图形的相似单元测试题及答案
相似单元测试题及答案
![相似单元测试题及答案](https://img.taocdn.com/s3/m/b2001840a9114431b90d6c85ec3a87c240288a36.png)
相似单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪项不是相似图形的特点?A. 形状相同B. 面积相等C. 大小相同D. 角度相同2. 相似比的定义是什么?A. 两个图形对应边长的比B. 两个图形对应角的比C. 两个图形对应面积的比D. 两个图形对应周长的比3. 若两个三角形相似,它们的对应角相等,对应边成比例,那么它们的对应高也成比例吗?A. 是B. 否4. 相似图形的面积比与边长比的平方相等,这是根据什么定理得出的?A. 相似定理B. 勾股定理C. 毕达哥拉斯定理D. 面积比定理5. 两个相似多边形的对应边数必须相等吗?A. 是B. 否二、填空题(每题2分,共10分)6. 如果两个三角形的相似比是2:3,那么它们的对应边长之比是________。
7. 相似图形的周长比等于它们的________。
8. 两个相似圆的面积比是25:36,那么它们的半径比是________。
9. 根据相似图形的性质,如果两个图形相似,那么它们的对应角________。
10. 在相似三角形中,如果一个三角形的边长是另一个三角形边长的1.5倍,那么它们的面积比是________。
三、简答题(每题5分,共10分)11. 解释为什么相似三角形的对应角相等。
12. 描述如何判断两个多边形是否相似。
四、计算题(每题10分,共20分)13. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC的面积与三角形DEF的面积之比。
14. 如果一个矩形的长是另一个矩形长的1.5倍,宽是另一个矩形宽的0.8倍,求这两个矩形的面积比。
五、论述题(每题15分,共15分)15. 论述相似图形在建筑设计中的应用及其重要性。
答案:一、选择题1. B2. A3. A4. D5. A二、填空题6. 2:37. 相似比8. 5:69. 相等10. 2.25:1三、简答题11. 相似三角形的对应角相等,因为相似三角形的定义就是它们的对应角相等,这是相似三角形的基本性质之一。
图形的相似单元测试【含答案】
![图形的相似单元测试【含答案】](https://img.taocdn.com/s3/m/6d01eafa760bf78a6529647d27284b73f2423676.png)
DC B A 图形的相似 单元测试(时间:60分钟,共100分)一、选择题(每小传统3分,共30分) 1.下列语句正确的是 ( )A .在△ABC 和△A′B′C′中,∠B=∠B′=90°,∠A=30°,∠C′=60°, 则△ABC 和△A′B′C′不相似B .在△ABC 和△A′B′C′中,AB=5,BC=7,AC=8,A′C′=16,B′C′=14,A′B ′=10,则△ABC ∽△A′B′C′C .两个全等三角形不一定相似D .所有的菱形都相似2.如图所示,△ABC ∽△ADE ,AE=30cm ,EC=15cm ,BC=60cm ,则DE 的长为 ( ) A .40cm B .50cm C .45cm D .35cm 3.如图所示,能保证△ACD ∽△ABC 的条件是 ( ) A .AB:BC=AC:CD B .CD:AD=BC:AC C .CD 2=AD .DC D .AC 2=AB .AD 4.如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为 ( ) A .9:4 B .2:3 C .3:2 D .81:16 5.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,如图 所示给出的四个图案中,符合图示胶滚图案的是 ( )6.语句:“①所有度数相等的角都相似;②所有边长相等的菱形都相似;③所有的正方形都相似;④所有的圆都相似”中准确的有 ( )A .4句B .3句C .2句D .1句 7.下列语句中不正确的是 ( )A .求两条线段的比值,必需采用相同的长度单位B .求两条线段的比值,只需采用相同的长度单位,与选用何种长度单位无关C .两个相似三角形中,任意两组边对应成比例D .不相似的两个三角形中,也有可能两组边对应成比例 8.下列各组图形有可能不相似的是 ( ) A .各有一个角是50°的两个等腰三角形 B .各有一个角是100°的两个等腰三角形 C .各有一个角是50°的两个直角三角形 D .两个等腰直角三角形9.一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为( )A .12B .18C .24D .301250800xy ╯ ╮ 650 536╭α ╰ ╯ 803 10. 已知cba b a c a c b +=+=+=k ,则k=( ) A .2 B .-1 C .2或-1 D .0二、填空题(每小题3分,共24分)11.如果一个三角形的面积扩大9倍,那么它的边长扩大_____________倍.12.如图所示,有一块呈三角形的草坪,其一边长为20m ,在这个草坪的图纸上,若这条边的长为5cm ,其他两边的长都是3.5cm ,则该草坪其他两边的实际长度为______________.13.如图所示的两个三角形是相似的x=_________,m=___________,n=____________.x2a 55︒m ︒45︒103a n ︒80︒45︒14. 已知如图,两个矩形相似, 则x= ,y= ,α= .15. 在相同时刻的物高与影长成比例,如果一古塔在地面上影长为50m ,同时,高为1.5m 的测竿的影长为2.5m ,那么,古塔的高是___米.16.如图中的两个矩形相似,则x=___________.17. 请把下列各组图形是否相似的结论写在下面的括号里.18.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是 .三、解答题(19小题6分,其余各小题8分,共46分) 19.把上下对应的相似图形用线连起来20.如图所示,写出多边形ABCDEF 各个顶点的坐标,并画出多边形ABCDEF 关于y 轴的轴对称图形,它们相应的对称点的坐标有什么变化?-3 -2 -1 32 1 O -1 -212 3 xy21.学生会举办一个校园摄影艺术展览会,小华和小刚准备将矩形的作品四周镶上一圈等宽的纸边,如图所示.两人在设计时发生了争执:小华要使内外两个矩形相似,感到这样视觉效果较好;小刚试了几次不能办到,表示这是不可能的.小红和小莉了解情况后,小红说这一要求只有当矩形是黄金矩形时才能做到,小莉则坚持只有当矩形是正方形时才能做到.请你动手试一试,说一说你的看法.222.以下列正方形网络的交点为顶点,分别画出两个相似比不为1的相似三角形,使它们:(1)都是直角三角形;(2)都是锐角三角形;(3)都是钝角三角形.23.如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“能相似分割的图形”,如图所示的等腰三角形和矩形就是能相似分割的图形. (1)你能否再各举出一个 “能相似分割”的三角形和四边形?(2)一般的三角形是否“能相似分割的图形”?如果是的话给出一种分割方案,否则说明原因.24.我们通常用到的一种复印纸,整张称为A 1纸,对折一分为二裁开成为A 2纸,再一分为二成为A 3纸,…,它们都是相似的矩形.求这种纸的长与宽的比值(精确到千分位).参考答案1.B ;对应边成比例 2.A ;根据对应边成比例 3.D ;比例性质 4.C ;相似形的性质 5.C ;图形的相似 6.B ;②③④ 7.C ;注意对应 8.A ;不符合对应关系 9. 由相似多边形对应边成比例,设最长边为x .∴x662 ,∴2x=36,x=18.答案:B 10.C .2或-1二、11.3倍 12.14m 13.20314.根据相似形的性质,得x=2.5,y=1.5,α=900;⑵x=22.5. 15.在相同时刻的物高与影长成比例,设古塔的高为xm ,则505.25.1x=,解得x=30(m ) 16.已知两个矩形相似,根据相似形的性质,有x201530=,∴30x =15×20,解得x =10;又152030=x ,∴x =22.5 17. ①相似,②不相似,③不相似,④相似,⑤不相似,⑥不相似 18. 由左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),不难发现左右眼睛之间的距离2个单位;平移后的图形右图中左眼的坐标是(3,4),则右图案中右眼的坐标的纵坐标不变,横坐标为3+2=5,即右图案中右眼的坐标是(5,3). 三、19.相似形连线如(1)-(a ),(2)-(d),(3)-(g)20.提示:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3),A′(2,0),B′(0, 3),C′(-3,-3),D′(-4,0),E′(-3,3),F′(0,3).21.只有正方形才能做到,设矩形的一边为a ,另一边为b ,等宽的纸边宽为c ,按小华的要求,应有cb ca b a 22--=,化简得a=b . 22.作图如下23.例如直角三角形,一组底角是60°、三边相等的等腰梯形. 三角形都是“能相似分割的图形”(提示:顺次连结三角形三边中点,将三角形分成的四个三角形都和原三角形相似)24. 1.414(提示:设 A 1纸的长为a ,观为b ,由A 1,A 2纸的长余观对应成比例,得a:b=b:21a )。
湘教版九年级上册数学《第3章图形的相似》单元测试题含答案
![湘教版九年级上册数学《第3章图形的相似》单元测试题含答案](https://img.taocdn.com/s3/m/a52158d571fe910ef12df8a4.png)
第3章图形的相似一、选择题1.在1:1000000的地图上,A,B两点之间的距离是5cm,则A,B两地的实际距离是()A. 5kmB. 50kmC. 500kmD. 5000km2.下列说法错误的是()A. 两个等边三角形一定相似B. 两个等腰三角形一定相似C. 两个等腰直角三角形一定相似D. 两个全等三角形一定相似3.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A. 1:2B. 1:4C. 2:1D. 4:14.已知△ABC∽△DEF,如果∠A=55º,∠B=100º,则∠F=()A. 55ºB. 100ºC. 25ºD. 30º5.如图,若DC∥FE∥AB,则有()A. B. C. D.6.如图,已知l1∥l2∥l3,DE=4,DF=6,那么下列结论正确的是()A. BC:EF=1:1B. BC:AB=1:2C. AD:CF=2:3D. BE:CF=2:37.某一时刻,身高1.6m 的小明在阳光下的影长是0.4m.同一时刻同一地点,测得某旗杆的影长是5m,则该旗杆的高度是()A. 1.25mB. 10mC. 20mD. 8m8.如图,已知D、E分别是△ABC的AB、AC边上的点,DE∥BC,且S四边形DBCE=8S△ADE.那么AE:AC的值为()A. 1:8B. 1:4C. 1:3D. 1:99.如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.10.如图,在▱ABCD中,E为BC的中点,连接AE、AC,分别交BD于M、N,则BM:DN等于()A. 1:2B. 1:3C. 2:3D. 以上都不正确二、填空题11.若线段a,b,c,d成比例,其中a=3cm,b=6cm,c=2cm,则d=________ .12.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是________.13.已知实数a,b,c满足a+b+c=10,且,则的值是________14.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=________ .15.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,= ,则=________ .16.已知,△ABC在直角坐标系内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长均为一个单位长度).①画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是________ ;②以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1________ ,点C2的坐标是________ ;③若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标________ .17.如图,已知D ,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB ,那么BC:CD应等于________.18.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=________ .19.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,已知亮区DE到窗口下的墙角距离CE=5米,窗口高AB=2米,那么窗口底边离地面的高BC=________米.20.一个等腰直角三角形和一个正方形如图摆放,被分割成了5个部分.①,②,③这三块的面积比依次为1:4:41,那么④,⑤这两块的面积比是________三、解答题21.如图,在△ABC中,点D在边AB上,满足且∠ACD=∠ABC,若AC=2,AD=1,求DB的长.22.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?23.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.24.已知:如图,.(1)求证:;(2)当时,求证:EC BC.25.在矩形ABCD中,AD=3,CD=4,点E在边CD上,且DE=1.(1)感知:如图①,连接AE,过点E作EF⊥AE,交BC于点F,连接AF,易证:△ADE≌△ECF(不需要证明);(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE∽△ECF;(3)应用:如图③,若EF交AB边于点F,其他条件不变,且△PEF的面积是3,则AP的长为________.参考答案一、选择题B B BCD B C C C C二、填空题11.4cm12.1:913.14.15..16.(2,﹣2);;(1,0);(2a﹣3,2b﹣4)17.18.19.2.520.9:14三、解答题21.解∵∠ACD=∠ABC,∠BAC=∠CAD,∴△ADC∽△ACB.∴. ∵AC=2,AD=1,∴.∴DB=AB-AD=3.22.解:△ABE与△DEF相似.理由如下:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=AD=CD,设AB=AD=CD=4a,∵E为边AD的中点,CF=3FD,∴AE=DE=2a,DF=a,∴=2,=2,∴而∠A=∠D,∴△ABE∽△DEF.23.解:∵△PCD是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP∽△PDB,∴∠APC=∠B,又∠A=∠A,∴△ACP∽△ABP,∴∠APB=∠ACP=120°24.证明:(1)∵∴△ABC∽△DEF∴,(2)∵BAC=DAE∴BAD=CAE又∵∴∴△ABD∽△ACE∴ABD=ACE∵BAC=90°∴ABD+ACD=90°∴ACE+ACD=90°即EC BC.25.(1)证明:感知:如图①,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DAE+∠DEA=90°,∵EF⊥AE,∴∠AEF=90°,∴∠DEA+∠FEC=90°,∴∠DAE=∠FEC,∵DE=1,CD=4,∴CE=3,∵AD=3,∴AD=CE,∴△ADE≌△ECF(ASA)(2)探究:如图②,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠DPE+∠DEP=90°,∵EF⊥PE,∴∠PEF=90°,∴∠DEP+∠FEC=90°,∴∠DPE=∠FEC,∴△PDE∽△ECF(3)2。
相似图形单元测试题(含答案)
![相似图形单元测试题(含答案)](https://img.taocdn.com/s3/m/3e3694f7bd64783e08122b77.png)
第四章相似图形单元测试题时间120分钟,满分120分一.选择题(每小题3分,共30分)1、如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a ,b ,c 满足的关系式是( )A .b a c =+B .b ac =C .222b ac =+ D .22b a c ==2、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )3、如下左图,五边形ABCDE和五边形A 1B 1C 1D 1E 1是位似图形,且PA 1=32PA ,则AB ׃A 1B 1等于( ) A .32 B .23 C . 53 D .354、如上中图,在大小为4×4的正方形网格中,是相似三角形的是( ).A.①和② B.②和③ C.①和③ D.②和④5、厨房角柜的台面是三角形,如上右图,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是( )A .14B .41C .13D .346、在△MBN 中,BM =6,点A ,C,D 分别在MB 、NB 、MN 上,四边形ABCD 为平行四边形,∠NDC =∠MDA 则□ABCD 的周长是( )A .24B .18C .16D .127、下列说法“①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1∶2;④两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的有()A .1个B .2个C .3个D .4个8、如图,点M 在BC 上,点N 在AM 上,CM=CN ,CMBMAN AM =,下列结论正确的是( ) A .∆ABM ∽∆ACB B .∆ANC ∽∆AMB C .∆ANC ∽∆ACM D .∆CMN ∽∆BCA9、已知:如图,小明在打网球时,要使球恰好能打过而且落在离网5米的位置上(网球运行轨迹为直线),则球拍击球的高度h 应为( ).A.0.9m B.1.8m C.2.7m D.6m10、如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度A .增大1.5米B .减小1.5米C .增大3.5米D .减小3.5米BA C第8题图ABCN ME 1D1C 1B 1A 1BDACEP二、填空题:(30分)11、如图,在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP :PQ :QC= .12、如图,将①∠BAD = ∠C ;②∠ADB = ∠CAB ; ③BC BD AB ⋅=2;④DBABAD CA =;⑤DA AC BA BC =; ⑥ACDABA BC =中的一个作为条件,另一个作为结论,组成一个真命题,则条件是__________,结论是_______.(注:填序号)13、如图,Rt ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。
2021-2022学年青岛新版九年级上册数学《第1章 图形的相似》单元测试卷【含答案】
![2021-2022学年青岛新版九年级上册数学《第1章 图形的相似》单元测试卷【含答案】](https://img.taocdn.com/s3/m/3080d6bd0129bd64783e0912a216147917117e20.png)
