一元一次方程(行程问题)

合集下载

一元一次方程行程问题

一元一次方程行程问题

例1.某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。

问往返共需多少时间?例2 汽车从A地到B地,若每小时行驶40km,就要晚到半小时:若每小时行驶45km,就可以早到半小时。

求A、B 两地的距离?例3 一艘轮船在甲、乙两地之间行驶,顺流航行需6小时,逆流航行需8小时,已知水流速度每小时2 km。

求甲、乙两地之间的距离?练习1李明和王刚两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,已知李明比王刚每小时多走2.5千米,问王刚每小时走多少千米?2电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米,半小时后两车相遇。

两车的速度各是多少千米?3某人步行每小时走5千米,骑自行车的速度是步行的4倍,他从甲地到乙地,骑自行车比步行快3小时。

问:⑴步行与骑自行车各需多少时间?⑵甲乙两地的距离是多少?4一列慢车从甲地开往乙地,速度是每小时60千米,出发2小时后,出发2小时后,一列快车从乙地开往甲地,速度是每小时90千米。

已知甲、乙两地相距250千米,求两车相遇点与甲地间的距离?5一环形公路周长是24千米,甲乙两人从公路上的同一地点同时出发,背向而行,3小时后他们相遇。

已知甲每小时比乙慢0.5千米。

求甲、乙两人速度各是多少?6敌我相距14千米,得知敌军于1小时以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,问需几小时可以追上?7甲乙两地相距245千米,一列慢车由甲站开出,每小时行驶50千米;同时,一列快车由乙站开出,每小时行驶70千米;两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?8一只轮船行于甲乙两地之间,顺水用3小时,逆水比顺水多30分钟,已知轮船在静水中速度每小时26千米,求水流的速度?9一架飞机在两城之间飞行,风速为24千米∕小时。

顺风飞行需要2小时50分钟,顺风飞行需要3小时,无风时飞机的航行速度和两城之间航程?10一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速每小时24千米,设飞机静风飞行速度为x千米/时,则顺风中飞机的速度为多少?逆风中飞机的速度为多少?11轮船在静水中速度为每小时20km, 水流速度为每小时4km, 从甲码头顺流航行到乙码头, 再返回甲码头, 共用5小时(不计停留时间), 求甲、乙两码头的距离.12某人乘船有A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中得速度是每小时8千米,水流速度是每小时2千米,若A、C两地为2千米,求A、B两地之间的距离?13甲、乙两人练习跑步,从同一地点出发,甲每分钟跑250米,乙每分钟跑200米,甲因找跑鞋比乙晚出发3分钟,结果两人同时到达终点,求两人所跑的路程14甲以5千米/时的速度先走16分钟,乙以13千米/时的速度追甲,则乙追上甲需要的时间为多少小时?。

一元一次方程(行程问题)

一元一次方程(行程问题)

一元一次方程(行程问题)考点1、相遇问题:【基础知识回顾】相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路,行车还是物体的移动,总是要涉及到三个量--------路程、速度、时间。

相遇问题的核心就是速度和。

路程、速度、时间三者之间的数量关系,不仅可以表示成:路程= 速度×时间,还可以变形成下两个关系式:速度= 路程÷时间, 时间= 路程÷速度.一般的相遇问题: 甲从A地到B地,乙从B地到A地,然后两人在A地到B地之的某处相遇,实质上是甲,乙两人一起走了AB这段路程,如果两人同时出发,那有:(1) 甲走的路程+乙走的路程= 全程(2) 全程= (甲的速度+乙的速度) ×相遇时间= 速度和×相遇时间相遇问题的基本题型1、同时出发(两段)2、不同时出发(三段)相遇问题的等量关系S甲+S乙=S总(全程)S先+S甲+S乙=S总(全程)【典型例题】1、电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车的5倍还快20千米/时,半小时后两车相遇,两车的速度各是多少?[变式训练]1、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?考点2、追及问题【基础知识回顾】两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。

