石蜡加氢精制装置简介和重点部位及设备
石蜡的加氢精制
石蜡的加氢精制摘要:数量大、质量低劣的含硫油加工技术已构成我国石油炼制过程中要重点解决的问题。
发展包括加氢精制在内的加氢技术已是加快和协调国民经济的当务之急。
加氢是指在催化剂存在下,将产品与氢的加和反应。
加氢技术,主要是指,在炼厂加工过程中以石油为原料的加氢反应。
本文介绍了加氢精制的发展历程及精制过程中所涉及的化学反应。
主要阐述了加氢精制的工艺及流程,并对不同方法进行了对比。
关键字:加氢精制,发展历程,化学反应,工艺,流程概述我国现在的炼油工业得到了极大的发展,随着国民经济的的快速发展,对能源的需求量也随之迅猛增长,其中石油是重要的能源之一,对其需求量也在日趋增加。
加氢精制边和是指在保持原料油分子骨架结构不发生变化或变化很小的情况下,将杂质脱除,以达到改善油品质量为目的的加氢反应,即“在有催化剂和氢气存在下,将石油馏分中含硫、氮、氧及金属的非烃类组分;加氢脱除,以及烯烃、芳烃发生加氢饱和反应”。
我国石蜡产量和出口量均居世界第一位,加工技术也居世界前列,尤其是以生产高质量石蜡产品为目的的石蜡加氢精制技术居世界领先地位。
加氢精制是石油蜡类产品精制的主要方法之一,可以在保持产品的熔点、油含量、针入度等特性指标基本不变的同时实现产品的深度精制。
1.石蜡加氢精制技术的发展历程1.1国外加氢精制技术的发展国外石油蜡加氢精制技术研究经历了上世纪60~70年代活跃期后渐趋稳定,自1992年关于苏曼公司一套石蜡类产品高压加氢装置投产的文章发表和1993年巴西石油公司一项石蜡及微晶蜡加氢精制的专利公开以来,鲜有文献报道。
在技术创新方面,国外某公司将石蜡加氢装置与废气脱硫装置配套,既可以回收加氢尾气中的硫,又减轻了石蜡精制过程对环境的影响。
除此之外,没有其他实质性新技术公开。
目前,由于润滑油生产工艺的变化,国外一些公司石蜡生产能力有所降低,但也有新的生产能力形成,虽然石油蜡产量总体呈下降态势,但降低幅度不大。
美国石蜡生产与中国有所不同,其吸附精制仍占有较大份额。
石蜡加氢精制装置开工方案
加氢精制装置开工方案一、开工说明依据厂物料平衡、节能降耗、降低加工成本等综合考虑后安排决定, 15万吨/ 年石蜡加氢精制装置进行开工。
三、开工注意事项及风险评估开工注意事项1、开工过程要严格按照开工网络和规程进行,严禁乱排乱放,污油必须及时处理干净,否则严禁施工动火。
2、设备、管线的吹扫、置换必须严格按照规程进行,不留死角,按管理区域进行分工、责任,保证开工引油的安全。
3、拆盲板严格按照盲板表进行、专人负责,做好各项拆盲板的记录,保证不漏拆一块盲板,同时要求施工单位拆盲板的工作人员要固定,本着谁装的盲板、谁拆除的原则,防止遗漏。
4、装置内的下水井、地漏必须认真用石棉布封堵好,上面盖上黄土并有记录,每天还需对此进行认真地检查,及时整改不符合要求的下水井、地漏。
5、进入开工施工现场的人员必须按要求着装,戴好安全帽,高处作业系好安全带。
6、夜间要有足够的照明,临时电线必须绝缘良好,不破皮,移动照明要有铁网罩保护。
7、各种施工机具必须安全可靠,发现失灵要立即消除,严禁迁就使用,避免发生意外。
8、开工引油时,严禁大量排入污水管道,油水混合物退到装置外罐区或装置内污油罐。
9、气密过程中,发现泄漏要及时处理,要泄压后再进行处理,严禁带压操作 , 以免发生意外。
10、气密前,关闭系统所有安全阀的保护阀,待气密合格后再打开。
11、高压临氢系统气密时,低压临氢系统放空阀应打开,防止串压、超压。
12、严格控制升降压速度,一般升降压速度不大于1.0MPa/h,以防催化剂破损。
13、系统气密结束后,做好记录,相关人员共同确定并签字。
14、加热炉点火时,对流室通入过热蒸汽经消音器排空,同时 E-203、E-202 通冷却水。
15、250C恒温时,对高压临氢系统各设备进行热紧。
16、当反应器开始升压时,在操作温度升至 135C以前,操作压力不得超过2.18MPa同理当反应器降压时,操作压力降至 2.18MPa以前,其操作温度必须维持在135C以上。
加氢裂化装置概述
加氢裂化装置概述第一节装置概况海南炼油化工有限公司120×104 t/a加氢裂化装置采用FRIPP研制的FF-20和FC-14双剂串联尾油全循环的加氢裂化工艺,由某工程建设公司(SEI)进行项目总承包。
加工原料油为阿曼原油和文昌原油4:1的混合原油的减一线、减二线和减三线混合蜡油。
所需氢气来自全厂氢气管网和渣油加氢装置PSA部分。
1、装置规模本装置设计规模为120×104t/a,年开工时数为8400小时(即年满负荷生产350天)。
2、装置组成装置由反应(包括新氢、循环氢压缩机和循环氢脱硫)、分馏和吸收稳定等部分组成,此外还包括系统热工除氧部分。
反应部分:原料油通过加氢裂化反应转化为液态烃、轻石脑油、重石脑油、柴油等产品。
由原料预处理、加氢精制反应器、加氢裂化反应器、反应进料加热炉、新氢压缩机、循氢压缩机、余热锅炉等系统组成。
分馏部分:将反应部分来的生成油分馏为气体、液化石油气、轻石脑油、重石脑油、柴油及尾油(未转化油)等产品。
由脱硫化氢塔、产品分馏塔、柴油汽提塔、石脑油分馏塔、吸收脱吸塔和石脑油稳定塔等组成。
3、装置技术特点本装置采用双剂串联尾油全循环的加氢裂化工艺。
反应部分采用国内成熟的炉前混氢方案;分馏部分采用脱硫化氢塔+常压塔出柴油方案,采用分馏进料加热炉;吸收稳定部分采用重石脑油作吸收剂的方案;循环氢脱硫部分采用MDEA作脱硫剂的方案;催化剂的硫化采用干法硫化;催化剂的钝化采用低氮油注氨的钝化方案;催化剂再生采用器外再生方案。