2021-2022学年青岛新版九年级上册数学《第1章图形的相似》单元测试卷一.选择题1.下列图形一定是相似图形的是( )A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形2.下列两个图形一定相似的是( )A.两个菱形B.两个矩形C.两个正方形D.两个等腰梯形3.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,则EF的长是( )A.4B.5C.D.4.如图:点D在△ABC的边AB上,连接CD,下列条件:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AD•AB;④AB•CD=AC•BC.其中能判定△ACD∽△ABC的共有( )A.1个B.2个C.3个D.4个5.在一张缩印出来的纸上,一个三角形的一条边由原图中的6cm变成了2cm,则缩印出的三角形的面积是原图中三角形面积的( )A.B.C.D.6.一个多边形的边长分别为2,3,4,5,6,另一个和它相似的多边形的最长边为24,则这个多边形的最短边长为( )A.6B.8C.12D.107.能判定△ABC和△A′B′C′相似的条件是( )A.B.且∠A=∠C′C.且∠B=∠A′D.且∠B=∠B′8.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )A.1B.C.D.9.如图,在△ABC中,D,E分别是边AB,AC上的点,DE∥BC,AD:DB=2:1,下列结论中错误的是( )A.B.C.D.AD•AB=AE•AC10.如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60°,若CG=3,AH=7,则菱形ABCD的边长为( )A.8B.9C.D.二.填空题11.有一张矩形风景画,长为90cm,宽为60cm,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm,左、右边衬的宽都为bcm,那么ab= .12.四边形ABCD和四边形A'B'C'D'是相似图形,点A、B、C、D分别与A'、B'、C'、D'对应,已知BC=3,CD=2.4,B'C′=2,那么C′D'的长是 .13.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值是 .14.如果两个相似多边形面积的比为4:9,那么这两个相似多边形周长的比是 .15.如图,直角三角形纸片ABC,AC边长为10cm,现从下往上依次裁剪宽为4cm的矩形纸条,若剪得第二张矩形纸条恰好是正方形,那么BC的长度是 cm.16.如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .17.如图,AB⊥BD,CD⊥BD,AB=6,CD=4,BD=14.点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,则PB的长为 .18.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为 .19.如图,在平行四边形ABCD中,AB=3,AD=4,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为 .20.如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD中,AB=AC=,AD=CD=,点E、点F分别是边AD,边BC上的中点.如果AC是凸四边形ABCD的相似对角线,那么EF的长等于 .三.解答题21.如图,已知△ABD∽△ACE,∠ABC=50°,∠BAC=60°,求∠AED的度数.22.小强在地面E处放一面镜子,刚好能从镜子中看到教学楼的顶端B,此时EA=21米,CE=2.5米.已知眼睛距离地面的高度DC=1.6米,请计算出教学楼的高度.(根据光的反射定律,反射角等于入射角)23.以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,PC:PB= .(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在AB上找一点P,使AP=3.②如图③,在BD上找一点P,使△APB∽△CPD.24.根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形,相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;( 命题)②三个角分别相等的两个凸四边形相似;( 命题)③两个大小不同的正方形相似.( 命题)(2)如图,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,.求证:四边形ABCD 与四边形A1B1C1D1相似.25.如图1,将A4纸2次折叠,发现第一次的折痕与A4纸较长的边重合,如图2,将1张A4纸对折,使其较长的边一分为二,沿折痕剪开,可得2张A5纸.(1)A4纸较长边与较短边的比为 ;(2)A4纸与A5纸是否为相似图形?请说明理由.26.如图,等腰三角形ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB•CE.(1)说明:△ADB∽△EAC;(2)若∠BAC=40°,求∠DAE的度数.27.如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.答案与试题解析一.选择题1.解:A、任意两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、任意两个等边三角形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意;C、两个两个等腰三角形,无法确定形状是否相等,故不符合题意;D、两个矩形,对应角相等,对应边不一定成比例,故不符合题意.故选:B.2.解:A、两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、两个矩形,对应角相等,对应边不一定成比例,不符合相似的定义,故不符合题意;C、两个正方形,对应角相等,对应边一定成比例,一定相似,故符合题意;D、两个等腰梯形同一底上的角不一定相等,对应边不一定成比例,不符合相似的定义,故不符合题意;故选:C.3.解:∵△ABE∽△DEF,∴,∵AB=6,AE=9,DE=2,∴,解得:DF=3,∵四边形ABCD是矩形,∴∠D=90°,∴EF==.故选:C.4.解:①∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,②∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC,③∵AC2=AD•AB,∴,∵∠A=∠A,∴△ACD∽△ABC,④条件不符合,不能判定△ACD∽△ABC,故选:C.5.解:∵三角形的一条边由原图中的6cm变成了2cm,∴原三角形与缩印出的三角形是相似比为3:1,∴原三角形与缩印出的三角形是面积比为9:1,∴缩印出的三角形的面积是原图中三角形面积的,故选:C.6.解:设这个多边形的最短边长为x,∵两个多边形相似,∴=,解得,x=8,故选:B.7.解:能判定△ABC和△A′B′C′相似的条件是,且∠B=∠A';理由是两边成比例且夹角相等的两个三角形相似;故选:C.8.解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴==,故选:C.9.解:∵DE∥BC,AD:DB=2:1,∴△ADE∽△ABC,∴==,=,∴=()2=,∴A、B、C正确,故选:D.10.解:连接AC.∵菱形ABCD∽菱形AEFG,∴∠B=∠E=∠AGF=60°,AB=BC,∴△ABC是等边三角形,设AB=BC=AC=a,则BH=a﹣7,BG=a﹣3,∴∠ACB=60°,∵∠AGB=∠AGH+∠BGH=∠ACG+∠CAG,∵∠AGH=∠ACG=60°,∴∠BGH=∠CAG,∵∠B=∠ACG,∴△BGH∽△CAG,∴=,∴=,∴a2﹣10a+9=0,∴a=9或1(舍弃),∴AB=9,故选:B.二.填空题11.解:根据题意得=,解得2a=3b,∴a=b,∵(60+2b)(90+2a)=60×90×(1+44%),整理得30a+45b+ab﹣594=0,把a=b代入得30•b+45b+b•b﹣594=0,整理得b2+60b﹣396=0,解得b1=6,b2=﹣66(舍去),∴a=×6=9,∴ab=9×6=54(cm2).故答案为54cm2.12.解:∵四边形ABCD∽四边形A'B'C'D',∴CD:C′D′=BC:B′C′,∵BC=3,CD=2.4,B'C′=2,∴C′D′=1.6,故1.6.13.解:根据题意,两条边长分别是6和8的直角三角形有两种可能,∵当6和8为直角边时,根据勾股定理可知斜边为10,∴==,解得x=5;当6是直角边,而8是斜边,那么根据勾股定理可知另一条直角边为2.∴==,解得x=.∴x=5或,故5或.14.解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故2:3.15.解:在图中标上字母,如图所示.根据矩形的性质,可知:DE∥BC,∴△ADE∽△ACB,∴=,∴BC=•DE=×4=20cm.故20.16.解:由折叠的性质可知,AB=AF=1,∵矩形EFDC与矩形ABCD相似,∴=,即=,整理得,AD2﹣AD﹣1=0,AD=,由题意得,AD=,故.17.解:设DP=x,则BP=BD﹣x=14﹣x,∵AB⊥BD于B,CD⊥BD于D,∴∠B=∠D=90°,∴当时,△ABP∽△CDP,即;解得x=,BP=14﹣=8.4;当时,△ABP∽△PDC,即;整理得x2﹣14x+24=0,解得x1=2,x2=12,BP=14﹣2=12,BP=14﹣12=2,∴当BP为8.4或2或12时,以C、D、P为顶点的三角形与以P、B、A为顶点的三角形相似.故8.4或2或12.18.解:(1)当∠AFC=90°时,AF⊥BC,∵AB=AC,∴BF=BC∴BF=4∵DE垂直平分BF,∵BC=8∴BD=BF=2.(2)当∠CAF=90°时,过点A作AM⊥BC于点M,∵AB=AC∴BM=CM在Rt△AMC与Rt△FAC中,∠AMC=∠FAC=90°,∠C=∠C,∴△AMC∽△FAC,∴=∴FC=∵AC=5,MC=BC=4∴FC=∴BF=BC﹣FC=8﹣=∴BD=BF=故2或.19.解:∵四边形ABCD为平行四边形,∴AB=CD=3,BC∥AD,∵E为BC上一点,∴CE∥AD,∠FEC=∠FAD,∠FCE=∠D,∴△FCE∽△FDA,∴==,又∵CD=3,CF=1,AD=4,∴CE=,故.20.解:如图所示:∵AB=AC,AD=CD,△ABC∽△DAC,∴AC2=BC•AD,∵AC=,AD=,∴CB=2,∵△ABC∽△DAC,∴∠ACB=∠CAD,∴CB∥AD,∵AB=AC,F为BC中点,∴AF⊥CB,BF=CF=1,∴∠AFC=90°,∵CB∥AD,∴∠FAE=∠AFC=90°,∵AC=,∴AF=,∵AD=,E为AD中点,∴AE=,∴EF===.故.三.解答题21.解:∵∠ABC=50°,∠BAC=60°,∴∠ACB=180°﹣∠ABC﹣∠BAC=70°,∵△ABD∽△ACE,∴=,∠BAD=∠CAE,∴=,∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAC=∠DAE,∴△BAC∽△DAE,∴∠AED=∠ACB,∴∠AED=70°.22.解:根据题意得∠AEB=∠CED,∵Rt△AEB∽Rt△CED,∴=,即=,解得:AB=13.44.答:教学楼的高度为13.44m.23.解:(1)图1中,∵AB∥CD,∴==,故答案为1:3.(2)①如图2所示,点P即为所要找的点;②如图3所示,作点A的对称点A′,连接A′C,交BD于点P,点P即为所要找的点,∵AB∥CD,∴△APB∽△CPD.24.(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等;②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例;③两个大小不同的正方形相似,是真命题;故假,假,真;(2)证明:如图,连接BD,B1D1.∵∠BCD=∠B1C1D1,且,∴△BCD~△B1C1D1,∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD,∵,∴,∵∠ABC=∠A1B1C1,∴∠ABD=∠A1B1D1,∴△ABD~△A1B1D1,∴,∴∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,∴四边形ABCD与四边形A1B1C1D1相似.25.解:(1)如图1,由折叠过程可以看到:第一次折叠,A与D重合,四边形ABDC为正方形,折痕BC为对角线,由勾股定理可得BC=AB;第二次折叠,第一次的折痕与A4纸较长的边重合,即BC与较长边重合.所以,较长边=AB.∴A4纸较长边与较短边的比为:.故.(2)A4纸与A5纸是相似图形.理由:∵A4纸较长边与较短边的比为:,∴设A4纸较短边的长为a,则较长边为a.∵由图2可知:A5纸的长边与A4纸的短边重合,短边等于A4纸的长边的一半,∴A5纸的长边为a,短边为.∴A5纸的长边与短边的比为:=.∴A4纸较长边与较短边的比=A5纸的长边与短边的比.又∵A4纸与A5纸的四个角均为直角,∴A4纸与A5纸相似.26.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=DB•CE∴∴∴△ADB∽△EAC.(2)∵△ADB∽△EAC,∴∠BAD=∠E,∠D=∠CAE,∵∠DAE=∠BAD+∠BAC+∠CAE,∴∠DAE=∠D+∠BAD+∠BAC,∵∠BAC=40°,AB=AC,∴∠ABC=70°,∴∠D+∠BAD=70°,∴∠DAE=∠D+∠BAD+∠BAC=70°+40°=110°.27.解:(1)∵D、E分别是AC、BC的中点,∴DE∥AB,DE=AB=5,∵DE∥AB,∴∠DEC=∠B,而∠F=∠B,∴∠DEC=∠F,∴DF=DE=5;(2)∵AC=BC,∴∠A=∠B,∵∠CDE=∠A,∠CED=∠B,∴∠CDE=∠B,∵∠B=∠F,∴∠CDE=∠F,∵∠CED=∠DEF,∴△CDE∽△DFE.。
2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)
![2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)](https://img.taocdn.com/s3/m/880fd274876fb84ae45c3b3567ec102de2bddf8f.png)
第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。
第四章图形的相似单元测试卷(解析版)
![第四章图形的相似单元测试卷(解析版)](https://img.taocdn.com/s3/m/e27bc74b69dc5022abea0079.png)
2.3.4.5.第四章图形的相似单元测试卷.选择题〔共12小题〕&二旦,b 13〔2021淅州〕的值是〔〕C.-1如图,直线a// b// c,b, c于点D, E, F,假设BC 2DE_EF直线m交直线a, b, c于点A, B, C,直线n交直线a,C.B.D CbB〔第2题〕〔第3题〕B〔第4题〕〔2021睑华〕在四边形ABCD中, / B=90°, AC=4, AB // CD, DH 垂直平分AC ,点H为垂足.AB=x, AD=y,那么y关于x的函数关系用图象大致可以表示为〔〔2021?安徽〕C. 0 4 AD.如图, 4ABC中,AD是中线,BC=8, 那么线段AC的长为〔〕C. 6D. 4.:〔2021渐疆〕111A . DE=-BC 2如图,在△ ABC中,D、E分别是AB、AC的中点,以下说法中不正确的选项是〔B.AD AE靛=最C. △ ADEABCD. S A ADE:S AABC=1 : 2C2〔第5题〕〔第6题〕〔第7题〕6. 〔2021?台湾〕如图的4ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC 于M、N 两点.假设/B=90°, AB=4, BC=3 , EF=1 ,贝U BN 的长度为何?〔〕树的高度为〔〕C.7 .如图,在同一时刻,身高1.6米的小丽在阳光下的影长为 2.5 米,一棵大树的影长为5米,那么这棵A . 1.5 米 B. 2.3米 C. 3.2 米8. 〔2021确博〕如图是由边长相同的小正方形组成的网格,D. 7.8 米A, B, P, Q四点均在正方形网格的格)D. 29. 〔2021?东营〕如图,在平面直角坐标系中,点A 〔中央,相似比为-1,把^ABO缩小,那么点A的对应点/ 3A. 〔T, 2〕B. 〔-9, 18〕C. 〔-9, 18〕10. 如图,在直角坐标系中,有两点A 〔6, 3〕, B 〔6, 0〔第10题〕-3, 6〕 , B 〔 - 9, - 3〕,以原点O为位似'的坐标是〔〕或〔9, - 18〕 D. 〔-1, 2〕或〔1, - 2〕〕,以原点O为位似中央,相似比为士,在第一象限内把线段AB缩小后得到新的线段,那么点A的对应点坐标为〔〕A . (2, 1) B, (2, 0) C, (3, 3) D. (3, 1)11.复印纸的型号有A0、A1、A2、A3、A4等,它们之间存在着这样一种关系:将其中某一型号〔如A3〕的复印纸较长边的中点对折后,就能得到两张下一型号〔A4〕的复印纸,且得到的两个矩形都和原来的矩形相似〔如图〕,那么这些型号的复印纸的长宽之比为〔〕A. 2: 1 B, 1^/2: 1 C,遮:1 D, 3: 1点上,线段AB, PQ相交于点M,那么图中/QMB12. 〔2021?烟台〕如图,在平面直角坐标中,正方形 ABCD 与正方形BEFG 是以原点.为位似中央且相似比为 ▲,点A, B, E 在x 轴上,假设正方形 BEFG 的边长为6,那么C 点坐标为3A . 〔3, 2〕 B, 〔3, 1〕 C. 〔2, 2〕 D, 〔4, 2〕二.填空题〔共5小题〕13. 〔2021陆迁〕假设两个相似三角形的面积比为 1:4,那么这两个相似三角形的周长比是 14. 〔2021?娄底〕如图, /A=/D,要使△ABCs^DEF,还需添加一个条件,你添加的条件是.〔只需写一个条件,不添加辅助线和字母〕15. 〔2021?宾州〕如图,矩形 ABCD 中,AB 小巧,BC=R ,点E 在对角线BD 上,且BE=1.8,连接AE 并延长交DC 于点F ,那么工里=.CD ----------16. 〔2021彼海〕如图,直线 y=^x+1与x 轴交于点 A,与y 轴交于点B, 4BOC 与△ BO C 是以点A 为位似中央的位似图形,且相似比为1: 3,那么点B 的对应点B'的坐标为 .17. 〔2021跳山〕如图,在△ ABC 中,D 、E 分别是边 AB 、AC 上的点,且DE//BC,假设△ ADE 与△ ABC 的周长之比为 2: 3, AD=4,那么DB=. 三.解做题〔共5小题〕18. 〔2021?广州〕如图,在平面直角坐标系 xOy 中,直线y=-x+3与x 轴交于点C,与直线AD 交于 点A 〔士口〕,点D 的坐标为〔0, 1〕 J J 〔1〕求直线AD 的解析式;〔2〕直线AD 与x 轴交于点B,假设点E 是直线AD 上一动点〔不与点 B 重合〕,当△ BOD 与4BCE 相似时,求点E 的坐标.的位似图形,〔第15题〕 〔第16题〕〔第1719. (2021?临夏州)如图, EC II AB, /EDA = /ABF.(1)求证:四边形ABCD是平行四边形;2(2)求证:OA =OE?OF.20. (2021?聊城)如图,以Rt^ABC的直角边AB为直径作OO,交斜边AC于点D ,点E为OB的中点,连接CE 并延长交..于点F,点F恰好落在忘的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=£BG;(2)假设AB=4,求DC的长.21. (2021泡州)如图,在4ABC中,点D, E分别在边AB, AC上,/AED=/B,射线AG分别交线段DE, BC于点F, G,且理』!).AC CG(1)求证:△ADF S^ACG;(2) 假设旭」求鲤的值.AC- 2 FG22. (2021?南京)如图,在?ABCD中,E是AD上一点,延长CE到点F,使/FBC=/DCE.(1)求证:/ D= / F ;(2)用直尺和圆规在AD上作出一点P,使△BPC S^CDP (保存作图的痕迹,不写作法)..选择题〔共12小题〕出 G a 一 b1 .—,那么一「的值是〔〕b 13 a+bA. -2B. -士C. -£D.」3. 149【分析】 根据等式的性质,可用 b 表示a,根据分式的性质,可得答案.应选:D.【点评】 此题考查了比例的性质,利用等式的性质得出a 〕Lb 是解题关键.134. 〔2021淅州〕如图,直线 a// b//c,直线 m 交直线a, b, c 于点A, B, C,直线n 交直线a,【分析】直接根据平行线分线段成比例定理求解. 【解答】解:a // b// c, DE AB 1 ...—=—=—.EF EC 2应选B.【点评】 此题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.5. 〔2021殓华〕在四边形 ABCD 中,ZB=90°, AC=4, AB//CD, DH 垂直平分 AC,点H 为垂足.设AB=x, AD=y,那么y 关于x 的函数关系用图象大致可以表示为〔〕试卷解析卷49'解:由月丁殳,得 b13A .