这样的问题一般称为追及问题。

有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程。

追及问题的核心就是速度差。

追及问题追及问题的基本题型1、不同地点同时出发2、同一地点不同时出发追及问题的等量关系1、追及时快者行驶的路程-慢者行驶的路程=相距的路程2、追及时快者行驶的路程=慢者行驶的路程或慢者所用时间=快者所用时间+多用时间追击问题的等量关系:1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间【典型例题】1. 跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?[变式训练]1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为________________.2、某人从家里骑自行车到学校。

一元一次方程应用行程问题含答案

一元一次方程应用行程问题含答案
13.如图,A、B两地相距90千米,从A到B的地形依次为:60千米平直公路,10千米上坡公路,20千米平直公路.甲从A地开汽车以120千米/小时的速度前往B地,乙从B地骑摩托车以60千米/小时的速度前往A地,汽车上坡的速度为100千米/小时,摩托车下坡的速度为80千米/小时,甲、乙两人同时出发.
(1)求甲从A到B地所需要的时间.
10.一列火车匀速行驶经过一条隧道,从车头进入隧道到车尾离开隧道共需45 s,而整列火车在隧道内的时间为33 s,火车的长度为180 m,求隧道的长度和火车的速度.
11.东南中学租用两辆小轿车(设速度相同)同时送二名带队老师及 名七年级的学生到育才中学参加数学竞赛,每辆车限坐 人(不包括司机).其中一辆小轿车在距离育才中学 的地方出现故障,此时距离竞赛开始还有 分钟,唯一可利用的交通工具是另一辆小轿车,且这辆车的平均速度是 ,人步行的速度是 (上、下车时间忽略不计).
8.双“11”期间,某快递公司的甲、乙两辆货车分别从相距335km的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2h时,甲车先到达配货站C地,此时两车相距35km,甲车在C地用1h配货,然后按原速度开往B地;乙车继续行驶0.5h时,乙车也到C地,但未停留直达A地.
(1)乙车的速度是_____km/h,B、C两地的距离是____km.
5.小明爸爸带着小明和小明弟弟去离家66千米的外婆家,小明爸爸有一辆摩托车,只坐一人时速度为50千米/小时,坐两人时速度为40千米/小时(交通法规定:摩托车最多只能坐两人)。小明和小明弟弟如果步行速度均为10千米/小时,为尽快达到外婆家,出发时,小明步行,小明爸爸将小明弟弟载了一段路程后让其步行前往外婆家,并立即返回接步行的小明,再到外婆家,结果与小明弟弟同时到达外婆家,则小明从家到外婆家步行的时间为___________.

一元一次方程常见应用题型及解法

一元一次方程常见应用题型及解法

一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。

一元一次方程的应用之行程问题

一元一次方程的应用之行程问题

一元一次方程的应用--行程问题【知识点】1路程=时间×速度2路程差=追及时间×速度差3路程和=相遇时间×速度和【练习题】1.甲乙两站的路程为500千米,慢车和快车都是从甲站开出,慢车每小时行驶65千米,快车每小时行驶85千米,若慢车先出发1小时,设慢车出发x小时后,快车可追上慢车,则可列方程2.甲乙两站的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米,若辆车同时开出,相向而行,设x 小时可以相遇,则可列方程3.一队学生去郊外军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追去,设通讯员用x小时可以追上学生队伍,则可列方程4.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为5.A、B两地相距60千米,甲乙两人分别同时从A、B两地出发,相向而行,甲每小时比乙多行4千米,经过3小时相遇,则设乙的速度为x千米/时,则可列方程6.甲乙两站相距480千米,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里,若两车同时开出同向而行,快车在慢车的后面,设x小时后,快车追上慢车,则可列方程7.甲、乙两站间的路程为360km,一列快车从乙站开出,每小时行驶72千米,一列慢车从甲站开出,每小时行驶48千米。

