量子物理习题解答
习题解答(光学篇和量子物理篇)
第14章习题解答1.某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.2.什么是光程? 在不同的均匀介质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与相位差的关系式2πϕδλ∆=中,光波的波长要用真空中波长,为什么?解:nr δ=.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为t C δ∆=.因为δ中已经将光在介质中的路程折算为光在真空中所走的路程。
3.在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由。
(1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中;(4)光源作平行于1S 、2S 连线方向的上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝。
解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.4.在空气劈尖中,充入折射率为n 的某种液体,干涉条纹将如何变化? 解:干涉条纹将向劈尖棱边方向移动,并且条纹间距变小。
5.当将牛顿环装置中的平凸透镜向上移动时,干涉图样有何变化?解:透镜向上移动时,因相应条纹的膜厚k e 位置向中心移动,故条纹向中心收缩。
6.杨氏双缝干涉实验中,双缝中心距离为0.60mm ,紧靠双缝的凸透镜焦距为2.5m ,焦平面处有一观察屏。
(1)用单色光垂直照射双缝,测得屏上条纹间距为2.3mm ,求入射光波长。
(2)当用波长为480nm 和600nm 的两种光时,它们的第三级明纹相距多远? 解:(1)由条纹间距公式λdDx =∆,得 332.3100.6105522.5x d nm D λ--∆⋅⨯⨯⨯===(2)由明纹公式Dx k d λ=,得92132.5()3(600480)10 1.50.610D x k mm d λλ--∆=-=⨯⨯-⨯=⨯ 7.在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m 。
大学物理量子力学习题附标准标准答案
一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。
量子物理基础习题解
量⼦物理基础习题解量⼦物理基础17.1 夜间地⾯降温主要是由于地⾯的热辐射。
如果晴天夜⾥地⾯温度为-5°C ,按⿊体辐射计算,每平⽅⽶地⾯失去热量的速率多⼤?解:每平⽅⽶地⾯失去热量的速率即地⾯的辐射出射度2484W /m2922681067.5=??==-TM σ17.2 在地球表⾯,太阳光的强度是1.0?103W/m 2。
地球轨道半径以1.5?108km 计,太阳半径以7.0?108 m 计,并视太阳为⿊体,试估算太阳表⾯的温度。
解:42244TR I R M SE σππ==K103.51067.5)107.6(100.1)105.1(348283211422==S E R I R T 17.3宇宙⼤爆炸遗留在宇宙空间的均匀背景辐射相当于3K ⿊体辐射.求:(1)此辐射的单⾊辐射强度在什么波长下有极⼤值?(2)地球表⾯接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表⾯积为 S = 4πR 2.根据公式:⿊体表⾯在单位时间,单位⾯积上辐射的能量为 M = σT 4,因此地球表⾯接收此辐射的功率是 P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.4 铝的逸出功是eV 2.4,今有波长nm 200=λ的光照射铝表⾯,求:(1)光电⼦的最⼤动能;(2)截⽌电压;(3)铝的红限波长。
解:(1) A chA h E k -=-=λνeV 0.22.4106.1102001031063.6199834=-=---(2)V 0.21/0.2/===e E U k c (3)Ahc c==0νλnm6.12.41031063.6719834=?==---17.5 康普顿散射中⼊射X 射线的波长是λ = 0.70×10-10m ,散射的X 射线与⼊射的X 射线垂直.求:(1)反冲电⼦的动能E K ;(2)散射X 射线的波长;(3)反冲电⼦的运动⽅向与⼊射X 射线间的夹⾓θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin2 2.42610sin24πλΛ-?==??= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电⼦的动能为`k hchcE λλ=810106.63103106.63103100.7100.7242610----=-= 9.52×10-17(J).(3)由于/`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹⾓为θ = 44°1`.17.6 求波长分别为71100.7-?=λm 的红光和波长1021025.0-?=λm 的X 射线光⼦的能量、动量和质量。
量子物理基础习题
17-1 在加热黑体过程中,其单色辐出度的峰值波长是由μm 69.0变化到μm 50.0,求总辐出度改变为原来的多少倍?解:由 4)(T T M B σ=,b T m =λ 得 63.3)5.069.0()()()(442112===m m B B T M T M λλ17-2解:(1)m 10898.21010898.21073--⨯=⨯==T b m λ (2)J 1086.610898.21031063.61610834---⨯=⨯⨯⨯⨯===λνch h E 17-3解:(1)4)(T T M B σ=,K 17001067.5001.0/6.473)(484=⨯==-σT M T B(2)m 1070.1170010898.263--⨯=⨯==T b m λ (3)162)()()(441212===T T T M T M B B ,2612W/m 10578.7001.06.47316)(16)(⨯=⨯==T M T M B B17-4 钾的光电效应红限波长为μm 62.00=λ。