亍 B. C. 9 D. 11 £Jx的取值范围即可解决问题.【解答】解:•••DH垂直平分AC,DA=DC, AH=HC=2,/DAC = /DCH , ••• CD // AB,/DCA = /BAC,ZDAN = ZBAC, ••• ZDHA = ZB=90 °, • . ADAHs △ CAB,里理AC AB. AB VAC,x< 4,图象是D .应选D.【点评】此题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围确实定,属于中考常考题型.6. 〔2021?安徽〕如图, 4ABC中,AD是中线,BC=8, / B=/DAC ,那么线段AC的长为〔A . 4 B. 4强C. 6 D. 4/3【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA S^CAD,得出屈@,求出AC即可.BC AC【解答】解:♦••BC=8,CD=4,在4CBA和ACAD中,•. /B=/DAC, ZC=ZC,ACBA^ACAD,£=里BC AC' -2・•. AC2=CD?BC=4 X8=32,AC=4 二;应选B.【点评】此题考查了相似三角形的判断与性质, 关键是根据AA证出△CBAs^CAD,是一道根底题.7. 〔2021硝疆〕如图,在4ABC中,D、E分别是AB、AC的中点,以下说法中不正确的选项是〔C. AADE^AABCD. S AADE:S AABC=1:2【分析】根据中位线的性质定理得到DE//BC, DE」BC,再根据平行线分线段成比例定理和相似三2角形的性质即可判定.【解答】解:.「□、E分别是AB、AC的中点,DE // BC, DE—BC,蛆AC BC 2'△ ADE^A ABC,. - 一上-口△⑪E iAABC 卷 4'・•.A, B, C正确,D错误;【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证实.8. 〔2021?台湾〕如图的GABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC 于M、N 两点.假设ZB=90°, AB=4 , BC=3 , EF=1 ,贝U BN 的长度为何?〔〕【分析】由DE // BC可得迎=5?求出AE的长,由GF // BN可得空支,将AE的长代人可求得AB BC AB BNBN.【解答】解::四边形DEFG是正方形,・ .DE//BC, GF// BN,且DE=GF=EF=1 ,AADE^AACB, AAGF^ AANB,T 口①,遇理旦②,AB BC AB BN由①可得,鲤』解得:AE J,4 3 3将AE=^t入②,得:[3解得:BN=—,应选:D.【点评】此题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.7 .如图,在同一时刻,身高1.6米的小丽在阳光下的影长为 2.5米,一棵大树的影长为5米,那么这棵树的高度为〔〕A. 1.5 米B. 2.3 米C. 3.2 米D. 7.8 米【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线 三者构成的两个直角三角形相似.【解答】解:二.同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相BC=X5=3.2 米.2. 5【点评】此题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形, 然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8. 〔2021确博〕如图是由边长相同的小正方形组成的网格, 点上,线段 AB, PQ 相交于点M,那么图中ZQMB 的正切值是〔【分析】根据题意得出△PAM S ^QBM ,进而结合勾股定理得出 求出答案.【解答】解:连接AP, QB, 由网格可得: ZFAB=ZQBA=90° ,应选:C. A, B, P, Q 四点均在正方形网格的格AP=3\/2, BQ =/2, AB=2/2,进而又••• /AMP = /BMQ, APAM^AQBM,,幽鲤, QB EM•, AP=3\/2, BQ=72, AB=2&,V2 2V2 "AM解得:AM = %,仅2tan ZQMB =tan/PMA=^=r £=2 .Afl[ WZ应选:D.【点评】此题主要考查了勾股定理以及相似三角形的判定与性质以及锐角三角函数关系,正确得出△ PAM S ^QBM 是解题关键.中央,相似比为 工,把^ABO 缩小,那么点A 的对应点A'的坐标是〔〕3A. (-1, 2)B. (-9, 18)C. (-9, 18)或(9, — 18)【分析】利用位似变换是以原点为位似中央,相似比为 k,那么位似图形对应点的坐标的比等于k 或 -k 进行求解.【解答】 解:二“〔-3, 6〕, B 〔-9, -3〕,以原点O 为位似中央,相似比为把^ABO 缩小,3或[—3X 〔 一白〕,6X 〔一1〕],即A 点的坐标为〔—1,应选D.【点评】此题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中央,相似比为9. 〔2021?东营〕如图,在平面直角坐标系中,点A (- 3, 6) ,B ( - 9, - 3),以原点O 为位似D. (-1, 2)或(1, - 2)•••点A 的对应点A'的坐标为〔-3k,那么位似图形对应点的坐标的比等于k或-k.10 .如图,在直角坐标系中,有两点A (6, 3), B (6, 0),以原点O为位似中央,相似比为第一象限内把线段AB缩小后得到新的线段,那么点A的对应点坐标为(234567-2A . (2, 1) B. (2, 0) C. (3, 3) D, (3, 1)【分析】由以原点O为位似中央,相似比为根据位似图形的性质,即可求得答案.3【解答】解:二.以原点O为位似中央,相似比为-1, A (6, 3), 恸,在第一象限内,点A的对应点坐标为:(2, 1).应选A.【点评】此题考查了位似图形的变换. 注意在平面直角坐标系中, 如果位似变换是以原点为位似中央, 相似比为k,那么位似图形对应点的坐标的比等于k或-k.11 .复印纸的型号有A.、A1、A2、A3、A4等,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸较长边的中点对折后,就能得到两张下一型号( A4)的复印纸,且得到的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的长宽之比为( )A . 2: 1 B. V2: 1 C.立:1 D, 3: 1【分析】设这些型号的复印纸的长、宽分别为b、a,根据相似多边形的对应边的比相等列出比例式, 计算即可.【解答】解:设这些型号的复印纸的长、宽分别为b、a,•••得到的矩形都和原来的矩形相似,b---」 - ----- ,3 L那么 b 2=2a 2,/二a..这些型号的复印纸的长宽之比为 V2: 1, 应选:B.【点评】此题考查的是相似多边形的性质,相似多边形的性质为:① 对应角相等;② 对应边的比相12. 〔2021?烟台〕如图,在平面直角坐标中,正方形 ABCD 与正方形BEFG 是以原点.为位似中央AO 的长,即可得出答案.【解答】 解:二,正方形ABCD 与正方形BEFG 是以原点.为位似中央的位似图形,且相似比为 工3BG 3'••• BG=6, AD=BC=2, . AD // BG, AOAD^AOBG,.•.OB=3,・•.C 点坐标为:(3, 2),【点评】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出 AO 的长是解题关键.的位似图形, 且相似比为 1,点A, B, E 在x 轴上,假设正方形BEFG 的边长为6,那么C 点坐标为〔A . (3, 2) B, (3, 1) C. (2, 2) D. (4,2)【分析】直接利用位似图形的性质结合相似比得出AD 的长,进而得出 △OAD S ^OBG ,进而得出二.填空题〔共5小题〕13. 〔2021?宿迁〕假设两个相似三角形的面积比为1: 4,那么这两个相似三角形的周长比是1: 2 .【分析】根据相似三角形面积的比等于相似比的平方求出相似比, 根据似三角形周长的比等于相似比得到答案.【解答】解:二.两个相似三角形的面积比为1: 4,・♦.这两个相似三角形的相似比为1:2,・•.这两个相似三角形的周长比是1: 2,故答案为:1: 2.【点评】此题考查的是相似三角形的性质, 掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.14. 〔2021?娄底〕如图,/ A=/D,要使△ABCs^DEF,还需添加一个条件,你添加的条件是AB // DE .〔只需写一个条件,不添加辅助线和字母〕【分析】根据有两组角对应相等的两个三角形相似进行添加条件.【解答】B:••ZA=ZD,・•・当/B=/DEF 时,△ABCs^DEF,. AB // DE 时,/ B=/DEF ,・•・添加AB// DE 时,使△ ABCs △ DEF .故答案为AB // DE.【点评】此题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.15. 〔2021?宾州〕如图,矩形ABCD中,AB=/3, BC=R,点E在对角线BD上,且BE=1.8,连接CF 111AE并延长交DC于点F,那么—二;_.CD 厂【分析】 根据勾股定理求出 BD,得到DE 的长,根据相似三角形的性质得到比例式,代入计算即可求出DF 的长,求出CF,计算即可. 【解答】 解:二•四边形ABCD 是矩形, /BAD=90 ;又 AB=71, BC=几, •.•孙五屋十&俨3, ••• BE=1.8, DE=3 - 1.8=1.2, . AB // CD,. DF_DE DF-1.2AB =BE'即 解得,DF=织&3贝U CF=CD - DF=1,3V3 ,CF 3 1而一m =密 故答案为:3|【点评】此题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的 判定定理、性质定理是解题的关键.16. 〔2021彼海〕如图,直线 y=,x+1与x 轴交于点 A,与y 轴交于点B, 4BOC 与△ BO C 是以点A 为位似中央的位似图形, 且相似比为1:3,那么点B 的对应点B 的坐标为〔-8, -3〕或〔4, 3〕.【分析】 首先解得点A 和点B 的坐标,再利用位似变换可得结果. 【解答】 解:二•直线y=L+1与x 轴交于点A,与y 轴交于点B,EB令x=0可得y=1 ;令y=0可得x= - 2,.•・点A和点B的坐标分别为〔-2, 0〕; 〔0, 1〕,••• ^BOC与ABO'C是以点A为位似中央的位似图形,且相似比为1: 3,..0B =以上O' Q 3• .OB' =3AO' = 6,B的坐标为〔-8, - 3〕或〔4, 3〕.故答案为:〔-8, - 3〕或〔4, 3〕.【点评】此题主要考查了位似变换和一次函数图象上点的坐标特征,得出点A和点B的坐标是解答此题的关键.17. 〔2021跳山〕如图,在△ ABC中,D、E分别是边AB、AC上的点,且DE//BC,假设△ ADE与△ ABC【分析】由DE// BC,易证△ADE S^ABC,由相似三角形的性质即可求出的长.AB的长,进而可求出DB 【解答】解:.「DE//BC,AADE^AABC,••・ 4ADE与4ABC的周长之比为2: 3,AD: AB=2: 3,••• AD=4,AB=6,DB=AB-AD=2,故答案为:2.【点评】此题主要考查的是相似三角形的性质:相似三角形的一切对应线段〔包括对应边、对应中线、对应高、对应角平分线等〕的比等于相似比,面积比等于相似比的平方.三.解做题〔共5小题〕18. 〔2021?广州〕如图,在平面直角坐标系 xOy 中,直线y=-x+3与x 轴交于点C,与直线AD 交于点A 〔工上〕,点D 的坐标为〔0, 1〕3 3〔1〕求直线AD 的解析式;〔2〕直线AD 与x 轴交于点B,假设点E 是直线AD 上一动点〔不与点 B 重合〕,当△ BOD 与4BCE 【解答】 解:〔1〕设直线AD 的解析式为y=kx+b,(2)二.直线AD 与x 轴的交点为(-2, 0), OB=2,•・•点D 的坐标为(0, 1), OD=1 ,= y= - x+3与x 轴交于点C (3, 0), .•.OC=3, BC=5•. △BOD 与ABCE 相似,.BD BO OD^OB OD BC BE CE BC CE'普盍表或看卷BE=2/5, CE=氐或 CE±【分析】〔1〕设直线AD 的解析式为y=kx+b,用待定系数法将〔2〕由直线AD 与x 轴的交点为〔- 得BC=5,根据相似三角形的性质得到2, 0〕,得到OB=2,由点D 的坐标为〔0, 1〕,得到OD=1,求BD BO EL —二—=—旦 BC BE CE要工,代入数据即可得到结论.BC CE故直线AD 的解析式为:y —x+1 ;2相似时,求点E 的坐标.A ,D 〔0, 1〕的坐标代入即将A (士上),D (0, 1)代入得:J J解得:•.E (2, 2),或(3, 3.2【点评】此题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.19. (2021?临夏州)如图, EC//AB, /EDA=/ABF.(1)求证:四边形ABCD是平行四边形;2(2)求证:OA =OE?OF.【分析】(1)由EC // AB, ZEDA = ZABF,可证得/DAB=/ABF,即可证得AD// BC,贝U得四边形ABCD为平行四边形;(2)由EC//AB,可得空=迷,由AD // BC,可得更旦,等量代换得出空3,即OA2=OE?OFOE CD OD 0A OE OA【解答】证实:(1) .「EC//AB,ZEDA=ZDAB,••• ZEDA=ZABF,ZDAB=ZABF,AD // BC,••• DC // AB,四边形ABCD为平行四边形;(2) 「EC//AB,・.△OAB S^OED,,囱妈OE OD. AD // BC,・•.△OBF S^ODA,..再阐OD 0A.忸」阐OE 0A【点评】此题考查了相似三角形的判定与性质,平行四边形的判定,平行线的性质,解题时要注意识图,灵活应用数形结合思想.20. (2021?聊城)如图,以Rt^ABC的直角边AB为直径作OO,交斜边AC于点D ,点E为OB的中点,连接CE并延长交..于点F,点F恰好落在AB的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=:BG;(2)假设AB=4,求DC的长.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是4ABG的中位线,即可得出答案; (2)首选得出△FOE^^CBE (ASA),那么BC=FO」AB=2,进而得出AC的长,再利用相似三角形2的判定与性质得出DC的长.【解答】(1)证实:二.以Rt^ABC的直角边AB为直径作.0,点F恰好落在的中点,AF=B F,/ AOF = /BOF,••• / ABC=/ABG=90 ;/ AOF = /ABG,FO // BG,••• AO=BO,FO是^ABG的中位线,FO =—BG ;2(2)解:在AFOE 和^CBE 中,^ZF0E=ZCBE,EO=BE ,b Z0EF=ZCEBAFOE^ACBE (ASA),BC=FO=—AB=2,2A M A B2+BC~2后连接DB,.「AB为.O直径,ZADB=90 ;ZADB=ZABC,••• /BCD = /ACB,ABCD^AACB,解得:DC=织S【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△ BCD^AACB是解题关键.21 . 〔2021泡州〕如图,在△ ABC中,点D, E分别在边AB, AC上,ZAED=ZB,射线AG分别交线段DE, BC于点F, G,且&-KZ. AC-CG(1)求证:△ADFs^ACG;〔2〕假设理〕求迎的值.AC 2 FG A【分析】〔1〕欲证实△ADFs^ACG,由理旦可知,只要证实/ADF = /C即可.AC CG〔2〕利用相似三角形的性质得到过」,由此即可证实.AG 2【解答】(1)证实:ZAED = ZB, /DAE = /DAE,/ADF = /C,..幽迹AC CGAADF^AACG.(2)解:••• AADF ^AACG,也幽AC AG'又•••迪」,AC 2.』二, 二'【点评】此题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于根底题中考常考题型.22. (2021?南京)如图,在?ABCD中,E是AD上一点,延长CE到点F,使/FBC=/DCE.(1)求证:ZD = ZF;(2)用直尺和圆规在AD上作出一点P,使△BPC S^CDP (保存作图的痕迹,不写作法)【分析】〔1〕BE 交AD 于G,先利用AD // BC 得到/FBC=/FGE ,力口上/FBC=/DCE ,所以/FGE =/DCE , 然后根据三角形内角和定理易得ZD = ZF;(2)分另1J作BC和BF的垂直平分线,它们相交于点O,然后以.为圆心,OC为半径作4BCF的外接圆.0,..交AD于P,连ZBP、CP,那么根据圆周角定理得到/F=/BPC,而/F=/D,所以/D=/BPC,接着可证实/PCD=/APB=/PBC,于是可判断△BPC S^CDP.【解答】(1)证实:BE交AD于G,如图,•••四边形ABCD为平行四边形,• . AD // BC,ZFBC=ZFGE,而/FBC=/DCE,ZFGE=ZDCE,••• ZGEF = ZDEC,/D = /F;(2)解:如图,点P为所作.【点评】此题考查了作图-相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决〔2〕小题的关键是利用圆周角定理作/BPC = /F.czsx。
青岛新版九年级数学上册《第1章图形的相似》单元测试(解析版)
![青岛新版九年级数学上册《第1章图形的相似》单元测试(解析版)](https://img.taocdn.com/s3/m/00474007312b3169a451a4ef.png)