两列火车同时开出,相向而行,经过多少小时相遇?8.一条环形跑道长400米,甲每分钟跑550米,乙每分钟跑250米,若甲、乙两人同时同地反向出发,则多少分钟后他们首次相遇?9.甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇,甲比乙每小时多骑了2.5千米,则乙的速度为多少?10.王涵和王萌同学练习赛跑,王涵每秒跑7m,王萌每秒跑6.5m,王涵让王萌先跑5m,则多少秒后王涵可追上王萌?11.一条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙每分钟跑450米,若两人同时同地同向而行,则多少分钟后两人首次相遇?12.甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过秒可以追上乙?13.甲乙两船航行于A、B两地之间,甲船由A到B的航速为35km/h,乙船由B到A的航速为25km/h,若甲船先行2小时,两船在距B地120km处相遇,则两地距离为多少?14.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10km/h,乙步行,行走速度为6km/h,当甲到达B地时,乙距B地还有8km,甲走了多少小时?A、B两地的距离是多少?15.某人计划骑车以12千米/时的速度由A地到B地,这样便恰好在规定时间到达B地,但他因事将原计划出发时间推迟了20分钟,便以15千米/时的速度骑行,结果比规定时间早4分钟到达B地,则A、B两地之间的距离为多少千米?16.已知甲、乙两人在一条200米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲、乙两人分别从A,C两处同时相向出发(如图所示),请回答:(1)多少秒后两人首次相遇?并说出此时他们在跑道上的具体位置.(2)首次相遇后,又经过多长时间他们再次相遇?(3)他们第10次相遇时,在哪一段跑道上?答案1.6585(1)x x =- 2.6585450x x +=3.1851460x x ⎛⎫+= ⎪⎝⎭ 4.240x =150x +150×125.33(4)60x x ++=6.14090480x x -=7.7248360x x +=;38.550250400x x +=;0.59.2( 2.5)265x x ++=;1510.(7 6.5)5x -=;1011.450350400x x -=;412.()7 6.51x x =+;1313.12012035225x ⎛⎫-=⨯+ ⎪⎝⎭;35814.10x =6x +8;2015.20412156060x x =++;2416.10;离B 点10米;20;AD。

一元一次方程应用题——行程问题

一元一次方程应用题——行程问题

行程问题【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。

常见的还有:相背而行;环形跑道问题。

【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

A、C两地之间的路程为10千米,求A、B两地之间的路程。

【专项训练】一、行程(相遇)问题A.基础训练1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。

一元一次方程行程问题范例

一元一次方程行程问题范例

1.甲乙两人从相距32千米的两地相向而行,甲步行每小时走4千米,先行1小时后,乙骑自行车出发2小时后与甲相遇,问乙骑自行车每小时走多少千米?2.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6 倍还多15千米,半小时后相遇。

求两车的速度。

3.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?1..一列快车从甲地开往乙地需5小时,一列慢车从乙地开往甲地需要的时间比快车多51小 时.两列火车同时从两地相对开出,2小时后,慢车在一个车站停了下来,快车继续行驶96 千米与慢车相遇.问甲、乙两地相距多少千米?2.一列客车和一列货车在平行的轨道上同向行驶,客车长200米,货车长310米,客货两车的 速度比为4:3.如果客车从后面追赶货车,从车头赶上到车尾超过的时间为2分钟.求两列 火车的速度.3.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里,早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是多少?他去某地的路程是多远?1.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?2.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。

出发地到目的地的距离是60公里。

问:步行者在出发后经多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)?3.一艘轮船从甲乙码头顺流行驶用了两个小时;从乙码头返回甲码头逆流行驶用了2.5小时。

一元一次方程经典行程问题

一元一次方程经典行程问题

一元一次方程经典行程问题行程问题一、相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速练:一、追及问题1.甲乙两人相距40千米,甲在后乙在前,两人同向而行,甲先出发1.5小时后乙再出发,甲的速度为每小时8千米,乙的速度为每小时6千米,甲出发几小时后追上乙?2、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。

