:(1)若选______(填序号),求θ的值;(2)在(1)的条件下,求函数y = tan(2x +θ)的定义域、周期和单调区间。 22.定义行列式运算法则为:12142334a a a a a a a a =-,已知函数()2cos 2sin x f x x=.(1)求()f x 的最小正周期; (2)若函数()()02g x f x m m π⎛⎫=+<<⎪⎝⎭是偶函数,求不等式()0g x ≤的解集. 23.已知()sin()(0,0)f x x ωϕϕπω=+<<>为偶函数,且()y f x =图像的两相邻对称中心点间的距离为2π.(1)求()f x 的解析式;(2)函数()y f x =的图像向右平移6π个单位后,再将得到的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到()y g x =的图像,求()g x 的单调递减区间. 24.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象经过点,312π⎛⎫⎪⎝⎭,其最大值与最小值的差为4,且相邻两个零点之间的距离为2π. (1)求()f x 的解析式;(2)求()f x 在[]0,π上的单调增区间. 25.已知函数()3π2sin 24⎛⎫=+⎪⎝⎭f x x ,R x ∈.(1)求函数()f x 的最小正周期T 及()f x 的图象的对称轴;(2)完成表格,并在给定的坐标系中,用五点法作出函数()f x 在一个周期内的图象.x3π24u x =+()f x26.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫⎪⎝⎭. (1)求函数f(x)的最小正周期;(2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 3.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 4.B解析:B 【分析】由题可得此人相对于地面的高度h 与时间t 的关系是()10sin1203015h t t π=+≤≤,再令10sin121715t π+≥求出t 的范围即可得出. 【详解】设时间为t 时,此人相对于地面的高度为h , 则由题可得当0t =时,12h =, 在时间t 时,此人转过的角为23015t t ππ=, 此时此人相对于地面的高度()10sin 1203015h t t π=+≤≤,令10sin 121715t π+≥,则1sin 152t π≥, 所以56156t πππ≤≤,解得52522t ≤≤, 故在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是()25510min 22-=. 故选:B. 【点睛】本题考查三角函数的实际应用,解题的关键是得出高度与时间的关系()10sin1203015h t t π=+≤≤,再解三角函数不等式即可.5.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.6.A解析:A 【分析】根据()f x 的图象及三角函数图像和性质,解得函数()f x 的解析式,得到()2sin(2)3f x x π=+,再结合三角函数的图像和性质逐一判定即可. 【详解】由函数的图象可得2A =,周期4312T πππ⎛⎫=⨯-= ⎪⎝⎭ 所以222T ππωπ===, 当12x π=时函数取得最大值,即2sin 221212f ππϕ⎛⎫⎛⎫=⨯+= ⎪⎪⎝⎭⎝⎭,所以22()122k k ππϕπ⨯+=+∈Z ,则23k πϕπ=+,又||2ϕπ<,得 3πϕ=,故函数()2sin(2)3f x x π=+,对于①,当6x π=-时,()2sin(2())0663f πππ-=⨯-+=,正确; 对于②,当512x π=-时,()2sin 551212(2())23f πππ=⨯+-=--,正确; 对于③,令3222()232k x k k Z πππππ+≤+≤+∈得7()1212k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,27,,()361212k k k Z ππππππ⎡⎤⎡⎤--⊄++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以不正确; 对于④,向右平移3π个单位,()2sin(2())2sin(2)3333f x x x ππππ-=-+=-,所以不正确; 故选:A. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.7.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数()f x =0>得tan x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,()()f x f x -==-=-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误.故选:B . 【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω.8.D解析:D 【分析】根据正弦函数性质周期,对称性,图象变换判断各选项. 【详解】函数()f x 的最小正周期为π,故3π是函数()f x 的一个周期,A 正确; 当3x π=时,sin 203x π⎛⎫+= ⎪⎝⎭,故B 正确; 当712x π=时,函数()f x 取得最小值,712x π=为对称轴,C 正确; 函数图象向左平移6π个单位后函数解析式为sin 2163y x ππ⎡⎤⎛⎫=+++ ⎪⎢⎥⎝⎭⎣⎦,即2sin 213y x π⎛⎫=++ ⎪⎝⎭,不是偶函数,图象不关于y 轴对称,D 错误. 故选:D. 【点睛】本题考查正弦型函数的性质,考查周期的概念,对称轴与对称中心、奇偶性等性质,属于基础题.9.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
(易错题)高中数学必修四第一章《三角函数》检测(有答案解析)(3)
