冀教版九年级数学期末试卷(上册全一册)
最新冀教版九年级数学上册期末考试卷及完整答案
最新冀教版九年级数学上册期末考试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3- 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >04.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.因式分解:x 2y ﹣9y =________.3.若二次根式x 2-有意义,则x 的取值范围是__________.4.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.二次函数y =﹣x 2+bx+c 的部分图象如图所示,由图象可知,不等式﹣x 2+bx+c <0的解集为__________.三、解答题(本大题共6小题,共72分)1.解方程:13122xx x-=---2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、D5、A6、C7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、y (x+3)(x ﹣3)3、x 2≥4、5、6、x <−1或x >5.三、解答题(本大题共6小题,共72分)1、3x =.2、123、略.4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m 2、50m 2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
冀教版九年级上册数学期末测试卷及含答案
冀教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,AB为O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为( )A.3B.4C.5D.62、用配方法解方程x2+4x+2=0,配方后的方程是()A.(x+2)2=0B.(x-2)2=4C.(x-2)2=0D.(x+2)2=23、方程x2﹣5=0的实数解为()A. B. C. D.±54、为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h, 7 hB.8 h, 7.5 hC.7 h, 7.5 hD.8 h, 8 h5、如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥ACB.AC 2=2AB•AEC.△ADE是等腰三角形D.BC=2AD6、若3是关于方程x2-5x+c=的一个根,则这个方程的另一个根是()A.-2B.2C.-5D.57、如图,AB是⊙O的直径,BC是⊙O的切线.点D、E在⊙O上,若∠CBD=110°,则∠E的度数是()A.90°B.80°C.70°D.60°8、已知、两点在反比例函数的图象上,下列三个命题:①若,则;②若,,则;③过A、B两点的直线与x轴、y轴分别交于C、D两点,连接OA、OB,则.其中真命题个数是()A.0B.1C.2D.39、关于x的一元二次方程ax2+bx=2(a,b是常数,且a≠0),( )A.若a>0,则方程可能有两个相等的实数根B.若a>0,则方程可能没有实数根C.若a<0,则方程可能有两个相等的实数根D.若a<0,则方程没有实数根10、已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限11、若一元二次方程x2﹣2x﹣m=0无实数根,则反比例函数y=的图象所在的象限是( )A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限12、在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A.1:20B.1:20000C.1:200000D.1:200000013、如图,以点O为位似中心,把△ABC放大为原图形的2倍得到,以下说法错误的是()A.S△ABC ∶S△A’B’C=1∶2 B.AB∶=1∶2 C.点A,O,A’三点在同一条直线上 D.BC∥14、如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A. aB. aC.D.15、下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比 D.位似图形的周长之比等于位似比的平方二、填空题(共10题,共计30分)16、方程-4x+c=0有两个不相等的实数根,则c的取值范围是________.17、如图,△ABC 中,∠C=90°,CA=CB,D 为 AC 上的一点,AD=3CD,AE⊥AB交 BD 延长线于 E,记△EAD,△DBC 的面积分别为 S1, S2,则S 1:S2=________.18、已知关于的一元二次方程有两个相等的实数根,则的值是________.19、若反比例函数的图象过点(3,﹣2),则其函数表达式为________.20、若关于x的一元二次方程有两个不相等的实数根,则点在第________象限.21、如图,某景区门口的柱子上方挂着一块景点宣传牌CD,宣传牌的一侧用绳子AD和BC牵引着两排小风车,经过测量得到如下数据:AM=2米,AB=4米,∠MAD=45°,∠MBC=30°,则CD的长度约为________米.(≈1.73,结果精确到0.1米)22、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.23、如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为________.24、甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,则这两人5次射击命中的环数的方差S甲2________S乙2(填“>”“<”或“=”).25、已知 a+b=-3,a2b+ab2=-30,则 a2-ab+b2+11=________.26、先化简,再求值:,其中a是方程x2+x=6的一个根.27、(1)用配方法解方程:.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.28、关于x的一元二次方程mx2+(3m-2)x-6=0,当m为何值时,方程总有两个不相等的实数根.29、如图,⊙A、⊙B、⊙C两两不相交,且半径都是2cm,图中的三个扇形(即三个阴影部分)的面积之和是多少?弧长的和为多少?30、汽车正在行驶可车轮突然陷入无盖井,骑车人正在快速前行却因突然出现在面前的凸起井盖被摔伤,夜间出门时被一个没有井盖的窖井吞噬…全国各地因为井盖缺失而造成事故的情形不绝于耳,井盖吞人事件更是频频发生,为了保障市民的人身安全,合肥市政部门开始更换质量更好的井盖(如图所示).小明想知道井盖的半径,在⊙O上,取了三个点A、B、C,测量出AB=AC=50,BC=80,请你帮助小明求出井盖的半径,写出计算过程.参考答案1、D2、D3、C4、C5、D6、B7、C8、D9、C10、C11、C12、D13、A14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。