1号队员从离队开始到与队员重新会和,经过了多长时间?3.在3点钟和4点钟之间,钟表上的时针和分针什么时间重合?4.甲步行上午7时从A地出发,于下午5时到达B地,乙骑自行车上午10时从A地出发,于下午3时到达B地,问乙在什么工夫追上甲的?分析:设A,B两地间的距离为1,根据题意得:甲步行走全程需要10小时,则甲的速度为_______.乙骑车走全程需要5小时,则乙的速度为_______.2、相遇问题1.甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。

乙车每小时行多少千米?。

一元一次方程行程问题

一元一次方程行程问题

一元一次方程行程问题
等量关系:路程=速度×时间
1、甲、乙两人在400米的环行跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,经过多少时间,两人第一次相遇?
2、甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米。

①甲让乙先跑5米,问甲几秒可追上乙?②甲让乙先跑1秒,问甲几秒可追上乙?
3、一天小聪步行去上学,每小时走4千米。

小聪离家10分钟后,天气预报午后有阵雨,小聪的妈妈急忙骑车去给小聪送伞,骑车的速度是12千米/小时。

当小聪妈妈追上小聪时,小聪已离家多少千米?
4、甲、乙两列火车的长分别为144米和180米,甲车比乙车每秒多行4米。

(1)两列火车相向行驶,从相遇到全部错开需9秒,问两车速度各是多少?(2)若两车同向行驶,甲车的车头从乙车的车尾追及到甲车全部超出乙车,需要多长时间?
5、学校规定学生早晨7时到校。

拉拉若以每分60米的速度步行,提前2分钟到校;若以每分50米的速度步行,要迟到2分钟。

问拉拉的家到学校有多少米?他是什么时候从家里动身上学的?
6、一艘轮船航行于甲、乙两地之间,顺水时用了3小时,逆水时比顺水时多用30分钟,已知轮船在静水中每小时行26千米,求水流的速度?
7、A、B两地相距80千米,一船A出发顺水行使4小时到达B,而从B出发逆水行使5小时才能到达A,求船在静水中的航行速度和水流速度。

8、已知A、B两地相距100千米,甲以16千米/小时的速度从A地出发,乙以9千米/小时的速度从B地出发。

①两人同时相向而行,经过多少时间,两人相遇?②两人同时相向而行,经过多少时间,两人相距25千米?。

一元一次方程行程问题公式

一元一次方程行程问题公式

一元一次方程行程问题公式
一元一次方程是指只含有一个未知数的一次幂的方程。

行程问题通常可以使用一元一次方程来建模和解决。

行程问题可以表示为以下方程形式:
距离= 速度× 时间
其中,距离为行程的距离,速度为行程的速度,时间为行程所花费的时间。

如果你知道速度和时间,想要计算距离,可以使用以下方程:
距离= 速度× 时间
如果你知道距离和时间,想要计算速度,可以使用以下方程:
速度= 距离/ 时间
如果你知道距离和速度,想要计算时间,可以使用以下方程:
时间= 距离/ 速度
根据实际情况,将已知的数值代入公式中,即可计算出未知的数值。

一元一次方程应用题专题——行程问题——学生版

一元一次方程应用题专题——行程问题——学生版

一元一次方程应用题专题——行程问题——学生版解:设快车开出x小时后与慢车相距600公里,由题意得,140x-90x+480=600解这个方程,50x=120∴x=2.4答:快车开出2.4小时后与慢车相距600公里。

