概率论与数理统计(6)
概率论与数理统计(06)第6章 统计量及其抽样分布
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计-第6章-第6讲-两个正态总体参数的置信区间
[0.3545 , 2.5545]
本讲内容
01 两个正态总体的情形 02 两个正态总体参数的置信区间 03 *6.2.3 单侧置信区间
03 *6.2.3 单侧置信区间
P(ˆ1 ˆ2 ) 1
[θˆ1, θˆ2 ] θ 的置信区间 双侧置信区间
但在某些实际问题中,例如,对于机器设备零部件来说,平均 寿命越长越好,我们关心的是平均寿命的“下限” ;又如,在购 买家具用品时,其中甲醛含量越小越好,我们关心的是甲醛含量均 值的“上限”.这就引出了单侧置信区间的概念.
2 1
2 2
2,
求均值差
1 2 的置信度为0.95 的置信区间;
02 两个正态总体参数的置信区间
解
(1) F0.025 (16, 12) 3.16,
F0.975 (16 ,
12)
1 F0.025 (12 ,
16)
1 2.89
由公式得方差比
2 1
2 2
的置信区间为
S12 S22
F0.975 (n2
12
2 2
n1 n2
P u U u 1,
2
2
( X Y uα 2
σ12 n1
σ
2 2
n2
,X
Y
uα
2
σ12 σ22 ) n1 n2
5
02 两个正态总体参数的置信区间
(2)
2 1
2 2
2
未知,1 2 的置信区间
T
X
Y Sw
(1
1 n1
2)
1 n2
~
t (n1
n2
2)
Sw
估什么?
1 2
2 1
概率论与数理统计-6
一、统计量
定义1 设X1, X2, …, Xn是总体X的样本,样本函数g(X1, X2, …, Xn)是样 本的实体函数,且不含有任何未知参数,则称这类样本函数g(X1, X2, …, Xn)为统计量。
由于样本具有二重性,统计量作为样本的函数也具有二重性,即对 一次具体的观测或试验,它们都是具体的数值,但当脱离开具体的某 次观测或试验,样本是随机变量,因此统计量也是随机变量。
n i 1
( xi
x )2
1n (
n 1 i1
xi2
nx 2 )
。
(3)样本标准差
S
S2
1 n 1
n i 1
(Xi
X
)2
它的观测值记为 s
s2
1 n 1
n i 1
( xi
x )2
。
(6-5)
(4)样本k阶原点矩
Ak
1 n
n i 1
X
k i
(k
1,2 ,3,
)
它的观测值记为 ak
解 将样本的观察值由小到大排列为 1 2 3 3 4 4 4 5 6 8
所以样本的频率分布如表所示
X
1
2
3
4
5
6
8
fn
0.1
0.1
0.2
0.3
0.1
0.1
0.1
例1 设总体服从泊松分布,容量为10的样本观察值如下:
214 3 5 6 4 8 4 3 试构造样本的分布函数F10(x)。
例1 设随机变量 X ~ (0 ,1) 分布,求D(X)。
解 因为 X ~ (0 ,1)
所以 又
E(X ) p E( X 2 ) 0 (1 p) 12 p p
概率论与数理统计第六章测试题
第6章 参数估计选择题1.设n X X X ,...,,21是来自正态总体X 的简单随机样本,X 的分布函数F(x;θ)中含未知参数,则(A )用矩估计法和最大似然估计法求出的θ的估计量相同 (B) 用矩估计法和最大似然估计法求出的θ的估计量不同 (C )用矩估计法和最大似然估计法求出的θ的估计量不一定相同 (D) 用最大似然估计法求出的θ的估计量是唯一的2.设n X X X ,...,,21是来自正态总体X 的简单随机样本,EX=μ,DX=σ2,其中μ,σ2均为未知参数,X =1ˆμ,12ˆX =μ,下面结论哪个是错误的。
(A )X =1ˆμ是μ的无偏估计 (B) 12ˆX =μ是μ的无偏估计 (C )X =1ˆμ比12ˆX =μ 有效 (D) ∑=-ni i X n 12)(1μ是σ2的最大似然估计量 3.设n X X X ,...,,21是来自正态分布总体N(μ,σ2)的简单随机样本,其中数学期望μ已知,则总体方差σ2的最大似然估计量是(A ) ∑=--n i i X X n 12)(11 (B) ∑=-ni i X X n 12)(1 (C ) ∑=--n i i X n 12)(11μ (D) ∑=-n i i X n 12)(1μ 4.已知总体X 在区间[0,θ]上均匀分布,其中θ是未知参数,设n X X X ,...,,21是来自X 的简单随机样本,X 是样本均值,},...,max {1)(n n X X X = 是最大观测值,则下列选项错误的是 (A ))(n X 是θ的最大似然估计量 (B) )(n X 是θ的无偏估计量 (C )X 2是θ的矩估计量 (D) X 2是θ的无偏估计量5. 设总体X~N(μ1,σ2),总体Y~N(μ2,σ2),m X X X ,...,,21和n Y Y Y ,...,,21分别是来自总体X和Y 的简单随机样本,样本方差分别为2X S 与2Y S ,则σ2的无偏估计量是(A )22YX S S + (B) 22)1()1(Y X S n S m -+-(C )222-++n m S S Y X (D) 2)1()1(22-+-+-n m S n S m Y X6. 设X 是从总体X 中取出的简单随机样本n X X X ,...,,21的样本均值,则X 是μ的矩估计,如果(A )X~N(μ,σ2) (B) X 服从参数为μ的指数分布 (C )P (X=m )=μ(1-μ)m-1,m=1,2,… (D) X 服从[0,μ]上的均匀分布 填空题1.假设总体X 服从参数为λ的泊松分布,n X X X ,...,,21是取自总体X 的简单随机样本,其均值、方差分别为X ,S 2,如果2)32(ˆS a X a -+=λ为λ的无偏估计,则a= 。