4、装置主要设备本装置共有设备约166台(套),其中:反应器2台加热炉3座塔器7台容器23台换热器24台空冷器34片压缩机4台泵38台过滤器1套其它小型设备30台装置主要设备一览表见规程后附表。
5、装置占地加氢裂化装置的总面积为11016.75m2。
装置内除生产设备外,还设有高、低压配电室。
DCS、ITCC 和SIS机柜室与渣油加氢装置共用。
第二节原料和产品一、原料加工的原料油为阿曼油和文昌油4:1的混合原油的减一线(355~390℃)、减二线(390~440℃)和减三线(440~520℃)混合而成。
石化公司加氢精制装置设计方案
石化公司加氢精制装置设计方案—、概述(一)设计规模及开工时数公称规模50X104 t/a年开工时数80hr(二)项目范围装置边由反应(包括压缩机)、循环氢脱硫、分馏、公用工程等部分组成,燃料气脱硫及溶剂再生由全厂统一考虑。
(三)原料1、原料油:本装置加工原料为焦化塔顶油、焦化一线油。
2、氢气:装置所需新氢由制氢装置提供。
(四)产品1、化工轻油加氢后轻馏份油作为高质的化工轻油出厂。
2、4#燃料油侧线轻油加氢后作为高质的4#燃料油,硫含量小于5ppm。
二、工艺技术方案(一)确定技术方案的原则1、采用国内先进的工艺技术及催化剂。
2、米用先进合理、成熟可靠的工艺流程。
3、选用性能稳定、运转周期长的机械设备。
4、提高自动控制、安全卫生和环境保护水平。
(二)国内外加氢技术现状加氢精制是指油品在催化剂、氢气和一定的压力、温度条件下,含硫、氮、氧的有机化合物分子发生氢解反应,烯烃和芳烃分子发生加氢饱和反应的过程。
加氢精制的目的是脱硫、脱氮和解决色度及贮存安定性的问题,满足日益严格的环保要求。
常规的加氢精制工艺已有几十年的历史,技术上非常成熟。
新进展主要体现在高活性、高稳定性、低成本新型催化剂的研究和开发上。
荷兰AKZO公司目前最好的脱硫催化剂是KF-752和KF-840.KF-752的活性已是60年代中期相应产品的1.7倍,多用于直馏原料。
对于二次加工原料则采用KF-840O埃克森研究和工程公司(ER&E)于1992年实现商业应用的催化剂RT-601,采用新型A12O3载体,使用先进的促进剂浸渍技术,催化剂活性高,特别适合于加工重质、劣质原料。
在加工直硫柴油时,活性与市场上最好的催化剂相当。
独联体的列宁石油化工科学生产联合体开发的KrM-70催化剂也具有很高活性。
在压力为3.0MPa,空速为3.0h-i,温度为350°C时,可将直硫柴油的硫含量由1.03%降至0.26m%,脱硫率达到99.7%o国内近年来也已开发了多种具有世界先进水平的、高性能的馏分油加氢精制催化剂。
加氢装置的组成与设备说明危险因素防范措施
加氢装置的组成与设备说明危险因素防范措施加氢装置是指将氢气注入维修、安装的设备或容器中的设备。
一般来说,加氢装置主要由以下组成部分构成:气体供应系统,气体途径系统,气缸充装系统,检漏系统,安全阀系统,气密性检验系统等。
以下是对加氢装置的组成部分和设备说明、危险因素以及防范措施的详细介绍。
1.气体供应系统:气体供应系统主要包括氢气气源、气体输送管道和气体调节阀等。
气体供应系统要求稳定、可靠,确保氢气的供应充足,同时要有备用气源。
气体输送管道要有耐压、耐腐蚀的材料制成,并配备有必要的安全阀和过压保护装置。
2.气体途径系统:气体途径系统包括气体输送管道、阀门和接头等。
这些部件要保证气体的顺利流动,防止泄露。
阀门的选材要耐腐蚀、耐高压,并采用可靠的密封结构。
接头要能够与加氢设备的连接完全密封,确保气体不泄露。
3.气缸充装系统:气缸充装系统是将氢气通过管道注入气缸中的系统。
气缸充装系统要求具备加气速度快、充装量大、安全可靠等特点。
充装过程中要监测气缸的压力和温度,确保不超过其承压范围。
4.检漏系统:检漏系统用于检测气体途径系统和气缸充装系统是否存在泄漏情况。
常用的检漏方法有涂抹水溶液法、气泡检漏法等。
检漏系统要定期维护、校准,确保其正常工作。
一旦发现泄漏,应立即停止加氢操作,并进行修理。
在加氢装置的使用过程中存在一些危险因素,例如:1.氢气本身是易燃易爆的气体,一旦泄漏会形成爆炸性混合气体,造成严重的安全事故。
2.加氢装置的压力系统要求工作压力高,一旦发生管道破裂或阀门失灵,会造成压力突然释放,引发危险。
3.加氢装置存在气体泄漏的可能,泄漏的氢气有毒性,对人员健康造成威胁。
针对这些危险因素,需要采取一系列的防范措施,包括:1.加氢装置的设计、制造和安装必须符合国家标准和规范要求,确保设备质量稳定可靠。
2.加氢装置在使用前要进行严格检查,确保各个部件没有损坏、泄漏等问题。
3.加氢装置的操作人员必须经过专业培训,熟悉设备的使用方法和安全操作规程。
蜡油加氢装置简介
100万吨/年蜡油加氢装置装置简介中国石化股份有限公司上海高桥分公司炼油事业部2007年3月编制:何文全审核:严俊校对:周新娣目录第一章工艺简介一、概述中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。
本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。
本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。