求:(1)钾的逸出功;(2)在波长nm 330=λ的紫外光照射下,钾的截止电压。
解:(1)eV 2J 1021.31062.01031063.61968340=⨯=⨯⨯⨯⨯===---λνch h A (2)A h mv eU a -==ν221 V 76.11060.11021.3103301031063.619199834=⨯⨯-⨯⨯⨯⨯=-=-=----eA ch eA h U a λν17-5 铝的逸出功为eV 2.4。
今用波长为nm 200的紫外光照射到铝表面上,发射的光电子的最大初动能为多少?截止电压为多大?铝的红限波长是多大?解:(1)eV 2J 1023.3106.12.4102001031063.621191998342≈⨯=⨯⨯-⨯⨯⨯⨯=-=-=----A c h A h mv λν (2)221mv eU a =,V 2eV2==eU a (3)Hz 10014.11063.6106.12.41534190⨯=⨯⨯⨯==--h A νnm 296m 1096.210014.1103715800=⨯=⨯⨯==-νλc17-6 在光电效应实验中,对某金属,当入射光频率为Hz 102.215⨯时,截止电压为V 6.6,入射光频率为Hz 106.415⨯时,截止电压为V 5.16。
量子物理基础参考答案(改)
量子物理基础参考答案一、选择题参考答案:1. D ;2. D ;3. D ;4. C ;5. D ;6. C ;7. C ;8. A ;9. A ;10. D ;11. D ;12. C ;13. C ;14. A ;15. D ;16. E ;17. C ;18. C ;19. B ;20. A ;21. D ;22. C ;23. B ;24. B ;25. A ;26. C ;27. D ;28. A ;29. A ;30. D ;31. C ;32. B ;33. C ;34. C ;35. C ;36. D ;37. C ;38. D ;39. A ;40.D二、填空题参考答案:1、J 261063.6-⨯,1341021.2--⋅⋅⨯s m kg2、>,>3、14105⨯,24、V 45.1,151014.7-⋅⨯s m5、θφcos cos P c v h c hv+'=6、2sin 2sin 2212ϕϕ7、π,︒08、定态,(角动量)量子化,跃迁9、(1)4 , 1 (2)4 ,310、10 ,311、6.13 , 4.312、913、1:1, 1:414、122U em he15、m 101045.1-⨯, m 291063.6-⨯16、231033.1-⨯, 不能17、241063.6-⨯18、≥19、(1)粒子在t 时刻在()z y x ,,处出现的概率密度;(2)单值、有限、连续;(3)12*=ψ=ψψ⎰⎰⎰⎰dxdydz dV V20、不变 21、a x n a π2sin 2, dx a x n a a π230sin 2⎰三、计算题参考答案:1、分析 光子的能量、动量和质量与波长的关系为c h cE m h c E p hc E λλλ=====2 解: 利用上面的公式,当nm 001.0 nm,20 nm,1500=λ时,分别有 J 1099.1 J,1097.9 J,1033.1131919---⨯⨯⨯=Em/s kg 1063.6 m/s,kg 1031.3 m/s,kg 1043.4222628⋅⨯⋅⨯⋅⨯=---p kg 1021.2kg,1010.1kg,1048.1303436---⨯⨯⨯=m2、解: 由光电效应方程可得V 45.1=-=eW h U a ν m/s 1014.725max ⨯==meU a v3、解: 康普顿散射公式得散射光的波长为2sin 22sin 22C 0200ϕλλϕλλ+=+=c m h 其中m 1043.212C -⨯=λ,则当︒︒︒=90 ,60 ,30ϕ时,代入上式得波长分别为 nm 0074.0nm,0062.0nm,0053.0=λ4、解: 氢原子从基态1=f n 激发到3=i n 的能级需要的能量为eV 1.12Δ13=-=E E E对应于从3=i n 的激发态跃迁到基态1=f n 的三条谱线的光子能量和频率分别为 Hz 1092.2eV 1.12 :1315⨯===→=νE n n f iHz 1046.2eV 2.10 Hz1056.4eV 89.1 :12315221411⨯==⨯===→=→=ννE E n n n f i5、解: 经电场加速后,电子的动量为meU p 2=根据德布罗意关系,有m 1023.111-⨯==Ph λ6、解: 一维无限深阱中概率密度函数(定态)为)2cos 1(1sin 2)(*)()(2ax n a a x n a x x x ππψψρ-=== 当12cos -=a x n π时,即 ,212,,.23,2212a nk n a n a a n k x +=+=时,发现粒子的概率最大.当∞→n 时,趋近于经典结果.7、解:分析 在一维无限深井区间],[21x x 发现粒子的概率为 ⎰=21d )(*)(x x x x x P ψψ 在区间]43,0[a 发现粒子的概率为 909.0d sin 2d )(*)(4302430===⎰⎰a ax ax a x x x P πψψ。
量子物理试题及答案
量子物理试题及答案1. 请解释普朗克常数在量子力学中的作用。
答案:普朗克常数是量子力学中一个基本常数,它标志着能量与频率之间的联系。
在量子力学中,普朗克常数用于描述粒子的能量量子化,即粒子的能量只能以普朗克常数的整数倍进行变化。
2. 描述海森堡不确定性原理。
答案:海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量。
具体来说,粒子的位置不确定性与动量不确定性的乘积至少等于普朗克常数除以2π。
3. 什么是波函数坍缩?答案:波函数坍缩是指在量子力学中,当进行测量时,系统从一个不确定的量子态(波函数描述的状态)转变为一个确定的经典态的过程。
4. 简述薛定谔的猫思想实验。
答案:薛定谔的猫是一个思想实验,用来说明量子力学中的超位置原理。
在这个实验中,一只猫被放置在一个封闭的盒子里,盒子内还有一个装有毒气的瓶子和一个放射性原子。
如果原子衰变,毒气瓶就会打开,猫就会被毒死。
在没有观察之前,猫处于既死又活的超位置状态。