《第1章图形的相似》 单元测试选择题(本大题共7小题,共28.0分)1. 如图,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论正确的是( )A. ∠E=2∠KB. BC=2HIC. 六边形ABCDEF 的周长=六边形GHIJKL 的周长D. S 六边形ABCDEF =2S 六边形GHIJKL【答案】B【解析】 试题分析:根据相似多边形的性质对各选项进行逐一分析即可.解:A 、∵六边形ABCDEF ∽六边形GHIJKL ,∴∠E=∠K ,故本选项错误;B 、∵六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,∴BC=2HI ,故本选项正确;C 、∵六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,∴六边形ABCDEF 的周长=六边形GHIJKL 的周长×2,故本选项错误; D 、∵六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,∴S 六边形ABCDEF =4S 六边形GHIJKL ,故本选项错误. 故选B .考点:相似多边形的性质.2.如图,在ABC 中,AD DE EF FB ===,AG GH HI IC ===,已知2BC =,则DG EH FI ++的长是( )A. 52B. 3C. 32D. 4【答案】B【解析】【分析】由于D 、E 、F 和G 、H 、I 分别是AB 、AC 的四等分点,则DG ∥EH ∥FI ,根据平行线分线段成比例定理,即可求出DG 、EH 、FI 和BC 的比例关系,由此可求出DG+EH+FI 的长.【详解】∵AD=DE=EF=FB ,AG=GH=HI=IC ,∴DG ∥EH ∥FI ; ∴14AD DG AB BC ==,即DG=14BC ;同理可得:EH=12BC ,FI=34BC ;∴DG+EH+FI=14BC+12BC+34BC=32BC=3;故选B . 【点睛】此题主要考查的是平行线分线段成比例定理的应用. 3.如图,梯形ABCD 中,//AB CD ,AC 、BD 交于E ,若DCE S :1BAE S =:9,则DCE S :BCE S 为()A. 1:9B. 1:4C. 1:3D. 9:1【答案】C【解析】【分析】由相似三角形的性质可求得DE :BE ,再利用同高三角形的面积比等于底的比,可求得答案.【详解】∵AB ∥CD ,∴△DCE ∽△BAE ,∴219DCEBAE S DES BE ==(),∴DE :BE=1:3,∵△DCE 和△BCE 是同高三角形,∴S △DCE :S △BCE =DE :BE=1:3,故选C.【点睛】本题主要考查相似三角形的判定和性质,由条件求得DE:BE是解题的关键,注意同高三角形的面积比等于其底的比.4.如图,AB∥CD∥EF,则图中相似三角形的对数为()A. 4对B. 3对C. 2对D. 1对【答案】B【解析】分析:由AB∥CD∥EF,根据平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似,可得△ACD∽△AEF,△ECD∽△EAB,△ADB∽△FDE.所以图中共有3对相似三角形.详解:∵AB∥CD∥EF,∴△ACD∽△AEF,△ECD∽△EAB,△ADB∽△FDE.∴图中共有3对相似三角形.故选B.点睛:考查了相似三角形的判定:平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似.5.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a- B.1(1)2a-+ C.1(1)2a-- D.1(3)2a-+【答案】D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.6.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CE交AD于E,点F是AB的中点,则S△AEF:S四边形BDEF为 ( )A. 3:4B. 1:2C. 2:3D. 1:3【答案】D【解析】【详解】∵DC=AC,∴△ADC是等腰三角形,∵∠ACB的平分线CE交AD于E,∴E为AD的中点(三线合一),又∵点F是AB的中点,∴EF为△ABD的中位线,∴EF=12BD,△AFE∽△ABD.∴S△AFE:S△ABD=1:4,∴S△AFE:S四边形BDEF=1:3,故选D.7. 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC 相似,则点E 的坐标不可能是A. (6,0)B. (6,3)C. (6,5)D. (4,2)【答案】B【解析】 试题分析:△ABC 中,∠ABC=90°,AB=6,BC=3,AB :BC=2.A 、当点E 的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB :BC=CD :DE ,△CDE ∽△ABC ,故本选项不符合题意;B 、当点E 的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB :BC≠CD :DE ,△CDE 与△ABC 不相似,故本选项符合题意;C 、当点E 的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB :BC=DE :CD ,△EDC ∽△ABC ,故本选项不符合题意;D 、当点E 的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB :BC=CD :CE ,△DCE ∽△ABC ,故本选项不符合题意.故选B .二、填空题(本大题共5小题,共20.0分)8.如图,直线11////l A A BB CC ,若8AB =,4BC =,116A B =,则线段11B C 长是_____ .【答案】3【解析】【分析】根据平行线分线段成比例定理,列出比例式,利用比例的基本性质即可得解.【详解】∵A l A ∥BB 1∥CC 1, ∴1111B C BC A B AB=, ∵AB=8,BC=4,A 1B 1=6,∴B 1C 1=3.【点睛】考查了平行线分线段成比例定理,明确线段之间的对应关系.9.如图,A ,B 两点被池塘隔开,在AB 外任选一点C ,连接AC ,BC ,在AC ,BC 上分别取其靠近C 点的三等分点M ,.N 量得38MN m ,则AB 的长为______ .m【答案】114【解析】【分析】由题易知△CMN ∽△CAB ,然后根据相似比等于对应线段的比求解.【详解】∵CM :CA=CN :CB=1:3∵∠C=∠C∴△CMN ∽△CAB∴MN :AB=CM :CA=1:3∵MN=38m∴AB=114m故答案是:114.【点睛】此题考查了相似三角形的判定与性质,如果两三角形的两组对应边的比相等,且其夹角对应相等,则这两个三角形相似;相似三角形的对应边的比相等.10.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,ΔPEF 、ΔPDC 、ΔPAB 的面积分别为S 、S 1、S 2.若S=2,则S 1+S 2=.【答案】8.【解析】∵E 、F 分别为PB 、PC 的中点,∴EF12BC .∴ΔPEF ∽ΔPBC .∴S ΔPBC =4SΔPEF =8. 又S ΔPBC =12S 平行四边形ABCD ,∴S 1+S 2=S ΔPDC +S ΔPAB =12S 平行四边形ABCD =5=8. 11.如图,∠1=∠2,添加一个条件使得△ADE ∽△ACB .【答案】∠D=∠C 或∠E=∠B 或=【解析】解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE ,即∠DAE=∠CAB .当∠D=∠C 或∠E=∠B 或=时,△ADE ∽△ACB12.如图,已知直线l :3y x =,过点()2,0M 作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点1M ;则 1M 的坐标为______ .【答案】()8,0【解析】【分析】直线l 的解析式是3x ,得到∠NOM=60°,∠ONM=30°.由点M 的坐标是(2,0),NM ∥y 轴,点N在直线y=3x 上,得到NM=23,解直角三角形即可得到结论.【详解】∵直线l 的解析式是y=3x ,∴∠NOM=60°,∠ONM=30°.∵点M 的坐标是(2,0),NM ∥y 轴,点N 在直线y=3x 上,∴NM=23,∴ON=2OM=4.又∵NM 1⊥l ,即∠ONM 1=90°,∴OM 1=2ON=4OM=8,∴M 1(8,0).【点睛】本题主要考查一次函数图象上点的坐标特点,涉及到如何根据一次的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.三、解答题(本大题共5小题,共52.0分)13.如图,四边形ABCD 各顶点的坐标分别为()2,6A ,()4,2B ,()6,2C ,()6,4D ,在第一象限内,画出以原点为位似中心,与原四边形ABCD 相似比为12的位似图形1111D C B A ,并写出各点坐标.【答案】图形详见解析,()11,3A ,()12,1B ,()13,1C 、()13,2D . 【解析】【分析】如图,连接OA 、OB 、OC 、OD ,分别取它们的中点A 1、B 1、C 1、D 1,四边形A 1B 1C 1D 1即为所求.根据图图象写出坐标即可.【详解】如图,连接OA 、OB 、OC 、OD ,分别取它们的中点1A 、1B 、1C 、1D ,四边形1111A B C D 即为所求()1.1,3A ,()12,1B ,()13,1C 、()13,2D .【点睛】本题考查作图-位似变换,相似比等知识,解题的关键是学会画位似图形,能根据图象写出点的坐标.14.如图所示,在平行四边形ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连接AE ,F 为AE 上的一点,且∠BFE =∠C ,求证:△ABF ∽△EAD .【答案】根据平行四边形的性质可得∠BAF=∠AED ,∠D+∠C=180°,再结合∠BFE=∠C ,∠BFE+∠BFA=180°,即可证得结论.【解析】【分析】由平行的性质结合条件可得到∠AFB=∠EDA 和∠BAE=∠AED ,可证得结论. 【详解】四边形ABCD 是平行四边形,//AD BC ∴,//AB CD ,180C D ∴∠+∠=,BAF AED ∠=∠,180AFB BFE ∠+∠=,BFE C ∠=∠,AFB D ∴∠=∠,ABF ∴∽EAD .【点睛】本题主要考查相似三角形的判定和平行线的性质,掌握相似三角形的判定方法是解题的关键. 15.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=α,且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG ,如果α=45°,AB =42,AF =3,求FG 的长.【答案】(1)△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM(写出两对即可)(2)53【解析】【分析】(1)根据已知条件,∠DME=∠A=∠B=α,结合∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,即可证相似; (2)根据相似三角形的性质,推出BG 的长度,依据锐角三角函数推出AC 的长度,即可求出CG 、CF 的长度,继而推出FG 的长度.【详解】(1)证明:∵∠DME=∠A∴∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,又∵∠A =∠B∴△AMF ∽△BGM .(2)当α=45°时,可得AC ⊥BC 且AC =BC =4∵M 为AB 的中点,∴AM =BM =2又∵AMF ∽△BGM ,∴AF BM AM BG= ∴222283AM BM BG AF ⨯===∴431=-=-=CF AC AF ,84433=-=-=CG BC BG ∴222245133FG CF CG ⎛⎫=+=+= ⎪⎝⎭ 【点睛】本题考查相似三角形的判定和性质,由相似得出线段比例关系是本题的关键.16.如图所示,在正方形ABCD 中,E 是BC 上的点连接.AE 作BF AE ⊥垂足为H ,交CD 于F 作//CG AE ,交BF 于.G求证:()1CG BH =;()22FC BF GF =⋅.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)根据正方形的性质可得AB=BC ,再利用同角的余角相等求出∠BAH=∠CBG ,再利用“角角边”证明△ABH 和△BCG 全等,根据全等三角形对应边相等可得CG=BH ;(2)利用两组角对应相等,两三角形相似求出△BCF 和△CGF 相似,然后根据相似三角形对应边成比例列式整理即可得证.【详解】证明:()1在正方形ABCD 中,AB BC =,90ABC ∠=,90ABH CBG ∴∠+∠=,BF AE ⊥,90BAH ABH ∴∠+∠=,BAH CBG ∴∠=∠,在ABH 和BCG 中,90BAH CBG AHB BGC AB BC ∠=∠⎧⎪∠=∠=⎨⎪=⎩,ABH ∴≌()BCG AAS ,CG BH ∴=;()2BF AE ⊥,//CG AE ,CG BF ∴⊥,BFC CFG ∠=∠,90BCD CGF ∠=∠=,BCF ∴∽CGF , FC BFGF FC∴=, 2FC BF GF ∴=⋅.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,(1)熟记各性质并求出三角形全等是解题的关键,(2)确定出CG⊥BF 并求出三角形相似是解题的关键. 17.如图:在ABC 中,5AB =,4AC =,P 是AB 上一点,且3AP =,若Q 在AC 上,试确定Q 点的位置,使以A 、P 、Q 为顶点的三角形与ABC 相似.【答案】当125AQ =或154时,以A 、P 、Q 为顶点的三角形与ABC 相似. 【解析】【分析】 由∠A 是公共角,可得当AP :AB=AQ :AC 时,△APQ ∽△ABC ,当AP :AC=AQ :AB 时,△APQ ∽△ACB ,继而求得答案.【详解】A ∠是公共角,∴当AP :AB AQ =:AC 时,APQ ∽ABC ,即3:5AQ=:4,解得:125 AQ=;当AP:AC AQ=:AB时,APQ∽ACB,即3:4AQ=:5,解得:154 AQ=;∴当125AQ=或154时,以A、P、Q为顶点的三角形与ABC相似.【点睛】此题考查了相似三角形的判定.注意掌握分类讨论思想的应用是解此题的关键.。
图形的相似单元测试(含答案)
![图形的相似单元测试(含答案)](https://img.taocdn.com/s3/m/5b1691ee941ea76e59fa0400.png)
图形的相似单元测试一、选择题1、【基础题】在比例尺为1:5000的地图上,量得甲,乙两地的距离为25 cm ,则甲、乙两地的实际距离是 ( ) A. 1250千米 B. 125千米 C. 12.5千米 D. 1.25千米2、【基础题】已知135=ab ,则ba b a +-的值是( ) ★ A. 32 B. 23 C. 49 D. 943、【基础题】如右图,在△ABC 中,看DE ∥BC ,12AD BD =,DE =4 cm ,则BC 的长为 ( ) A .8 cm B .12 cm C .11 cm D .10 cm4、【基础题】如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( ) A .1:1B .1:2C .1:3D .1:45、【基础题】如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( ) ★★★6、【基础题】下列结论不正确的是( ) ★ A. 所有的矩形都相似 B. 所有的正方形都相似 C. 所有的等腰直角三角形都相似 D. 所有的正八边形都相似7、【基础题】下列说法中正确的是( ) ★A. 位似图形可以通过平移而相互得到;B. 位似图形的对应边平行且相等C. 位似图形的位似中心不只有一个D. 位似中心到对应点的距离之比都相等8、【综合题Ⅰ】如右上图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与△ECP 相似的是( ) ★★★A. ∠APB =∠EPC ;B. ∠APE =90°C. P 是BC 的中点D. BP ︰BC =2︰3 9、【综合题Ⅱ】如右上图,Rt △ABC 中,AB ⊥AC ,AB =3, AC =4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =( ) A.35x + B. 45x -C.72D.21212525x x -10、【综合题Ⅲ】如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )AB CA. b a c =+B. b ac =C. 222b a c =+D. 22b a c == 二、填空题11、【基础题】在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上影长为50m ,那么古塔的高为 .12、【基础题】两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是 . 13、【综合题Ⅰ】如左下图,在△ABC 中,AB =5,D 、E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,那么AD·BC = .14、【基础题】如右上图,在△ABC 和△DEF 中,G 、H 分别是边BC 和EF 的中点,已知AB =2DE ,AC =2DF ,∠BAC =∠EDF . 那么AG :DH = ,△ABC 与△DEF 的面积比是 .15、【基础题】把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,边长应缩小到原来的____倍. 16、【综合Ⅱ】如左下图在Rt △ABC 中, ∠ACB =90°,CD ⊥AB 于D ,若AD =1,BD =4,则CD = .17、【基础题】如右上图,一人拿着一支厘米小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上12厘米的长度恰好遮住电线杆,已知手臂长约60厘米,则电线杆的高为 .18、【基础题】已知一本书的宽与长之比为黄金比,且这本书的长是20 cm ,则它的宽为_____cm.(结果保留根号) 19、【综合Ⅲ】顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么AD =__ 20、【提高题】如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △、323A B B △的面积分别为1、4,则图中三个阴影三角形面积之和为 .(第20题图)OA 1 A 2A 3A 4 AB B 1 B 2 B 3 14三、解答题21、【基础题】(2008无锡)如图,已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .22、【综合Ⅰ】如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F .求证BO 2=OF ·OE .23、如图,在平面直角坐标系中,已知OA=12 cm ,OB=6 cm ,点P 从O 点开始沿OA 边向点A 以1cm/s 的速度移动,点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (单位:秒) 表示移动的时间(06t ≤≤),那么: (1)当t 为何值时, △POQ 与△AOB 相似?(2)设△POQ 的面积为y ,求y 关于t 的函数解析式。
图形相似单元测试题及答案
![图形相似单元测试题及答案](https://img.taocdn.com/s3/m/6b6fc8ae951ea76e58fafab069dc5022aaea46bd.png)
图形相似单元测试题及答案# 图形相似单元测试题及答案一、选择题1. 两个图形相似的条件是什么?A. 面积相等B. 周长相等C. 对应角相等,对应边成比例D. 形状相同答案:C2. 如果两个三角形的对应边长比为2:3,那么它们的面积比是多少?A. 2:3B. 4:9C. 3:2D. 9:4答案:B3. 在相似图形中,对应角的大小关系是什么?A. 相等B. 互为补角C. 互为余角D. 不确定答案:A二、填空题4. 如果一个图形放大到原来的两倍,则其面积变为原来的________倍。
答案:45. 相似三角形的判定定理包括SSS(边边边)、SAS(边角边)、_______。
答案:AAA(角角角)三、简答题6. 请解释什么是相似比,并给出一个例子。
答案:相似比是指两个相似图形对应边长的比值。
例如,如果三角形ABC与三角形DEF相似,且AB:DE=2:3,那么2:3就是它们的相似比。
7. 描述如何判断两个多边形是否相似。
答案:要判断两个多边形是否相似,需要满足以下条件:对应角相等,且对应边成比例。
如果一个多边形的每个角和每条边都与另一个多边形的相应角和边成相同的比例,那么这两个多边形就是相似的。
四、计算题8. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,BC=8cm,求EF的长度。
答案:由于三角形ABC与三角形DEF相似,根据相似比,我们有AB:DE = BC:EF。
将已知数值代入,得到6:9 = 8:EF。
解这个比例,我们得到EF = (8 * 9) / 6 = 12cm。
结束语本单元测试题涵盖了图形相似的基本概念、判定方法和实际应用。
通过这些题目的练习,可以帮助学生加深对图形相似概念的理解和应用能力。
希望同学们能够认真完成这些题目,并在解答过程中发现问题、解决问题,从而提高自己的数学素养。
第六章《图形的相似》单元测试题(含答案)
![第六章《图形的相似》单元测试题(含答案)](https://img.taocdn.com/s3/m/f6a51c60f90f76c660371a06.png)