2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。
二、装置概况及特点1.装置规模及组成蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。
本装置为连续生产过程。
主要产品为蜡油、柴油、汽油。
本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。
2.生产方案混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。
石蜡加氢精制装置简介和重点部位及设备
石蜡加氢精制装置简介和重点部位及设备一、装置简介(一)装置发展及类型1.装置发展石蜡精制工艺有白土精制、渗透精制、硫酸精制和加氢精制四种类型,其中白土精制和渗透精制都不容易脱净蜡中的稠环芳烃,难以生产对于纯度要求很高的食品工业用蜡:而硫酸精制方法的主要缺点是产品产率低,劳动条件恶劣,有大量的废渣产生,污染环境。
无论在生产成本上,产品产率和质量及环境保护上,石蜡加氢精制均比其他精制工艺有明显的优越性。
因此,在国外主要炼油厂中,石蜡加氢精制己逐步代替其他精制工艺。
1957年加拿大萨尼亚炼油厂首先宣布用钼钻铝催化剂加氢精制生产白石蜡,由于该工艺对蜡中稠环芳烃组分有很好的加氢转化能力,容易制取食品级纯度商品蜡而进一步为人们重视;其后催化重整工艺的兴起,为炼油厂提供了廉价的氢气来源,尤为石蜡加氢精制装置的建设创造了有利条件。
1962年一套处理量为1.5X104t/a、10.OMPa的石蜡和凡士林加氢精制装置在西德汉堡建成。
1963年美国大西洋公司费城炼油厂建成日处理量300t /a的石蜡加氢精制装置,代替原来的石蜡硫酸和渗透精制工艺。
我国从20世纪70年代初正式开始研究石蜡加氢精制催化剂和工艺,1979年11月大庆石化总厂首次采用5053催化剂进行处理量6X104t/a的低压石蜡加氢装置开工投产。
1981年10月石油工业部对481—2B催化剂及中压石蜡加氢精制工艺组织技术鉴定,本工艺先后在东方红炼油厂(现中石化燕山分公司炼油厂)、抚顺石油一厂、荆门炼油厂、大连石油七厂、茂名炼油厂实现工业化。
1983年11月第一套采用石蜡加氢专用催化剂处理量为6X104t/a的石蜡加氢装置在东方红炼油厂投产,1984年另两套石蜡加氢装置在抚顺石油一厂和荆门炼油厂投产,1986年又两套石蜡加氢装置在大连石油七厂和茂名炼油厂相继投产。
2.装置的主要类型20世纪60年代以来国外陆续发展的蜡加氢精制工艺有十多种,可归纳为五种类型见表2—85。
蜡油加氢装置技术分析报告
关于在技术人员中开展装置分析工作的通知各部门:充分了解和掌握自己分管装置的技术实情是技术人员管理、优化装置技术工作的基础。
为透彻分析装置的技术现状、进一步寻找与国内外同类装置之间的差距,学习先进理念和先进技术,启迪管理思路,更好地营造学习技术的氛围。
经研究,决定在技术人员中开展装置分析工作。
一、对象:已转正上岗的装置工艺员、设备员(包括后备)以及公用工程作业区和储运部技术员(包括后备)。
二、要求:1.年底前,技术人员完成对自己分管装置的详细技术分析报告。
内容包括本装置在工艺、设备、能耗、产品质量、管理等方面的现状,与国内同类装置之间的比对,查找存在的差距,改进需落实的具体措施等。
2.有条件的,可到国内同类装置进行外出调研,带去问题或疑惑,带回体会与启发。
3.年终事业部举行技术分析报告演示交流,表彰优秀报告。
三、时间安排:1.7月份布置工作、宣传工作开展的意义。
2.8、9月份创造条件外出调研。
3.11月底前完成分析报告。
4.12月底前组织审阅报告、演示交流、表彰优秀报告。
望各部门接到通知后,组织广泛宣传,切实推进装置分析工作。
部门行政主要领导要创造条件,扶持技术人员落实这项工作;充分利用事业部专业技术小组资源,帮助联系落实外出调研单位,确保这项工作有序开展。
注:1、装置分析报告提纲见附件一、附件二。
2、公用工程、储运部装置分析报告提纲参考附件一、附件二。
炼油事业部2007年7月27日附件二:2#汽柴油加氢装置技术分析报告(设备)1.装置概况上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为此,必须对焦化蜡油和减压蜡油进行加氢精制。
上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置,主要是为了催化裂化装置降低原料的硫含量和酸度服务。
石蜡加氢精制
石蜡加氢技术的研究摘要本文介绍了石蜡的基本性质及分类,并对石蜡加氢技术的原理、工艺、应用及有关装置进行初步研究。
关键词石蜡;石蜡加氢;催化剂;精制石蜡类产品广泛地应用于造纸、食品、蜡烛及冶金、电子等多种领域。
我国是石蜡生产大国, 其总产量和出口量均居于世界榜首。
石蜡加工工艺经过半个多世纪的发展, 在早期的冷榨、发汗、白土吸附等工艺的基础上逐渐开发出了溶剂脱蜡、溶剂喷雾脱油、加氢精制等新工艺。
其中石蜡加氢精制工艺生产的石蜡具有质量好、收率高、操作灵活以及环境友好等优点, 成为世界各国普遍采用的主要精制工艺。
1、石蜡1.1石蜡简介石蜡是矿物蜡的一种,也是石油蜡的一种;它是从原油蒸馏所得的润滑油馏分经溶剂精制、溶剂脱蜡或经蜡冷冻结晶、压榨脱蜡制得蜡膏,再经溶剂脱油、精制而得的片状或针状结晶。
又称晶形蜡,碳原子数约为18~30的烃类混合物,主要组分为直链烷烃(约为80%~95%),还有少量带个别支链的烷烃和带长侧链的单环环烷烃(两者合计含量20%以下)。