只有当观察者打开盒子时,猫的状态才会坍缩为一个确定的状态。
5. 什么是量子纠缠?答案:量子纠缠是量子力学中的一种现象,指的是两个或多个粒子之间存在一种特殊的关联,使得即使它们相隔很远,一个粒子的状态也会立即影响到另一个粒子的状态。
6. 解释泡利不相容原理。
答案:泡利不相容原理指出,在同一个原子内,两个电子不能具有相同的四个量子数(主量子数、角量子数、磁量子数和自旋量子数)。
这个原理解释了原子的电子排布和元素周期表的结构。
7. 描述量子隧穿效应。
答案:量子隧穿效应是指粒子能够穿越一个在经典物理学中不可能穿越的势垒。
这种现象是由于量子力学中的波函数具有非零的概率在势垒的另一侧存在,即使粒子的能量低于势垒的高度。
8. 什么是量子比特?答案:量子比特,又称为量子位,是量子计算中的基本信息单位。
与经典比特不同,量子比特可以处于0和1的叠加态,这使得量子计算机能够同时处理大量信息。
9. 简述狄拉克方程。
量子物理习习题解答
精心整理量子物理习题解答习题17—1用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。
那么[ ](A)1ν一定大于2ν。
(B)1ν一定小于2ν。
(C)1ν一定等于2ν。
(D)1ν可能大于也可能小于2ν。
解:根据光电效应方程,光电子的最大初动能为由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判习题 所以L (A)。
习题所以习题(A)1/4。
(B)1/8。
(C)1/16。
(D)1/32。
解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为mP E k 22= ; n P r L n == ;12r n r n = 所以电子的动能与量子数n 2成反比,因此,题给的两种情况下电子的动能之比12/42=1/16,所以我们选择答案(C)。
习题17—5在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E k 之比k E ε为[ ](A)2。
(B)3。
(C)4。
(D)5。
解:由康普顿效应的能量守恒公式可得所以,应该选择答案(D)。
习题17—6设氢原子的动能等于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为[ ](A)mkT h 3=λ。
(B)mkT h 5=λ。
(C)h mkT 3=λ。
(D)h mkT 5=λ。
把此式代入德布罗意公式有所以因此,应该选择答案(D)。
习题17—10氩(Z =18)原子基态的电子组态是:[ ] (A)1S 22S 83P 8(B)1S 22S 22P 63d 8 (C)1S 22S 22P 63S 23P 6(D)1S 22S 22P 63S 23P 43d 2解:对(A)示组态,既违反泡利不相容原理,也违反能量最小原理,是一个不可能的组态;对(B)示组态和(D)示组态均违反能量最小原理,也都是不可能组态。
大学物理第13章 量子物理习题解答
习题13-1设太阳就是黑体,试求地球表面受阳光垂直照射时每平方米得面积上每秒钟得到得辐射能。
如果认为太阳得辐射就是常数,再求太阳在一年内由于辐射而损失得质量。
已知太阳得直径为1、4×109 m ,太阳与地球得距离为1、5×1011 m ,太阳表面得温度为6100K 。
【解】设太阳表面单位面积单位时间发出得热辐射总能量为0E ,地球表面单位面积、单位时间得到得辐射能为1E 。
()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失得质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2 用辐射高温计测得炉壁小孔得辐出度为22、8 W/cm 2,试求炉内温度。
【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体得温度16000T = K ,问1350λ= nm 与2700λ= nm 得单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 得单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。
量子力学练习题答案
Wmk =| am (t) |2
∫ ∫ 其中
am
(t)
=
1 i=
t 0
eiωmkτ
H
′
mk
dτ
,
H
′
mk
=
ϕm* Hl ′(t)ϕkdτ ,ωmk = (Em − Ek ) / =
二、 证明题 1. 证明黑体辐射的辐射本领 E(ν ,T ) 与 E(λ,T ) 之间的关系。 证明:黑体的辐射本领是指辐射体单位面积在单位时间辐射出来的、单位 频率间隔内的能量,用 E(ν ,T ) 表示。由于ν = c / λ ,所以黑体的辐射本领也 可以表示成 E(λ,T ) 。由定义得单位面积、单位时间内辐射的能量为
的同时决定,也使得它们的分布同时制约,这种制约就是不确定性原理,
它是任何两个力学量在任何状态下的涨落(用均方差表示)必须满足的相
互制约关系,公式表示为
ΔA⋅ ΔB ≥ 1 ⋅ [lA, Bl] 2
23. 如果算符 Aˆ 的本征值分别为 A1, A2, A3,",在算符 Aˆ 的自身表象中写出
算符 Aˆ 的矩阵形式。
下,所有力学量的概率分布不随时间改变;在一切状态下,守恒量的概率
分布不随时间改变。
25. 在 Sz 表象下,写出算符 Sˆz 及其本征态|↑〉 和|↓〉 的矩阵表达式。
答:在 Sz 表象下,算符 Sˆz 的矩阵表达式为
Sz
=
= ⎛1
2
⎜ ⎝
0
0⎞ − 1⎟⎠
其本征态|↑〉 和|↓〉 的矩阵表达式分别为
v∫ 答: pkdqk = nkh (nk = 1, 2,3,")
其中 (qk , pk ) 代表一对共轭的正则坐标和动量。 7. 利用光波的双缝干涉实验,说明 Born 的概率波解释。 答:Born 认为,微观粒子的运动状态用“波函数”来描述,粒子通过双缝 时,每一个缝都有一个所谓的“波”通过,只不过与经典波的强度对应的, 是粒子在某点附近出现的相对概率。对通过双缝的粒子,其概率“分成” 了两束(波动性),但对某个具体的粒子,它只能通过其中的一个缝(粒子
量子习题解答
n 0,1,2,3...