一、选择题1.已知函数()sin()(f x A x A ωϕ=+,ω,ϕ是常数,0A >,0>ω,0)2πϕ<<的部分图象如图所示.为了得到函数()f x 的图象,可以将函数2sin y x =的图象( )A .先向右平移6π个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变 B .先向左平移6π个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变 C .先向左平移3π个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变 D .先向左平移3π个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变2.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+ ⎪⎝⎭D .30sin 62t ππ⎛⎫- ⎪⎝⎭3.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=- D .2sin()3y t ππ=+4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭ C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间 D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m 6.下列结论正确的是( ) A .sin1cos1<B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭7.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 8.已知函数()sin 213f x x π⎛⎫=++ ⎪⎝⎭,下列说法错误的是( ) A .3π是函数()f x 的一个周期B .函数()f x 的图象关于,13π⎛⎫⎪⎝⎭成中心对称C .函数的一条对称轴为712x π= D .函数图象向左平移6π个单位后关于y 轴对称 9.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+. 同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭10.函数1cos y x x=+的图象可能是( )A .B .C .D .11.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题: ①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.将函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,则以下说法正确的是( ) A .1ω=B .函数()y f x =图象的一条对称轴为12x π=C .()3f f x π⎛⎫ ⎪⎝⎭D .函数()y f x =在区间0,2π⎛⎫⎪⎝⎭,上单调递增二、填空题13.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 14.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.15.函数()2sin(2),0,32f x x x ππ⎡⎤=-∈⎢⎥⎣⎦的单调减区间___________ 16.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.17.函数()sin 2cos 1sin x xf x x=-的值域为________.18.若函数()f x 是定义域为R 的奇函数,且()1f x -为偶函数,当[]0,1x ∈时,()2f x x =,则292f ⎛⎫= ⎪⎝⎭______.19.如图,某地一天从614时的温度变化曲线近似满足函数()sin y A x b ωϕ=++,则这段曲线的函数解析式为______________.20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.如图,在矩形OABC 中,22OA OC ==,将矩形OABC 绕着顶点O 逆时针旋转,得到矩形OA B C ''',记旋转的角度为θ,0,2πθ⎛⎫∈ ⎪⎝⎭旋转前后两个矩形公共部分的面积为()S θ.(1)求3S π⎛⎫⎪⎝⎭; (2)若()728S θ=,求sin θ. 22.已知函数()()sin f x A x ωϕ=+(0A >,0>ω,02πϕ<<)的部分图象如图所示,其中最高点以及与x 轴的一个交点的坐标分别为,16π⎛⎫⎪⎝⎭,5,012π⎛⎫ ⎪⎝⎭.(1)求()f x 的解析式;(2)设M ,N 为函数y t =的图象与()f x 的图象的两个交点(点M 在点N 左侧),且3MN π=,求t 的值.23.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 24.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式; (2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若函数()g x 在[]0,m 上单调递增,当实数m 取最大值时,求函数()f x 在[]0,m 上的最大值.25.已知2sin ()cos(2)tan()(),sin()tan(3)f παπαπααπααπ-⋅-⋅-+=+⋅-+(1)化简()f α; (2)若1(),8f α=且,42ππα<<求cos sin αα-的值; (3)求满足1()4f α≥的α的取值集合. 26.已知sin(3)(),cos x f x x R xπ-=∈ (1)若α为第三象限角,且3sin 5α=-,求()f α的值. (2)若,34x ππ⎡⎤∈-⎢⎥⎣⎦,且21()2()1cos g x f x x =++,求函数()g x 的最小值,并求出此时对应的x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据函数图象求出函数()f x 的解析式,由三角函数图象的变换即可求解. 【详解】 由图可知,1741234A T πππ==-=,, 所以T π=,即2ππω=,解得2ω=.当712x π=时,73π22π,122k k Z πϕ⨯+=+∈, 所以 2,3k k Z πϕπ=+∈又2πϕ<,所以3πϕ=.