主要质量指标为熔点和含油量,前者表示耐温能力,后者表示纯度。
其中以前二者用途较广,主要用作食品及其他商品(如蜡纸、蜡笔、蜡烛、复写纸)的组分及包装材料,烘烤容器的涂敷料、化妆品原料,用于水果保鲜、提高橡胶抗老化性和增加柔韧性、电器元件绝缘、精密铸造等方面,也可用于氧化生成合成脂肪酸。
1.2石蜡的分类根据加工精制程度不同,可分为全精炼石蜡、半精炼石蜡和粗石蜡3种。
粗石蜡含油量较高,主要用于制造火柴、纤维板、篷帆布等。
半精炼石蜡为颗粒状白色固体.其相对密度随熔点的上升而增加。
产品化学稳定性好,含油量适中,具有良好的防潮和绝缘性能,可塑性好。
半精炼石蜡生产的蜡烛火焰集中,无烟,不流泪。
用于蜡烛、蜡笔、蜡纸,一般电讯器材以及短路及轻工,化工原料。
1.3石蜡的性质1.3.1石蜡的化学性质化学中,石蜡是固态高级烷烃混合物的俗名,分子式C n H2n+2,其中n=20-40。
石蜡加氢装置节能降耗措施
石蜡加氢装置节能降耗措施摘要:为进一步优化石蜡加氢精制装置操作工艺,需要针对装置能耗整体结构进行有效分析,并积极提出相应节能策略。
这为相关工作人员提出了更高的技术要求。
本文从石蜡加氢精制装置的具体概况进行说明,并对操作能耗指标结构进行论述,现有基础上积极提出应用策略,通过降低装置电耗,降低蒸汽消耗,燃料气消耗,新鲜水消耗四个方面,实现此项技术的不断创新。
关键词:石蜡加氢;能耗结构;节能措施石油蜡是一种高附加值的产品,广泛应用于化工、轻工等各个领域,我国作为主要的生产国,在全球成品消耗方面占据30%以上。
且相对于全球而言,具有巨大的需求量。
尤其是在充满竞争的今天,为全面增强实际竞争能力,需要保证石蜡的质量问题,这就要求对其内部的生产工序进行重点分析。
石蜡加氢精制装置在整个石蜡生产过程中发挥了重要作用,通过此项操作可实现内部硫氧等各种杂原子的有效去除,使得石蜡的颜色、光安定性等各方面均能达到相应指标,从而全面保证产品的质量问题。
一、石蜡加氢精制装置概况石蜡加氢精制装置是在原有润滑油重油加氢装置基础之上改造而成。
在其加工成本方面主要包括催化剂、辅料、工艺、操作能耗等各种费用,目前为全面做好生产装置工作,缩短装置大修间隔时间,保证设备正常运行,需要针对加工费用进行分析。
以液化石蜡加氢装置为例,可清楚的看出在相应投资方面维修费用占比较高,尤其是在修复周期不断延长的前提下,使得整个维修费用在不断的降低,因此要针对装置的电耗、蒸汽消耗等各项操作,实现现有工艺的优化,并进行适当调节,从而全面降低实际装置成本支出。
2、操作能耗指标结构据相关调查显示,要结合此项工艺流程以及各项操作方法,对其能耗方面进行计算,可充分得出在电耗、蒸汽方面占比较高,一般燃气消耗方面占比较少,此三项作为石蜡加氢装置能耗的主要影响因素,要针对性采取相应措施,减少整个装置操作能耗的消耗问题。
二、降低装置操作能消耗的主要措施1、降低装置电耗在降低装置电耗方面需要从以下几方面入手,其一,对于装置用电结构方面进行分析,在用电方面往往是保证照明以及提供相应动力,这两方面会对用电造成损耗。
蜡油加氢装置简介
二、装置概况及特点
1.装置规模及组成 蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时 数8400小时。本装置为连续生产过程。主要产品为蜡油、柴油、汽油。 本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩 机、循氢压缩机)、加热炉部分及公用工程部分等组成。 2.生产方案 混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换 热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后 进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气 相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循 环使用;液相减压后至热低分,热低分的液相至催化裂化装置。热低分
三、原材料及产品性质
1.原料
本装置的原料为焦化蜡油和减压蜡油的混合原料。 表1 原料油组成(设计值) 原料名称 焦化蜡油 减压蜡油 原料组成(w%) 万吨/年 表2 名称 密度 g/cm3 馏程 ℃ IBP 10% 30% 50% 70% 90% EBP 硫m% 294 354 373 408 430 480 520 2.84 455 --510 --520 --545 2.224 20℃ 35 35 65 65
FF-14 催化剂 三叶草 22.5~25.5 1.8~2.2 1.3~1.9 0.9~1.3 1.4~1.6
内孔径Ф, mm 长度,mm 孔容,mL/g 比表面,m2/g 堆积密度, g/cm3 压碎强度, N/mm 催化剂形态 第一周期寿 命,a 总寿命,a ⑵ 二甲基二硫 市售工业标准 ⑶ 苯甲酸胺 市售工业标准 ⑷ 直馏煤油
五、装置的生产原理