8、氢原子: 氢原子能级:
me4 1 1 En 2 13.6 2 (e V) 2 2 2 (4 0 ) n n
轨道角动量
L l (l 1)
轨道角动量沿磁场方向分量:Lz m 主量子数 轨道量子数 轨道磁量子数
n=1,2,3…
l=0,1,2,3…,n-1 ml=-l,-(l-1),…,0,1,..,l
h 0 ( 1 cos ) m0 c
4、不确定关系(1927):
h 2
x p x (或, 或h) 位臵动量不确定关系: 2
能量时间不确定关系:Et / 2
5、氢原子光谱(1913) 谱线的波数
1 1 R ( 2 2 ) T ( m) T ( n) m n
玻尔磁子
电子自旋磁矩在磁场中的能量 Es B B
e B 9.27 10 24 J / T 2me
10、多电子原子的电子组态 电子的状态用4 个量子数n,l,ml,ms确定。n相同 的状态组成一壳层,可容纳2n2个电子;l相同 的状态组成一次壳层,可容纳2(2l+1)个电子。 基态原子电子组态遵循两个规律: (1)能量最低原理,即电子总处于可能最 低的能级。一般n越大,l越大,能量就越高。 (2)泡利不相容原理(1921),不可能有两个 或两个以上的电子处在同一量子状态。即不 能有两个电子具有相同的n, l, ml , ms。
解: 光子的散射角 θ π 时电子获得的能量最大, v 电子的反冲速度沿入射光子的运动方向.设 为入 pe 射光的频率,为散射光的频率, 为反冲电子的动 v 量。 1 由能量守恒有: h(v v) Ek
由动量守恒有: 2 式得 由1 、
高二物理量子物理练习题及答案
高二物理量子物理练习题及答案第一题:小明是一位高二学生,正在学习量子物理。
他遇到了一个练习题,请根据以下题目及答案给出解析。
题目:在一个电子束实验中,电子通过一个狭缝后形成干涉图样。
若间距为d的两条暗纹距离中心的距离为y,则电子波长为λ。
小明计算出干涉图案中相邻两个亮纹之间的间距为x,请推导出计算λ的公式。
答案:在干涉图样中,相邻两个亮纹之间的间距x可以表示为:x = λD/d,其中D为屏幕到狭缝的距离。
根据几何关系,可以得到下列表达式:tanθ = y / D,其中θ为小角度。
进而可得:y = D tanθ,将其代入x =λD/d中,可得到结果:x = λD / (d tanθ)解析:这个题目考察了学生对干涉图样和波长之间的关系的理解,同时还考察了几何关系的运用。
在解答题目时,小明首先要明确干涉图案中相邻两个亮纹之间的间距是与波长有关的,然后通过几何关系的运用,得到了计算λ的公式。
第二题:小明继续进行量子物理的练习题,以下是他遇到的另一个问题,请根据题目及答案给出解析。
题目:在其他物理实验中,小明观察到一束光经过一个光栅后形成了衍射图样。
若光栅缝宽为d,中心条纹到第一个次级最暗条纹的距离为y,则光的波长为λ。
小明计算出光栅条纹间距为x,请推导出计算λ的公式。
答案:光栅条纹间距x可以表示为:x = λD / d,其中D为屏幕到光栅的距离。
根据几何关系与几何光学原理,可以得到下列表达式:tanθ = y / D,其中θ为小角度。
进一步可以得到:y = D tanθ,将其代入x = λD / d中,解得:x = λ/y解析:在这个问题中,小明需要理解光栅衍射图样中光波长与条纹间距之间的关系,以及应用几何关系来推导计算λ的公式。
小明通过几何光学原理和几何关系,成功地找到了解决问题的思路,并最终推导出结果。
通过以上两道量子物理练习题,我们可以看到小明在学习量子物理方面有了不错的掌握,他通过理解干涉和衍射现象,并熟练运用几何关系,成功地解答了这两道题目。
2024高考物理量子物理学专题练习题及答案
2024高考物理量子物理学专题练习题及答案一、选择题1. 下列说法正确的是:A. 电子云中的电子运动呈连续轨道。
B. 电子在原子核周围的轨道上运动速度是恒定的。
C. 电子在原子核周围的轨道上运动具有不确定性。
D. 电子在原子核周围的轨道上运动具有确定的轨迹。
答案:C2. 根据波粒二象性原理,下列说法正确的是:A. 波动性只存在于光学现象中。
B. 微观粒子既具有波动性又具有粒子性。
C. 微观粒子只具有波动性,不具有粒子性。
D. 微观粒子只具有粒子性,不具有波动性。
答案:B3. 某氢原子的能级为-13.6电子伏特,当电子从第3能级跃迁到第2能级时,所辐射的光子的能量为:A. 10.2电子伏特B. 12.1电子伏特C. 1.89电子伏特D. 2.04电子伏特答案:D二、填空题1. 根据不确定性原理,测量一个粒子的位置和动量越准确,就会越大地影响到它的 _______。
答案:状态2. 量子力学中,电子在原子内的运动状态由 _______ 表示。
答案:波函数3. 量子力学中,电子的能级用 _______ 表示。
答案:量子数三、简答题1. 什么是量子力学?请简述其基本原理。
答:量子力学是描述微观粒子行为的物理理论。
其基本原理包括波粒二象性原理和不确定性原理。
波粒二象性原理指出微观粒子既具有波动性又具有粒子性,可以用波函数来描述其运动状态。