冀教版九年级数学上册期末试卷及答案【一套】
冀教版九年级数学上册期末试卷及答案【一套】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A .14B .16C .90α-D .44α-8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.分解因式:244m m ++=___________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、A6、A7、A8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、()22m +3、x ≥-3且x ≠24、-45、13 6、35r <<.三、解答题(本大题共6小题,共72分)1、x =52、(1)k ﹥34;(2)k=2. 3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)2(2)略5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
最新冀教版九年级数学上册期末考试卷及答案【完整】
最新冀教版九年级数学上册期末考试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3±2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( )A .25cmB .45 cmC .25cm 或45cmD .23cm 或43cm4.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0)D .(-32,0) 二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是__________.2.因式分解:34a a -=____________.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需__________米.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中a=1+2,b=1﹣2.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC(1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.5.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 …售价x(元/千…22.6 24 25.2 26 …克)(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、D6、C7、A8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、(2)(2)a a a +-3、23x -<≤4、5、6、14三、解答题(本大题共6小题,共72分)1、32x =-. 2、原式=a b a b -=+3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭ 4、(1)2)y=3xy=3x 2﹣3)点P 存在,坐标为(94).5、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
冀教版九年级数学上册期末考试卷(完美版)
冀教版九年级数学上册期末考试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是()A.﹣15B.15C.﹣5 D.52.若实数m、n满足402nm-+=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-14.已知整式25 2x x-的值为6,则整式2x2-5x+6的值为()A.9 B.12 C.18 D.245.如果分式||11xx-+的值为0,那么x的值为()A.-1 B.1 C.-1或1 D.1或0 6.用配方法解方程2x2x10--=时,配方后所得的方程为()A.2x10+=()B.2x10-=()C.2x12+=()D.2x12-=()7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是__________.2.分解因式:3244a a a -+=__________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、B6、D7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2(2)a a -;3、k <44 5、360°.6、 1三、解答题(本大题共6小题,共72分)1、3x =2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、()1略;()2BEF 67.5∠=.4、(1)略;(2)略.5、(1)34;(2)125 6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
冀教版九年级数学上册期末测试卷及答案【完整版】
冀教版九年级数学上册期末测试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( ) A .2B .12C .﹣2D .12-2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( ) A .y=(x ﹣4)2+7 B .y=(x+4)2+7 C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.若正多边形的一个外角是60︒,则该正多边形的内角和为( ) A .360︒B .540︒C .720︒D .900︒4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( ) A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADGBGHS S △△的值为( )A .12B .23 C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2﹣|18|+(﹣12)﹣3=_____. 2.因式分解:a 3-ab 2=____________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x . (1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF∠的度数.=时,求BEF4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、B6、D7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-72、a(a+b)(a﹣b)3、k<44、12 5.5、406、24 5三、解答题(本大题共6小题,共72分)1、1x=2、(1)k﹥34;(2)k=2.3、()1略;()2BEF67.5∠=.4、(1)略;(2)45°;(3)略.5、(1)34;(2)1256、(1)120件;(2)150元.。