焦化蜡油和减压蜡油在一定的温度、压力下,借助于催化剂进行加氢 脱金属、脱硫、脱氮、烯烃和芳烃饱和、部分转化等反应,同时对含硫 量较高的循环氢进行脱硫。从而使精制蜡油符合催化裂化装置进料的要 求。 加氢精制经过几十年的发展,工艺技术水平有了很大提高,并趋于成 熟。FF-14催化剂是针对蜡油而开发的加氢精制催化剂,它具有孔结构 合理、酸性适中等特点,中型加氢装置评价结果表明:FF-14催化剂在 保持高加氢脱氮活性的同时,催化剂的加氢脱硫活性明显高于参比剂, 可以提高蜡油加氢精制装置脱硫能力,并且不降低脱氮和芳烃饱和能 力。故本次设计采用FF-14催化剂。 本次蜡油加氢精制装置技术改造,利旧原汽柴油加氢精制装置,工艺 流程仍采用热高分流程,新增循环氢脱硫系统,停开分馏塔C602。
石蜡加氢精制装置说明与危险因素防范措施
石蜡加氢精制装置说明与危险因素防范措施石蜡加氢精制装置是一种用于将黄蜡或石蜡通过加氢处理转化为白蜡的一种工业设备。
这种设备将石蜡加热至一定温度后与氢气反应,通过饱和烃的裂解与合成反应,将石蜡中的不饱和化合物去除,从而得到更纯净的白蜡产品。
然而,在进行石蜡加氢精制过程中,也存在一些危险因素需要引起注意,并采取相应的防范措施来保证设备操作的安全。
下面将对石蜡加氢精制装置的危险因素和防范措施进行详细说明。
1.高温和高压:石蜡加氢精制过程需要高温和高压环境,而高温和高压环境下容易引发爆炸和火灾等危险。
因此,需要严格控制加热温度和操作压力,确保设备的安全运行。
同时,需要定期检查和维护设备的阀门、管道和容器,确保其能够承受高温和高压环境的要求。
2.氢气泄漏:石蜡加氢精制过程需要使用氢气,而氢气是一种易燃易爆的气体,一旦泄漏可能引发火灾和爆炸。
因此,需要在装置中设置可靠的气体泄漏报警装置,并定期检查其是否正常工作。
同时,需要定期对氢气系统进行检查和维护,确保气体管道的完整性,避免泄漏的发生。
3.工作环境污染:石蜡加氢精制过程中会产生一些有害气体和污染物,如硫化氢、二甲苯等。
这些物质对人体健康有一定的危害。
因此,需要在装置周围设置通风系统和排气装置,确保工作环境的良好通风。
同时,操作人员需要佩戴防护装备,如防毒面具、防护手套和防护眼镜等,避免有害物质的直接接触。
4.废水和废气处理:石蜡加氢精制过程会产生大量的废水和废气。
这些废水和废气中含有一些有害物质,需要进行处理,以避免对环境造成污染。
因此,需要在装置中设置废水处理和废气处理系统,并定期进行检查和维护,确保其正常工作。
综上所述,石蜡加氢精制装置的操作过程中需要注意防范各种危险因素,以保证设备操作的安全。
通过控制加热温度和操作压力、设置气体泄漏报警装置、保持良好的通风环境、佩戴防护装备和进行废水和废气的处理等措施,可以有效减少事故的发生,保障人员的身体健康和环境的安全。
蜡油加氢装置简介
蜡油加氢装置简介 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】100万吨/年蜡油加氢装置装置简介中国石化股份有限公司上海高桥分公司炼油事业部2007年3月编制:何文全审核:严俊校对:周新娣目录第一章工艺简介一、概述中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。
本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。
本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。
2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。
二、装置概况及特点1.装置规模及组成蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。
本装置为连续生产过程。
主要产品为蜡油、柴油、汽油。
本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。
2.生产方案混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。
蜡油加氢装置技术分析报告
关于在技术人员中开展装置分析工作的通知各部门:充分了解和掌握自己分管装置的技术实情是技术人员管理、优化装置技术工作的基础。
为透彻分析装置的技术现状、进一步寻找与国内外同类装置之间的差距,学习先进理念和先进技术,启迪管理思路,更好地营造学习技术的氛围。
经研究,决定在技术人员中开展装置分析工作。
一、对象:已转正上岗的装置工艺员、设备员(包括后备)以及公用工程作业区和储运部技术员(包括后备)。
二、要求:1.年底前,技术人员完成对自己分管装置的详细技术分析报告。
内容包括本装置在工艺、设备、能耗、产品质量、管理等方面的现状,与国内同类装置之间的比对,查找存在的差距,改进需落实的具体措施等。
2.有条件的,可到国内同类装置进行外出调研,带去问题或疑惑,带回体会与启发。
3.年终事业部举行技术分析报告演示交流,表彰优秀报告。
三、时间安排:1.7月份布置工作、宣传工作开展的意义。
2.8、9月份创造条件外出调研。
3.11月底前完成分析报告。
4.12月底前组织审阅报告、演示交流、表彰优秀报告。
望各部门接到通知后,组织广泛宣传,切实推进装置分析工作。
部门行政主要领导要创造条件,扶持技术人员落实这项工作;充分利用事业部专业技术小组资源,帮助联系落实外出调研单位,确保这项工作有序开展。
注:1、装置分析报告提纲见附件一、附件二。
2、公用工程、储运部装置分析报告提纲参考附件一、附件二。
炼油事业部2007年7月27日附件二:2#汽柴油加氢装置技术分析报告(设备)1.装置概况上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。