不确定性原理指出无法同时准确地确定粒子的位置和动量,测量一个物理量会对另一个物理量产生不可忽略的影响。
2. 请简述量子力学中的量子力学态和测量问题。
答:量子力学态是用波函数表示的一种描述微观粒子运动状态的数学表示。
波函数包含了粒子的位置信息和概率分布。
在量子力学中,测量问题指的是测量粒子的某个物理量时,由于波粒二象性原理和不确定性原理的存在,测量结果只能是一系列可能的取值,并且每个取值的概率由波函数给出。
四、综合题某物理学家正在研究一个单电子系统,该系统可以用简化的一维势场模型来描述。
量子物理习题解答
量子物理习题解答习题17— 1用频率为“的单色光照射某一金属时,测得光电子的最大初动能为 吕1;用频率为-2的单色光照射另一种金属时,测得光电子的最大初动能为丘。
那么]](A)1一定大于2。
(B)'■- 1 一定小于 2。
(C) >1 一定等于2。
(D)> 1可能大于也可能小于'、2。
解:根据光电效应方程,光电子的最大初动能为E k 二 h .. - A由此式可以看出,E<不仅与入射光的频率有关,而且与金属的逸出功 A 有关, 因此我们无法判断题给的两种情况下光电子的最大初动能谁大谁小,从而也就无法判断两种情况下入射光的频率的大小关系,所以应该选择答案 (D)。
习题17—2根据玻尔的理论,氢原子中电子在n=5的轨道上的角动量与在第一 激发态的角动量之比为]] (A) 5/2。
(B) 5/3。
(C) 5/4。
(D) 5。
解:根据玻尔的理论,氢原子中电子的轨道上角动量满足L Fn=1, 2,3……所以L 与量子数n 成正比。
又因为“第一激发态”相应的量子数为 n=2,因此应该选择答案(A)。
习题17—3根据玻尔的理论,巴耳末线系中谱线最小波长与最大波长之比为 [ ](A) 5/9。
(B) 4/9。
(C) 7/9。
(D) 2/9。
解:由巴耳末系的里德佰公式可知对应于最大波长'max ,n=3;对应于最小波长'min ,门=鸡。
因此有所以'min'max=4 536 = 5 9最后我们选择答案(A) 习题17—4根据玻尔的理论,氢原子中电子在n=4的轨道上运动的动能与在基'maxR H'1 1 36 <22 32 丿 ~5R Hn=3, 4, 5,态的轨道上运动的动能之比为]](A) 1/4 。
(B) 1/8 。
(C) 1/16。
(D) 1/32。
解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为所以电子的动能n 2 1 ~4 二 ~2 n n与量子数n 2成反比,因此,题给的两种情况下电子的动能之比 以我们选择答案(C)。
量子物理答案
量子物理答案【篇一:量子物理作业答案】ile2~file5?mt?b表示,其中b?2.8978?10?3m?k。
求人体热辐射的峰值波长(设体温为37?)。
解:由定律?mt?b可得:bb2.8978?10?3?m???m?9.35?10?6mtt?to37?273即,人体热辐射的峰值波长为9350nm。
2. 宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于t=2.726k黑体辐射。
此辐射的峰值波长是多少?在什么波段?解:根据维恩位移定律?mt?b,得:b2.8978?10?3?m??m?1.06?10?3mt2.726即该辐射峰值波长为1.06mm,属于红外波段。
3. 波长?=0.01nm的x射线光子与静止的电子发生碰撞。
在与入射方向垂直的方向上观察时,散射x射线的波长为多大?碰撞后电子获得的能量是多少ev?解:依题意,在垂直方向观察时散射角,??90?由波长改变量公式??????0?h?1?cos??,得散射后x射线波长: m0c6.63?10?34???0????0.01?10?(1?cos90?)?0.0124?10?9m ?3189.1?10?3?10?9?x射线损失的能量等于电子增加的动能?ee??ex?hchc111??6.63?10?34?3?108??9?(?) ?0?100.010.0124?ee?3.85?10?15j?2.4?104ev所以,散射x射线波长为0.0124nm,电子获得能量为2.4?104ev 4. 在一束电子束中,单电子的动能为e=20ev,求此电子的德布罗意波长。
解:电子动能较小,固忽略其相对论效应,所以由e?1mv2,得电子速率v?22emh p又?p?mv,由德布罗意公式??h????mv6.63?10?34?192?20?1.6?109.1?10?31?9.1?10?31m?2.75?10?10m即电子德布罗意波长为2.75?10?10m。
file61.设归一化波函数:??x??ae化常数a。
第十五章 量子物理 习题解答
n=1: E1 = −13.6ev
n=2:
E2
=
E1 22
=
−3.4ev
≈
−5.44 ×10−19
J
n=4 n=3
n=3:
E3
=
E1 32
=
−1.51ev
≈
−2.416 ×10−19
J
n=4:
E4
=
E1 42
=
−0.85ev
≈