第六章《图形的相似》单元测试题一、选择题:(本题共10小题,每小题3分,共30分)1.若34yx=,则x yx+的值为()A. 1B. 47C.54D.742.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长为()A. 18cm;B. 5cm;C. 6cm;D. ±6cm;3.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. 252-B. 25- C. 251- D.52-4. 如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. ∠ABP=∠CB. ∠APB=∠ABCC. AP ABAB AC= D.AB ACBP CB=5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A. 1:16B. 1:6C. 1:4D. 1:26. 如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A. 4B. 7C. 3D. 127.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A. (1,2)B. (1,1)C. 22)D. (2,1)8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A. 1B. 2C. 3D. 49.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A. 4.5米B. 6米C. 7.2米D. 8米10. 如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A.2B. 2.5或3.5C. 3.5或4.5D. 2或3.5或4.5二、填空题:(本题共8小题,每小题3分,共24分) 11.如果在比例尺为1:1 000 000地图上,A 、B 两地的图上距离是3.4cm ,那么A 、B 两地的实际距离是____km .12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC=__.13.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,则位似中心的坐标是__.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为_____.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲.16.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.17.如图,双曲线y=kx经过Rt△BOC斜边上的点A,且满足23AOAB,与BC交于点D,S△BOD=21,求k=__.18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF =FG.其中正确的是_____.(把所有正确结论的序号都选上)三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.20.如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC.21.如图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.23.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为0.9米,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为1.2米,又测得地面部分的影长(BD)为2.7米,则他测得的树高应为多少米?24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的49,若AB=2,求△ABC移动的距离BE的长.25.如图,点A(1,4)、B(2,a)在函数y=mx(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.26.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O . M 为AD 中点,连接CM 交BD 于点N ,且1ON =.(1)求BD 的长;(2)若DCN ∆的面积为2,求四边形ABNM 的面积.27.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DO ⊥AB ,垂足为O ,点B ′在边AB 上,且与点B 关于直线DO 对称,连接DB ′,AD . (1)求证:△DOB ∽△ACB ;(2)若AD 平分∠CAB ,求线段BD 的长; (3)当△AB ′D 为等腰三角形时,求线段BD 的长.28.已知:如图,在矩形ABCD 中,AB=6cm ,BC=8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式; (3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.一、选择题:(本题共10小题,每小题3分,共30分)1.若34y x =,则x yx+的值为( ) A. 1 B. 47C.54D.74【答案】D 【解析】【详解】∵34y x =, ∴x y x +=434+=74,故选D2.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a=9cm ,b=4cm ,则线段c 长为( ) A. 18cm ; B. 5cm ;C. 6cm ;D. ±6cm ;【答案】C 【解析】根据比例中项的概念,当两个比例内项相同时,就叫比例中项,再列出比例式即可得出c . 解:根据比例中项的概念,得c 2=ab=36,c=±6, 又线段不能是负数,-6应舍去,取c=6, 故选C .“点睛”考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.3.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A. 252B. 25C. 51D.52【答案】A 【解析】根据黄金比的定义得:51AP AB -=,得514252AP -== .故选A. 4. 如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A. ∠ABP=∠CB. ∠APB=∠ABCC. AP ABAB AC= D.AB ACBP CB=【答案】D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A. 1:16B. 1:6C. 1:4D. 1:2 【答案】D【解析】【分析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形周长的比等于相似比解答即可.【详解】解:Q两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.6. 如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A. 4B. 7C. 3D. 12 【答案】B【解析】试题分析:∵DE:EA=3:4,∴DE:DA=3:7,∵EF∥AB,∴DE EFDA AB=,∵EF=3,∴337AB=,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.考点:1.相似三角形的判定与性质;2.平行四边形的性质.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A. (1,2)B. (1,1)C. (2,2)D. (2,1)【答案】B【解析】【详解】∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=22,∴A(12,12),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.【此处有视频,请去附件查看】8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A. 1B. 2C. 3D. 4【答案】B【解析】试题分析:∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故选B.考点:1.相似三角形的判定与性质;2.等边三角形的性质.9.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A. 4.5米B. 6米C. 7.2米D. 8米【答案】B 【解析】 试题分析:如图:根据题意可得:Rt △DCG ∽Rt △DBA ,Rt △FEH ∽Rt △FBA ,所以CD CG BD AB =,EF EH CGBF AB AB==,∴CD EFBD BF=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x ,BC=y ,∴1 1.51y x =+,2 1.55y x =+,∴2151y y =++,∴y=3m ,∴1.514x =,解得:x=6米.即路灯A 的高度AB=6米.考点:相似三角形的判定与性质.10. 如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A. 2B. 2.5或3.5C. 3.5或4.5D. 2或3.5或4.5【答案】D【解析】 试题分析:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ). ∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=12BC=1(cm ),BE=AB ﹣AE=4﹣t (cm ), 若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°.∴BE=12BD=12(cm ). 当A →B 时,t=4﹣0.5=3.5;当B →A 时,t=4+0.5=4.5.若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°.∴BE=2BD=2(cm ).当A →B 时,∴t=4﹣2=2;当B →A 时,t=4+2=6(舍去).综上可得:t 的值为2或3.5或4.5.故选D .二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A 、B 两地的图上距离是3.4cm ,那么A 、B 两地的实际距离是____km .【答案】34【解析】【分析】根据比例尺的定义:实际距离=图上距离:比例尺,由题意代入数据可直接得出实际距离.【详解】根据题意,13.434000001000000÷=厘米=34千米. 即实际距离是34千米.故答案为:34.【点睛】本题考查了比例尺的定义,熟练掌握实际距离、图上距离和比例尺的关系是解决本题的关键. 12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC=__.【答案】15【解析】l 1∥l 2∥l 3,AB DE AB BC EF DE=++,所以6512.5AC,所以AC=15.13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.【答案】(9,0)【解析】【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为_____.【答案】9【解析】设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×3=9,故答案为9.点睛:证明相似三角形:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似.(2)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似(3)两边成比例且夹角相等的两个三角形相似. (4)三边成比例的两个三角形相似. (5)证明两个对应角相等的过程中,经常使用等腰三角形,等边三角形,特殊矩形,菱形,平行四边形构成的等角作为桥梁,成为解题的关键.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB ,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲.【答案】5.5【解析】【详解】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形【此处有视频,请去附件查看】16.如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB=12,AC=8,AD=6,当AP 的长度为__时,△ADP 和△ABC 相似.【答案】4或9.【解析】当△ADP ∽△ACB 时,需有AP AD AB AC =,∴6128AP =,解得AP =9.当△ADP ∽△ABC 时,需有AP AD AC AB=,∴6812AP =,解得AP =4.∴当AP 的长为4或9时,△ADP 和△ABC 相似. 17.如图,双曲线y=k x 经过Rt △BOC 斜边上的点A ,且满足23AO AB =,与BC 交于点D ,S △BOD =21,求k=__.【答案】8 【解析】 试题分析:解:过A 作AE ⊥x 轴于点E .因为S △OAE =S △OCD ,所以S 四边形AECB =S △BOD =21,因为AE ∥BC ,所以△OAE ∽△OBC ,所以==()2=,所以S △OAE =4,则k=8.考点:1.相似三角形的判定与性质;2.反比例函数的性质.【此处有视频,请去附件查看】18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF =FG.其中正确的是_____.(把所有正确结论的序号都选上)【答案】①③④【解析】试题解析:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF=22106=8,∴DF=AD-AF=10-8=2,设EF=x,则CE=x,DE=CD-CE=6-x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6-x)2+22=x2,解得x=103,∴ED= 83,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=12∠ABC=45°,所以①正确;HF=BF-BH=10-6=4,设AG=y,则GH=y,GF=8-y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8-y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,69843ABDE==,32AGDF=,∴AB AGDE DF≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=12•6•3=9,S△FGH=12•GH•HF=12×3×4=6,∴S△ABG=32S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.∴①③④正确.【此处有视频,请去附件查看】三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.【答案】(1)证明见解析;(2)245.【解析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB.试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.20.如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC.【答案】25cm2.【解析】试题分析:利用平行证明三角形相似,再利用相似的性质求三角形面积.试题解析:解:∵DE∥BC,EF∥AB,∴∠A=∠FEC,∠AED=∠C,∴△ADE∽△ECF;∴S△ADE:S△ECF=(AE:EC)2,∵S△ADE=4cm2,S△EFC=9cm2,∴(AE:EC)2=4:9,∴AE:EC=2:3,即EC:AE=3:2,∴(EC+AE):AE=5:2,即AC:AE=5:2.∵DE∥BC,∴∠C=∠AED,又∵∠A=∠A,∴△ABC∽△ADE,∴S△ABC:S△ADE=(AC:AE)2,∴S△ABC:4=(5:2)2,∴S△ABC=25cm2.21.如图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【答案】(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵AD CD CD BD.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.【此处有视频,请去附件查看】22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【答案】(1)作图见解析;(2)作图见解析;A2坐标(﹣2,﹣2).【解析】试题分析(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点的位置进而得出.试题解析:⑴如图所示: △A1B1C1,即为所求;⑵如图所示△A2B2C2,即为所求;A2坐标(-2,-2)23.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为0.9米,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为1.2米,又测得地面部分的影长(BD)为2.7米,则他测得的树高应为多少米?【答案】测得的树高为4.2米.【解析】先求出墙上的影高CD落在地面上时的长度,再设树高为h,根据同一时刻物高与影长成正比列出关系式求出h的值即可24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的49,若AB=2,求△ABC移动的距离BE的长.【答案】4 3【解析】试题分析:证明平移前后图象的相似,再根据相似的性质定理求BE长. 试题解析:解:∵把△ABC沿边BA平移到△DEF的位置,∴E F∥AC,∴△BEG∽△BAC,∴BEABBEGABCSSnn23,∵AB=2,∴BE=43.25.如图,点A(1,4)、B(2,a)在函数y=mx(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.【答案】(1)4;(2)C的坐标为(3,0);(3)(﹣2,0).【解析】试题分析:(1)把点代入求值.(2)先利用反比例函数求出A,B,点坐标,再利用待定系数法求直线方程.(3)假设存在E点,因为n ACD是直角三角形,假设n ABE也是直角三角形,利用勾股定理分别计算A,B,C,是直角时AB长度,均与已知矛盾,所以不存在.试题解析:解:(1)∵点A(1,4)在反比例函数y=mx(x>0)的图象上,∴m=1×4=4,故答案为4.(2)∵点B(2,a)在反比例函数y=4x的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴422k bk b=+⎧⎨=+⎩,解得:26kb=-⎧⎨=⎩,∴过点A、B的直线的解析式为y=﹣2x+6.当y=0时,有﹣2x+6=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,4),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,4),B(2,2),∴AB=5,2>5,2∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).26.如图,在平行四边形ABCD中,对角线AC,BD交于点O. M为AD中点,连接CMON=.交BD于点N,且1(1)求BD的长;∆的面积为2,求四边形ABNM的面积.(2)若DCN【答案】(1)6;(2)5.【解析】【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到S△MND:S△CND=1:4,可得到△MND面积为1,△MCD面积为3,由S平行四边形ABCD=AD•h,S△MCD=MD•h=AD•h,=4S△MCD,即可求得答案.【详解】(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴MD DN BC BN,∵M为AD中点,所以BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3, ∴BD=2x=6;(2)、∵△MND∽△CNB,且相似比为1:2,∴MN:CN=1:2,∴S△MND:S△CND=1:4,∵△DCN的面积为2,∴△MND面积为1,∴△MCD面积为3,设平行四边形AD边上的高为h,∵S平行四边形ABCD=AD•h,S△MCD=12MD•h=14AD•h,∴S平行四边形ABCD=4S△MCD=12,∴S△ABD=6,∴S四边形ABNM= S△ABD- S△MND =6-1=5.【点睛】本题考查相似三角形的性质与判定,解题的关键是熟悉相似三角形的判定与性质与平行四边形的性质.27. 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO 对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.