冀教版九年级数学上册期末试卷(及参考答案)
冀教版九年级数学上册期末试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠36.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.分解因式:x2-2x+1=__________.3.若a、b为实数,且b=22117a aa-+-++4,则a+b=__________.4.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=__________度.5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、C6、B7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、(x-1)2.3、5或34、805、6、 1三、解答题(本大题共6小题,共72分)1、1x =2、3.3、(1)相切,略;(2).4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)34;(2)125 6、(1)w =﹣x 2+90x ﹣1800;(2)当x =45时,w 有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
冀教版九年级上数学期末试卷(含解析答案)
冀教版九年级(上)数学期末试卷一一、选择题(共10小题,每小题2分,计20分)1.﹣2的绝对值是()A .2B .12C .12-D .2-2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是()A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列说法正确的是()A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.用配方法将二次函数y =x 2﹣2x 化为y =a (x ﹣h )2+k 的形式为()A .y =﹣(x ﹣1)2+1B .y =(x +1)2﹣1C .y =(x +1)2+1D .y =(x ﹣1)2﹣15.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S 2(单位:千克2)如表所示:甲乙丙丁24242320S 2 2.1 1.92 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A .甲B .乙C .丙D .丁6.如图,若△ABC 与△A 1B 1C 1是位似图形,则位似中心的坐标为()A .(1,0)B.(0,1)C .(﹣1,0)D .(0,﹣1)7.如图,在⊙O 中,已知=,则AC 与BD 的关系是()A .AC =BDB .AC <BDC .AC >BDD .不确定8.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.9.如图,圆锥体的高h=2cm,底面圆半径r=2cm,则圆锥体的全面积为()cm2.A.12πB.8πC.4πD.(4+4)π10.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0)B.(-6,0)C.(-52,0)D.(-32,0)二、填空题(共9小题,每空2分,计22分)11.(2的平方根是.12.(2分)因式分解:x3﹣4x=.13.(2分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.14.(4分)已知二次函数y=﹣x2+bx+c中函数y与自变量x之间部分对应值如表所示,点A(x1,y1),B(x2,y2),在函数图象上.x…0123…y…m n3n…则表格中的m=;当﹣1<x1<0,3<x2<4时,y1和y2的大小关系为.15.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=3.点D是AB上一动点,以DC为斜边向右侧作等腰直角三角形CDE,使∠CED=90°,连接BE.(1)若点E恰好落在AB上,则AD的值为;(2)线段BE的最小值为.16.(2分)已知线段a=4cm,b=9cm,则线段a,b的比例中项为cm.17.(2分)如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)18.(2分)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.19.(2分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.三、计算题(共2小题,计8分)20.(1)(2分)解方程:x2﹣1=2(x+1)(2)(2分)计算:2cos30°﹣tan45°﹣.21.(4分)先化简,再求值:2443(1)11m m mm m-+÷----,其中2m=-.四、解答题(共5小题,计50分)22.(10分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”重庆实验外国语学校为鼓励学生抗疫期间在家阅读,组织八年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.(1)本次共抽查学生人,并将条形统计图补充完整;(2)读书本数的众数是本,中位数是本.(3)在八年级2000名学生中,读书15本及以上(含15本)的学生估计有多少人?(4)在八年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.23.(8分)如图,已知反比例函数(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?24.(12分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.25.(8分)如图,在矩形ABCD中,AB=6,AD=11.直角尺的直角顶点P在AD上滑动时(点P 与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)△CDP与△PAE相似吗?