冀教版九年级数学上册第28章圆PPT教学课件

合集下载

九年级数学上册第28章圆:圆心角和圆周角第2课时ppt课件新版冀教版

九年级数学上册第28章圆:圆心角和圆周角第2课时ppt课件新版冀教版
∴ ∠ABC = ∠AOC. 你能写出这个命题吗?
B
圆上一条弧O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆 心角∠AOC的大小关系会怎样?
提示:能否也转化为1的情况? 过点B作直径BD.由1可得: ∠ABD = ∠AOD,∠CBD = ∠COD,
. O
B
C
1.首先考虑一种特殊情况:当圆心(O)在圆周角(∠ABC)的 一边(BC)上时,圆周角∠ABC与圆心角∠AOC的大小关系.
解:∵∠AOC是△ABO的外角, ∴∠AOC=∠B+∠A.
A C
∵OA=OB,
●O
∴∠A=∠B.
B
∴∠AOC=2∠B.
即∠ABC = ∠AOC. 你能写出这个命题吗?
圆周角的定义及性质
圆心角顶点发生变化时,我们得到几种情况?
.A
A.
..A
O
.
.
O
O
B
C
B
C
B
C
思考:三个图中的∠BAC的顶点A各在圆的什么位置? 角 的两边和圆是什么关系?
你能仿照圆心角的定义给圆周角下定义吗?
圆周角定义: 顶点在圆上,两边都与
圆相交的角叫圆周角.
A
特征: ①角的顶点在圆上. ②角的两边都与圆相交.
一条弧所对的圆周角等于它所对的圆心角的一半.
如果圆心不在圆周角的一边上,结果会怎样? 2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆 心角∠AOC的大小关系会怎样?
提示:能否转化为1的情况?
过点B作直径BD.由1可得: ∠ABD = ∠AOD,
AD C
●O
∠CBD = ∠COD,
B ∴∠ABC = ∠AOC.

冀教版九年级上册数学教学课件(第28章 圆)

冀教版九年级上册数学教学课件(第28章 圆)

O
A
弦: 连接圆上任意两点的线段(图中的线段AB、AC). 直径: 经过圆心的弦(图中的AB).
B
观察线段AC和AB的特点? 直径 O A
.
C
弦 注意: 凡直径都是弦,是圆中最长的弦,但弦不一定是直径.
圆弧:连接圆上任意两点间的部分叫做圆弧,简称弧. 以A、B为端点的弧记作 AB , 读作:“圆弧AB”或“弧AB”. 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫 做半圆.
(4)不在同一直线上的三个点确定一个圆;
(5)经过三角形的三个顶点的圆叫做三角形的外接圆 ;外接圆的圆心叫三角形的外心;这个三角形叫做圆的
内接三角形.
经典
专业 用心 精品课件
只本 供课 免件 费来 交源 流于 使网 用络
第二十八章
第1课时 圆心角

28.3 圆心角1.复习并巩固圆中的基本概念. 2.理解并掌握圆心角的定义,能够运用其进行计算. (重点) 3.理解并掌握圆心角、弧、弦间的关系.(难点)
3.经过三个点A、B、C能确定一个圆吗? 过如下三点能不能做圆? 为什么? 不能,三点在同一直线上.
A
B
C
归纳
不在同一直线上的三点确定一个圆.
二 三角形的外接圆及外心
问题1 方法: 1.在圆弧上任取三点A、B、 C. 将一个如图所示的破损的圆盘复原了吗?
A B
2.作线段AB、BC的垂直平分
线,其交点O即为圆心. 3.以点O为圆心,OC长为半径 作圆,⊙O即为所求.
导入新课
回顾与思考
问题1 圆的对称性有哪几方面?
O
轴对称性
问题2
将圆绕圆心任意旋转,你发现了什么?
α O
经典