概率论与数理统计考研复习题6
概率论与数理统计考研复习题(6)数理统计的基本概念1.X 与Y 相互独立且都服从)3,0(2N ,而9191,Y Y X X ,和分别是来自总体X 和Y 的简单随机样本,求统计量 292191Y Y X X U ++++= 服从的分布.2.求总体)3,20(N 的容量分别为10,15的两独立样本均值差的绝对值大于0.3的概率.3.设n X X X ,,,21 是来自具有)(2n χ分布的总体样本。
求样本均值X 的数学期望和方差.4.设总体X ~N (0,1),从此总体中取一个容量为6的样本(621,,,X X X ),设Y =(26542321)()X X X X X X +++++,试决定常数C ,使得随机变量CY 服从2χ分布.5.从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间 (1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大?6.从装有一个白球,两个黑球的罐子里有放回地取球,令X =0表示取到白球,X =1表示取到黑球,求容量为5的样本(521,,,X X X )的和的分布,并求样本的均值X 和样本的方差2S 的期望值.7.设总体X ~),0(2σN ,(21,X X )为取自这总体的一个样本,求: (1)221221)()(X X X X Y -+=的概率密度;(2)P {Y <4}. 8.设总体服从参数为λ的指数分布,分布密度为⎩⎨⎧≤>=-0,00,);(x x e x F xλλλ,求E (X ),D (X ),E )(2S .9.从正态总体)5.0,(2μN 中抽取样本1021,,,X X X .(1)已知0=μ,求概率P {}41012≥∑=i i X; (2)未知μ,求概率P {85.2)(2101≥-∑=i i X X}.。
概率论与数理统计(叶慈南 刘锡平 科学出版社)第6章 数理统计的基本概念教程
3.样本k阶(原点)矩 Ak = 样本k阶中心矩
Bk =
1 n k ∑ X i 反映总体k阶矩E(Xk)的信息 n i =1 P E ( X k ) = k , k = 1, 2, L →
反映总体k
9
1 n P → ∑ ( X i X )k E {[ X E ( X )]k } = mk n i =1 k=1,2,…
1o
X ~ N ( ,
σ2 ) n
即
X ~ N (0,1) σ/ n
2o 3o
(n 1) S 2 ~ χ 2 ( n 1) σ2 X 与 S 2 相互独立 4o X ~ t ( n 1) S/ n
23
24
4
1o
X ~ N ( , X=
σ2 ) n
即
X ~ N ( 0, 1) σ/ n
4o
正态总体的抽样分布定理
例 设 X1,…,X10 是取自N(0,0.32)的样本,求
P{∑ X i > 1.44}
2 i =1 10
定理一,二,三
2 2 设 X 1 ,..., X n 是来总体 N ( , σ ) 的样本, X , S 分别为样
本均值和样本方差,则
例 设 X 1 , X 2 , L , X 15 是来自总体 N (0,1)的一个简单随 2 2 X 12 + X 2 + L + X 10 机样本, Y= 则 服从 分布. 2 2 2 2( X 11 + X 12 + L + X 15 )
4
个体:组成总体的元素(如:某一个灯泡的寿命)
每个可能的观察值
有限总体 无限总体 如:考察某大学大一2000名男生的身高 如:考察某大学大一2000名男生的身高 如:测量一湖泊任一地点的深度
概率论与数理统计第六章课后习题及参考答案
概率论与数理统计第六章课后习题及参考答案1.已知总体X ~),(2σμN ,其中2σ已知,而μ未知,设1X ,2X ,3X 是取自总体X 的样本.试问下面哪些是统计量?(1)321X X X ++;(2)μ31-X ;(3)222σ+X ;(4)21σμ++X ;(5)},,max{321X X X ;(6)σ221++X X ;(7)∑=3122i i X σ;(8)2μ-X .解:(1)(3)(4)(5)(6)(7)是,(2)(8)不是.2.求下列各组样本值的平均值和样本差.(1)18,20,19,22,20,21,19,19,20,21;(2)54,67,68,78,70,66,67,70.解:(1)9.19)21201919212022192018(101101101=+++++++++==∑=i i x x ;43.1)(9110122=-=∑=i i x x s .(2)5.67)7067667078686754(1018181=+++++++==∑=i i x x ;018.292)(718122=-=∑=i i x x s .3.(1)设总体X ~)1,0(N ,则2X ~)1(2χ.(2)设随机变量F ~),(21n n F ,则F1~),(12n n F .(3)设总体X ~),(2σμN ,则X ~),(2n N σμ,22)1(S n σ-~)1(2-n χ,nS X /μ-~)1(-n t .(4)设总体X ~)10(2χ,Y ~)15(2χ,且X 与Y 相互独立,则=+)(Y X E 25,=+)(Y X D 50.4.设随机变量X 与Y 都服从标准正态分布,则(C )A .Y X +服从正态分布B .22Y X +服从2χ分布C .2X 与2Y 均服从2χ分布D .22YX 服从F 分布5.在总体X ~)3.6,52(2N 中随机抽取一容量为36的样本,求样本平均值X 落在8.50到8.53之间的概率.解:因为X ~)3.6,52(2N ,即52=μ,223.6=σ,因为36=n ,22205.1363.6==n σ,所以X ~)05.1,52(2N .