如果相似,请写出证明过程;(2)当∠PCD=30°时,求AE的长;(3)是否存在这样的点P,使△CDP的周长等于△PAE周长的2倍?若存在,求DP的长;若不存在,请说明理由.26.(12分)如图,在四边形ABCD中,AB=20,AD=8,AD⊥AB,DC⊥BC,sin B=,P是AD 上一点,以点P为圆心的圆切BC于点T,分别交AB,AD的延长线于点M,N,设AP=x.(1)当x=0时,求扇形PMN的面积;(2)求BC的长;(3)若⊙P上的点到点A,D的距离均不小于8,求x的取值范围.冀教版九年级(上)数学期末试卷一参考答案与试题解析一、选择题1.A2.B3.D4.【解答】解:y=x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1,故选:D.5.【解答】解:因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.6.【解答】解:如图所示:位似中心的坐标为(0,﹣1).故选:D.7.【解答】解:∵=,∴,∴,∴AC=BD.故选:A.8.【解答】解:(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:A.9.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:A.10.C二、填空题11.±2.12.x(x+2)(x﹣2)13.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.14.【解答】解:由表可知,抛物线的对称轴为直线x=2,∴函数解析式为y=﹣(x﹣2)2+3,当x=0时,m=﹣1,∵a=﹣1,∴函数图象开口向下,∵﹣1<x1<0,3<x2<4,∴y1<y2.故答案为﹣1;y1<y2.15.【解答】解:(1)若点E恰好落在AB上时,∵∠CED=90°,∴CE⊥AB,在△ABC中,∠ACB=90°,∠A=30°,BC=3,∴AB=2BC=6,AC=BC=3,∵CE=DE=,∴AD=AE﹣DE=,故答案为;(2)解:以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB交于点G,连接E1E延长与AB交于点F,连接CF,作BE2⊥E1F于点E2.∵Rt△DCE与Rt△AE1C为等腰直角三角形,∴∠DCE=∠CDE=∠ACE1=∠CAE1=45°,∴∠ACD=∠E1CE,∵==,∴△ACD∽△E1CE,∴∠CAD=∠CE1E=30°,∵D为AB上的动点,∴E在直线E1E上运动,当BE2⊥E1F时,BE最短,即为BE2的长.在△AGC与△E1GF中,∠AGC=∠E1GF,∠CAG=∠GE1F,∴∠GFE1=∠ACG=45°,∴∠BFE2=45°,∵∠CAD=∠CE1F=30°,∴点A、C、F、E1四点共圆,∴∠AE1C=∠AFC=90°,且∠ABC=60°,则∠BCF=30°,∴BF=BC=3=,∴BE2=BF=×=,故答案为.16.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,x=±6,(线段是正数,负值舍去),故填6.17.【解答】解;设P(a,b),Q(m,n),则S△ABP=AP•AB=a(b﹣n)=ab﹣an,S△QMN=MN•QN=(m﹣a)n=mn﹣an,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.18.【解答】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π,故答案为:5π.19.12 7三、计算题20.【解答】解:(1)x2﹣1=2(x+1),移项,得x2﹣1﹣2x﹣2=0,即x2﹣2x﹣3=0,分解因式,得(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.(2)原式=2×﹣1﹣=﹣1﹣(﹣1)=0.21.22mm-+1-.四、解答题22.【解答】解:(1)本次共抽查学生14÷28%=50(人),读书10本的学生有:50﹣9﹣14﹣7﹣4=16(人),补全的条形统计图如右图所示,故答案为:50;(2)读书本数的众数是10本,中位数是(10+15)÷2=12.5(本),故答案为:10,12.5;(3)2000×=1000(人),即读书15本及以上(含15本)的学生估计有1000人;(4)树状图如下图所示,一共有12种可能性,其中恰好是两位男生可能性有2种,故恰好是两位男生分享心得的概率是.23.【解答】解:(1)在Rt△OAC中,设OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1,m=﹣1(舍去).∴m=1,∴A点的坐标为(1,2).把A点的坐标代入中,得k1=2.∴反比例函数的表达式为.把A点的坐标代入y2=k2x+1中,得k2+1=2,∴k2=1.∴一次函数的表达式y2=x+1;(2)B点的坐标为(﹣2,﹣1).当0<x<1或x<﹣2时,y1>y2.24.(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m的值为,1,2.25.【解答】(1)△CDP∽△PAE.证明:∵四边形ABCD是矩形,∴∠D=∠A=90°,CD=AB=6,∴∠PCD+∠DPC=90°,又∵∠CPE=90°,∴∠EPA+∠DPC=90°,∴∠PCD=∠EPA,∴△CDP∽△PAE.(2)在Rt△PCD中,由tan∠PCD=,∴,∴,解法1:由△CDP∽△PAE知:,∴,解法2:由△CDP∽△PAE知:∠EPA=∠PCD=30°,∴;(3)假设存在满足条件的点P,设DP=x,则AP=11﹣x,∵△CDP∽△PAE,根据△CDP的周长等于△PAE周长的2倍,得到两三角形的相似比为2,∴即,解得x=8,此时AP=3,AE=4.26.【解答】解:(1)如图,连接PT,则PT⊥BC,当x=0时,点P与点A重合,此时PB=AB=20,∠MPN=∠MAN=90°,∵∠PTB=90°,sin B=,∴PT=AB•sin B=20×=16,∵∠MPN=∠MAN=90°,∴扇形PMN的面积为;(2)如图,过点A作AE∥BC于点E,过点D作DF⊥AE于点F,则四边形CDFE是矩形,∠BAE+∠B=90°,∴CE=DF,CD=EF,在Rt△ABE中,AE=AB•sin B=20×=16,∴BE===12,∵∠BAD=90°,即∠BAE+∠DAE=90°,∴∠DAE=∠B,∴sin∠DAE=sin B=,在Rt△ADF中,AD=8,∴DF=AD•sin∠DAE=8×=,∴AF===,∴CE=DF=,EF=AE﹣AF=16﹣=,∴CD=EF=,∴BC=BE+CE=12+=,即BC的长是;(3)如图,连接TP并延长交BA的延长线于点G,则∠APG+∠G=90°,∠B+∠G=90°,∴∠APG=∠B,∴sin∠APG=sin B=,∴,设AG=4k,则PG=5k,则AP=3k,∵AP=x,∴,∴,,,在Rt△BGT中,,∴圆的半径,由题意,得,,即,,解得,∴x的取值范围为.。