冀教版九年级上册数学教学课件 第二十八章 圆 第2课时 圆周角

冀教版九年级上册数学教学课件 第二十八章 圆 第2课时 圆周角

课程讲授
1 圆周,并且两边都
与圆相交的角叫做圆周角.
连接AO,BO,得到圆心角∠AOB, 可以发现: ∠ACB和∠AOB对着__A_B___

课程讲授
1 圆周角定理
问题1:∠ACB和∠AOB之间存在什么关系呢?分别测
量它们的度数,试着猜想它们之间的关系,运用所学知
圆周角定理
一条弧所对的圆周角等于该 弧它所对的圆心角的一半;
推论一:同弧或等弧所对的圆周角相等.
圆周角定理 的推论
推论二:半圆(或直径)所对的圆周角 是直角,90°的圆周角所对的弦是直径.
圆内接四边 形
圆内接四边形的对角互补.
课程讲授
2 圆周角定理的推论
问题3:如图,∠ACB与∠ADB分别为⊙O上同一条弧AB
所对的两个圆周角.试说明∠ACB与∠ADB之间的大小关
系,并说明理由.
D
A O
∠ACB=∠ADB.理由如下:连接AO,BO,
∵∠ACB= 1
2
1
∠AOB,∠ADC= 2
∠AOB,
∴∠ACB=∠ADB.
B
归纳:同弧所对的圆周角相等. C
度数是( D )
A.64° B.58° C.32° D.26°
随堂练习
4.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=90°,
则∠BCD的度数是( C )
A.45° B.90° C.135° D.150°
随堂练习
5.如图,A,B,C三点在⊙O上,AD为△ABC的外角 平分线,交⊙O于点D,连接BD,CD.
0B
课程讲授
1 圆周角定理
练一练:下列四个图中,∠x是圆周角的是( C )
课程讲授

2019年冀教版九年级上册数学解读课件:第28章 圆(共23张PPT)

2019年冀教版九年级上册数学解读课件:第28章 圆(共23张PPT)

知识点 圆的对称性
在我们的日常生活中,有许许多多美 丽的图案都是根据圆的对称性设计的.
知识点 圆的有关概念
如下图所示,小惠把绳子的一端固定在操场 上的某一点O处,小亮在绳子的另一端拴上一段竹 签,小亮然后将绳子拉紧,再从点A开始绕点O旋转 到点B处,竹签画出的痕迹就是一条弧.
知识点 圆的有关概念
知识点 三角形的外接圆
在某地区有A,B,C三所学校,如图所示,今要盖 一个图书馆提供给三个学校的学生的使用,为了公 平起见,图书馆的位置应该盖在经过A,B,C三点的 圆的圆心位置,即△ABC外接圆圆心的位置.
知识点 三角形的外接圆
一个三角形只有一个外接圆,而一个圆有无数个内接三角形.
第二十八章 圆
28.3 圆心角和圆周角
知识点 圆心角
我们知道,要健康长寿,重要的是每天要摄取均衡的营 养,包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和 水.根据中国营养学会公布的“中国居民平衡膳食指南”, 每人每日摄取量如图所示.绘制这样的扇形图,只要根据百 分比计算出圆心角的度数即可.
知识点 圆周角
老师间进行了一场足球比赛,如图所示,张老师带球冲到 了不越位的A点,可他没有射门,而是将球传给了冲到圆心O 点处的李老师,小王纳闷了:“张老师离球门更近,为何将球传 给离球门更远的李老师呢?”仅从射门张角大小考虑可知,虽 然张老师离球门更近,但是他所对的角比李老师所对的角小 一半,所以李老师射中球门的可能性更大.
第二十八章 圆
28.5 弧长和扇形面积的计算
知识点 弧长的计算
4×100接力跑,是田径运动中唯一的集体项目.以队 为单位,每队4人,每人跑相同距离.如图所示,这些运动员 分别在不同的跑道,他们的起跑线也不在同一处,但他们 跑的距离一定相同,也就是说这些弯道的“展直长度” 是一样的.

垂径定理课件(26张PPT)冀教版数学九年级上册

垂径定理课件(26张PPT)冀教版数学九年级上册

知识点 2 垂径定理的推论
如图所示,在☉O中,直径CD与弦AB(非直径)相交于点E. C
【思考】
(1)若AE=BE,能判断CD与AB垂直吗?
O
AD 与 BD (或 AC 与 BC )相等吗?说明你的理由. A
EB
D
(2)若 AD = BD (或 AC =BC ),能判断CD与AB垂直吗?
AE与BE相等吗?说明你的理由.
C
O EB D
结论 垂直于弦的直径平分这条弦,并且平 分这条弦所对的两条弧.
能不能用所学过的知识证明你的结论?
C
O
A
EB
D
已知:如图,在⊙O中,CD为直径,AB为弦,且
CD⊥AB,垂足为E.
求证:AE=BE,AD BD,AC BC.
证明:如图,连接OA,OB.
C
在△OAB中,∵OA=OB,OE⊥AB, ∴AE=BE,∠AOE=∠BOE. ∴ AD BD . ∵∠AOC=180°-∠AOE,∠BOC=180°-∠BOE,
解:(1)CD⊥AB,AD BD (或 AC BC ). C
理由:连接OA,OB,如图所示,则△OAB是等 腰三角形,
∵AE得 AD BD, AC BC .
A
EB
(2)CD⊥AB,AE=BE. 理由: ∵ AD BD,∴∠AOD=∠BOD, 又∵OA=OB,OE=OE, ∴△AEO≌△BEO,
A
E C
O
D
B
拓宽视野: 对于圆中的一条直线,如果具备下列五个条件中的任意两个, 那么一定具备其他三个: (1)过圆心;(2)垂直于弦;(3)平分弦(非直径);(4) 平分弦所对的劣弧;(5)平分弦所对的优弧. 简记为“知二推三”.