由此可得)8.538.50(≤≤X P 05.1528.50()05.1528.53(-Φ--Φ=8302.0)1429.1()7143.1(=-Φ-Φ=.6.设总体X ~)1,0(N ,1X ,2X ,…,10X 为总体的一个样本,求:(1))99.15(1012>∑=i i X P ;(2)写出1X ,2X ,…,10X 的联合概率密度函数;(3)写出X 的概率密度.解:(1)由题可知∑==1012i i X X ~)10(2χ,查2χ分布表有99.15)10(210.0=χ,可得10.0=α,即10.0)99.15(1012=>∑=i i X P .(2)1X ,2X ,…,10X 相互独立,则联合概率密度函数为}exp{321}21exp{21),,,(1012510121021∑∏==-=-=i i i i x x x x x f ππ .(3)X Y =~)1.0,0(N ,所以有2251.02)0(e 5e1.021)(y y y f -⋅--==ππ.7.设总体X ~)1,0(N ,1X ,2X ,…,5X 为总体的一个样本.确定常数c ,使25242321)(XX X X X c Y +++=~)3(t .解:因为i X ~)1,0(N ,5,,2,1 =i ,所以21X X +~)2,0(N ,)(2121X X +~)1,0(N ,252423X X X ++~)3(2χ,因为25242321252423212632XX X X X X X X X X +++=+++~)3(t ,所以有23=c .8.设1X ,2X ,3X ,4X 是来自正态总体)4,0(N 的样本.已知243221)43()2(X X b X X a Y -+-=为服从自由度为2的2χ分布,求a ,b 的值.解:由题可知i X ~)4,0(N ,4,3,2,1=i ,故有0)2(21=-X X E ,20)2(21=-X X D ,所以212X X -~)20,0(N .同理4343X X -~)100,0(N .而20)2(221X X -~)1(2χ,100)43(221X X -~)1(2χ,故有100)43(20)2(243221X X X X -+-~)2(2χ,比较可知201=a ,1001=b .9.设总体X ~)3.0,(2μN ,1X ,2X ,…,n X 为总体的一个样本,X 是样本均值,问样本容量n 至少应取多大,才能使95.0)1.0(≥<-μX P .解:易知X ~)3.0,(2nN μ,由题意有95.013(2/3.01.0/3.0()1.0(≥-Φ=<-=<-nnnX P X P μμ,即应有975.0)3(≥Φn,查正态分布表知975.0)96.1(=Φ,所以取96.13≥n,即5744.34≥n ,取35=n .10.设总体X ~)16,(μN ,1X ,2X ,…,10X 为总体的一个样本,2S 为样本方差,已知1.0)(2=>αS P ,求α的值.解:由抽样分布定理知22)1(σS n -~)1(2-n χ,因为10=n ,故有2249S ~)9(2χ,得1.0)169169()(22=>=>ααS P S P ,查2χ分布表得684.14)9(21.0=χ,即684.14169=α,解得105.26=α.11.设(1X ,2X ,…,1+n X )为来自总体X ~),(2σμN 的一个样本,记∑==n i i n X n X 11,∑=--=n i in X X n S 122(11,求证:nn n S X X n n T -⋅+=+11~)1(-n t .证:由题可知n X ~),(2nN σμ,n n X X -+1~)11(,0(2σn N +,标准化得σnX X nn 111+-+~)1,0(N .又因为∑=-=-ni inX XS n 1222)(1)1(σσ~)1(2-n χ,从而有nn nnn S XX n n n S n n X X -+=--+-++122111)1(11σσ~)1(-n t ,即nnn S X X n n T -⋅+=+11~)1(-n t .。
概率论与数理统计-第六章
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi
i 1, 2,
,n
,n
于是 (
) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2
概率论与数理统计第6章
第六章6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布, 在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6。
8 设总体X ~N (150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤。
解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ= 2857.09615.09772.0=-=第六章《样本与统计量》定理、公式、公理小结及补充:。
概率论与数理统计答案 (6)