由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。
为此,必须对焦化蜡油和减压蜡油进行加氢精制。
上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置,主要是为了催化裂化装置降低原料的硫含量和酸度服务。
加氢精制装置说明与危险因素以及防范措施
加氢精制装置说明与危险因素以及防范措施一、装置简介(一)装置发展及类型1.装置发展现代炼油工业的加氢技术(包括加氢工艺、催化剂和专用设备)是在第二次世界大战以前经典的煤和煤焦油高压催化加氢技术的基础上发展起来的。
1949年铂重整技术的发明和工业应用,除生产大量高辛烷值汽油组分外还副产大量廉价的氢气,对现代加氢技术的发明和发展起到了关键作用。
1950年炼油厂出现了加氢精制装置,1959年出现了加氢裂化装置,1963年出现了沸腾床渣油低转化率加氢裂化装置,1969年出现了固定床重油加氢脱硫装置,1977年出现了固定床渣油加氢脱硫装置,1984年出现了沸腾床渣油高转化率加氢裂化装置。
这些加氢技术的发明和工业应用,使加氢技术由发生、发展走向成熟。
加氢(包括加氢裂化、加氢精制和加氢处理)成为世界上加工能力最大的二次加32212艺,是炼油工业的三大支柱技术(加氢、催化裂化和催化重整)之一。
生产低硫、低芳烃和高十六烷值的优质柴油是当前世界范围内车用柴油燃料的生产趋势,也已成为国内各石化企业正在面临的挑战。
中石化股份公司已在2003年提出在国内实施《城市车用柴油》标准(Q/SHll008—2002),其主要质量指标:硫质量分数不大于0.030%,总芳烃质量分数不大于25%,多环芳烃质量分数不大于5%。
欧洲提出2005年将要求硫含量小于50X10—6,世界燃料规范Ⅲ类柴油的硫含量指标是30X10—6。
近几年,国内外文献报道有许多关于未来柴油规格的研究和推测,更低的柴油硫规格的推广正在加速。
所以研究开发能够生产低硫、低芳烃和高十六烷值的优质柴油的催化剂成为柴油加氢的主要发展方向。
本节主要以柴油加氢精制装置展开讨论说明。
2.装置的主要类型加氢精制是各种油品在氢压下进行改质的一个总称。
加氢精制处理原料油范围宽,产品灵活性大,液体产品收率高质量好。
加氢精制的目的主要是对油品进行脱硫、脱氮、脱氧、烯烃饱和、芳烃饱和和脱除金属、沥青杂质等,以达到改善油晶的气味、颜色和安定性,防止腐蚀,进一步提高产品质量,满足油品的使用要求。
加氢装置重点部位及主要设备
加氢装置重点部位及主要设备一、重点部位1.加热炉及反应器区加氢装置的加热炉及反应器区布置有加氢反应加热炉、分馏部分加热炉、加氢反应加热器、高压换热器等设备,其中大部分设备为高压设备,介质温度比较高,而且加热炉又有明火,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸是安全上重点防范的区域。
2.高压分离器及高压空冷区高压分离器及高压空冷区内有高压分离器及高压空冷器,若高压分离器的液位控制不好,就会出现严重问题。
主要危险为火灾、爆炸和H2S中毒,因此该区域是安全上重点防范的区域。
3.加氢压缩机厂房加氢压缩机厂房内布置有循环氢压缩机、氢气增压机,该区域为临氢环境,氢气的压力较高,而且压缩机为动设备,出现故障的机率较大,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸中毒,是安全上重点防范的区域。
4.分馏塔区分馏塔区的设备数量较多,介质多为易燃、易爆物料,高温热油泵是应重点防范的设备,高温热油一旦发生泄漏,就可能引起火灾事故,分馏塔区内有大量的燃料气、液态烃及油品,如发生事故,后果将十分严重,此外,脱丁烷塔及其干气、液化气中H2S浓度高,有中毒危险,因此该区域也是安全上重点防范的区域。
二、主要设备1.加氢反应器加氢反应器多为固定床反应器,加氢反应属于气-液-固三相涓流床反应,加氢反应器分冷壁反应器和热壁反应器两种:冷壁反应器内有隔热衬里,反应器材质等级较低;热壁反应器没有隔热衬里,而是采用双层堆焊衬里,材质多为2×1/4Cr-1Mo。
加氢反应器内的催化剂需分层装填,中间使用急冷氢,因此加氢反应器的结构复杂,反应器入口设有扩散器,内有进料分配盘、集垢篮筐、催化剂支承盘、冷氢管、冷氢箱、再分配盘、出口集油器等内构件。
加氢反应器的操作条件为高温、高压、临氢,操作条件苛刻,是加氢装置最重要的设备之一。
2.高压换热器反应器出料温度较高,具有很高热焓,应尽可能回收这部分热量,因此加氢装置都设有高压换热器,用于反应器出料与原料油及循环氢换热。
石蜡加氢精制装置扩能瓶颈问题分析和改进措施
石蜡加氢精制装置扩能瓶颈问题分析和改进措施摘要:石蜡制氢装置的原料将在一定的温度,压力和催化剂的存在下暴露于油的氢饱和度,脱水,脱氧和芳香碳氢化合物的转化以及其他反应。
为了将石蜡中的痕量物质转化为相应的去除成分,将致密的石蜡碳氢化合物转化为氢化芳香碳氢化合物,从而提高石蜡产品的色相和光学稳定性,去除异味,达到净化目的。
基于此,对石蜡加氢精制装置扩能瓶颈问题分析和改进措施进行研究,以供参考。
关键词:石蜡;加氢;瓶颈;扩能引言炼油厂石蜡脱氢装置于1993年建成投产,经过多次改造,目前装机容量为15万吨每年。
2020年2月,C-01B液压机在运行时由于高振动锁定而突然停止,操作员紧急启动备用机器。
在对氢气压缩机进行维修时,发现曲轴箱中的连接杆断裂。