4)分析:等量关系为:快车所走路程=慢车所走路程+480公里。

解:设快车开出x小时后追上慢车,由题意得,140x=90x+480解这个方程,50x=480∴x=9.6答:快车开出9.6小时后追上慢车。

5)分析:等量关系为:快车追上慢车所用的时间=快车比慢车快的速度所需时间。

解:设快车开出x小时后追上慢车,由题意得,140(x-1)=90x解这个方程,x=6答:快车开出6小时后追上慢车。

7千米,几小时后两人相遇?B.提高训练1.两辆车从相距720千米的两地出发相向而行,甲车先出发,每小时行80千米,2小时后乙车出发,每小时行100千米,几小时后两车相遇?2.两船从A、B两地同时出发,相向而行,两船相遇后,A船行驶了120千米,B船行驶了180千米,已知两船的速度之比为2:3,求A、B两地之间的距离。

3.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了4千米,B行驶了6千米。

已知A的速度是B的2倍,求A、B两地之间的距离。

4.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了3千米,B行驶了5千米。

已知A的速度是B的3倍,求A、B两地之间的距离。

5.两人从A、B两地同时出发,相向而行,两人相遇后,A行驶了12千米,B行驶了15千米。

已知A的速度是B的4倍,求A、B两地之间的距离。

4.甲和乙分别从两地出发,相向而行,甲先出发1小时。

当他们相距9千米时,乙行了多长时间?(改写并删除明显有问题的段落)甲和乙从两地相向而行,甲先出发1小时。

当他们相距9千米时,乙已经行驶了多长时间呢?假设他们的相遇点距离甲出发点x千米,则乙出发时距离甲出发点45-x千米。

根据题意,甲和乙的总路程为45千米,且甲的速度等于乙的速度加上9千米/小时(即他们相向而行的速度)。

(完整版)一元一次方程应用行程问题

(完整版)一元一次方程应用行程问题

:一元一次方程应用之—-—-——-——-—---行程问题专题一、【基本概念】行程类应用题基本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度➢相遇问题:甲、乙相向而行,则:甲走地路程+乙走地路程=总路程。

➢追及问题:①甲、乙同向不同地,则:追者走地路程=前者走地路程+两地间地距离。

②甲、乙同向同地不同时,则:追者走地路程=前者走地路程➢环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.➢飞行(航行)问题、基本等量关系:①顺风(顺水)速度=无风(静水)速度+风速(水速)②逆风(逆水)速度=无风(静水)速度-风速(水速)顺风(水)速度-逆风(水)速度=2×风(水)速➢车辆(车身长度不可忽略)过桥问题:车辆通过桥梁(或隧道等),则:车辆行驶地路程=桥梁(隧道)长度+车身长度➢超车(会车)问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差。

会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和。

在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键。

所以画行程图是我们必须学会地一种分析手段。

另外,由于行程问题中地基本量只有“路程”、“速度”和“时间"三项,所以,列表分析也是解决行程问题地一种重要方法。

二、【典型例题】(一)相遇问题相遇问题:甲、乙相向而行,则:甲走地路程+乙走地路程=总路程。

例1、甲、乙两站相距600km,慢车每小时行40km,快车每小时行60km。

⑴经过xh后,慢车行了km,快车行了km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km,如果两车同时开出,xh相遇,那么可得方程: ;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h 后与B车相遇,又知B车地时速是A车时速地1.5倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进。

(完整版)一元一次方程行程问题

(完整版)一元一次方程行程问题

1.相遇问题例1.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,几分钟分钟后两人第一次相遇,问:1.第一次相遇时所用时间是多少?2.第三次相遇时,所用时间是多少?例2.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?例3.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?例4.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?例5.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?例6.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。