−1.36 ×10−19
J
n=2
跃迁谱线波长 λ = c = hc ,则虚线光谱的波长分别为 ν ∆E
ν1 −ν 0 = Ua1 = 2 ,整理后的答案 C。 ν 2 −ν 0 Ua2
15.4 光电效应和康普顿效应都包含有光子和电子的相互作用过程。对此,下面几种说法中 正确的是【D】
(A)两种效应中电子和光子组成的系统都服从动量守恒定律和能量守恒定律; (B)两种效应都相当于电子和光子的弹性碰撞过程; (C)两种效应都属于电子吸收光子的效应; (D)光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程。 分析:光电效应与康普顿效应的物理本质是相同的,都是个别光子与个别电子的相互作用。 但二者有明显差别。其一,入射光的波长不同。入射光若为可见光或紫外光,表现为光电效应; 若入射光是 X 光,则表现为康普顿效应。其二,光子和电子相互作用的微观机制不同。在光电
=
3 2
kT
,
动量
p2
= ( mv )2
=
1 mv2 ⋅ 2m = 2
Ek
⋅ 2m ,德布罗意波长 λ
=
h p
=
h Ek ⋅ 2m
注意:动能 Ek = p2 2m 同样适用于非相对论性的微观粒子(低速运动)。
大学物理量子力学习题答案解析
一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。
写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。
解:()⎰Ω=adrr r d P 022,,ϕθψ。
2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。
解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。
解:有两个条件:0],[,0==∂∂H Q t Q。
4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。
),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。
5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。
6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。
解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。
高三物理量子物理专项练习题及答案
高三物理量子物理专项练习题及答案量子物理作为现代物理学中的重要分支,研究的是微观世界中微粒的行为和性质。
本文将为高三物理学习者提供一些量子物理的专项练习题以及答案,帮助他们更好地理解和掌握这一知识领域。
练习题一:波粒二象性1. 什么是波粒二象性?2. 请举出一个表现波动性和粒子性的实验现象,并说明原理。
答案一:波粒二象性是指微粒既具有波动性又具有粒子性的性质。
根据量子物理理论,微观粒子既可以以粒子的形式存在,具有特定位置和能量,又可以表现出波动的性质,如干涉、衍射等。
答案二:一种表现波动性和粒子性的实验现象是双缝干涉实验。
在实验中,将一束光通过两个非常接近的狭缝,光通过狭缝后形成的波会相互干涉,形成干涉条纹。
这表明光既可以表现出波动性,又可以在干涉板上产生明暗相间的粒子图案。
这一实验结果与波粒二象性的理论相符,支持了量子物理理论。
练习题二:不确定性原理1. 什么是不确定性原理?2. 请解释海森堡的不确定性原理。
答案一:不确定性原理是指在量子物理中,无法同时准确知道一个粒子的位置和动量。
不确定性原理指出,在同一时刻,我们无法精确测量一个粒子的位置和动量,测量的结果存在一定的误差。
答案二:海森堡的不确定性原理是量子物理中的一个基本原理。
它提出了在同一时刻,无法同时准确测量一个粒子的位置和动量。
即如果我们尝试测量其位置,其动量将变得不确定,反之亦然。
这个原理揭示了微观粒子本质上的混沌性质,它的提出对经典物理观念进行了颠覆性的挑战。
练习题三:量子态与测量1. 什么是量子态?2. 请解释量子态的坍缩现象。
答案一:量子态是描述一个量子系统状态的数学概念。
量子态可以用波函数表示,波函数包含了描述粒子在不同状态下的概率分布信息。
根据量子力学的原理,一个量子系统处于多个可能态的叠加状态。
答案二:量子态的坍缩现象是指当我们对一个叠加态系统进行观测或测量时,系统会从多个可能态中坍缩到一个确定态。
测量过程中,观测者与系统发生相互作用,导致系统的量子态发生改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子物理习题解答习题17—1 用频率为1ν的单色光照射某一金属时,测得光电子的最大初动能为E k 1;用频率为2ν的单色光照射另一种金属时,测得光电子的最大初动能为E k 2。
那么[ ](A) 1ν一定大于2ν。
(B) 1ν一定小于2ν。
(C) 1ν一定等于2ν。