习题六1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n =100~(0,1)Z N =即 60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大? 【解】~(0,1)Z N =(2.2 6.2)P X P Z <<=<<210.95,=Φ-=则,故即n >24.01,所以n 至少应取253.设某厂生产的灯泡的使用寿命X ~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=10021000~(8)100/3X t t -==10621000(1062)()( 1.86)0.05100/3P X P t P t ->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1)Z N =,由P (|X -μ|>4)=0.02得P |Z |>4(σ/n )=0.02,故210.02⎡⎤-Φ=⎢⎥⎢⎥⎝⎭⎣⎦,即0.99.Φ=⎝⎭ 查表得2.33,=所以5.43.σ== 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本,S 2为其样本方差,且P (S 2>a )=0.1,求a 之值.【解】2222299~(9),()0.1.1616S a P S a P χχχ⎛⎫=>=>= ⎪⎝⎭查表得914.684,16a= 所以 14.6841626.105.9a ⨯== 6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量Y =∑∑==-ni ii i XX n 62512)15(,n >5服从何种分布? 【解】2522222211~(5),~(5)i nii i i XX X n χχχ====-∑∑且12χ与22χ相互独立. 所以2122/5~(5,5)/5X Y F n X n =--7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于0.3的概率. 【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N (20,310), Y ~N (20,315),且X 与Y 相互独立. 则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),Z N = 所以(||0.3)||2[1(0.424)]P X Y P Z Φ⎛->=>=- ⎝2(10.6628)0.6744.=-=8.设总体X ~N (0,σ2),X 1,…,X 10,…,X 15为总体的一个样本.则Y =()15121121022212X X X X X X ++++++ 服从 分布,参数为 . 【解】~(0,1),iX N σi =1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立,所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++ 所以Y ~F 分布,参数为(10,5).9.设总体X ~N (μ1,σ2),总体Y ~N (μ2,σ2),X 1,X 2,…,1n X 和Y 1,Y 2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = . 【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑ 则122222112211()(1),()(1),n n ij i j XX n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X ~N (μ,σ2),X 1,X 2,…,X 2n (n ≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y =∑=+-+ni i n iX X X12)2(,求EY .【解】令Z i =X i +X n +i , i =1,2,…,n .则Z i ~N (2μ,2σ2)(1≤i ≤n ),且Z 1,Z 2,…,Z n 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则 21111,222nn i ii i X X Z Z nn =====∑∑ 故 2Z X = 那么22211(2)()(1),n ni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f (x )=x-e 21 (-∞<x <+∞),X 1,X 2,…,X n 为总体X 的简单随机样本,其样本方差为S 2,求E (S 2).解: 由题意,得1e , 0,2()1e ,0,2xx x f x x -⎧<⎪⎪=⎨⎪≥⎪⎩于是 22222220()()()()1()()d e d 021()()d e d e d 2,2xxx E S D X E X E X E X xf x x x x E X x f x x x x x x +∞+∞--∞-∞+∞+∞+∞---∞-∞==-=======⎰⎰⎰⎰⎰所以2()2E S =.。
概率论与数理统计第6章
以分组区间为底,以
Yj
Wj X j1 X j
Wj 5
为高
作频率直方图
23
从频率直方图可看到:靠近两个极端的数据出现比 较少,而中间附近的数据比较多,即中间大两头小的分 布趋势,——随机变量分布状况的最粗略的信息。
在频率直方图中, 每个矩形面积恰好等于样本值 落在该矩形对应的分组区间内的频率,即
S j
Wj X j1
Xj
X j1 X j
Wj
频率直方图中的小矩形的面积近似地反映了样本数
据落在某个区间内的可能性大小,故它可近似描述X的
分布状况。
24
12
第二.计算样本特征数
1.反映集中趋势的特征数:样本均值、中位数、众数等 样本均值MEAN 中位数MEDIAN 众数
X 90.3
91
91, 94
代表性——即子样( X1, X2 ,
,
X
)的每个分量
n
X
与
i
总体 X 具有相同的概率分布。
独立性——即 X1, X2, , Xn 是相互独立的随机变量。
满足上述两点要求的子样称为简单随机子样.获得简 单随机子样的抽样方法叫简单随机抽样.