九年级数学上册第28章圆:圆心角和圆周角第1课时ppt课件新版冀教版

九年级数学上册第28章圆:圆心角和圆周角第1课时ppt课件新版冀教版
____A__B_=_C__D__.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相 等吗?为什么?
相等
因为AB=CD ,所以∠AOB=∠COD. A
E
B
又因为AO=CO,BO=DO,
·O
D
所以△AOB≌ △COD.
F
C 又因为OE 、OF分别是AB与CD边
上的高,
所以 OE = OF.
2. 如图,AB是⊙O的直径,弧BC=弧CD=弧DE,∠COD=35°, 求∠AOE的度数.
E
D
解:∵弧BC=弧CD=弧DE,
A
·
O
C ∴ ∠ BOC= ∠COD=∠DOE=35°.
B ∵弧BC=弧CD=弧DE,
AOE 180 3 35
75
1.圆心角:我们把顶点在圆心的角叫做圆心角. 2.圆心角、弧、弦间的关系 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等 .
1. 如图,AB、CD是⊙O的两条弦.
AE B
(1)如果AB=CD,那么__弧__A_B_=_弧__C_D_,
O
D
___A_O__B_____C_O_D___.
F C
(2)如果弧AB=弧CD,那么___A__B_=_C__D___,
AOB____C_O__D_______.
(3)如果∠AOB=∠COD,那么___弧__A_B_=_弧__C__D_,
α O
圆具有旋转不变性
圆心角的定义
圆是中心对称图形吗?它的对称中心在哪里?
圆是中心对称图形
·
它的对称中心是圆心
概念: 圆心角:我们把顶点在圆心的角叫做圆心角.
A O·
B
圆心角、弧、弦间的关系

九年级数学上册第28章圆:圆心角和圆周角第3课时ppt课件新版冀教版

九年级数学上册第28章圆:圆心角和圆周角第3课时ppt课件新版冀教版
28.3圆心角和圆周角
第3课时 圆内接四边形
导入新课
讲授新课
当堂练习
课堂小结
1.复习并巩固圆周角和圆心角的相关知识. 2.理解并掌握圆内接四边形的概念及性质并学会运用. (重点)
问题1 什么是圆周角?
圆周角概念: 顶点在圆上,并且两边都和圆相交的角叫圆周角.
特征: ① 角的顶点在圆上.
D
B
② 角的两边都与圆相交.
B
C
A F
O
D
E
如图,四边形ABCD为⊙O的内接四边形;⊙O为四边形 ABCD的外接圆.
∵ 弧BCD和弧BAD所对的圆心角的和是周角,
∴∠A+∠C=180°,
D
同理∠B+∠D=180°, 延长BC到点E,有
A O
∠BCD+∠DCE=180°. B
∴∠A=∠DCE.
CE
归纳 由于∠A是∠DCE的补角∠BCD的对角(简称∠DCE 的内对角),于是我们得到圆内接四边形的性质:
定理:圆的内接四边形的对角互补,且任何一个外角都 等于它的内对角.
1.在⊙O中,∠CBD=30°,∠BDC=20°,求∠A. A
O
B
D
C 解:∵∠CBD=30°,∠BDC=20°
∴∠C=180°-∠CBD-∠BDC=130°
∴∠A=180°-∠C=50°(圆内接四边形对角互补)
变式:已知∠OAB等于40°,求∠C 的度数.
E
●O
A
C
问题2 什么是圆周角定理?
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的 一半.
即 ∠ABC = ∠AOC.
A C
A C
A C
●O
●O
●O

冀教版九年级数学上册《圆心角和圆周角》PPT精品教学课件

冀教版九年级数学上册《圆心角和圆周角》PPT精品教学课件
同理∠B+∠D=180°.
【归纳总结】
圆内接四边形的对角互补.