冀教版九年级数学上册期末测试卷(及参考答案)
冀教版九年级数学上册期末测试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.若一个凸多边形的内角和为720°,则这个多边形的边数为( ) A .4B .5C .6D .7 7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)123.2.分解因式:2ab a-=_______.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD=__________.5.如图,C为半圆内一点,O为圆心,直径AB长为2 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm2.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:23121 x x=+-2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,AD=63,AF=43,求AE 的长.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、B6、C7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1.2、a (b +1)(b ﹣1).3、30°或150°.4、30°5、4π6、49三、解答题(本大题共6小题,共72分)1、x =52、22m m-+ 1. 3、(1)略(2)64、(1)理由见详解;(2)2BD =1,理由见详解.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)4元或6元;(2)九折.。
冀教版数学九年级上册期末试卷及答案
冀教版数学九年级上册期末测试卷1一、单选题1.已知关于x的方程x2-kx-3=0的一个根为3,则k的值为()A. 1B. -1C. 2D. -22.下列命题中,不正确的命题是()A. 平分一条弧的直径,垂直平分这条弧所对的弦B. 平分弦的直径垂直于弦,并平分弦所对的弧C. 在⊙O中,AB、CD是弦,则AB CDD. 圆是轴对称图形,对称轴是圆的每一条直径.3.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分 81 79 ■ 80 82 ■80那么被遮盖的两个数据依次是()A. 80,2B. 80,C. 78,2D. 78,4.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元.下列所列方程中正确的是()A. 168(1+a)2=128B. 168(1﹣a%)2=128C. 168(1﹣2a%)=128D. 168(1﹣a2%)=1285.如图,△ABC内接于⊙O,作OD⊥BC于点D,若∠A=60°,则OD:CD的值为()A. 1:2B. 1:C. 1:D. 2:6.若反比例函数y= 的图象经过点(2,3),则它的图象也一定经过的点是()A. (﹣3,﹣2)B. (2,﹣3)C. (3,﹣2)D. (﹣2,3)7.下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4B.a=1,b= ,c= ,d=4C.a=4,b=5,c=8,d=10D.a=2,b=3,c=4,d=58.如图,已知⊙O的半径等于1cm,AB是直径,C,D是⊙O上的两点,且==,则四边形ABCD的周长等于()A. 4cmB. 5cmC. 6cmD. 7cm9.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2B. 1:3C. 2:3D. 3:210.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A. ∠C=2∠AB. BD平分∠ABCC. S△BCD=S△BODD. 点D为线段AC的黄金分割点二、填空题11.若,则的值为________.12.已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是________.13.墙壁CD上D处有一盏灯(如图),小明站在A站测得他的影长与身长相等都为1.5m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=________m.14.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是________.15.如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.16.若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.17.点A(-2,5)在反比例函数(k≠0)的图象上,则k的值是________.18.在△ABC中,∠C=90°,AC=4,点G为△ABC的重心.如果GC=2,那么sin∠GCB的值是________.19.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=________度.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题21.计算:.22.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.23.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE的长.24.如图,在⊙O中,AB为直径,点B为的中点,直径AB交弦CD于E,CD=2,AE=5.(1)求⊙O半径r的值;(2)点F在直径AB上,连接CF,当∠FCD=∠DOB时,求AF的长.25.已知:关于x的方程x2+4x+(2﹣k)=0有两个不相等的实数根.(1)求实数k的取值范围.(2)取一个k的负整数值,且求出这个一元二次方程的根.26.已知:如图,AB为⊙O的直径,CE⊥AB于E,BF∥OC,连接BC,CF.求证:∠OCF=∠ECB.27.如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(精确到0.1,≈1.73)28.李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质考试成绩体育测试满分 100 100 100小聪 72 98 60小亮 90 75 95调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议.(3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?29.如图,D在AB上,且DE∥BC交AC于E,F在AD上,且AD2=AF•AB.求证:EF∥CD.30.如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.