求两车的速度。

例7.A、B两地间的路程为360km,甲车从A地出发开往B地,每小时72km,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向继续行驶,那么相遇后两车相距100km时,甲车从出发共行驶了多少小时?2.追及问题例1.一队学生去校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?例2一部队从军部出发行军,每小时走40千米,3.5小时后一通讯兵传达一军部命令骑摩托车从军部出发追赶,4小时后追上,则通讯兵每小时比部队多行多少千米例3.甲乙两站相距40千米,一列慢车从甲站开出,每小时行使56千米,同时一列快车由乙站开出,每小时行使72千米,两车同向而行,快车在慢车的后面,经过多少小时快车可追上慢车?例4.甲车在早上5时以每小时32千米的速度由A地向B地行驶,6时30分乙车才开始出发,结果在9时30分时乙车追上了甲车,问乙车的速度是多?例5.一条环行跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?例6.甲乙两人环湖竞走,一周400米,乙每分钟走80米,甲的速度是乙的5/4倍,现在甲在乙的前面100米;多少分钟后两人相遇?例7.一列客车和一列货车在平行的轨道上同向行驶,客车长200米,货车长310米,客货辆车的速度比为4:3,客车从后面追赶货车,从车头赶上到车尾超过的时间为2分钟,求两列火车的速度。

一元一次方程应用题——行程问题

一元一次方程应用题——行程问题

1. 某人从家里骑自行车到学校。

假设每小时行15千米,可比预定的时间早到15分钟;假设每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟.3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分钟,逆风飞行需要3小时,求两城市间距离?5.轮船在静水中的速度是20千米/小时,从甲港顺流到乙港需8小时,返航时行走了6小时在距甲港68千米处发生故障,求水流速度?6.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问两车同时开出,相向而行,出发后多少小时相遇?7.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?9.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?10.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用61小时在途中某点相遇,那么小军每分钟走多少米?11.A 、B 两地相距80米,甲从A 地出发,每秒走1米,乙从B 地出发每秒走1.5米,如甲先走15米,求乙出发后多少秒与甲相遇?12.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。

一元一次方程解行程问题

一元一次方程解行程问题

二、列一元一次方程解应用题: 甲乙二人在400米的环形跑道上行走。甲每分钟走 80米,乙每分钟走60米。 (1)二人同时同地相背而行,几分钟后二人再次相遇?
(2)二人同时同地同向而行,几分钟后二人再次相遇?
解: (1) 设x分钟后二人
再次相遇,根据题意得
80x+60x=400 解得:x=20/7 (2) 设y分钟后二人再次相 遇, 根据题意得
车速:
1000+200/60=20米/秒 答:车速20米/秒,车长200米。
1、你觉得这节课有什么收获? 2、在行程问题的解答上还存在
什么困难?
一、填空
二、列一元一次方程解应用 题
一、A、B两地相距480千米,甲 车从A地开出,每小时60千米, 乙从B地开出,每小时65千米。
1)两车同时开出,相向而行,x小时相遇, 60x+65x=480 则由此条件可得方程________________ 2)两车同时开出,相背而行, x小时后两车 相距620千米,则由此条件可得方程60x+65x=620-480 _________ 3)两车同时开出,同向而行, x小时后乙车追 60x+480=65x 上甲车,则由此条件可得方程________________
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

一元一次方程行程问题

一元一次方程行程问题

一元一次方程——行程问题例1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?西安站和武汉站相距1500km,一列慢车从西安开出,速度为68km/h,一列快车从武汉开出,速度为85km/h,若两车相向而行,慢车先开30分钟,快车行使几小时后两车相遇?例2.两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是7m/s,如果让黄马先跑5m,棕色马再开始跑,几秒后可以追上黄色马?一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进,突然一号队员以45千米/小时的速度独自行进,行进10千米后调转车头,仍以45千米/小时的速度往回骑,直到与其他队员会和。

经过多长时间一号队员从离队开始到与队员重新会和?例3.一列长200米的火车,速度是20m/s,完全通过一座长400米的大桥需要几秒?火车用26秒的时间通过了一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求这列火车的长度。