【答案】(1)证明见试题解析;(2)5;(3)50 13.【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD =x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x, AB′,B′O,BO用x表示,利用等腰三角形求BD长.试题解析:(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC ,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶5,设BD =x ,则DO =DC =35x ,BO =45x , ∵CD +BD =8,∴35x +x =8,解得x =,5,即:BD =5. (3)∵点B 与点B ′关于直线DO 对称,∴∠B =∠OB ′D ,BO =B ′O =45x ,BD =B ′D =x , ∵∠B 为锐角,∴∠OB ′D 也为锐角,∴∠AB ′D 为钝角,∴当△AB ′D 是等腰三角形时,AB ′=DB ′,∵AB ′+B ′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB ′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =. ②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4) ④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)【此处有视频,请去附件查看】28.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P 从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)258或5;(2)213=1232S t t-++;(3)92;(4)2.88.【解析】试题分析:(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质表示出EH,根据相似三角形的性质表示出QM,FQ,根据图形的面积即可得到结论;(3)根据题意列方程得到t的值,于是得到结论;(4)由角平分线的性质得到DM的长,根据勾股定理得到ON的长,由三角形的面积公式表示出OP,根据勾股定理列方程即可得到结论.试题解析:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP =PO =t ,如图1,过P 作PM ⊥AO ,∴AM =12AO =52, ∵∠PMA =∠ADC =90°,∠PAM =∠CAD ,∴△APM ∽△ADC , ∴AP AM AC AD=, ∴AP =t =258, ②当AP =AO =t =5,∴当t 为258或5时,△AOP 是等腰三角形; (2)作EH ⊥AC 于H ,QM ⊥AC 于M ,DN ⊥AC 于N ,交QF 于G ,在△APO 与△CEO 中,∵∠PAO =∠ECO ,AO =OC ,∠AOP =∠COE ,∴△AOP ≌△COE ,∴CE =AP =t ,∵△CEH ∽△ABC , ∴EH CE AB AC=, ∴EH =35t , ∵DN =AD CD AC ⋅=245, ∵QM ∥DN ,∴△CQM ∽△CDN , ∴QM CQ DN CD =,即62465QM t -=, ∴QM =2445t -, ∴DG =2424455t --=45t , ∵FQ ∥AC ,∴△DFQ ∽△DOC , ∴FQ DG OC DN=, ∴FQ =56t , ∴S 五边形OECQF =S △OEC +S 四边形OCQF =13152445(5)25265t t t -⨯⨯++⋅=2131232t t -++,∴S 与t 的函数关系式为2131232S t t =-++; (3)存在,∵S △ACD =12×6×8=24, ∴S 五边形OECQF :S △ACD =(2131232t t -++):24=9:16,解得t =92,t =0,(不合题意,舍去),∴t =92时,S 五边形S 五边形OECQF :S △ACD =9:16; (4)如图3,过D 作DM ⊥AC 于M ,DN ⊥AC 于N , ∵∠POD =∠COD ,∴DM =DN =245, ∴ON =OM =22OD DN -=75, ∵OP •DM =3PD ,∴OP =558t -, ∴PM =18558t -, ∵222PD PM DM =+,∴22218524(8)()()585t t -=-+,解得:t ≈15(不合题意,舍去),t ≈2.88, ∴当t =2.88时,OD 平分∠COP .。
青岛版九年级数学上册《第1章图形的相似》单元测试卷-带答案
![青岛版九年级数学上册《第1章图形的相似》单元测试卷-带答案](https://img.taocdn.com/s3/m/7e327d412379168884868762caaedd3382c4b512.png)
青岛版九年级数学上册《第1章图形的相似》单元测试卷-带答案学校:___________班级:___________姓名:___________考号:___________(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.【新独家原创】如图,用放大镜看一个等腰三角形,该三角形边长放大到原来的10倍后,下列结论不正确的是()A.角的大小不变B.周长是原来的10倍C.底边上的高是原来的10倍D.面积是原来的10倍2.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=6,则线段AC的长为()A.12B.18C.24D.303.如图所示的两个五边形相似,则以下a,b,c,d的值错误的是(M910102) ()A.a=3B.b=4.5C.c=4D.d=84.如图,已知△ABC的六个元素,其中a、b、c表示三角形三边的长,则甲、乙、丙、丁四个三角形中与△ABC 不一定相似的是()A.甲B.乙C.丙D.丁5.【主题教育·中华优秀传统文化】中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF.观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论正确的是()A.CECA =CFBFB.CFBF=EFABC.CEAE=EFABD.CECA=EFAB6.如图,四边形ABCD与四边形A'B'C'D'是位似图形,点O是位似中心,若OA∶AA'=2∶1,则四边形ABCD与四边形A'B'C'D'的面积之比等于() A.1∶2 B.1∶4 C.2∶3 D.4∶97.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍.设点B的对应点B'的横坐标是a,则点B的横坐标是()A.-12a B.-12(a+1) C.-12(a-1) D.-12(a+3)第7题图第8题图8.圆桌上方的灯泡(看做一个点)发出的光线照射到桌面后,在地面上形成阴影,如图,已知桌面的直径为1.2 m,桌面距离地面1 m,若灯泡距离地面3 m,则地面上阴影部分的面积为()A.0.36π m2B.0.81π m2C.2π m2D.3.24π m29.【双垂直模型】如图,嘉嘉在A时测得一棵4 m高的树的影长DF为8 m,若A时和B时两次日照的光线互相垂直,则B时的影长DE为() A.2 m B.2√5m C.4 m D.4√2m第9题图第10题图10.如图,在△ABC中,CH⊥AB于H,CH=h,AB=c,若内接正方形DEFG的边长是x,则h、c、x的数量关系为()A.x2+h2=c2B.12x+h=c C.h2=xc D.1x=1ℎ+1c二、填空题(每小题3分,共18分)11.【X字模型】如图,已知△OAB与△OA'B'是相似比为1∶2的位似图形,点O为位似中心,若△OAB 内一点P(x,y)与△OA'B'内一点P'是一对对应点,则P'的坐标是。
九年级上册数学单元测试卷-第1章 图形的相似-青岛版(含答案)
![九年级上册数学单元测试卷-第1章 图形的相似-青岛版(含答案)](https://img.taocdn.com/s3/m/5a07f5ed866fb84ae55c8d69.png)
九年级上册数学单元测试卷-第1章图形的相似-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,已知DE∥BC,CD和BE相交于点O,S△DOE∶S△COB=9∶16,则DE∶BC为()A.2∶3B.3∶4C.9∶16D.1∶22、在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是()A.18米B.16米C.20米D.15米3、如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP 的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2B.2C.D.34、如图,将△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,则下列结论错误的是()A.AE⊥AFB.EF︰AF=︰1C.AF 2=FH·FED.FB︰FC=HB ︰EC5、下列说法正确的是()A.所有菱形都相似B.所有矩形都相似C.所有正方形都相似D.所有平行四边形都相似6、如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对B.3对C.2对D.1对7、如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为A.9B.12C.15D.188、如图,中,点在线段上,且,则下列结论一定正确是()A. B. C. D.9、如图,在中,点D,E分别是,的中点,与交于点O,连接.下列结论:(1);(2);(3);(4).其中正确的个数有()A.4B.3C.2D.110、若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2B.1:4C.1:5D.1:1611、如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为()A.6.4米B.8米C.9.6米D.11.2米12、若△ABC∽△DEF,AB:DE=2:1且△ABC的周长为16,则△DEF的周长为()A.4B.16C.8D.3213、如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A 的坐标为()A.(2,4)B.(2,6)C.(3,6)D.(3,4)14、如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFDB.△BAC∽△OFDC.DF∥ACD.OD=BC15、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺二、填空题(共10题,共计30分)16、已知与相似,并且点A与点,点B与点、点C与点是对应顶点,其中∠A=80°,,则∠C=________度17、如图,矩形中,,E为的中点,连接、交于点P,过点P作于点Q,则________.18、如图,中,点是边上一点,交于点,若,,的面积是1,则的面积为________.19、如图,以点O为位似中心,将放大后得到,,则________.20、如图,△ABC中,∠C=90°,AC=BC=2,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2,照此规律作下去,则S1=________,S2017=________.21、如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A′,当△A′FC为以FC为直角边的直角三角形时,对应的MA的长为________.22、如图,矩形AOBC的边OA,OB分别在x轴,y轴上,点C的坐标为(﹣2,4),将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为________.23、将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=4,AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是________.24、如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形.已知△AOB与△A1OB1位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为________.25、如图:平行四边形ABCD中,E为AB中点,,连E、F交AC于G,则AG:GC=________;三、解答题(共5题,共计25分)26、如图,△DEF是△ABC经过位似变换得到的,位似中心是点O,请确定点O的位置,如果OC=3.6cm,OF=2.4cm,求它们的相似比.27、在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;(Ⅱ)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).28、大唐芙蓉园是中国第一个全方位展示盛唐风貌的大型皇家园林式文化主题公园,全园标志性建筑一紫云楼为代表,展示了“形神升腾紫云景,天下臣服帝王心”的唐代帝王风范(如图①).小风和小花等同学想用一些测量工具和所学的几何知识测量“紫云楼”的高度,来检验自己掌握知识和运用知识的能力,他们经过研究需要两次测量:首先,在阳光下,小风在紫云楼影子的末端C点处竖立一根标杆CD,此时,小花测得标杆CD的影长CE =2米,CD=2米;然后,小风从C点沿BC方向走了5.4米,到达G处,在G处竖立标杆FG,接着沿BG后退到点M处时,恰好看见紫云楼顶端A,标杆顶端F在一条直线上,此时,小花测得GM=0.6米,小风的眼睛到地面的距离HM=1.5米,FG=2米.如图②,已知AB⊥BM,CD⊥BM,FG⊥BM,HM⊥BM,请你根据题中提供的相关信息,求出紫云楼的高AB.29、如图所示是测量河宽的示意图,与相交于点于点,于点,测得,求河宽.30、如图, △ABC内接于⊙O, AD⊥BC于D, AE是⊙O的直径. 若AB=6, AC=8, AE=11, 求AD的长.参考答案一、单选题(共15题,共计45分)2、A3、C4、C5、C6、B7、A8、C9、A10、A11、C12、C13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。
九年级数学上册第三章《图形的相似》单元测试卷-湘教版(含答案)
![九年级数学上册第三章《图形的相似》单元测试卷-湘教版(含答案)](https://img.taocdn.com/s3/m/a6fc35c4b9f67c1cfad6195f312b3169a451ea12.png)
九年级数学上册第三章《图形的相似》单元测试卷-湘教版(含答案) 一、选择题(本题共计12小题,每题3分,共计36分,) 1.下列图形中不一定相似的是A .两个矩形B .两个圆C .两个正方形D .两个等边三角形2.下面四条线段中成比例线段的是A .1a =,2b =,3c =,4d =B .3a =,6b =,9c =,12c =C .1a =,3b =,2c =,6d =D .1a =,2b =,4c =,6d =3.如图,四边形ABCD ∽四边形EFGH ,80A ∠=︒,90C ∠=︒,70F ∠=︒,则H ∠等于A .70︒B .80︒C .110︒D .120︒4.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点()AC BC >,下列结论正确的是A .2AB AC BC = B .2BC AC BC = C .512AC BC -=D .352BC AB -= 5.如图,已知////AD BE CF ,23AB BC =,3DE =,则DF 的长为 A .2 B .4.5 C .3 D .7.56.如图,D 是ABC ∆的边AC 上一点,那么下面四个命题中错误的是A .如果ADB ABC ∠=∠,则ADB ABC ∆∆∽B .如果ABDC ∠=∠,则ABD ACB ∆∆∽ C .如果AB AD AC AB =,则ABC ADB ∆∆∽ D .如果AD AB AB BC=,则ADB ABC ∆∆∽ 7.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边60DE cm =,30EF cm =,测得边DF 离地面的高度 1.5AC m =,10CD m =,则树高AB 为A .4mB .5mC .5.5mD .6.5m第3题图 第5题图 第6题图 第7题图 第8题图8.如图所示,在离某建筑物4m 处有一棵树,在某时刻,1.2m 长的竹竿垂直地面,影长为2m ,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m ,则这棵树高约有多少米A .6.4米B .5.4米C .4.4米D .3.4米9.点D 是线段AB 的黄金分割点()AD BD >,若2AB =,则(BD =A 51-B 35-C .35D 5110.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,//DE BC ,8AC =,6AE =,12AB =,则BD 等于A .3B .9C .6D .811.如图,在ABC ∆,D 是BC 上一点,:1:2BD CD =,E 是AD 上一点,:1:2DE AE =,连接CE ,CE 的延长线交AB 于F ,则:AF AB 为A .1:2B .2:3C .4:3D .4:712.如图所示,为了测量文昌塔AB 的高度,数学兴趣小组根据光的反射定理(图中12)∠=∠,把一面镜子放在点C 处,然后观测者沿着直线BC 后退到点D .这时恰好在镜子里看到塔顶A ,此时量得4CD m =,94BD m =,观测者目高 1.6ED m =,则塔AB 的高度为A .35mB .36mC .37mD .38m第10题图 第11题图 第12题图 二、填空题(本题共计6小题,每题3分,共计18分) 13.若两个相似三角形对应角平分线的比是2:3,它们的周长之和为15cm ,则较小的三角形的周长为 .14.如图,平面直角坐标系中有正方形ABCD 和正方形EFGH ,若点A 和点E 的坐标分别为(2,3)-,(1,1)-,则两个正方形的位似中心的坐标是 .15.设223x y x -=,则x y = . 16.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为1:3,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为5,则C 点坐标为 .17.如图,ABC ∆中,D 是AB 的黄金分割点()AD BD <,过点D 作//DE BC 交AC 于E ,若35BC =+,则DE = .第14题图 第16题图 第17题图18.四条线段a ,b ,c ,d 成比例,其中3b cm =,2c cm =,8d cm =,则a 的长为 .三.解答题(共8小题,共66分)19.已知a 、b 、c 为ABC ∆的三边长,且48a b c ++=,457a b c ==,求ABC ∆三边的长.20.如图,在68⨯的网格图中,每个小正方形边长均为1,点O 和ABC ∆的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A B C ''',使△A B C '''和ABC ∆位似,且位似比为1:2.(2)连接(1)中的AA ',求四边形AA C C ''的周长.(结果保留根号)21.如图,在ABC ∆中,D 是AB 的中点,F 是BC 边延长线上的点,连接DF 交AC 于点E .求证:::CF BF CE AE =.(提示:过点C 作//)CG AB22.如图,在ABC ∆中,4BC =,D 为AC 延长线上一点,3AC CD =,CBD A ∠=∠,过D 作//DH AB ,交BC 的延长线于点H .(1)试说明:HCD HDB ∆∆∽.(2)求DH 的长.23.在ABC ∆中,10BC cm =,6AC cm =,点P 从点B出发,沿BC 方向以2/cm s 的速度向点C 移动,点Q 从点C 出发,沿CA 方向以1/cm s 的速度向点A 移动,若P ,Q 同时出发,设运动时间为ts ,则CPQ ∆能否与CBA ∆相似?若能,求t 的值;若不能,请说明理由.24.如图,是一个零件图,利用三角形位似的知识,以O 为位似中心把原图尺寸放大2倍.25.我们定义:顶角等于36︒的等腰三角形为黄金三角形.