从简单随机子样的含义可知,样本 X1, X2 , , Xn 是来自总体 X、与总体 X具有相同分布的随机变量.
2分布 t 分布 数理统计的三大分布(都是连续型). F分布 它们都与正态分布有密切的联系.
在本章中特别要求掌握对正态分布、 2分布、 t分布、F分布的一些结论的熟练运用. 它们
是后面各章的基础.
31
一、 2分布
定义 设总体 X ~ N 0,1 , X1, X2,..., Xn 是 X
概率论与数理统计第6章
不含未知参数的样本的函数称为统计量 不含未知参数的样本的函数称为统计量. 统计量 2. 几个常见统计量
1 n 样本均值 X = ∑Xi n i=1
反映总体 均值的信息 反映总 体方差 的信息
1 n 2 2 样本方差 S = ∑( Xi − X) n −1 i=1
样本2阶中心矩 样本 阶中心矩
反映总体2 反映总体 阶 中心矩的信息
(
)
−
n1 +n2 2
x≥0
例1 设X、Y相互独立均服从正态分布 、 相互独立均服从正态分布 N(0,3), X1,X2,…,X9和Y1,Y2,…,Y9分别为来 的样本。 自X、Y的样本。求 、 的样本
U=
X1 + X 2 + L + X 9 Y +Y +L+Y
2 1 2 2
的分布。 的分布。
2 9
小样本问题中使用) 精确抽样分布(小样本问题中使用) 抽样分布 大样本问题中使用) 渐近分布 (大样本问题中使用
{
三. 统计三大分布
1 . χ 分布
2
定义: 相互独立, 定义 设 X1 , X2 ,L, Xn相互独立 都服从正态 分布N(0,1), 则称随机变量: 则称随机变量: 分布 2 2 2 2 χ = X 1 + X 2 + …+X n 所服从的分布为自由度为 n 的 χ 分布. 分布
3. F分布 分布 与 X ~ χ (n1),Y ~ χ (n2 ), X与Y X / n1 相互独立, 相互独立,则称统计量 F = Y / n2 定义: 定义 设
2 2
服从自由度为n 分布, 服从自由度为 1及 n2 的F分布,n1称为第 分布 一自由度, 称为第二自由度, 一自由度,n2称为第二自由度,记作 F~F(n1,n2) .
吴赣昌编-概率论与数理统计-第6章(new)
ˆ , ˆ ,, ˆ 从中解出 1 2 m
在例6.4中,
n xi n xi n i 1 i 1 xi ln n xi ln(1 ) ln L( ) ln (1 ) i 1 i 1
1 n 解得矩法估计量为 ˆ Xi X n i 1
注:1
n n n 1 1 1 2 2 1 2 2 2 X 2 X X X i i (Xi X ) (Xi 2Xi X X ) n n n i 1 i 1 i 1 n i 1 n i 1 n n
i 1 n
xi !
e
e
n
x!
i 1 i
n
x
i
n
x
i 1
1
n
i 1
i
0
n 1 ˆ xi n i 1
d2 1 n n (ln L ( )) x 0 2 2 i d i 1 x ˆx
ˆx 所以
ˆ X L
二、极大似然估计法(R.A.Fisher费歇)
先看一个简单例子: 某位同学与一位猎人一起 外出打猎 . 一只野兔从前方窜过 . 只听一声枪响,野兔应声倒下 . 如果要你推测, 是谁打中的呢? 你会如何想呢?