1石蜡加氢精制催化剂的开发石蜡制氢过程中的反应条件相对较温和,为了达到芳香族碳氢化合物的深度解吸、解吸和饱和的目的,催化剂必须具有较高的制氢性能。
在精炼过程中,不需要牵引反应,以避免产品中的油含量增加。
根据石蜡反应的特性,为了提高催化剂的性能,满足工业应用的要求,催化剂应充分利用新型载体材料的孔隙率、孔隙率和高强度,克服传统载体的缺点,提高催化剂的加氢性能和对劣质原料的适应性。
同时,根据石油蜡的加氢特性,优化活性成分体系,添加适当的助剂来调节表面酸,以提高催化剂的活性、选择性和稳定性。
2原因分析2.1 原材料质量恶化统计数据显示,假设白土未被石蜡活化,与前一个周期相比,本周期生产了超过3个非尿素精炼蜡油,产量为2,556吨。
石蜡的原料含有一定量的金属、浓缩的芳香族碳氢化合物、硫、氮化合物等。
上述物质的含量通常会随着原料干燥的增加而增加一倍。
在进入水力发电厂之前,不使用白底制备循环原料,原料中含有的极化合物和微小杂质不能有效过滤,直接在水力反应器中产生,并在催化剂表面和床位上吸附和沉积,从而形成第一层和上层分布板。
同时,随着床层自由度的降低,也将导致流量和物质分布的恶化,沟渠流动,干燥区域的出现,甚至床层的混合,内部元素的变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:AQ-JS-03773( 安全技术)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑石蜡加氢精制装置简介和重点部位及设备Brief introduction of paraffin hydrofining unit and key parts and equipment石蜡加氢精制装置简介和重点部位及设备使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。
一、装置简介(一)装置发展及类型1.装置发展石蜡精制工艺有白土精制、渗透精制、硫酸精制和加氢精制四种类型,其中白土精制和渗透精制都不容易脱净蜡中的稠环芳烃,难以生产对于纯度要求很高的食品工业用蜡:而硫酸精制方法的主要缺点是产品产率低,劳动条件恶劣,有大量的废渣产生,污染环境。
无论在生产成本上,产品产率和质量及环境保护上,石蜡加氢精制均比其他精制工艺有明显的优越性。
因此,在国外主要炼油厂中,石蜡加氢精制己逐步代替其他精制工艺。
1957年加拿大萨尼亚炼油厂首先宣布用钼钻铝催化剂加氢精制生产白石蜡,由于该工艺对蜡中稠环芳烃组分有很好的加氢转化能力,容易制取食品级纯度商品蜡而进一步为人们重视;其后催化重整工艺的兴起,为炼油厂提供了廉价的氢气来源,尤为石蜡加氢精制装置的建设创造了有利条件。
1962年一套处理量为1.5X104t/a、10.OMPa的石蜡和凡士林加氢精制装置在西德汉堡建成。
1963年美国大西洋公司费城炼油厂建成日处理量300t/a的石蜡加氢精制装置,代替原来的石蜡硫酸和渗透精制工艺。
我国从20世纪70年代初正式开始研究石蜡加氢精制催化剂和工艺,1979年11月大庆石化总厂首次采用5053催化剂进行处理量6X104t/a的低压石蜡加氢装置开工投产。
1981年10月石油工业部对481—2B催化剂及中压石蜡加氢精制工艺组织技术鉴定,本工艺先后在东方红炼油厂(现中石化燕山分公司炼油厂)、抚顺石油一厂、荆门炼油厂、大连石油七厂、茂名炼油厂实现工业化。
1983年11月第一套采用石蜡加氢专用催化剂处理量为6X104t/a的石蜡加氢装置在东方红炼油厂投产,1984年另两套石蜡加氢装置在抚顺石油一厂和荆门炼油厂投产,1986年又两套石蜡加氢装置在大连石油七厂和茂名炼油厂相继投产。
2.装置的主要类型20世纪60年代以来国外陆续发展的蜡加氢精制工艺有十多种,可归纳为五种类型见表2—85。
类型工适用于含硫<10X10—6 的原料,选用芳烃饱和性能很强的非抗硫催化剂。
类型I目前仅在白油加氢精制上应用,因为对原料的质量有严格要求,蜡加氢精制仅有小型试验道,未见工业生产上应用。
类型ⅡA适用于对成品蜡质量要求不高的加氢精制,产品不能保证满足食品蜡要求。
有些工厂采用这种工艺加氢后再经白土补充精制生产食品蜡。
类型Ⅱn适用于高质量蜡或食品蜡的生产。
由于氢分压高,产品的光安定性和热稳定性都很好,催化剂的运行寿命也长。
类型Ⅱ。
是现阶段国外应用最广泛的蜡加氢精制工艺。
类型Ⅲ是组合ⅡA 和I的两段反应形式,装置复杂一些,但在较低压力下可得到优质产品。
本类型不适用于微晶蜡加氢精制。
类型Ⅳ是为了在中压高温下制取优质产品而设计的。
类似ⅡA 型。
但采用两个反应器串联,本类型虽然因采用了两上反应器,增加装置投资费用,但可在稍低压力下取得质量比较好的产品,并有较强的操作灵活性。
(二)装置的单元组成与工艺流程1.组成单元石蜡加氢装置的基本组成单元如下:(1)原料预处理单元:部分脱除原料中的溶剂和水;(2)换热器及加热炉单元:提供热交换及反应所需热量;(3)反应器及高低分单元:提供反应进行的场所并对反应生成物进行气液分离;(4)汽提塔与干燥塔单元:脱除生成腊中所含的轻质烃、硫化氢及水等。
2.工艺流程工艺原则流程图见图2—28。