所以()23f x x π⎛⎫=+ ⎪⎝⎭.将y x =的图象先向左平移3π个单位长度,得到)3y x π=+,.再将所得图象的横坐标缩短为原来的12,纵坐标不变,得到())3f x x π=+.故选:D 【点睛】易错点点睛:图象变换的两种方法的区别,由sin y x =的图象,利用图象变换作函数()()()sin 0,0y A x A x R ωϕω=+>>∈的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位,而先周期变换(伸缩变换)再平移变换,平移的量是ϕω个单位. 2.B解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭.故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.3.A解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+⎪⎝⎭, 因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.B解析:B 【分析】先建立坐标系,从点0P 开始计时,建立三角函数模型()0sin h A t b ωϕ=++,通过题中条件求出参数0,,,A b ωϕ,再利用函数解析式对选项依次判断正误即可. 【详解】以水面所在直线为t 轴,过O 作OO t '⊥轴,建立坐标系如图:设点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为()0sin h A t b ωϕ=++.依题意可知, 2.4OO '=, 2.41sin 4.82OPO '∠==,6OPO π'∠=. 高度h 最大值为2.4 4.87.2+=,最小值为2.4 4.8 2.4-=-,故()()7.2 2.47.2 2.44.8, 2.422A b --+-====, 周期60T =s ,则230T ππω==, 0t =时,06πϕ=-,故函数解析式为 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭,故B 正确;点P 到达最高点时 4.8sin 2.47.2306h t ππ⎛⎫=-+=⎪⎝⎭,即sin 1306t ππ⎛⎫-= ⎪⎝⎭,故2,3062t k k Z ππππ-=+∈,即2060,t k k Z =+∈,又0t ≥,故第一次到达最高点时,0,20k t ==s ,故A 错误; 在筒车转动的一圈内,点P 距离水面的高度不低于4.8m ,即4.8sin 2.4 4.8306h t ππ⎛⎫=-+≥ ⎪⎝⎭,得1sin 3062t ππ⎛⎫-≥ ⎪⎝⎭,故563066t ππππ≤-≤,解得1030t ≤≤,故共有20 s 时间,C 错误;当筒车转动50s 时,即50t =代入 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭得,34.8sin 50 2.4 4.8sin 2.4 2.43062h πππ⎛⎫=⨯-+=+=- ⎪⎝⎭,故点P 在水面下方,距离水面2.4m ,故D 错误. 故选:B. 【点睛】 关键点点睛:本题解题关键在于按照题意,建立三角函数模型()0sin h A t b ωϕ=++,并解出解析式,才能解决选项中的实际问题,突破难点.6.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-= ⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.7.C解析:C 【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫= ⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+=⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z , 所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z .故选:C. 【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.8.D解析:D 【分析】根据正弦函数性质周期,对称性,图象变换判断各选项. 【详解】函数()f x 的最小正周期为π,故3π是函数()f x 的一个周期,A 正确; 当3x π=时,sin 203x π⎛⎫+= ⎪⎝⎭,故B 正确; 当712x π=时,函数()f x 取得最小值,712x π=为对称轴,C 正确; 函数图象向左平移6π个单位后函数解析式为sin 2163y x ππ⎡⎤⎛⎫=+++ ⎪⎢⎥⎝⎭⎣⎦,即2sin 213y x π⎛⎫=++ ⎪⎝⎭,不是偶函数,图象不关于y 轴对称,D 错误. 故选:D. 【点睛】本题考查正弦型函数的性质,考查周期的概念,对称轴与对称中心、奇偶性等性质,属于基础题.9.B解析:B 【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭,故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D . 因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=-⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.10.C解析:C 【分析】利用函数的奇偶性和特殊的函数值的正负排除错误选项. 【详解】函数定义域是{|0}x x ≠,关于原点对称,记1()cos f x x x=+,则11()cos()cos f x x x x x -=-+=+-()f x =,是偶函数,排除BD , 11()cos 10f ππππ=+=-+<,排除A .故选:C . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称. 又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C 【分析】由周期求出ω,然后由正弦函数的性质判断. 