1、极大似然估计法的基本思想
由样本的具体取值,选择参数θ的估计量 ˆ 使得取该样本值发生的可能性最大。 一般说,事件A发生的概率与参数有关,取
n 2 i 2 i 1
n n n 1 ln L( , 2 ) ln 2 ln 2 ( xi 2 2 2 2 i 1 ln L( , 2 ) 1 n 2 ( xi ) 0 i 1 解得 2 n ln L ( , ) n 1 2 2 ( xi ) 0 2 4 2 2 i 1
概率论与数理统计答案第六章
第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。
解: 8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。
(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P =2628.0)]25(1[2=Φ-(2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15}=.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10}=.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i i X P解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i ii ii iX P XP χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλnX D ===[六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。
概率论与数理统计第六章
Ch 6 数理统计的基本概念§6.1 基本概念 一、总体与样本1、总体——研究对象的全体,记为X 。
2、个体——构成总体的每一个对象,记为i X 。
3、总体容量——总体中包含的个体的个数。
有限总体——容量有限;无限总体——容量无限。
为推断总体X 的分布,从总体中抽取n 个个体,则对应n 个r.v.n X X X .....2,1——来自于总体X 的一个样本。
n X X X ......,21的取值((n x x x ,.....,21)--观测结果)称为样本的观测值,简称为样本值,整个抽取过程称之为抽样。
抽取的目的是根据样本的取值情况推断总体情况,因此应尽可能的使抽取的样本能反映总体的状况,故要求抽取的样本具有以下性质:文档收集自网络,仅用于个人学习⑴ 代表性:样本中每个r.v.i X 与总体X 具有相同的分布。
文档收集自网络,仅用于个人学习⑵ 独立性:n X X X ......,21相互独立。
——简单的随机抽样所得的样本称为简单的随机样本;若总体X 的分布函数为F (x ),则样本n X X X .....2,1的联合分布函数)().....,(121*i ni n x F x x x F =∏=。
文档收集自网络,仅用于个人学习若X 为连续型,且d.f 为f(x),且联合p.d.f 为:)()....,(121*i ni n x f x x x f =∏= 若X 为离散型,且分布律为:....2,1,)(===k p x X P k k 则联合分布律:in i i in n i i p p p x X x X x X P ....).....,(212211⋅⋅====。
...2,1.....3,2,1=in i i i 二、统计量Def:不含有任何未知数的关于样本空本空间的函数称为统计量。
e.g.1 设总体X~),(2σμN ,其中2,σμ未知,(n X X X .....2,1)为取自总体X 的一个样本,则:∑∑==--==n i i n i i X X n S X n X 1221)(11,1均为统计量。
概率论与数理统计 第6章
6.1 基本概念 6.2 抽样分布 习题 6
数理统计是具有广泛应用的一个数学分支,它以概率论 为基础,根据试验或观察得到的数据来研究随机现象,对研 究对象的客观规律性作出种种合理的估计和判断。数理统计 的内容包括:如何收集、整理数据资料;如何对所得的数据
资料进行分析、研究,从而对所研究的对象的性质、特点作
设总体 X 的分布律为 P ( X = x ) = p ( x ), X 1 , X
2
,…, X n为来自总体 X 的一个样本,则 X 1 , X 2 ,…, , X 2 ,…, X n)的联合分布律为
X n的分布律都是 P ( X i = x ) = p ( x ),从而 n 维随机变量(X
1
设总体 X 的概率密度为 f ( x ), X 1 , X 2 ,…, X n为 来自总体 X 的一个样本,则 X 1 , X 2 ,…, X n的概率密度 都是 f ( x ),从而 n 维随机变量(X 1 , X 2 ,…, X n)的联合 概率密度为
( n ) ,则称函数
为总体 X 的经验分布函数。
需要指出的是,若在 F n (x )的定义中将样本值换成对 应的样本,则当 n 固定时,它是一个随机变量,此时仍称之 为总体 X 的经验分布函数。所以用样本值定义的 F n (x )其 实是经验分布函数的观察值,在不致混淆的情况下统称为总 体 X 的经验分布函数。
出推断。数理统计的重要分支有统计推断、试验设计、多元 分析等,其具体方法甚多,应用相当广泛,已成为各学科从
事科学研究及生产、经济等部门进行有效工作的必不可少的
数学工具。
本章从数理统计的基本概念开始,讨论抽样分布及其重 要定理,这些抽样分布及其重要定理在概率论中尚未提到,
《概率论与数理统计》六
E( X ) xk pk . k 1
例1 设甲、乙两射手在同样条件下进行射击,其命中环数是一
随机变量,分别记为X、Y,并具有如下分布律
X 10 9 8 7
Y 10 9 8 7
Pk 0.6 0.1 0.2 0.1
Pk 0.4 0.3 0.1 0.2
试问甲、乙两射手的射击水平哪个较高?