(D) 1ν可能大于也可能小于2ν。
解:根据光电效应方程,光电子的最大初动能为 A h E k -=ν由此式可以看出,E k 不仅与入射光的频率ν有关,而且与金属的逸出功A 有关,因此我们无法判断题给的两种情况下光电子的最大初动能谁大谁小,从而也就无法判断两种情况下入射光的频率的大小关系,所以应该选择答案(D)。
习题17—2 根据玻尔的理论,氢原子中电子在n =5的轨道上的角动量与在第一激发态的角动量之比为[ ](A) 5/2。
(B) 5/3。
(C) 5/4。
(D) 5。
解:根据玻尔的理论,氢原子中电子的轨道上角动量满足n L = n =1,2,3……所以L 与量子数n 成正比。
又因为“第一激发态”相应的量子数为n =2,因此应该选择答案(A )。
习题17—3 根据玻尔的理论,巴耳末线系中谱线最小波长与最大波长之比为[ ](A) 5/9。
(B) 4/9。
(C) 7/9。
(D) 2/9。
解:由巴耳末系的里德佰公式⎪⎭⎫⎝⎛-==221211~n R H λν n =3,4,5,…… 可知对应于最大波长max λ,n =3;对应于最小波长min λ,n =∞。
因此有 H H R R 53631211122max =⎪⎭⎫ ⎝⎛-=-λ; HH R R 421112min =⎪⎭⎫⎝⎛=-λ 所以53654max min =⨯=λλ最后我们选择答案(A)。
习题17—4 根据玻尔的理论,氢原子中电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为[ ](A) 1/4。
(B) 1/8。
(C) 1/16。
(D) 1/32。
解:根据玻尔的理论,氢原子中电子的动能、角动量和轨道半径分别为mP E k 22= ; n P r L n == ;12r n r n =所以电子的动能2422221nn n r n P E n k ==∝∝与量子数n 2 成反比,因此,题给的两种情况下电子的动能之比12/42=1/16,所以我们选择答案(C)。
习题17—5 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E k 之比k E ε为[ ](A) 2。
(B) 3。
(C) 4。
(D) 5。
解:由康普顿效应的能量守恒公式2200mc h c m h +=+νν可得ννννννννε-=-=-==00202)(h h c m mc h E h E k k512.1111000=-=-=-=λλλλλ 所以,应该选择答案(D)。
习题17—6 设氢原子的动能等于温度为T 的热平衡状态时的平均动能,氢原子的质量为m ,那么此氢原子的德布罗意波长为[ ] (A) mkT h 3=λ。
(B) mkT h 5=λ。
(C) h mkT 3=λ。
(D) h mkT 5=λ。
解:依题意,氢原子的动能应为kT E k 23=又因为氢原子的动量为mkT mE P k 32==由德布罗意公式可得氢原子的德布罗意波长为mkT h Ph3==λ所以应该选择答案(A)。
习题17—7 以一定频率的单色光照射到某金属上,测出其光电流的曲线如图实线所示,然后在光强度不变的条件下增大照射光频率,测出其光电流的曲线如图虚线所示。
满足题意的图是[ ]解:根据爱因斯坦光量子假设,光强=Nh ν,在光强保持不变的情况下,ν↑ →N ↓→I s (饱和光电流)↓;另一方面,ν↑→a U ↑,综上,应该选择答案(D)。
习题17—8 氢原子光谱的巴耳末系中波长最大的谱线用1λ表示,其次波长用2λ表示,则它们的比值21λλ为[ ](A) 9/8。
(B) 16/9。
(C) 27/20。
(D) 20/27。
解:由氢原子光谱的里德伯公式,对巴耳末系有121411-⎪⎭⎫⎝⎛-=n R H λ n =3 ,4,5,……对波长最大的谱线用1λ,n =3;对其次波长用2λ,n =4。
因此有2027516336314141412221=⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=λλ 所以应该选择答案(C)。
习题17—9 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是4×10-2nm ,则U 约为:[ ](A) 150V 。
(B) 330V 。
(C) 630V 。
(D) 942V 。
解:由动能定理得mP E eU k 22==把此式代入德布罗意公式有m eUh Ph 2==λ所以U I O (D) I U O (B) O I (A) U O I (C) 习题17―7图V 942)104(106.11011.92)1063.6(2211193123422≈⨯⨯⨯⨯⨯⨯⨯==----λme h U 因此,应该选择答案(D)。
习题17—10 氩(Z =18)原子基态的电子组态是:[ ](A) 1S 22S 83P 8 (B) 1S 22S 22P 63d 8(C) 1S 22S 22P 63S 23P 6 (D) 1S 22S 22P 63S 23P 43d 2解:对(A)示组态,既违反泡利不相容原理,也违反能量最小原理,是一个不可能的组态;对(B)示组态和(D)示组态均违反能量最小原理,也都是不可能组态。