如图,ABC ∆中,AB AC =且36A ∠=︒,则ABC ∆为黄金三角形.(1)尺规作图:作B ∠的角平分线,交AC 于点D .(保留作图痕迹,不写作法)(2)请判断BDC ∆是否为黄金三角形,如果是,请给出证明,如果不是,请说明理由.26.阅读下列材料,并按要求完成相应的任务.黄金三角形与五角星当等腰三角形的顶角为36︒(或108)︒时,它的底与腰的比(或腰与底的比)为512-,我们把这样的三角形叫做黄金三角形.按下面的步骤画一个五角星(如图):①作一个以AB为直径的圆,圆心为O;②过圆心O作半径OC AB⊥;③取OC的中点D,连接AD;④以D为圆心OD为半径画弧交AD于点E;⑤从点A开始以AE为半径顺时针依次画弧,正好把O十等分(其中点F,G,B,H,I为五等分点);⑥以点F,G,B,H,I为顶点画出五角星.任务:(1)求出AEOA的值为;(2)如图,GH与BF,BI分别交于点M,N,求证:BMN∆是黄金三角形.参考答案 一、选择题(本题共计12小题,每题3分,共计36分,) 1.A .2.C .3.D .4.D . 5.D . 6.D . 7.D .8.C .9.C .10.A .11.D .12.B .二、填空题(本题共计6小题,每题3分,共计18分)13.6cm . 14.1(4,0)或3(4,)2-. 15. 34. 16. 5(2,5)3. 17. 2. 18.34cm . 三.解答题(共8小题,共66分)19.解:设457a b c x ===, 得4a x =,5b x =,7c x =.48a b c ++=,45748x x x ∴++=,解得3x =,412a x ∴==,515b x ==,721c x ==.20.解:(1)如图所示,△A B C '''即为所求作的三角形;(2)根据勾股定理,222425AC =+=, 22125A C ''=+=,所以,四边形AAC C ''的周长为:15225335+++=+.21.证明:过点C 作//CG AB 交DF 于G , ∴CE CG AE AD=, D 是AB 的中点,AD BD ∴=,∴CG CE BD AE=, //CG AB ,BD FB::CF BF CE AE ∴=.22.解:(1)//DH AB ,A HDC ∴∠=∠,CBD A ∠=∠,HDC CBD ∴∠=∠,又H H ∠=∠,HCD HDB ∴∆∆∽;(2)//DH AB , ∴CD CH AC BC=, 3AC CD =, ∴134CH =, 43CH ∴=, 416433BH BC CH ∴=+=+=, 由(1)知HCD HDB ∆∆∽, ∴DH CH BH DH=, ∴43163DH DH= ∴64893DH ==, 83DH ∴=(负值舍去). 答:DH 的长度为83. 23.解:设运动时间为ts ,则2BP t =,102CP t =-,CQ t =, 90PCQ ACB ∠=∠=︒,∴当CPQ ∆和CAB ∆相似时,有CPQ B ∠=∠或CPQ A ∠=∠, 当CPQ B ∠=∠时,则有CP CQ CB CA =,106解得3011t =. 当CPQ A ∠=∠时,则有CP CQ CA CB =, ∴102610t t -=, 解得5013t =. 综上所述,t 的值为3011或5013. 24.解:如图,25.解:(1)如图所示,BD 即为所求;(2)BDC ∆是黄金三角形,理由如下: BD 是ABC ∠的平分线,36ABD CBD ∴∠=∠=︒,36A ∠=︒,AB AC =,1(18036)722ABC C ∴∠=∠=︒-︒=︒, 又72BDC A ABD ∠=∠+∠=︒, BDC C ∴∠=∠,BD BC ∴=,BDC ∴∆是黄金三角形.26.(1)解:设2OA OC m ==,则OD DC m ==, OC AB ⊥,90AOD ∴∠=︒,2222(2)5AD OD AO m m m ∴=+=+=, DE DO m ==,5AE m m ∴=-,∴55122AE m m OA m --==.故答案为:512-. (2)证明:连接OH ,OI . 点F ,G ,B ,H ,I 为五等分点,1360725HOI ∴∠=⨯︒=︒, 36G ∴∠=︒,同理36F FBI GHF BIG ∠=∠=∠=∠=︒, 又BMN ∠是MHF ∆的外角, 72BMN F GHF ∴∠=∠+∠=︒, 同理72BNM ∠=︒,BMN BNM ∴∠=∠,BM BN ∴=,36FBI ∠=︒,BMN ∴∆是黄金三角形.。
北师大版九上数学第四章 图形的相似 2016秋《名校课堂》单元测试(含答案)
![北师大版九上数学第四章 图形的相似 2016秋《名校课堂》单元测试(含答案)](https://img.taocdn.com/s3/m/c7ecce17f111f18583d05a73.png)
单元测试(四) 图形的相似(BJ )(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1、如果mn =ab ,那么下列比例式中错误的是( )A 、a m =n bB 、a n =m bC 、m a =n bD 、m a =b n2.若△ABC ∽△DEF ,且AB ∶DE =2∶3,则AB 与DE 边上的高h 1与h 2之比为( ) A .2∶3 B .3∶2 C .4∶9 D .9∶4 3.若△ABC ∽△A ′B ′C ′,∠A =40°,∠B =110°,则∠C ′=( )A .40°B .110°C .70°D .30°4.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别交于点A 、B 、C 和点D 、E 、F 、若AB BC =23,DE =4,则EF 的长是( )A 、83B 、203 C .6 D .105.下列说法不正确的是( )A .两角对应相等的三角形是相似三角形B .两边对应成比例的三角形是相似三角形C .三边对应成比例的三角形是相似三角形D .两个等边三角形一定是相似三角形6.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形( ) A .一定不相似 B .不一定相似 C .一定相似 D .不能确定7.已知△ABC 的三边长分别为6 cm ,7、5 cm ,9 cm ,△DEF 的一边长为4 cm ,若想得到这两个三角形相似,则△DEF 的另两边长是下列的( )A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm8.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12、36 cmB .13、6 cmC .32、36 cmD .7、64 cm9.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A ,B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为12 m ,由此他就知道了A ,B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =24 m B .MN ∥ABC .△CMN ∽△CABD .CM ∶MA =1∶2 10.如图,有两个形状相同的星星图案,则x 的值为( )A .6B .8C .10D .12(第10题) (第11题) (第12题)11.如图,在□ABCD 中,E 为AD 的中点,△DEF 的面积为1,则△BCF 的面积为( ) A .1 B .2 C .3 D .412.小明在打网球时,为使球恰好能过网(网高0、8米),且落在对方区域离网5米的位置上,已知她的击球高度是2、4米,则她应站在离网( )A .7、5米处B .8米处C .10米处D .15米处13.已知△ABC 在直角坐标系中的位置如图所示,以O 为位似中心,把△ABC 放大2倍得到△A ′B ′C ′,那么A ′的坐标为( )A .(-8,-4)B .(-8,4)C .(8,-4)D .(-8,4)或(8,-4)14.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB =∠EPC ;②∠APE =∠APB ;③P 是BC 的中点;④BP ∶BC =2∶3、其中能推出△ABP ∽△ECP 的有( ) A .4个 B .3个 C .2个 D .1个(第14题) (第15题) (第17题)15.如图,D 是△ABC 一边BC 上一点,连接AD ,使△ABC ∽△DBA 的条件是( ) A .AC ∶BC =AD ∶BD B .AC ∶BC =AB ∶AD C .AB 2=CD ·BC D .AB 2=BD ·BC二、填空题(本大题共5小题,每小题5分,共25分) 16.若x ∶y =1∶2,则x -yx +y=________、17.如图,∵∠A =∠D ,∠B =∠E ,∴△ABC ∽△________、18.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,则位似中心的坐标是________.(第18题) (第19题) (第20题)19.如图,在△ABC 中,AB =AC ,∠BAC =40°,点D 是AC 上的动点,当∠BDC =________时,△ABC ∽△BD C 、 20.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE =1,则 DF 的长为________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)如图,已知:在△ABC 与△DEF 中,∠A =44°,∠B =73°,∠D =44°,∠F =63°、求证:△ABC ∽△DEF 、22.(8分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F 、求证:△ACB ∽△DCE ;23.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (-1,2),B (-3,4),C (-2,6). (1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2、24.(12分)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CD BD 、(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小.25.(12分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与底面保持平行并使边DE 与旗杆顶点A 在同一直线上,已知DE =0、5米,EF =0、25米,目测点D 到地面的距离DG =1、5米,到旗杆的水平距离DC =20米,求旗杆的高度.26、(14分)如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x、(1)求证:△ABC∽△BCD;(2)求x的值.27.(16分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=B D、连接MF,NF、(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.参考答案1. C 2、A 3、D 4、C 5、B 6、C 7、C 8、A 9、D 10、B 11、D 12、C 13、D 14、C 15、D16、-13 17、DEF 18、(9,0) 19、70° 20、32 21、证明:在△DEF 中,∠E =180°-∠D -∠F =180°-44°-63°=73°、∵∠A =∠D =44°,∠B =∠E =73°,∴△ABC ∽△DEF 、 22、证明:∵AC DC =32,BC CE =64=32,∴AC DC =BCCE、又∵∠ACB =∠DCE =90°,∴△ACB ∽△DCE 、 23、(1)(2)图略. 24、(1)证明:∵CD 是边AB 上的高,∴∠ADC =∠CDB =90°、∵AD CD =CDBD,∴△ACD ∽△CB D 、(2)∵△ACD ∽△CBD ,∴∠A =∠BC D 、在△ACD 中,∠ADC =90°,∴∠A +∠ACD =90°、∴∠BCD +∠ACD =90°,即∠ACB =90°、 25、根据题意,得∠DEF =∠DCA =90°,∠EDF =∠ADC ,∴△DEF ∽△DC A 、∴EF AC =DE DC 、已知DE =0、5米,EF =0、25米,DC =20米.∴0.25AC =0.520、解得AC =10米.∵四边形BCDG 是矩形,∴BC =DG ,而DG =1、5米,则BC =1、5米.因此AB =AC +BC =10+1、5=11、5(米).答:旗杆的高度是11、5米. 26、(1)证明:∵等腰△ABC 中,AB =AC ,∠BAC =36°,∴∠ABC =∠C =72°、∵BD 平分∠ABC ,∴∠ABD =∠CBD =36°、∵∠CBD =∠A =36°,∠C =∠C ,∴△ABC ∽△BC D 、(2)∵∠A =∠ABD =36°,∴AD =B D 、∵∠CBD =36°,∠C =72°,∴∠BDC =72°、∴BD =B C 、∴AD =BD =BC =1、设CD =x ,则有AB =AC =x +1、∵△ABC ∽△BCD ,∴AB BC =BC CD ,即x +11=1x ,整理得:x 2+x -1=0、解得x 1=-1+52,x 2=-1-52(负值,舍去),则x =5-12、经检验,x =5-12为方程的解.∴x =5-12、 27、(1)△BMN 是等腰直角三角形.证明如下:∵AB =AC ,点M 是BC 的中点,∴AM ⊥BC ,AM 平分∠BA C 、∵BN 平分∠ABE ,AC ⊥BD ,∴∠AEB =90°、∴∠EAB +∠EBA =90°、∴∠MNB =∠NAB +∠ABN =12(∠BAE +∠ABE )=45°、∴△BMN 是等腰直角三角形.(2)△MFN ∽△BD C 、理由:∵点F ,M 分别是AB ,BC 的中点,∴FM ∥AC ,FM =12A C 、∵AC =BD ,∴FM =12BD ,即FM BD =12、∵△BMN是等腰直角三角形,∴NM =BM =12BC ,即NM BC =12、∴FM BD =NMBC 、∵AM ⊥BC ,∴∠NMF +∠FMB =90°、∵FM ∥AC ,∴∠ACB =∠FM B 、∵∠CEB =90°,∴∠ACB +∠CBD =90°、∴∠CBD +∠FMB =90°、∴∠NMF =∠CB D 、∴△MFN ∽△BD C 、http://www 、czsx 、com 、cn。
人教版九年级下册《第二十七章 相似三角形》单元测试卷及答案
![人教版九年级下册《第二十七章 相似三角形》单元测试卷及答案](https://img.taocdn.com/s3/m/83837d54a7c30c22590102020740be1e650ecca5.png)
人教版九年级下册《第27章相似三角形》单元测试卷(1)一、选择题(共10小题,3*10=30)1.(3分)下列各组图形相似的是()A.B.C.D.2.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=3.(3分)如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE B.△BDC C.△BDA D.△AFD4.(3分)如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)5.(3分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.56.(3分)下列说法:①有一个角等于30°的两个等腰三角形相似;②有一个角等于120°的两个等腰三角形相似;③相似三角形一定不是全等三角形;④相似三角形对应角平分线的长度比等于面积比.其中正确的个数是()A.1B.2C.3D.47.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:18.(3分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC:S△CDA=4:1,若双曲线y=(x>0)经过点C,则k的值为()A.B.C.D.9.(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个10.(3分)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m二.填空题(共8小题,3*8=24)11.(3分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是.12.(3分)如图,点A是△ABC的边BC上一点,∠B=∠ACD,如果AC=6,AD=4,则AB的长为.13.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.14.(3分)如图,已知两点A(2,0),B(0,4),且∠CAO=∠ABO,则点C的坐标是.15.(3分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED,若DE=4,AE=5,BC =8,则AB的长为.16.(3分)如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=.17.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.18.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三.解答题(7小题,共66分)19.(8分)已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.20.(8分)如图,小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的周长比与面积比.21.(8分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB是多少?22.(10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.23.(10分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.24.(10分)如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q 分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.25.(12分)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.人教版九年级下册《第27章相似三角形》单元测试卷(1)参考答案与试题解析一、选择题(共10小题,3*10=30)1.(3分)下列各组图形相似的是()A.B.C.D.【考点】相似图形.【分析】根据相似图形的定义,结合图形,以选项一一分析,排除错误答案.【解答】解:A、形状不同,大小不同,不符合相似定义,故错误;B、形状相同,但大小不同,符合相似定义,故正确;C、形状不同,不符合相似定义,故错误;D、形状不同,不符合相似定义,故错误.故选:B.2.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.3.(3分)如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE B.△BDC C.△BDA D.△AFD【考点】相似三角形的判定.【分析】根据等边三角形的性质和相似三角形的判定定理即可得到结论.【解答】解:∵△ABC与△BDE都是等边三角形,∴∠A=∠BDF=60°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴与△BFD相似的三角形是△BDA,故选:C.4.(3分)如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.5.(3分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【考点】相似三角形的性质.【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.6.(3分)下列说法:①有一个角等于30°的两个等腰三角形相似;②有一个角等于120°的两个等腰三角形相似;③相似三角形一定不是全等三角形;④相似三角形对应角平分线的长度比等于面积比.其中正确的个数是()A.1B.2C.3D.4【考点】相似三角形的判定与性质;全等三角形的判定;等腰三角形的性质.【分析】由相似三角形的判定和性质,以及等腰三角形的性质依次判断可求解.