如图所示,已知四边形ABCD为☉O的内接四边形,∠DCE为
四边形ABCD的一个外角.求证∠DCE=∠BAD.
证明:∵四边形ABCD为☉O的内接四边形,
∴∠BAD+∠BCD=180°.
∵∠BCD+∠DCE=180°,
∴∠DCE=∠BAD.

෽ +
෽ =
෽ + ,


෽ = .∴∠AOC=∠BOD.


在Rt△CMO和Rt△DNO中,
∵CM⊥AB,DN⊥AB,∴∠CMO=∠DNO=90°.
又∵OC=OD,∠MOC=∠NOD,
∴Rt△CMO≌Rt△DNO.∴CM=DN.
随堂训练
本题答案不
唯一哦!
1.如图,AB、CD是⊙O的两条弦.
28.3 圆心角和圆周角
第1课时
学习目标
1.理解圆心角的概念,掌握圆心角、弧、弦之间的相等关
系及推论. (重点)
2.学会运用圆心角、弧、弦之间的关系进行简单的计算
和证明. (难点)
新课导入
观察:1.将圆绕圆心旋转180°后,得到的图形与原图形重合吗?
由此你得到什么结论呢?
180°
A
圆是中心对称图形.
证明:连接OA,OB,OC,OD.
C
B
AD BC,
AOD BOC.
O
.
AOD+BOD=BOC +BOD.
即AOB COD,
AB=CD.
A
D
课堂小结
圆心角
定义:顶点在圆心的角

冀教版九年级上数学课件 第28章圆28.4垂径定理(共19张PPT)

冀教版九年级上数学课件 第28章圆28.4垂径定理(共19张PPT)

例2:如图,一条排水管的截面。已知排水管的半径 OB=10,水面宽AB=16。求截面圆心O到水面的距离。
解:作OC⊥AB于C, 由定理得:
AC=BC=AB/2=0.5×16=8 由勾股定理得:
10 C 88
O C O B 2 B C 21 0 2 8 2 6 D 答:截面圆心O到水面的距离为6
概念:弦心距
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/262021/8/262021/8/262021/8/268/26/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月26日星期四2021/8/262021/8/262021/8/26 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/262021/8/262021/8/268/26/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/262021/8/26August 26, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/262021/8/262021/8/262021/8/26
请观察下列3个银行标志有 何共同点?
圆是轴对称图形吗?
O
圆是轴对称图形,每一条直径所在的直线都 是对称轴。
如图,AB是⊙O的一条弦,CD是⊙O直径.
(1)该图是轴对称图形吗?
(2)能不能通过改变AB、CD的位置关系,使它成
为轴对称图形?
C
直径AB和弦CD互相垂直
O E
B
A D