【详解】函数()2sin (04)6f x x πωω⎛⎫=-<< ⎪⎝⎭的周期为π,所以22πωπ==,A 错;12x π=时,206x π-=,12x π=不是对称轴,B 错;3x π=时,226x ππ-=,即23f π⎛⎫= ⎪⎝⎭为最大值,因此()3f f x π⎛⎫⎪⎝⎭正确,C 正确; 0,2x π⎛⎫∈ ⎪⎝⎭时,52,666x πππ⎛⎫-∈- ⎪⎝⎭,而sin y x =在5,66ππ⎛⎫- ⎪⎝⎭上不单调,D 错; 故选:C . 【点睛】方法点睛:本题考查三角函数的性质,对函数()sin()f x A x ωϕ=+,掌握五点法是解题关键.解题时可由x 的值或范围求得x ωϕ+的值或范围,然后结合正弦函数性质判断.二、填空题13.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】由题意可得()23f x f x π⎛⎫+=⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ.则=4sin()4cos 462f ππϕϕ⎛⎫+==± ⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.14.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.15.【解析】当时由得所以减区间为解析:5,122ππ⎡⎤⎢⎥⎣⎦【解析】当[0,]2x π∈时,ππ2π2[,]333x -∈-,由22233x πππ≤-≤,得5122x ππ≤≤,所以减区间为5[,]122ππ.16.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应 解析:2114【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sinPQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=3tan336DR DQ π∴=⋅=⨯= 223,23,12921PR DP PQ PD PQ ∴===+=+=由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则33sin 212sin 21PR PRQPQR PQ⋅⋅∠∠===故答案为:2114【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.17.【分析】由二倍角的正弦公式以及同角三角函数的基本关系化简函数的解析式为且有利用二次函数的基本性质可求得函数的值域【详解】由题意可得所以因此函数的值域为故答案为:【点睛】本题考查含正弦的二次函数值域的解析:1,42⎡⎫-⎪⎢⎣⎭【分析】由二倍角的正弦公式以及同角三角函数的基本关系化简函数()y f x =的解析式为()()2sin 1sin f x x x =+,且有1sin 1x -≤<,利用二次函数的基本性质可求得函数()y f x =的值域.【详解】()()()2222sin 1sin sin 2cos 2sin cos 112sin 1sin 2sin 1sin 1sin 1sin 22x x x x x x f x x x x x x x -⎛⎫====+=+-⎪---⎝⎭,由题意可得1sin 1x -≤<,所以,()2131214222f x ⎛⎫-≤<⨯+-= ⎪⎝⎭,因此,函数()sin 2cos 1sin x x f x x =-的值域为1,42⎡⎫-⎪⎢⎣⎭.故答案为:1,42⎡⎫-⎪⎢⎣⎭. 【点睛】本题考查含正弦的二次函数值域的求解,同时也考查了二倍角的正弦公式以及同角的三角函数基本关系的应用,考查计算能力,属于中等题.18.【分析】利用已知条件得到函数的周期再利用奇偶性结合周期性将给定值转换到给定区间求得结果即可【详解】∵是定义域为的奇函数且为偶函数∴即∴则即函数是以4为周期的周期函数又∵当时∴故答案为:【点睛】本题主解析:14- 【分析】利用已知条件得到函数的周期,再利用奇偶性结合周期性将给定值转换到给定区间,求得结果即可. 【详解】∵()f x 是定义域为R 的奇函数,且()1f x -为偶函数, ∴()()()111f x f x f x -=--=-+,即()()2=-+f x f x , ∴()()2f x f x +=-,则()()()42f x f x f x +=-+=,即函数()f x 是以4为周期的周期函数, 又∵当[]0,1x ∈时,()2f x x =,∴295112224f f f ⎛⎫⎛⎫⎛⎫==-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:14-. 【点睛】本题主要考查函数的奇偶性的应用,涉及函数的周期性,求出函数的周期是解题的关键,属于中档题.19.【分析】根据图象得出该函数的最大值和最小值可得结合图象求得该函数的最小正周期可得出再将点代入函数解析式求出的值即可求得该函数的解析式【详解】由图象可知从题图中可以看出从时是函数的半个周期则又得取所以解析:310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[]6,14x ∈ 【分析】根据图象得出该函数的最大值和最小值,可得max min 2y y A -=,max min2y y b +=,结合图象求得该函数的最小正周期T ,可得出2Tπω=,再将点()10,20代入函数解析式,求出ϕ的值,即可求得该函数的解析式.【详解】由图象可知,max 30y =,min 10y =,max min 102y y A -∴==,max min202y y b +==, 从题图中可以看出,从614时是函数()sin y A x b ωϕ=++的半个周期,则()214616T =⨯-=,28T ππω∴==. 又10228k πϕππ⨯+=+,k Z ∈,得()324k k Z πϕπ=+∈,取34πϕ=, 所以310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[]6,14x ∈. 故答案为:310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[]6,14x ∈. 【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.20.