【解答】解:顶角为30°的等腰三角形与底角为30°的等腰三角形不相似,故①错误;有一个角等于120°的两个等腰三角形相似,故②正确;当相似比为1时,相似三角形是全等三角形,故③错误;相似三角形的面积比等于对应角平分线的长度比的平方,故④错误;故选:A.7.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,:S△BF A=9:16.∴S△DFE故选:B.8.(3分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC:S△CDA=4:1,若双曲线y=(x>0)经过点C,则k的值为()A.B.C.D.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;一次函数的性质;一次函数图象上点的坐标特征.【分析】根据直线y=﹣x+3可求出与x轴、y轴交点A和点B的坐标,即求出OA、OB的长,再根据相似三角形可得对应边的比为1:2,设未知数,表示出长方形ODCE 的面积,即求出k的值.【解答】解:∵直线y=﹣x+3与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,3),即:OA=2,OB=3;:S△CDA=4:1,又△BEC∽△CDA,∵S△BEC∴==,设EC=a=OD,CD=b=OE,则AD=a,BE=2b,有,OA=2=a+a,解得,a=,OB=3=3b,解得,b=1,∴k=ab=,故选:A.9.(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个【考点】相似三角形的判定与性质;圆周角定理;切线的判定与性质.【分析】由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线,根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB,故②正确;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD,故③正确;根据相似三角形的性质得到,于是得到ED•BC=BO•BE,故④正确.【解答】解:连接DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.10.(3分)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m【考点】相似三角形的应用;中心投影.【分析】由于人和地面是垂直的,即和路灯平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:由题意得出:EP∥BD,∴△AEP∽△ADB,∴=,∵EP=1.5,BD=9,∴=解得:AP=5(m)∵AP=BQ,PQ=20m.∴AB=AP+BQ+PQ=5+5+20=30(m).故选:D.二.填空题(共8小题,3*8=24)11.(3分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是(9,0).【考点】位似变换.【分析】位似图形的主要特征是:每对位似对应点与位似中心共线.【解答】解:直线AA′与直线BB′的交点坐标为(9,0),所以位似中心的坐标为(9,0).12.(3分)如图,点A是△ABC的边BC上一点,∠B=∠ACD,如果AC=6,AD=4,则AB的长为9.【考点】相似三角形的判定与性质.【分析】通过证明△ACD∽△ABC,可得,即可求解.【解答】解:∵∠A=∠A,∠B=∠ACD,∴△ACD∽△ABC,∴,又∵AC=6,AD=4,∴,∴AB=9,故答案为:9.13.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8米.【考点】相似三角形的应用.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.14.(3分)如图,已知两点A(2,0),B(0,4),且∠CAO=∠ABO,则点C的坐标是(0,1).【考点】相似三角形的判定与性质;坐标与图形性质.【分析】由∠1=∠2,∠AOC是公共角,可证得△AOB∽△COA,然后利用相似三角形的对应边成比例,即可求得答案.【解答】解:∵∠CAO=∠ABO,∠AOC=∠BOA,∴△AOB∽△COA,∴,∵A(2,0),B(0,4),即OA=2,OB=4,∴,解得:OC=1,∴点C的坐标为:(0,1).故答案为:(0,1).15.(3分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED,若DE=4,AE=5,BC =8,则AB的长为10.【考点】相似三角形的判定与性质.【分析】根据已知条件可知△ABC∽△AED,再通过两三角形的相似比可求出AB的长.【解答】解:在△ABC和△AED中,∵∠ABC=∠AED,∠BAC=∠EAD,∴△AED∽△ABC,∴=,又∵DE=4,AE=5,BC=8,∴AB=10.故答案为:10.16.(3分)如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=4.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE:BC=2:3,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE:BC=2:3,∴△AFD∽△CFE,且它们的相似比为3:2,:S△EFC=()2,∴S△AFD=9,而S△AFD=4.∴S△EFC故答案为:4.17.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为(﹣5,﹣1).【考点】位似变换;坐标与图形性质.【分析】分别延长B1B、O1O、A1A,它们相交于点P,然后写出P点坐标即可.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).18.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)【考点】相似三角形的判定与性质;二次函数的最值;全等三角形的判定与性质;正方形的性质.【分析】①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME =135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME ≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=2﹣x,利用三角形面积公式得到S△AME=•x的最大值,便可对④进行判断.•(2﹣x),则根据二次函数的性质可得S△AME【解答】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=2﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,有最大值,当x=1时,S△ECF故④错误.故答案为:①②③.三.解答题(7小题,共66分)19.(8分)已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.【考点】相似三角形的性质.【分析】根据相似三角形的周长比等于相似比可得到答案.【解答】解:∵△ABC∽△DEF,∴==,∴==,∴AC=cm,EF=cm.20.(8分)如图,小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的周长比与面积比.【考点】作图﹣位似变换.【分析】(1)连接B′B,A'A并延长相交于一点,此点即为位似中心点O,(2)根据相似三角形的性质即可解答.【解答】解:(1)连接B′B,A'A并延长相交于一点,此点即为位似中心点O,(2)由图形得AB==,A′B′==2,∴△ABC与△A′B′C′的周长比为1:2,面积比为1:4.21.(8分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB是多少?【考点】中心投影.【分析】通过相似三角形的性质可得=,==,可得=,即可求解.【解答】解:∵,当王华在CG处时,Rt△DCG∽Rt△DBA,即=,当王华在EH处时,Rt△FEH∽Rt△FBA,即==,∴=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴=,解得:y=3,经检验y=3是原方程的根.∵=,即=,解得x=6米.即路灯A的高度AB=6米.22.(10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)由三角形ABC与三角形CDE都为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS即可得证;(2)由(1)得出的三角形全等得到对应角相等,再由一对角相等,且夹边相等,利用ASA得到三角形GCD与三角形FCE全等,利用全等三角形对应边相等得到CG=CF,进而确定出三角形CFG为等边三角形,确定出一对内错角相等,进而得到GF与CE平行,利用平行线等分线段成比例即可得证.【解答】证明:(1)∵△ABC与△CDE都为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),(2)∵△ACE≌△BCD,∴∠BDC=∠AEC,在△GCD和△FCE中,,∴△GCD≌△FCE(ASA),∴CG=CF,∴△CFG为等边三角形,∴∠CGF=∠ACB=60°,∴GF∥CE,∴=.23.(10分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【考点】切线的性质;等腰三角形的判定与性质;勾股定理.【分析】(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B =90°,得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.【解答】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.24.(10分)如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q 分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.【考点】相似三角形的判定;一元一次方程的应用.【分析】设经过t秒后,△PBQ与△ABC相似,根据路程公式可得AP=2t,BQ=4t,BP =10﹣2t,然后利用相似三角形的性质对应边的比相等列出方程求解即可.【解答】解:设经过t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情况:(1)当BP与AB对应时,有=,即=,解得t=2.5s(2)当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似.25.(12分)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.【考点】相似三角形的判定与性质;勾股定理;垂径定理;圆周角定理;切线的判定与性质.【分析】(1)连接OC,△PBC∽△PCA,得出∠PCB=∠PAC,由圆周角定理得出∠ACB =90°,证出∠PCB+∠OCB=90°,即OC⊥PC,即可得出结论;(2)连接OD,由相似三角形的性质得出==2,设BC=x,则AC=2x,在Rt△ABC中,由勾股定理得出方程,得出BC=6,证出DE∥BC,得出△DOF∽△ACB,得出==,得出OF=OD=,即AF=,再由平行线得出==,即可得出结果.【解答】(1)证明:连接OC,如图1所示:∵PC2=PB•PA,即=,∵∠P=∠P,∴△PBC∽△PCA,∴∠PCB=∠PAC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵OC=OB,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB•PA,∴PA===40,∴AB=PA﹣PB=30,∵△PBC∽△PCA,∴==2,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=6,即BC=6,∵点D是的中点,AB为⊙O的直径,∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB=90°,∴DE∥BC,∴∠DFO=∠ABC,∴△DOF∽△ACB,∴==,∴OF=OD=,即AF=,∵EF∥BC,∴==,∴EF=BC=.。
湘教版九年级上册数学第三章 图形的相似 单元测试题(含答案)
![湘教版九年级上册数学第三章 图形的相似 单元测试题(含答案)](https://img.taocdn.com/s3/m/11bbd8ebbb4cf7ec4afed0bd.png)
湘教版九年级数学上册第三章图形的相似单元检测试卷一、单选题(共10题;共30分)1.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A. 18米B. 16米C. 20米D. 15米2.△ABC∽△A,B,C,,相似比为3:4,那么面积的比是_____。
A. 3:4B. 9:16C. 6:8D. 4:53.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形面积是()A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm24.在上科学课时,老师让同学利用手中的放大镜对蜗牛进行观察,同学们在放大镜中看到蜗牛与实际的蜗牛属于什么变换()。
A. 相似变换B. 平移变换C. 旋转变换D. 轴对称变换5.如图,在△ABC中,DE∥BC ,,DE=4,则BC的长是()A. 8B. 10C. 11D. 126.若相似△ABC与△DEF的相似比为1 :3,则△ABC与△DEF的面积比( )A. 1 :3B. 1 :9C. 3 :1D. 1 :7.如图,在ΔABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN的长为()A. B. C. D.8.如图,在平面直角坐标系中,点P的坐标为(0,2),直线y= 与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A. 3B. 4C. 5D. 69.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A. 1:1B. 1:2C. 1:3D. 1:410.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A. 1:2B. 2:1C. 1:4D. 4:1二、填空题(共10题;共30分)11.已知8:x =6:9,则x的值等于________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似单元测试题
班级 姓名 学号
一、填空题(每小题3分,共24分)
1.如果四条线段m, n, x, y 成比例,若m=2 , n=8 , y=20 .则线段x 的长是__________.
2.边长为12cm 的等边三角形按2:1的比例缩小后的三角形是边长为________的_______三角形.
3.已知△ABC ∽△DEF, AB =6 , DE =8 , 则:ABC DEF S S ∆∆=________.
4.已知三个数2,2,请你再添一个数,写出一个比例式________.
5.点P 是△ABC 中AB 边上的一点,过点P 作直线 (不与直线AB 重合)截△ABC,使截得三角形与 △ABC 相似,满足这样条件的直线最多________条.
6.电视节目主持人在主持节目时,站在舞台上的黄金分割点处最
自然得体,若舞台AB 长为20cm,试计算主持人应走到离A 点
至少____________________m 处.(结果精确到0.1m)
7.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长
是36米.则这个建筑的高度是_________.
8.如图,若DE ∥BC,FD ∥AB,AD ∶AC =2∶3 ,AB =9,BC =6,则四边形BEDF 的周长为________.
二、选择题(每小题4分,共40分) 1.若果mn ab =,则下列比例式中不正确的是( ) A.a n m b = B.a m n b = C.m n a b = D.m b a n
= 2.已知:如图2,在△ABC 中,∠ADE=∠C,则下列等式成立的是( ) A.AD AE AB AC = B.AE AD BC BD
= C.DE AE BC AB = D.DE AD BC DB
= 3.已知正五边形ABCDE 与正五边形'''''A B C D E 的面积比为1:2,则它们的相似比为( ) A. 1:2 B. 2:1 C.22
4.如图,两个位似图形△ABO 和△'
''C B A ,
若OA:'OA =3:1,则正确的是( )
A.AB:''A B =3:1
B.'AA :'BB =AB:'AB
C.OA:'OB =2:1
D.∠A =∠'B
5.在比例尺是1:3800的南京交通游览图上,玄武湖隧道长约7cm,它的实际长度约为( )
A.0.266km
B.2.66km
C.26.6km
D.266000km
6.下列判断正确的是( )
A.不全等的三角形一定不是相似三角形
B.不相似的三角形一定不是全等三角形
C.相似三角形一定不是全等三角形
D.全等三角形不一定是相似三角形
7.如图, D、E是AB的三等分点, DF∥EG∥BC , 图中
三部分的面积分别为S1,S2,S 3, 则S1:S2:S3( )
A.1:2:3
B.1:2:4
C.1:3:5
D.2:3:4
8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )
A.小明的影子比小强的影子长
B.小明的影子比小强的影子短
C.小明的影子和小强的影子一样长
D.无法判断谁的影子长
A B C,下面结论不正确的是( )
9.把△ABC的各边都扩大为原来的2倍,得到△'''
A B C
A.△ABC∽△'''
A B C的各边、各角对应相等
B.△ABC和△'''
A B C的相似比为1:2
C.△ABC和△'''
A B C的相似比为1:3
D.△ABC和△'''
10.如图,四边形ABCD是平行四边形,则图中与△DEF相似的三角形共有()
A.1个
B.2个
C.3个
D.4个
三、解答题(每题8分,共24分)
1. 如图,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求证: △DEH~△BCA
2.如图,四边形AEFD 与EBCF 是相似的梯形,AE:EB =2:3,EF =12 cm,求AD 、BC 的长.
3.如图, 平行四边形ABCD 中,点E 是DC 中点, 连AE 并延长与BC 延长线交于点F, 若CEF S =10 , 求四边形ABCE 的面积.
四.(12分)
已知如图,平行四边形ABCD 中,AE:EB =1:2 .
(1)求AE:DC 的值.
(2)△AEF 与△CDF 相似吗?若相似,请说明理由,
并求出相似比.
(3)如果AEF S ∆=6cm 2
,求CDF S ∆
第3章 图形的相似
一、填空题:
1、5,
2、6cm ,等边,
3、9︰16,
4、略,
5、4、,
6、7.6m ,
7、24m ,
8、14
二、选择题:CCCAA BCDDB
三、解答题
⑴证明:∵DE ⊥AB,DF ⊥BC,∴∠D+∠DHE=∠B+∠BHF=90°
而∠BHF=∠DHE ∴∠D=∠B,又∵∠HFB=∠C=90°
△DEH ∽△BCA ⑵解:∵四边形AEFD ∽四边形EBCF ∴EF AD =EB AB ,BC EF =EB AB
,∴AD=8,BC=18
⑶ 解:∵四边形ABCD 为平行四边形
∴EC ∥AB,DC=AB,由E 为DC 中点,
∴EC=21DC=21
AB,∵EC ∥AB,有∠ECF=∠ABF,
∠F=∠F,△ECF ∽△ABF :4:1ABF ECF S S = ∴12123,0cos 22x x α==≤
四.提高题
解:① ∵ ABCD ,∴DC=AB 由1
2AE EB = ∴ 2
1EB AE =
∴31AB AE =,∴1
3AE DC =
②相似,∵ABCD ,有DC ∥AB,∴∠DCF=∠EAF,∠FDC=∠EFA ∴△AEF ∽△CDF, 相似比为:1
3AE
DC =
③∵△AEF ∽△CDF ∴2
1:3AEF CDF S S ⎛⎫
= ⎪⎝⎭ ∴254CDF S cm =。