冀教版数学九上28.1《圆的概念及性质》PPT教学课件

冀教版数学九上28.1《圆的概念及性质》PPT教学课件

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
激励学生学习的名言警句 51关于学习或励志的名言警句 1百川东到海,何时复西归;少壮不努力,老大徒伤悲。 意思是:时间像江河东流入海,一去不复返;人在年轻时不努力学习,年龄大了一事无成,那就只好悲伤、后悔。出自《汉乐府•长歌行》 2 成人不自在,自在不成人。 意思是:人要有所成就,”必须刻苦努力,不可放任自流。出自(宋)罗大经《鹤林玉露引•朱熹小简》 3 读书百遍,其义自见。 意思是:能把一本书读过百遍,其中的含义自然就领会了。出自《三国志•魏书》。 4 读书破万卷,下笔如有神。 意思是:读书多了,下笔写文章就如有神助。出自(唐)杜甫《奉赠韦左丞丈二十二韵》。 5 大志非才不就,大才非学不成。 意思是:没有才,宏伟的志向就不能实现;不学习,就不能成大才。出自6(明)郑心材《郑敬中摘语》。 6 非学无以广才,非志无以成学。 意思是:不学习便无法增长才于,没有志向就难于取得学业上的成功。出自《诸葛亮集•诫子书》。 7发愤忘食,乐以忘忧,不知老之将至。 意思是;下决心学习,连吃饭也忘记了;有所心得便高兴得忘记了忧愁,不知道老年就要逼近了。出自《论语•述而》。 8功崇惟志,业广惟勤;惟克果断,乃罔后艰。 意思是:取得伟大的功业,由于有伟大的志向;完成伟大的功业,在于辛勤不懈地工作;办事果断,没有后患。出自《尚书•周官》。 9 积财千万,不如薄技在身。 意思是:积累许许多多的财富,不如学习一种小小的技术。出自《颜氏家训•勉学》。 10 立志言为本,修身行乃先。 意思是:人的立志,语言忠实是它的根本;修养自已的品德,应以行动为先。出自(唐)吴叔达《言行相顾》。 11 莫等闲白了少年头,空悲切。 意思是:不要虚度年华,不然到了满头白发之时,只有徒叹奈何了。出自(宋)岳飞《满江红》。 12 人品、学问,俱成于志气;无志气人,一事做不得。 意思是:一个人之所以具有高尚的品德,渊博的学问,都是由于他有志气;没有志气的人,什么事也做不成。出自(清)申居郧《西岩赘语》。 13 山积而高,泽积而长。 意思是。山是由土石日积月累而高耸起来的,长江大河是由点滴之水长期积聚而成的。比喻知识、业绩都是由少到多,由小到大长期积累、创造而成功的。出自(唐)刘禹锡《唐故监察御史赠尚书右仆射王公神道碑铭》。 14为学之道,必本于思。思则得知,不思则不得也。 意思是:学习必须以思考为根本,思考就能得到知识,不思考就得不到知识。出自(宋)晁说之〈晁氏客语〉 15为学正如撑上水船,一蒿不可放缓。 意思是:作学问就象撑着逆水的船,连一蒿也不能放松。比喻学习不要自满,要坚持有恒。 16 为学须先立志。 意思是:作学问首先应当立志。出自〈朱熹语录〉 17 学者不患立志不高,患不足以继之耳;不患立言不善,患不足以践之耳。 意思是:作学问的人不怕志向立得不高,就怕不能持之以恒;不怕作品里的话说得不漂亮,就怕自己不照着做。出自 〈薛方山记述•上篇〉 18学者大不宜志小气轻,志小则易足,易足则无进;气轻则以未知为已知,未学为已学。 意思是:学习要树立大志,没有大志就容易自满,自满了就不易有长进了。学习要有勇气,缺乏勇气,不懂的东西会自以为已经懂了,没有学到的东西会以为已经学到。出自《近思录集注》卷二。 19学不博者,不能守约;志不笃者,不能力行。 意思是:学识不广博,就不能得其要领;志向不笃诚,就不能努力去做。出自(宋)杨时《二程粹言•论学》。 20学贵知疑,小疑则小进,大疑则大进。 意思是:学习贵在懂得提出疑问。有小疑问得到解决,总能有小进步;有大疑问得到解决,就能有大进步。出自《格言联壁•学问类》。

202X秋冀教版数学九上28.1《圆的概念及性质》ppt课件

202X秋冀教版数学九上28.1《圆的概念及性质》ppt课件
该船应沿射线AB方向驶离危险区.理由:设 射线AB与⊙A相交于点C,在⊙A上任取一点 D(不包括C关于A的对称点),连接AD,BD.在 △ABD中,AB+BD>AD,∵AD=AC=AB +BC,∴AB+BD>AB+BC,∴BD>BC
15.(10分)如图,AB,CD为⊙O的两条直径,E,F分别为OA,OB 的中点,求证:四边形CEDF为平行四边形.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成 。21.5.321.5.312:48:0912:48:09May 3, 2021

14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。2021年5月 3日星 期一下 午12时48分9秒 12:48:0921.5.3
28.1 圆的概念及性质
-
1.如图,平面上到定点O的距离等于定长(OA的长)的所有点组成的 ____图__形__ 叫 做 ___圆_____ , 定 点 O 叫 做 ___圆__心___ , 线 段 OA 叫 做 圆 的 _半_径______. 2 . 圆 是 轴 对 称 图 形 , 过 圆 心 的 每 一 条 ___直__线___ 都 是 它 的 对__称__轴____.圆也是中心对称图形,_圆_心______是它的对称中心.
3.圆上任意两点之间的线段叫做这个圆的一条___弦_____,过圆心的 弦,叫做这个圆的______直__径.圆上任意两点间的部分叫做________, 圆简弧称________.圆弧的直径将这个圆分成能够完全重合的两条弧,这样 的一条弧叫做________.半大圆于半圆的弧叫做________,优小弧于半圆的弧 叫做________. 劣弧 4 . 能 够 重 合 的 两 个 圆 叫 做 _等__圆_____ , 能 够 重 合 的 两 条 弧 叫 做 等__弧______.