①③【分析】分别利用余弦函数的对称性正切函数的单调性正弦定理三角函数图象变换等知识对各个命题判断【详解】①令是函数的一个对称中心①正确;②若它们为第一象限角且但②错;③在中内角所对的边分别为若∵∴∴解析:①③ 【分析】分别利用余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识对各个命题判断. 【详解】 ①,令55()4cos()4cos()012632f ππππ-=-+=-=,5,012π⎛⎫- ⎪⎝⎭是函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心,①正确;②若136απ=,3πβ=,它们为第一象限角,且αβ>,但tan tan 3αβ=<=②错;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,sin sin 2sin 251a BA b==︒<,∵b a <,∴B A <,∴A 可能为锐角,也可能为钝角,则ABC ∆有两解,③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)42y x x ππ=+=+的图象,④错. 故答案为:①③. 【点睛】本题考查命题的真假判断,掌握三角函数的图象与性质是解题关键.本题需要掌握余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识,属于中档题.三、解答题21.(1)36S π⎛⎫= ⎪⎝⎭;(2)1sin 3θ=. 【分析】(1)作出图形,可知公共部分区域为直角三角形,计算出两直角边的长,由此可求得该直角三角形的面积; (2)分6πθ=、06πθ<<、62ππθ<<三种情况讨论,求出()S θ的表达式,结合()8S θ=可求得sin θ的值. 【详解】 (1)当3πθ=时,A '点在矩形OABC 外部,公共部分形状为三角形,设A O BC D '⋂=,则6COD π∠=,3tan63CD CO π==, 则1133132236S CD CO π⎛⎫=⨯⨯=⨯⨯=⎪⎝⎭;(2)①当6πθ=时,点A '在线段BC 上,此时,223A C A O OC ''=-=,11313622S OC A C π⎛⎫'=⨯=⨯⨯=⎪⎝⎭; ②当06πθ<<时,公共部分为四边形,A '点在矩形OABC 内部,过点A '作线段AB 的平行线,分别交线段AO 、BC 于点E 、F ,设A B BC G ''⋂=,则有如下长度:2cos OE θ=,22cos AE θ=-,2sin A E θ'=,12sin A F θ'=-,()12sin tan FG θθ=-,则()OEA A FG OABC AEFB S S S S S θ''=---△△矩形矩形, 即()()()()111222cos 2cos 2sin 12sin 12sin tan 22S θθθθθθθ=⨯---⨯⨯-⨯-- ()2sin 12sin 45sin 2cos 2sin cos 2cos 2cos θθθθθθθθ--=--=,由题知45sin 2cos 8θθ-=,两边同时平方得221640sin 25sin 494cos 32θθθ-+=, 由22cos 1sin θθ=-,整理得2249sin 320sin 790θθ-+=,即()()3sin 183sin 790θθ--=,因为06πθ<<,所以1sin 2θ<,故1sin 3θ=;③当62ππθ<<时,公共部分为三角形,且()116228S S πθ⎛⎫<=⨯=< ⎪⎝⎭,不合题意; 综上所述,1sin 3θ=. 【点睛】关键点点睛:解决本题第二问的关键就是找出θ的临界情况,然后对θ的取值进行分类讨论,确定公共区域的形状,计算求出()S θ的表达式,结合已知条件求解sin θ的值. 22.(1)()sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)12±. 【分析】(1)由周期求出ω,取点,16π⎛⎫⎪⎝⎭求出ϕ,进而得出()f x 的解析式; (2)设()0,M x t ,0,3N x t π⎛⎫+ ⎪⎝⎭,解方程005sin 2sin 266x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,得出0()2k x k π=∈Z ,再由0sin 26t x π⎛⎫=+ ⎪⎝⎭求出t 的值.【详解】解:(1)由题意易知1A =,周期524126T πππω⎛⎫=-=⎪⎝⎭,所以2ω=,所以()sin(2)f x x ϕ=+.将最高点,16π⎛⎫ ⎪⎝⎭代入()sin(2)f x x ϕ=+中可得1sin 3πϕ⎛⎫=+ ⎪⎝⎭得2()32k k ππϕπ+=+∈Z ,即2()6k k πϕπ=+∈Z .又因为02πϕ<<,所以6π=ϕ,所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)设()0,M x t ,0,3N x t π⎛⎫+⎪⎝⎭,则005sin 2sin 266x x ππ⎛⎫⎛⎫+=+⎪ ⎪⎝⎭⎝⎭所以001sin 2cos 22x x ⋅001sin 2cos 22x x ⎛=⋅+⋅ ⎝⎭所以0sin 20x =,所以02()x k k π=∈Z ,即0()2k x k π=∈Z 所以1sin 62t k ππ⎛⎫=+=± ⎪⎝⎭. 【点睛】方法点睛:由图象求函数()sin y A x ωϕ=+的解析式时,有如下步骤: 1、由最值得出A 的值; 2、由周期结合2T πω=得出ω;3、取点求出ϕ.23.(1)()2sin 24f x x π⎛⎫=+⎪⎝⎭;(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦,单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦,()f x 值域为⎡⎤⎣⎦. 【分析】(1)利用最高点与最低点坐标可求出A 和周期T ,由2T πω=可求得ω的值,再将点,28M π⎛⎫⎪⎝⎭代入即可求得ϕ的值,进而可得函数()f x 的解析式; (2)解不等式222242k x k πππππ-≤+≤+,k Z ∈,可得()f x 的单调的增区间,再与0,2π⎡⎤⎢⎥⎣⎦求交集即可得()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间,利用单调性求出最值即得值域. 