例4.一船航行于A、B两个码头之间,顺水航行需要3小时,逆水航行需要5小时,已知水流速度是4km/h,求这两个码头之间的距离。

一架飞机贮油量允许飞机最多在空中飞4.6小时,飞机在静风中的速度是575km/h,风速是25km/h,这架飞机最远能飞出多少千米就应返回?拓展:1.小明家离学校5千米,放学后,爸爸从家里出发去学校接小明,与此同时小明从学校出发往家走,已知爸爸的速度是6千米/小时,小明的速度是4千米/小时.(1) 爸爸与小明相遇时,爸爸走了多少时间?(2) 若小明出发10分钟..后发现书本忘带了,立刻转身以8千米/小时的速度返回学校拿到书本后仍以此速度继续往家走.请问爸爸与小明相遇时,离学校还有多远?(不计途中耽搁)(家)(学校)(备用图)2.为赴台湾考察学习,小颗的爸爸在元旦节的早晨7点自驾一辆小轿车(平均速度为60千米/时)从家里出发赶往距家45千米的重庆江北机场,此时,距规定到达机场的时间仅剩90分钟.7点30分时小颖发现爸爸忘了带身份证,急忙通知爸爸返同,同时她乘坐出租车以40千米/时的平均速度直奔机场(打电话和上出租车的时间忽略不计),与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返回,结果不到30分钟就遇上了小颖(拿身份证的时间忽略不计),并立即赶赴机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了千米,爸爸返回了千米(均用含x的代数式表示).(2)小颖的爸爸能否在规定的时间内赶到机场?3.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是15千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?1、两地相距28公里,小明以15公里/小时的速度,小亮以30公里/小时的速度,分别骑自行车和开汽车从同一地前往另一地,小明先出发1小时,小亮几小时后才能追上小明?2、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇问题
姓名
1.建朋和建博两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,已知建朋比建博每小时多走
2.5千米,问建博每小时走多少千米?
2.A、B两地相距360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每时行驶48千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120千米时,甲车从出发一共用了多少时间?
3AB两地相距1120千米,甲乙两列火车同时从两地出发,相向而行。

甲列火车速度是60千米每小时,乙列火车的速度是48千米每小时,乙列火车出发时,从火车里飞出一只鸽子,以每小时80千米的速度向甲列火车飞去,当鸽子和甲列火车相遇时,乙列火车距离A地还有多远?4AB两地相距900米。

甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?
5甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,甲从A地,乙丙从B地同时出发,相向而行,甲在遇到乙2分钟后又遇见丙,求AB两地距离。

6倩倩与欣欣家相距1.8千米,有一天,倩倩与欣欣同时从各自家里出发,向对方家走去,倩倩家的狗和倩倩一起出发,小狗先跑去和欣欣相遇,又立刻回头跑向倩倩,又立刻跑向欣欣…一直在倩倩与欣欣之间跑动。

已知倩倩50米/分,欣欣40米/分,倩倩家的狗150米/分,求倩倩与欣欣相遇时,小狗一共跑了多少米
追击问题
姓名
1. 张勇和刘成旭两人练习50米短距离赛跑,张勇每秒钟跑7米,刘成旭每秒钟跑6.5米。

(1)几秒后,张勇在刘成旭前面2米?
(2)如果张勇让刘成旭先跑4米,几秒可追上刘成旭?
2.学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。

问:若已知队伍长320米,则通讯员几分钟返回?‚若已知通讯员用了25分钟,则队伍长为多少米?
3.人同时从A地出发步行去B地,5分钟后,甲返回A地去取东西,没有停留,继续步行去B地,如果从两人同时出发起计时,那么35分钟后两人同时到达。

已知甲每分钟所行路程比乙每分钟所行路程的2倍少30米。

求甲、乙二人的速度各是多少?
4.部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。

为了回到队尾,在追上营长的地方等待了18分钟。

如果他从最前头跑步回到队尾,那么用多少时间?
5.小明和小刚家相距28千米,两人约定见面,他们同时出发,小明的速度为每小时8千米,小刚的速度是每小时6千米,小明的爸爸在小明出发20分钟后发现小明忘了带东西,于是就以每小时10千米的速度追赶小明,当小刚和小明相遇时,爸爸追上小明了吗?它要想追上小明,速度至少要多少?
6.某队伍以7千米每小时的速度前进,在队尾的通讯员以每时11千米的速度赶到队伍前面送信,送到后立即返回队尾,共用13.2分钟。