解 100.6 90.180.2 70.1 100.4 90.3 80.1 70.2
i1 j1
2
E(Y )
yf ( x, y)dxdy dx
ydy
0
0
3
1
2(1 x )
1
E(XY )
xyf ( x, y)dxdy dx
xydy
0
0
6
三、数学期望的性质
假设以下随机变量的数学期望均存在. 1. E(C)=C, (C是常数) 2. E(CX)=CE(X), (C是常数) 3. E(X+Y)=E(X)+E(Y), 4. 设X与Y相互独立, 则 E(XY)=E(X)E(Y)
1
e
x
,
0,
x0 x0
( 0)
求将这5个元件串联组成的系统的平均寿命.
解
Xk的分布函数为
F
(
x)
1
e
x
,
0,
x0 x0
串联时系统寿命 N min( X1 , X2 , , X5 ) ,
其分布函数为 Fmin ( x) 1
[1
F(
x)]5
1
e
5x
,
0,
x 0, x 0.
fmin
2 X 3, 一台付款 2500 元; X 3, 一台付款3000元.
概率论与数理统计6.第六章:样本及抽样分布
),
,
,
,
是来
Z=
(
-
证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 设Xi 表示第 i 页上的印刷错误个数(i=1,2,…,300)
,
则 Xi ~ π(0.2)且Xi 相互独立,且 E(Xi)= D(Xi )=0.2
E
300
Xi
300
E
Xi
60,
D
300
Xi
300
D
Xi
60
i1 i1
i1 i1
300
近似
Xi ~ N 60,60
i 1
P
中心极限定理
自从高斯指出测量误差服从正态分布 之后,人们发现:正态分布在自然界中极 为常见.
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大,则这种随机变量一般都服 从或近似服从正态分布.
中心极限定理
中心极限定理是棣莫弗 (De Moivre) 在18世 纪首先提出的,到现在内容已十分丰富;在这里,我 们只介绍其中两个最基本的结论:
n
Xi n
lim P i1
x
x
1
e -t2 2dt (x)
n n
- 2
其中Φ(x) 是标准正态分布 N(0, 1) 的分布函数。
n
Xi n
lim P i1
x
x
1
e -t2 2dt (x)
n n
- 2
还有另一记法:
记
X
1 n
n k 1
Xk
,有
lim P
Xi ~ N 160,32
i 1
于是
P
200 i 1
Xi
150
1
150
160 32
1 1.77
1.77 0.96
例2:某公司有200名员工参加一种资格证书考试,按 往年经验,考试通过率为0.8。试计算这200名员工至 少有150人考试通过的概率。
解法二: 设X表示通过考试的人数,则
(2) 每箱产品的平均强度超过期望14的概率。
解:设Xi 是第i 件产品的强度(i =1,2,…,100),
且有
E平(均Xi)强=1度4,为YD(X1i01)0=41i0,01 XXii 相互独立。则每箱产品的
且
E Y
E
1 100
100 i 1
Xi
1 100
100 i 1
E
Xi
14
证明:P(0 X 2) P( X )
DX
1 2
1
2
2 2
1
切比雪夫不等式的应用
例:已知正常男性成人血液中,每毫升白细胞数的平 均值是7300,均方差是700,利用切比雪夫不等式估 计每毫升血液含白细胞数在5200~9400之间的概率。
解:设X表示每毫升血液中含白细胞个数,则
使用外线的分机数,则
X ~ B(200,0.05)
E(X)= 200*0.05=10, D(X)= 200*0.05*0.95=9.5
保证每个分机要使 用外线时可供使用 的概率达到0.9
P X n 0.9
P
X
n
n 10 9.5
0.9 1.28
n 10 1.28 n 14 9.5
i 1, 2,
, 200
Xi 相互独立.
Xi
0
1
E(Xi)= 0.8, D(Xi)= 0.
P 0.2 0.8
16
考试通过人数为
200
X
i
i=1,2,…,200
,且有
i 1
E
200
Xi
200
E Xi
160,
D
200
Xi
200
D Xi
32
i1 i1
i1 i1
200
近似
erm 客观背景
在实际问题中,有许多随机现象可以看做是由很 多因素独立影响的综合结果,而每一个因素对该现象 的影响都很微小,但总起来却对总和有显著影响,那 么描述这种随机现象的随机变量可以看成很多相互独 立的起微小作用的因素的总和,它往往近似地服从正 态分布。
中心极限定理
例如:炮弹射击的落点与目标的偏差,就受着许多随 机因素(如瞄准,空气阻力,炮弹或炮身结构等)综合 影响的.每个随机因素的对弹着点 (随机变量和)所起 的作用都是很小的.那么弹着点服从怎样分布呢?