【详解】(1)因为()f x 图象上相邻两个最高点和最低点分别为,28π⎛⎫ ⎪⎝⎭,5,28π⎛⎫-⎪⎝⎭所以2A =,52882T πππ=-=,则T π=, 又2||T πω=,0>ω,所以2ω=,()2sin(2)f x x ϕ=+, 又图象过点,28π⎛⎫ ⎪⎝⎭,所以22sin 28πϕ⎛⎫=⨯+ ⎪⎝⎭,即sin 14πϕ⎛⎫+= ⎪⎝⎭,所以242k ππϕπ+=+,k Z ∈,即24k πϕπ=+,k Z ∈.又||2ϕπ<,所以4πϕ=,所以()2sin 24f x x π⎛⎫=+ ⎪⎝⎭.(2)由222242k x k πππππ-≤+≤+,k Z ∈,得388k x k ππππ-≤≤+,k Z ∈, 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈, 又0,2x π⎡⎤∈⎢⎥⎣⎦,所以()f x 的单调递增区间为0,8π⎡⎤⎢⎥⎣⎦, 同理()f x 的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦.又(0)2sin 4f π==28f π⎛⎫= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 值域为⎡⎤⎣⎦. 【点睛】关键点点睛:本题解题的关键点是由五点法作图的特点得出相邻两个最高点和最低点横坐标之差的绝对值为半个周期,纵坐标为振幅,利用峰点或谷点坐标求ϕ,利用整体代入法求()f x 的单调区间,利用单调性求最值.24.(1) ())3f x x π=+;【分析】(1)根据函数()f x 的部分图象可得A 及周期T ,再根据周期公式可求出ω,由五点法作图的第三个点可求出ϕ的值,从而可得函数()f x 的解析式;(2)根据平移变换和伸缩变换的规律,可求出()g x 的解析式,再根据函数()g x 在[]0,m 上单调递增,可求出m 的最大值,再根据正弦函数的图象与性质,即可求出函数()f x 在[0,]m 上的最大值.【详解】(1)由已知可得A =52()63πT ππ=-=,所以22=πωT =,所以())f x x ϕ=+,根据五点法作图可得23πϕπ⨯+=,所以=3πϕ,所以())3f x x π=+(2) 将函数()f x 的图象向右平移3π个单位长度,可得22333πππy x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()43g x x π⎛⎫=- ⎪⎝⎭的图象,因为函数()g x 在[]0,m 上单调递增,所以432m ππ-≤,所以524m π≤,m 的最大值为524π,由50,24x π⎡⎤∈⎢⎥⎣⎦,可得32,334x πππ⎡⎤+∈⎢⎥⎣⎦,所以当2=32x +ππ时,()f x .故函数()f x 在[]0,m . 【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤: (1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口.25.(1)()sin cos f ααα=;(2);(3)5,1212k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 【分析】(1)利用诱导公式化简,即可求出()f α; (2)结合(1)得1()sin cos 8f ααα==,利用同角三角函数的关系,结合α的范围,即可得答案;(3)由题意可得1sin 22α≥,利用三角函数的图像与性质,即可求得α的范围. 【详解】(1)2sin cos tan ()sin cos (sin )(tan )f αααααααα⋅⋅==--; (2)由(1)可得1()sin cos 8f ααα==,则23(cos sin )12sin cos 4αααα-=-=, ,sin cos 42ππααα<<∴>,即cos sin 0αα-<cos sin αα∴-=; (3)由题意得11()sin cos sin 224f αααα==≥,1sin 22α∴≥, 5222,66k k k Z πππαπ∴+≤≤+∈,即5,1212k k k Z πππαπ+≤≤+∈, 所以α的取值集合为5,1212k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭.【点睛】本题考查诱导公式的应用、同角三角函数的关系、三角函数的图像与性质,考查分析理解,求值化简的能力,考查学生对基础知识的掌握程度,属基础题. 26.(1) 34- (2) 函数()g x 的最小值为1,此时4x π= 【分析】(1)先化简函数解析式得()tan f x x =-,则由条件可得3tan 4α=,得出答案.(2)由条件可得()2tan 2tan 2g x x x =-+,则由,34x ππ⎡⎤∈-⎢⎥⎣⎦,设tan t x ⎡⎤=∈⎣⎦,根据二次函数()222211y t t t =-+=-+即可得出答案. 【详解】 由已知有sin(3)sin(3)sin ()tan cos cos cos x x xf x x x x xππ---===-=-(1)若α为第三象限角,且3sin 5α=-,则4cos 5α=-,则3tan 4α= ()3tan 4f αα=-=-(2)()()2222cos sin 21tan 2tan 2cos x x g x f x x x x +=++=-+,34x ππ⎡⎤∈-⎢⎥⎣⎦,设tan t x ⎡⎤=∈⎣⎦即()222211y t t t =-+=-+,当1t =,即4x π= 时,有最小值1所以当4x π=时,函数()g x 有最小值1.【点睛】关键点睛:本题考查根据三角函数求值和将函数化为tan α的二次式求最值,解答本题的关键是由()()2222cos sin 21tan 2tan 2cos x xg x f x x x x+=++=-+将函数化为二次式,根∈求最小值,属于中档题.据tanα⎡⎤⎣⎦。
(压轴题)高中数学必修四第一章《三角函数》检测(答案解析)(2)