因此,只有(C)示组态是正确组态。
所以应该选择答案(C)。
习题17—11 在气体放电中,用能量为12.1eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是:[ ](A) 12.1eV ,10.2eV 和3.4eV 。
(B) 12.1eV 。
(C) 12.1eV ,10.2eV 和1.9eV 。
(D) 10.2eV 。
解:∵ eV 1.1211121=⎪⎭⎫⎝⎛-=-=∆E n E E E n 且E 1=13.6eV可以解得n =3从能级跃迁示意图可知,应该有种频率不同的光子发出,它们的能量分别为 eV 1.121311=-==E E h νεeV 2.106.1343121121222=⨯=⋅-=-==E E E h νε eV 9.16.1336521311222333=⨯=⋅-=-==E E E h νε 所以,应该选择答案(C)。
习题17—12 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?n =3 n =2 n 能级跃迁图(B)习题17―12图解:题给的波函数图线可以反映出粒子的“波性”,显然图(A)所反映出的“波性”是最强的,其相应的粒子位置的不确定量x ∆是最大的。
根据海森堡不确定关系 ≥∆⋅∆x P x ,这时粒子动量的不确定量x P ∆应该是最小的,即确定粒子动量的精确度是最高的,所以应该选择答案(A)。
习题17—13 下列四组量子数:(1) n =3,l =2,m l =0,m s =1/2 (2) n =3,l =3,m l =1,m s =1/2 (3) n =3,l =1,m l =-1,m s =-1/2 (4) n =3,l =0,m l =0,m s =-1/2 其中可以描述原子中电子状态的:(A) 只有(1)和(3) (B) 只有(2)和(4)(C) 只有(1)、(3)和(4) (D) 只有(2)、(3)和(4) 解:因为当主量子数n 确定之后,副量子数l 和磁量子数m l 的取值是有限制的:l =0,1,2,…,n -1;m l =0,±1,±2,…,±l ,而自旋磁量子数m s 的取值则只能是1/2或-1/2。
用上述限制条件检查题给的四组量子数可以发现,只有(2)违反了l 取值的限制,是不可能组态外,其余三组量子数均为允许组态。
因此,应该选择答案(C)。
习题17—14 在氢原子发射的巴耳末线系中有一频率为6.15×1014Hz 的谱线,它是氢原子从能级E n = eV 跃迁到能级E k = eV 而发出的。
解:根据频率选择定则有1222211E nE E h n ⎪⎭⎫ ⎝⎛-=-=ν把E 1=-13.6eV=-2.176×10﹣18J ,h =6.63×10﹣34 J •s ,ν=6.15×1014Hz 代入上式可以解得n =4。
85.0166.134214-=-==E E eV , 4.346.132212-=-==E E eV习题17—15 设大量氢原子处于n =4的激发态,它们跃迁时发出一簇光谱线,这簇光谱线最多可能有 条,其中最短波长的是 m 。
解:画出能级跃迁示意图,容易知道这簇光谱线最多可能有6条。
其中最短波长满足14E E hc h -==λνn n n n 题解17―15图∴ 819834141075.9106.1)]6.13(85.0[1031063.6---⨯=⨯⨯---⨯⨯⨯=-=E E hc λm习题17—16 分别以频率为1ν和2ν的单色光照射某一光电管。
若21νν>(均大于红限频率0ν),则当两种频率的入射光的光强相同时,所产生的光电子的最大初动能E 1 E 2;为阻止光电子到达阳极,所加的遏止电压a U 2a ;所产生的饱和光电流1S I 2S I (用>或=或<填入)。
解:根据爱因斯坦光电效应方程,光电子的最大初动能为A h E k -=ν因为21νν>,所以21k k E E >;又因为a k U e E =,有e A e h U a -=ν,所以>1a U 2a U ;由于光强=Nh ν,光强相同,ν大,则打到光电阴级上的光子数N 就少,饱和光电流1S I 就小,所以21S S I I <。
习题17—17 设描述微观粒子运动的波函数为),(t rψ,则*ψψ表示 。
),(t rψ须满足的条件是 ;其归一化条件是 。
解:*ψψ表示:t 时刻、在位置r 附近、单位体积内发现粒子的几率;),(t rψ须满足的条件是:单值、连续、有限;其归一化条件是1=⎰⎰⎰*Vdxdydz ψψ习题17—18 根据量子力学理论,氢原子中电子的角动量在外磁场方向上的投影为 l z m L =,当角量子数l =2时,L z 的可能取值为 。
解:因为这时磁量子数m l =0,±1,±2五种可能的取值,所以L z 的可能取值亦为五种:0, ±, 2±。