(1)写出A、B、C、D四点坐标;(2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标.(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式参考答案一、单选题1.【答案】C∵方程x2-kx-3=0的一个根为3,∴将x=3代入方程得:9-3k-3=0,解得:k=2.故选C2.【答案】C在圆内的弦不一定平行,故C选项错误.3.【答案】C解:根据题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故答案为:C4.【答案】B解:当商品第一次降价a%时,其售价为168﹣168a%=168(1﹣a%);当商品第二次降价a%后,其售价为168(1﹣a%)﹣168(1﹣a%)a%=168(1﹣a%)2.∴168(1﹣a%)2=128.故选B.5.【答案】C解:连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°.∵OB=OC,OD⊥BC,∴∠COD= ∠BOC=60°,∴=cot60°= ,即OD:CD=1:.故选C.6.【答案】A根据题意得k=2×3=6,所以反比例函数解析式为y= ,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y= 的图象上.故答案为:A.7.【答案】DA、2×6=3×4,能成比例,不符合题意;B、4×1= ×2 ,能成比例,不符合题意;C、4×10=5×8,能成比例,不符合题意;D、2×5≠3×4,不能成比例,符合题意.故答案为:D.8. 【答案】B解:如图,连接OD、OC.∵==(已知),∴∠AOD=∠DOC=∠COB(在同圆中,等弧所对的圆心角相等);∵AB是直径,∴∠AOD+∠DOC+∠COB=180°,∴∠AOD=∠DOC=∠COB=60°;∵OA=OD(⊙O的半径),∴△AOD是等边三角形,∴AD=OD=OA;同理,得OC=OD=CD,OC=OB=BC,∴AD=CD=BC=OA,∴四边形ABCD的周长为:AD+CD+BC+AB=5OA=5×1cm=5cm;故选:B.9.【答案】B∵AD=1,BD=2,∴AB=AD+BD=3.∵△ADE∽△ABC,∴AD:AB=1:3.∴△ADE与△ABC的相似比是1:3.故选B.10. 【答案】CA、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,故本选项错误。
冀教版九年级数学上册期末测试卷(完整版)
冀教版九年级数学上册期末测试卷(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100° 8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.分解因式:2ab a -=_______.3.函数2y x =-中,自变量x 的取值范围是__________. 4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、B5、B6、A7、D8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、a(b+1)(b﹣1).x≥3、24、425、x≤1.6、2三、解答题(本大题共6小题,共72分)x=1、42.3、(1)略;(24、(1)2(2)略5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
最新冀教版九年级数学上册期末考试卷及答案【完整版】
最新冀教版九年级数学上册期末考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25 B.28、28 C.25、28 D.28、313.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.304.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P 的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)5.若α,β是方程2x2x20180+-=的两个实数根,则2α3αβ++的值为() A.2015 B.2016-C.2016 D.20196.下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b27.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠48.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)118322=____________.2.分解因式:3x 9x -=_______.3.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.4.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为__________.5.如图,矩形ABCD 中,4BC =,2CD =,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为__________.(结果保留)π6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解分式方程:2312x x x --=-2.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.3.如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.4.如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径和CE 的长.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、C6、A7、B8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、02、()()x x 3x 3+-3、114、55°5、π.6、3三、解答题(本大题共6小题,共72分)1、x =45. 2、1m =,此时方程的根为121x x ==3、(1)抛物线的解析式21722y x x =-++;(2)PD PA +(3)点Q 的坐标:1(0,2Q 、2(0,2Q .4、(1)略(2)5 ,2455、(1)50;(2)240;(3)12. 6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青坨营中学九年级数学综合测试卷三(24-28章)
一、选择题
1.已知方程的两个根分别是2和,则可分解为( )A. B. C.
D.
2.方程x2-3x=4根的判别式的值是().