一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( ) A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π33.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭ C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间 D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m 4.设函数()32sin cos f x x x x +,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③5.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫ ⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( ) A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 6.已知()()sin 6f x x a b x ππ⎛⎫=--+ ⎪⎝⎭,若()0f x ≤在[]1,1x ∈-上恒成立,则a b +=( ) A .56B .23C .1D .27.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B 151+C .1916D .349.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于010.函数()13cos313xxf x x -=+的图象大致是( )A .B .C .D .11.已知函数2()[sin()]3)cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .1二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ . 15.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号). ①图象C 关于直线1112π=x 对称;②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数; ④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 16.函数()sin 2cos 1sin x xf x x=-的值域为________.17.已知函数2()cos ()1(0,0,0)2πf x A ωx φA ωφ=++>><<的最大值为3,()f x 的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则(1)(2)f f +=_____.18.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________. 20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()y f x =图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将图象上所有点的纵坐标扩大到原来的2倍(横坐标不变),最后向下平移2个单位得到()y g x =图象,求函数()y g x =的解析式及在R 上的对称中心坐标. 22.已知()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>><<⎪⎝⎭的部分图象如图所示,5,212⎫⎛- ⎪⎝⎭πM 是函数()f x 图象上的一个最低点,π12-是函数()f x 的一个零点.(1)求函数()f x 的解析式; (2)当113636⎡⎤∈-⎢⎥⎣⎦,ππx 时,求函数()f x 的值域. 23.已知函数1()sin 2126f x x a π⎛⎫=+++ ⎪⎝⎭(其中a 为常数). (1)求()f x 的单调减区间; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2,求a 的值.24.已知函数1()sin 223f x x π⎛⎫=- ⎪⎝⎭. (1)当x ∈R 时,求()f x 的最小正周期及单调递增区间;(2)求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大值及最小值,并指出相应x 的值.25.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫⎪⎝⎭. (1)求函数f(x)的最小正周期; (2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围 26.己知函数()sin 3cos (0, 0 )f x A x A x A ωωω=+>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解. 【详解】 令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.3.B【分析】先建立坐标系,从点0P 开始计时,建立三角函数模型()0sin h A t b ωϕ=++,通过题中条件求出参数0,,,A b ωϕ,再利用函数解析式对选项依次判断正误即可. 【详解】以水面所在直线为t 轴,过O 作OO t '⊥轴,建立坐标系如图:设点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为()0sin h A t b ωϕ=++.依题意可知, 2.4OO '=, 2.41sin 4.82OPO '∠==,6OPO π'∠=. 高度h 最大值为2.4 4.87.2+=,最小值为2.4 4.8 2.4-=-,故()()7.2 2.47.2 2.44.8, 2.422A b --+-====, 周期60T =s ,则230T ππω==, 0t =时,06πϕ=-,故函数解析式为 4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭,故B 正确;点P 到达最高点时 4.8sin 2.47.2306h t ππ⎛⎫=-+=⎪⎝⎭,即sin 1306t ππ⎛⎫-= ⎪⎝⎭,故2,3062t k k Z ππππ-=+∈,即2060,t k k Z =+∈,又0t ≥,故第一次到达最高点时,0,20k t ==s ,故A 错误;在筒车转动的一圈内,点P 距离水面的高度不低于4.8m ,即4.8sin 2.4 4.8306h t ππ⎛⎫=-+≥ ⎪⎝⎭,得1sin 3062t ππ⎛⎫-≥ ⎪⎝⎭,故563066t ππππ≤-≤,解得1030t ≤≤,故共有20 s 时间,C 错误;当筒车转动50s 时,即50t =代入 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭得,34.8sin 50 2.4 4.8sin 2.4 2.43062h πππ⎛⎫=⨯-+=+=- ⎪⎝⎭,故点P 在水面下方,距离水面2.4m ,故D 错误.