冀教版九年级上册数学教学课件 第28章 圆28.3 圆心角和圆周角(1)

冀教版九年级上册数学教学课件 第28章  圆28.3  圆心角和圆周角(1)
九年级数学上 新课标 [冀教]
第二十八章 圆
学习新知
检测反馈
知识准备
学习新知
1.圆是不是中心对称图形?对称中心是什么? (圆是中心对称图形,圆心是它的对称中心)
2.将课前准备的两个圆形纸片重合在一起,绕 圆心转动其中一个圆,你发现什么现象?
(把圆绕圆心旋转任意一个角度,所得的图形 与原图形重合,即圆有旋转不变性)
解析:在同圆或等圆中,相等的弧所对的弦相 等,所以由 AB CD 得AB=CD.故选B.
2.如图所示,AB是☉O的直径, BC CD DE,
∠COD=34°,则∠AEO的度数是 ( A )
A.51°
B.56°
C.68° D.78°
解析:∵ BC CD D,E
∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AO
证明:如图所示,连接OC,OD. AD BC ,即AC + CD =CD+ BD.
∴ AC= BD. ∴∠AOC=∠BOD.
在Rt△CMO和Rt△DNO中,∵CM⊥AB,DN⊥AB,
∴∠CMO=∠DNO=90°. 又∵OC=OD,∠MOC=∠NOD, ∴Rt△CMO≌Rt△DNO.∴CM=DN.
检测反馈
5.你能用语言叙述上面的命题吗?
设∠AOC= , 将△AOB顺时针旋转 ,则AO 与CO重合,BO与DO重合. ∴AB与CD重合, AB与 CD重合. ∴AB=CD, AB= CD .
定理:在同圆或等圆中,相等的圆心角所对的弦 相等,所对的弧也相等.
【思考】
1.在圆心角性质定理中,为什么要说“在同圆 或等圆中”?能不能去掉?
[知识拓展] 1.圆心角、弦、弧之间的关系的结论必须是 在同圆或等圆中才能成立. 2.利用同圆(或等圆)中圆心角、弦、弧之间的 关系可以证明角、弦或弧相等. 3.圆心角的度数与所对弧的度数相等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.选择: (1)下列说法中,正确的是( B ) ①线段是弦;②直径是弦; ③经过圆心的弦是直径; ④经过圆上一点有无数条直径. A.①② C.②④ B.②③ D.③④
课堂小结
1.师生共同回顾圆的两种定义及圆的对称性,弦(直径), 弧(半圆、优弧、劣弧、等弧),等圆等知识点.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?
O A F
D E B C
2.判断下列说法的正误: (1)弦是直径; × (2)半圆是弧; √ (3)过圆心的线段是直径; × (4)过圆心的直线是直径; × (5)半圆是最长的弧; × (6)直径是最长的弦; √ (7)圆心相同,半径相等的两个圆是同心圆; × (8)半径相等的两个圆是等圆. √
3.一些学生正在做投圈游戏,他们呈“一”字排开.这 样的队形对每一人都公平吗?你认为他们应当排成什么 样的队形? 不公平,圆形.
导入新课
观察与思考 问题1 构成圆的基本要素有那些?
o
r 半径
两个条件:
圆心
那么我们又如何画圆呢?
问题2 过一点可以作几条直线?
问题3 过几点可以确定一条直线?那么过几点可 以确定一个圆呢?
讲授新课
一 以三点确定圆
1.过一点作圆
过一点可以作无数个圆
2.过两个点作圆
过两个点可以作无数个圆
圆心在什么位置呢? 线段AB的垂直平分线上
A F
EF是AC的 垂直平分线 .
N
(3)AB、AC的中垂线的交点O到B、
C的距离 相等 .
B
E O
M
C
课堂小结
(1)只有确定了圆心和圆的半径,这个圆的位置和大小才 唯一确定; (2)经过一个已知点能作无数个圆; (3)经过两个已知点A、B能作无数个圆,这些圆的圆心 在线段AB的垂直平分线上;
(4)不在同一直线上的三个点确定一个圆;
当堂作业
1.填空: 圆周 ,而不是“圆 (1)根据圆的定义,“圆”指的是_______ 面”. (2)圆心和半径是确定一个圆的两个必需条件,圆心决定 位置 ,半径决定圆的_______ 大小 ,二者缺一不可. 圆的_______
半径 的2倍. 直径 是圆中最长的弦,它是______ (3)______ 二 条非直径 (4)图中有_______ 一 条直径, _______ 四 条, 的弦,圆中以A为一个端点的优弧有_______ 四 条. 劣弧有_______
(5)经过三角形的三个顶点的圆叫做三角形的外接圆; 外接圆的圆心叫三角形的外心;这个三角形叫做圆的内
接三角形.
九年级数学上(JJ) 教学课件
第二十八章