A.-7 B.25 C.±5D.5
3.已知,则的值为( )
A.B.C.2
D.
4.如图,点A、B、C在⊙O上,∠ACB=30°,则sin∠AOB的值是
( )ﻫA. B.
C. D.
5.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:3(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是( )
A.3
5米ﻩB.10米C.15米D.103米
6.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
ﻫA.3 B.5 C.8 D.10
7.关于x的一元二次方程有一根是0,则a的值等于
( )
A.1或-1 B.2 C.1 D.0
8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图所示,若油面的宽A
B=160cm,则油的最大深度为( )
A.40cm B.60cmC.80cmD.100cm
9.已知如图,一次函数y=ax+b和反比例函数的图象相交于A、B两点,不等式a
x+b>的解集为()ﻫA.x<﹣3 B.﹣3<x<0或x>
1 C.x<﹣3或x>1 D.﹣3<x<1
10.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是( )
A.12ﻩB.C.D.
11.在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为( )
A.3:4 B.4:3 C.7:9 D.9:7
12.如图,在等边△ABC中,BC=6,点D,E分别在AB,A
C上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.
连结A A′并延长,交DE于点M,交BC于点N.如果点A′
为MN的中点,那么△ADE的面积为()
A. B.3 C.6 D.9
二、填空题
13.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为m.
14.如图,已知点A在反比例函数的图像上,点B在x轴的正半轴上,且△OAB是面积为的等边三角形,那么这个反比例函数的解析式是.
15.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为.
16.如图,在□ABCD中,AD=4,AB=8,∠A=30°,以点
A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部
分的面积是.(结果保留π)17ﻫ.如图,AB是⊙O的直径,弦CD⊥
AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:
①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=.ﻫ其中正确的是
(写出所有正确结论的序号).ﻫ三、解答题
18.(1)用公式法解方程
-
-x(2)
x2=
12
19. 某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).
甲、乙两人射箭成绩统计表
第1次第2次第3次第4次第5次
甲成绩9 4 7 4 6
乙成绩7 57a7
(1)a=________,乙=________;
(2)请完成图中表示乙成绩变化情况的折线;ﻫ(3)①观察图,可看出________的成绩
比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.ﻫ②请你从平均数和方差的角度分析,谁将被选中.
20.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB 是河底线,弦CD 是水位线, CD ∥AB ,且CD="24" m,OE ⊥CD 于点E.已测得si n∠DOE=
13
12. (1)求半径OD ;ﻫ(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?
21.如图,某同学在大楼AD 的观光电梯中的E点测得大楼BC 楼底C 点的俯角为45°,此时该同学距地面高度AE 为20米,电梯再上升5米到达D 点,此时测得大楼BC 楼顶B点的仰角为37º,求大楼的高度BC .(参考数据:s in37 º≈0.60, cos37 º≈0.80, t an37 º≈0.75)ﻫ
22.如图,点C、D在线段AB上,△PCD是等边三角形.
(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?
(2)当△ACP∽△PDB时,求∠APB的度数.
23.如图,不透明圆锥体DEC放在水平面上,在A处灯光照射下形成影子。
设BP过底面的圆心O,已知圆锥的高为m,底面半径为2m,BE=4m。
求:ﻫ(1) 求∠B的度数.(2)若∠ACP=2∠B,求光源A距水平面的高度。
(结果保留根号)
24.如图,
点
在
轴的正半轴上,,
,
.点
从点
出发,沿轴向左以每秒1个
单位长的速度运动,运动时间为秒.ﻫ(1)求点的坐标;ﻫ(2)求为何值时,∠BPC 第
一次达到150
.
(3)在∠BP C第一次达到150
后继续向左运动,
请计算说明,∠BP C第一次达到150
时,P是在线段BA 上,还是在线段B A的延长线上.
(4)请直接写出P 点运动过程中,CP 将四边形AO CD面积平分时的值.
y
x
D
O
A C
B
Q
(图1)
y
x
D
O
A C
B
Q
(备用图2)
(备用图3)
25.如图,一次函数的图象与反比例函数的图象交于两点,与
轴交于点,与轴交于点,已知,,点的坐标为
.
(1)求反比例函数的解析式.
(2)求一次函数的解析式.ﻫ(3)在轴上存在一点,使得与相似,请你求出点的坐标.。