则队伍的长度是多少千米?(提示:设时间为X)
行船、飞行问题
姓名
1.一架飞机飞行在两个城市之间,风速为24千米/时. 顺风飞行需要2小时50分,逆风飞行需要3
小时. 求飞机在无风时的速度及两城之间的飞行路程.
2.一艘轮船航行于两地之间,顺水要用3小时,逆水要用4小时,已知船在静水中的速度是50千米/小
时,求水流的速度.
3.汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时。

已知船在静水的速度为18
千米/小时,水流速度为2千米/小时,求甲、乙两地之间的距离?4.在两码头之间航行,顺水需4小时,逆水4个半小时后还差8公里,水流每小时2公里,求两码头之间的距离?
5.飞机,最多能在空中连续飞行4小时,飞出去时的速度是950千米/小时,返回时的速度是850千米/小时,这架飞机最远能飞出多少千米就应返回?(答案保留整数)
6.荷同学在十一假期去青年公园玩,在溪流边的A码头租了一艘小艇逆流而上,划行速度约4千米/时,到B地后沿原路返回,速度增加了50%,回到A码头比去时少花了20分钟。

求A、B两地之间的路程。

错车、过桥问题
姓名
1.火车匀速行驶,经过一条长300m的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.
2.迎面行驶的火车,A列速度为20米每秒,B列速度为25米每秒,若A列车长200米,B列车长160米,则两车错车的时间是几秒?
3. 一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。

问:①若已知队长320米,则通讯员几分钟返回?②若已知通讯员用了25分钟,则队长为多少米?
4.以每分钟60米的速度沿铁路边步行,一列长252米的货车从对面而来,从他身边通过用了12秒钟,求列车的速度。

5.两人沿铁路相对而行,速度都是每秒14米,一列货车经过甲身边用了8秒,经过乙身边用了7秒,求货车车身长度以及火车速度。

6.线旁有一沿铁路方向的公路,在公路上行驶的一辆拖拉机司机看见迎面驶来的一列货车从车头到车尾经过他身旁共用了15秒,已知货车车速为60千米/时,全长345米,球拖拉机的速度。

跑道问题
姓名
1. 乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为
100米/分,乙的速度是甲速度的
2
3
倍,问(1)经过多少时间后两人首次相遇(2)第二次相遇呢?
2. 一条环形的跑道长800米,甲练习骑自行车平均每分钟行500米,乙练习赛跑,平均每分钟跑200
米,两人同时同地出发。

(1)若两人背向而行,则他们经过多少时间首次相遇? (2)若两人同向而行,则他们经过多少时间首次相遇?
3. 张明每天去体育场晨练,都见到一位田径队的叔叔也在锻炼,两人沿400米跑道跑步,每次总是张
明跑2圈的时间,叔叔跑3圈。

一天,两人在同地反向而跑,张明看了一下计时表,发现隔了32秒钟两人第一次相遇,求两人的速度?第二天,张明打算和叔叔在同地同向而跑,看叔叔隔多少时间再次与他相遇,你能先给张明预测一下吗?
4.
4.二人沿400米的圆形跑道跑步,他们从同一地点同时出发,背向而行。

当两人第一次相遇后,甲的速度比原来提高2米/秒,乙的速度比原来降低2米/秒,结果两人都用24秒回到原地。

求甲原来的速度?
5.到乙地,先下山然后走平路,某人骑自行车从甲地以每小时12千米的速度下山,而以每小时9千米的速度通过平路,到乙地用55分钟,他回来,以每小时8千米的速度上山,回到甲地用1小时30分钟,求甲、乙两地距离多远?
6.父子两人晨练,父亲从家到公园跑步需要30分钟,儿子只需20分钟,如果父亲比儿子早出发5分钟,儿子追上父亲需要多少分钟?。

相关文档
最新文档