28.3 圆心角和圆周角
第1课时 圆心角
导入新课 讲授新课 当堂练习 课堂小结
讲授新课
一 圆的有关概念
r d
r

r
o
同圆内,半径有无数条,长度都相等。
观察画圆过程
(1)圆上各点到定点 (圆心)的距离都等
于定长(半径r) . (2)到定点的距离等于定长的点都 在 同一个圆上.
圆心为O、半径为r的圆可以看成是
所有到定点O的距离等于定长r的点组成的图形.
确定一个圆的要素: 一是圆心, 二是半径, 圆心确定其位置, 半径确定其大小.
3.以点O为圆心,OC长为半径 作圆,⊙O即为所求.
O
C
问题2 已知△ABC,用直尺与圆规作出过A、B、C三点 的圆.
A
O
B
C
归纳
经过三角形的三个顶点的圆叫做三角形外接圆;外接
圆的圆心叫三角形的外心;这个三角形叫做圆的内接三角
形.
三角形的外心到三角形的三个顶点的距离相等.
当堂练习
(1)圆心O到A、B、C三点距离 相等 (填“相等”或” 不相等”). (2)连结AB、AC,过O点分别作直线MN⊥AB, EF⊥AC,则MN是AB的 垂直平分线 ;
注意
大于半圆的弧(用三个点表示,如: 叫做优弧; 小于半圆的弧叫做劣弧. 如: .

),
等弧:在同圆或等圆中能够互相重合的弧叫做等弧. 长度相等的弧是等弧吗? AB 如图:(1)直径是_______; E G O . H C K P
、DK、AB (2)弦是 CD _____________; 不是 (3) PQ是直径吗?______;
O
A
弦: 连接圆上任意两点的线段(图中的线段AB、AC). 直径: 经过圆心的弦(图中的AB).
B
观察线段AC和AB的特点? 直径 O A
.
C
弦 注意: 凡直径都是弦,是圆中最长的弦,但弦不一定是直径.
圆弧:连接圆上任意两点间的部分叫做圆弧,简称弧. 以A、B为端点的弧记作 AB , 读作:“圆弧AB”或“弧AB”. 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫 做半圆.
九年级数学上(JJ) 教学课件
第二十八章

28.1 圆的概念及性质
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解圆的相关概念并会简单应用.
2.理解并掌握圆的对称性并会简单运用和计算. (重点、难点)
导入新课
观察与思考 问题1 观察车轮,你发现了什么?
问题2 你能举例说明生活中哪些物体是圆形的吗?
请与同伴交流.
【教学说明】教师引导学生回顾知识点,让学生大胆发言, 进行知识提炼和知识归纳,对于某些概念性的知识,要结合
图形加以区别和理解.
九年级数学上(JJ) 教学课件
第二十八章

28.2 过三点的圆
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点)
3.经过三个点A、B、C能确定一个圆吗? 过如下三点能不能做圆? 为什么? 不
归纳
不在同一直线上的三点确定一个圆.
二 三角形的外接圆及外心
问题1 将一个如图所示的破损的圆盘复原了吗? 方法: 1.在圆弧上任取三点A、B、C. 2.作线段AB、BC的垂直平分
A B
线,其交点O即为圆心.
(4)线段EF、GH 不是 是弦吗?_______.
F
B
A
二 圆的对称性
用纸剪一个圆,沿着圆的任意一条直径对折,重复几次, 你发现了什么?由此你能得到什么结论?
可以发现:圆是轴对称图形,任何一条直径所在直线
都是它的对称轴.
圆的对称性: (1)圆是轴对称图形,每一条直径所在的直线都是它的对 称轴; (2)圆也是中心对称图形,它的圆心就是它的对称中心.
相关文档
最新文档