P
a np np(1 p)
X np np(1 p)
b np np(1 p)
b np np(1 p)
a np np(1 p)
近似
即 Bn, p ~ N np, np 1 p
例1:设一批产品的强度服从期望为14,方差为4的
分布,每箱中装有这种产品100件。求
(1) 每箱产品的平均强度超过14.5的概率;
300
i1
Xi
70
70 60 60
1.29
0.95
例4:某市保险公司开办一年人身保险业务,被保人每年需交付 保费160元。若一年内发生重大人身事故,其本人或家属获赔 付金2万元。己知该市人员一年内发生重大人身事故的概率为0. 005,现有5000人参加此项保险。求保险公司一年内从此项业 务所得到的总收益在20万元到40万元之间的概率。
X
|
1
2 2
估计不等 式
在随机变量X的分布未知的情况下,只利 用X的期望和方差,即可对X的概率分布进行估计。
证明:只对X 是连续型情况加以证明。 设X 的概率密度函数为 f(x),则有
P| X | f (x)dx
放大积分区间
|x|
x
2
|x|
2
f (x)dx
放大被积函数
1
2
12((xx)2)f2
f x dx
(x)dx
2 2
由切比雪夫不等式可以看出:若 2越小,则事件{|X-E(X)|≤ε }的
概率越大,即随机变量X 集中在期望附近的可能性越大.
切比雪夫不等式用于:估计概率、 证明不等式。
例:设 X服从参数为 的泊松分布, 证明: P(0 X 2) 1.
~ Xi
i 1
N n, n 2 ; i1 n
~ N 0,1
定理的应用:在一般情况下,我们很
n
难求出 Xi的分布的确切形式,但当 i 1
n很大时,可以求出近似分布.
定理2: 棣莫佛-拉普拉斯中心极限定理
设随机变量X服从参数为(n, p)的二项分布(0<p<1 ),则对任意 x∈(-∞,+∞),均有
“大数定律”和“中心极限定理”
大数定律
对随机现象进行大量重复的观测,各种结果的 出现的频率具有稳定性。
大量地掷硬币 正面出现频率
生产过程 中废品率
字母使用频率
切比雪夫不等式
定理: 设随机变量X 的数学期
望E(X)= ,方差D(X)= 2,则对
任给的ε > 0, 有
P X
2 2
,
或
P |
X
x
x
1 e-t2 2dt (x)
n / n - 2
定理说明
定理表明:对于独立的随机变量序列 {Xn} ,不 管Xi (i=1,2,…,n)服从什么分布,只要它们是同分布, 且有有限的数学期望和方差,那么当n充分大时,这些
随机变量之和近似地服从正态分布,即
n
n
近似地
Xi n 近似地
X
n
1 n
n i 1
Xi是n次试验中 A发生的频率
定理:伯努利大数定律 -频率的稳定性
-----
设X是 n 次独立重复试验中事件A发生的次数,
p是事件A在每次试验中发生的概率,则对于任意正
数ε,恒有
lim P n
X n
p
1
或者
lim P n
X n
p
0
lim P n
1 n
n i 1
E X 7300, D X 7002
P 5200 X 9400 P X 7300 2100
DX
1 21002
1 1 8 99
设随机变量X的方差为2.5,利用切比雪夫不等式
估计概率 P X E X 7.5
答:
P
X E X 7.5
2.5 7.52
1 22.5
记
X
1 n
n i 1
Xi
E
X
E
1 n
n i 1
Xi
1 n
n i 1
E Xi
,
D
X
D
1 n
n i 1
Xi
1 n2
n
D
i 1
Xi
2
n
P
1 n
n i 1
Xi
P
X
1
2 n 2
令 n→∞,并注意到概率小于等于1,有结论:
lim P n
1 n
n i 1
Xi
1
在概率论中,习惯于把随机变量之和的分 布收敛于正态分布这一类定理都叫做中心极限定理.
定理1: 独立同分布的中心极限定理 林德伯格-列维(Lindeberg-Levy)中
心极限定理
设 X1, X2, … 是独立同分布的随机变量序
列,且E(Xi) = , D(Xi)= 2,则对任给 x ∈(-∞,
+∞), 均有
lim
P
X np
x x
1 et2/2d t (x)
n np(1 p) 2
定理表明:当n很大,0<p<1是一个定值时 (或者说,np(1-p)也不太小时),二项分
布 B(n, p) 近似正态分布 N(np,np(1-
p)).
一般地,如果随机变量 X~B(n, p) ,则有