图2—28石蜡加氢精制原则流程1一反应进料加热炉;2一反应器;3一原料脱气塔;4--常压汽提塔;5一减压干燥塔;6--热高压分离器;7一热低压分离器;8--分液罐;9---馏出物罐;10--冷凝水箱;11一反应物产/进料换热器;12--脱气塔进料加热器;13一汽提塔顶冷却韶;14--干燥塔顶冷却器;15--成品石蜡冷却器;16--过滤器;17一原料泵;18一反应进料泵;19---成品泵;20--馏出油泵;21一补充氢压缩机;22一循环氢压缩机;23一真空泵原料蜡由罐区来,经过原料预处理泵、原料反冲洗过滤器后与成品蜡进行换热,进入预处理塔中脱除原料蜡中残存的水分及溶剂;经高压原料泵升压到7.5-8.5MPa的压力后与反应生成蜡换热;后和与反应生成蜡换热的高压氢气混合进入加热炉加热到230—310℃,进入反应器顶部,在压力4.9—6.5MPa、温度230-310~C 和催化剂的作用下与氢气进行反应。
反应生成物从反应器底部出来经过换热后依次经过高、低压分离器。
由高压分离器分离出的气体经空冷器、水冷器进入循环氢分液罐,由循环氢分液罐分离出来的氢气卸人高分卸压线,或卸人氢气管网进行再利用。
由低压分离器分离出的气体经捕雾器后去加热炉作燃料。
由低压分离器分离出的反应生成蜡靠自压进入减压汽提塔,除去残存在蜡中的气体及轻馏分后,进入干燥的塔去除水分等;然后再进入出装置冷却器冷至75-85℃,作为成品蜡送至石蜡成型装置。
由装置处来的氢气,经新氢阀组调节压力,通过新氢冷却器后入新氢分液罐分液,从新氢分液罐顶部出来进入新氢压缩机(机1#2#3#)一段人口,由一段出口出来的氢气进入中间冷却器冷却分液后人压缩机二段人口,被压缩的氢气从二段出口出来后进行换热后于加热炉前与原料蜡混合人炉,加热后进行反应。
在开停工过程中,由循环氢分液罐顶部出来的氢气作为循环氢,人循环氢压缩机压缩后进蜡系统,进行系统的氢气循环。
(三)化学反应过程1。
石蜡加氢精制反应的特点石蜡加氢精制是在催化剂的作用下,在比较缓和的反应条件下(5.5-7.OMPa,230—310℃)采用加氢的方法,将原料中的含氧、含氮、含硫化合物等杂质和大部分稠环芳烃脱除,以改善石蜡的颜色、嗅味、光安定性等指标使之符合相应的质量标准。
2.石蜡加氢精制化学反应类型石蜡加氢精制过程的主要反应分为以下几种类型:(1)含氧、含氮、含硫化合物等非烃类的加氢分解反应;(2)烯烃和芳烃(主要是稠环芳烃)的加氢饱和反应;烯烃饱和与芳烃的转化通过加氢反应降低其不饱和度,烯烃饱和为烷烃;多环芳烃转化为少环芳烃。
(3)微量胶质、沥青质的脱除,胶质、沥青质(稠环的芳香烃)变为少环的芳香烃。
此外还有少量的开环、断链和缩合反应。
(四)主要操作条件及工艺技术特点1.主要操作条件石蜡加氢主要工艺操作条件如表2—86所示。
2.工艺技术特点(1)石蜡加氢精制属于典型的滴流床液相加氢过程,特点是要求反条件温和而能达到深度加氢精制。
反应条件温和是国为加氢精制过程中不允许出现碳—碳键的裂解和烃类异构化反应,以防止蜡中含油量的回升和主要质量指标变化。
深度加氢精制是除去杂质和有毒物质,充分满足食品、医药用蜡高质量标准的要求。
(2)热高压分离工艺。
反应生成物人高压分离器,温度在200℃左右进行热氢和热蜡的分离,为此,后处理系统省去加热炉,简化流程。
(五)催化剂及助剂1.催化剂的性质催化剂的性质见表2—87。
2.催化剂使用过程中质量变化趋势及工艺调整方法催化剂在使用过程中,由于杂质对催化剂孔隙的堵塞及活性重金属的部分流失,其质量的变化趋势为:催化剂活性下降、反应器床层压降增大。
工艺上的调整主要是提高反应温度为(或)压力以补偿催化剂活性的损失。
3.催化剂的预硫化加氢精制催化剂中的金属在出厂时是以氧化态的形式存在的。
但在实际应用时,由于金属硫化态具有更高的活性和更大的强度,因此需对催化剂进行预硫化。
最常用的硫化剂是二硫化碳(CS2)、二甲基硫醚(DMS)及二甲基二硫化物(DMDS)等。
4.判定催化剂报废、需更换的指标(1)安全要求:反应器床层压降不应超过0.55MPa。
超过此规定值则可判定该批催化剂报废,需更换。
(2)质量要求:在提高反应温度和(或)压力以补偿催化剂活性损失的方法无效时,则可判定该批催化剂报废,需更换。
.(六)原料及产品的性质量.石蜡加氢精制主要原材料的性质主要原材料的性质列于表2—88。
2.石蜡加氢精制主要产品的性质主要产品性质列于表2—89。
二、重点部位及设备从装置的平稳生产和安全角度进行考虑进行分类(一)重点部位1.反应器及高压换热器部分反应器是原料蜡和氢气进行加氢精制反应的场所,温度为230-310℃,系统压力为5.0—7.0MPa。
反应器和高压换热器等高压部位若发生泄漏,易发生自燃着火;严重时会导致装置切断进料,进行停工处理。
2;循环氢卸压系统从高压分离器分离出来的氢气经过高分捕雾器去除夹带的蜡沫,然后经水冷器冷却后,进入循环氢分液罐。
循环氢分液罐顶部出来的氢气经过压控卸人高压瓦斯线。
系统内介质为纯度大于90%的氢气,如有泄漏未及时发现并未进行隔离,遇火星将发生严重的爆炸事故。
(二)重点设备1.石蜡加氢装置的重点设备为新氢压缩机。
新氢压缩机为装置的心脏,保证反应系统的正常反应压力及循环。
如压缩机发生故障,首先要关闭高分泄压阀,保持系统压力,缓慢降压进行停工处理。
防止压力下降过快使催化剂及高压设备受损。
2.装置的重点控制阀为高分减压阀。
高压分离器内分离的液相经过减压自控阀进入低压分离器再次进行气液分离。
由于高低分之间的压差可达5.0—6.0MPa,因此要严格控制好高压分离器液面,防止液面跑空造成气相窜入低压系统,而使低压分离器超压损坏,设备甚至发生爆裂事故。
这里填写您的公司名字Fill In Your Business Name Here。