【点睛】 关键点点睛:本题解题关键在于按照题意,建立三角函数模型()0sin h A t b ωϕ=++,并解出解析式,才能解决选项中的实际问题,突破难点.4.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+,即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确;令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.5.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A. 【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.6.A解析:A 【分析】根据题意分析可得当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦,0x a b --≥,从而可得506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解方程即可求解.【详解】当15,66x ⎡⎤∈-⎢⎥⎣⎦,sin 06x ππ⎛⎫+≥ ⎪⎝⎭, 当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,sin 06x ππ⎛⎫+≤ ⎪⎝⎭,, 故当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤时,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,0x a b --≥, 即506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩ ,所以56a b +=. 故选:A 【点睛】本题考查了三角函数的性质、不等式恒成立,考查了基本运算求解能力,属于中档题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B .【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.9.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
高中数学必修4三角函数解答题专项练习附答案 教师版
h 뗘S (
)
(II)由已知的图像变换过程可得: imS ࣍ sinm 由 imS ࣍ sinm 的图像知函数在 m h π 上的单调增区间为 h ,
单调减区间 h
当 m ࣍ 时, imS 取得最大值 2;当 m ࣍ 时, imS 取得最小值 뗘
第 3 页 共 33 页
【解析】【分析】(1)利用三角型函数的部分图象求出函数的解析式,再利用换元法将三角型函数转化 为正弦函数,再利用正弦函数的图象求出三角型函数的对称中心坐标。
t⺂
∴ cos ࣍ , tan ࣍ .
【解析】【分析】根据三角函数的定义,求出 m,即可求出余弦和正切值.
4.已知 sin t cos ࣍ 뗘 ,且
.
(1)求 tan 的值;
(2)求 sin
sin tsin cos
cos
뗘 的值.
【答案】(1)解:由 th t
࣍ 뗘 ,因为
sin t cos ࣍ 뗘
࣍
tan tan t뗘
࣍
t뗘 ࣍
【解析】【分析】(1)利用同角三角函数关系 tan
࣍ sin
cos
,将题干的式子转化成关于 tan
的式子,得出答
案。(2)巧妙处理,将 sin
cos
转化成 sin cos
sin tcos
,然后式子上下两边同时除以cos
,将这个式子又转化成为
了关于 tan 的式子,利用题目已给出的条件进而就能计算出答案。
【答案】 解:(I)由图像可知:
t ࣍뗘 t࣍
,可得:
࣍ h ࣍ 뗘
又由于 ࣍ 뗘 뗘 ,可得: ࣍ ,所以 ࣍ ࣍
由图像知
i 뗘 S ࣍ 뗘 , sini
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数零点问题专练
1、已知sin()3x π+=a 在50,3π⎛⎫ ⎪⎝⎭
上有两个不相等的实数根,求a 的范围
答案:()1,02a ⎛⎫∈-⋃ ⎪ ⎪⎝⎭
,如下图
2、已知函数()2sin()(0)3f x wx w π=-
>在()0,π上有且仅有两个零点,则实数w 的范围是(B ) A 4(0,]3 B 47(,]33 C 710(,
]33 D 1013(,]33
答案:解析如下图
3、若函数()sin(2)3f x x k π=-
+在0,2π⎡⎤⎢⎥⎣⎦上有且只有一个零点,则实数k 的取值范围是(D ) A 11{|1}22k k k -<≤=或 B 11{|1}22
k k k -≤<=-或
C {|1}k k k ≤<=
D {|1}k k k <≤=- 答案:解析如下图
4、函数2()4sin()cos 2sin()||2x
f x x x x πππππ=++-+的零点个数为(B )
A 3
B 4
C 5
D 6
答案:解析如下图
5cos x x a +=在[]0,2x π∈上有两个不同的实数解,则a 的范围是(D )
A ()2,1-
B ()1,2
C ()2,2-
D ()2,1(1,2)-⋃
答案:解析如下图
6、已知定义在区间30,2π⎡⎤⎢⎥⎣⎦
上的函数y=f(x)的图像关于直线34x π=对称,当34x π≥时,f(x)=cosx ,如果关于x 的方程f(x)=a 有解,记所有解的和为S ,则S 不可能为(A )
A π
B 32π
C 94
π D 3π
答案解析如下图
7、已知()cos f x wx wx =,若关于x 的方程f(x)+1=0在区间()0,2π上有且只有四个不相等的实数根,则正数w 的取值范围是(C ) A 37
(,]22 B 725(,]26 C 313(,]26 D 313(,)26
答案:解析如下图。