2015_量子力学习题

合集下载

2015南京大学量子力学真题(word 编辑版)

2015南京大学量子力学真题(word 编辑版)

2015年南京大学物理学院博士生“申请-考核”制入学
专业课程笔试试题
考试科目: 量子力学 考试时间:三小时
本试卷共计五大题
一、基本概念题
简述量子力学的基本原理。

二、设一个质量为m 的粒子处于区域为(0, a )的一维无限深势阱中, 其状态波函数为2=sin cos x
x
a a ππψ ,试求:
1)、一维无限深势阱的本征值问题;
2)、测量到粒子处于不同能量本征态的几率。

三、设两个算子ˆA
与ˆB 满足交换关系式:ˆˆˆˆˆˆ[,]1A B AB BA =-=,试求: 1)、n 为正整数, ˆˆ[,]n A
B ; 2)、()f x 为解析函数,ˆˆ[,()]A
f B 。

四、 已知两个算子ˆa 与ˆa +满足ˆˆˆˆ1a a aa ++=-,令ˆˆˆN a a +=,且有ˆN
n n n =, 求证:n 为实数。

五、量子力学中的韦尔(Weyl)波动方程式为:
(,)(,)i r t c r t t i ψσψ∂
=⋅∇∂ ,
其中=x x y y z z e e e σσσσ++为泡利矩阵所组成的矢量,
(,)r t ψ为泡利二 分量波函数,其它为量子力学标准符号。


1)、该系统的韦尔定态方程式与力学量完全集;
2)、该系统的能量本征值并说明其物理意义;
3)、该系统的本征波函数。

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学习题

量子力学习题
∧ ∧ ∧ ∧ ( L× p + p× L) x
= Ly z − Lz y + yLz − zLy = ( Ly z − zLy ) + ( yLz − Lz y ) = [ Ly , z ] + [ y, Lz ] = 2ix = (2ir ) x
= Ly pz − Lz p y + p y Lz − pz Ly = ( Ly pz − pz Ly ) + ( p y Lz − Lz p y ) = [ Ly , pz ] + [ p y , Lz ]
① 写出Ψ(x,t); ② 求在Ψ(x,t)态中测量粒子的能量的可能值及其概率。 ③ 求 t=0 时的<x>(即坐标的平均值),并问<x>是否随时间 t 变化。
x 2 + y 2 + z 2 , k、α 是实
的正常数。求: ① 粒子的角动量是多少? ② 角动量 z 方向的分量的平均值。 ③ 若角动量的 z 分量 L z 被测量,求 L z = + 的概率有多大? ④ 发现粒子在θ、φ方向上 dΩ立体角内的概率是多少?θ、φ是通常球 坐标中的方向角。
二、 算符的本征态及力学量的测量
1、证明:若两个算符具有共同的本征态,而且这些本征态构成体系状态的完备 集,则这两个算符对易。
Axe− λ x ( x > 0) ψ ( x) (λ > 0) = 0( x < 0) 2、一维运动的粒子处在 求动量和坐标的不确定度,
并验证不确定关系
并说明算符 A、B 厄米性。 5、证明:设 A、B 都是矢量算符 F 是标量算符,证明: F , A ⋅= B F , A ×= B F , A ⋅ B + A ⋅ F , B F , A × B + A × F , B

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

量子力学考试题

量子力学考试题

量子力学考试题量子力学考试题(共五题,每题20分)1、扼要说明:(a )束缚定态的主要性质。

(b )单价原子自发能级跃迁过程的选择定则及其理论根据。

2、设力学量算符(厄米算符)∧F ,∧G 不对易,令∧K =i (∧F ∧G -∧G ∧F ),试证明:(a )∧K 的本征值是实数。

(b )对于∧F 的任何本征态ψ,∧K 的平均值为0。

(c )在任何态中2F +2G ≥K3、自旋/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为S H ??ω=∧H =ω∧z S +ν∧x S (ω,ν>0,ω?ν)(a )求能级的精确值。

(b )视ν∧x S 项为微扰,用微扰论公式求能级。

4、质量为m 的粒子在无限深势阱(0<x</x5、某物理体系由两个粒子组成,粒子间相互作用微弱,可以忽略。

已知单粒子“轨道”态只有3种:a ψ(→r ),b ψ(→r ),c ψ(→r ),试分别就以下两种情况,求体系的可能(独立)状态数目。

(i )无自旋全同粒子。

(ii )自旋 /2的全同粒子(例如电子)。

量子力学考试评分标准1、(a ),(b )各10分(a )能量有确定值。

力学量(不显含t )的可能测值及概率不随时间改变。

(b )(n l m m s )→(n’ l’ m’ m s ’)选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e →r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分(a )∧K 是厄米算符,所以其本征值必为实数。

(b )∧F ψ=λψ,ψ∧F =λψ K =ψ∧K ψ=i ψ∧F ∧G -∧G ∧F ψ =i λ{ψ∧G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧F 2+∧G 2-∧Kψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧F -i ∧G )ψ︱2≥0 ∴<∧F 2+∧G 2-∧K >≥0,即2F +2G ≥K 3、(a),(b)各10分(a) ∧H =ω∧z S +ν∧x S =2 ω[1001-]+2 ν[0110]=2 [ωννω-]∧H ψ=E ψ,ψ=[b a ],令E =2λ,则[λωννλω---][b a ]=0,︱λωννλω---︱=2λ-2ω-2ν=0 λ=±22νω+,E 1=-2 22νω+,E 2=222νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+2 22ων)=ω+ων22E 1≈-2 [ω+ων22],E 2 =2[ω+ων22](b )∧H =ω∧z S +ν∧x S =∧H 0+∧H’,∧H 0=ω∧z S ,∧H ’=ν∧x S∧H 0本征值为ω 21±,取E 1(0)=-ω 21,E 2(0)=ω 21相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ]则∧H ’之矩阵元(S z 表象)为'11H =0,'22H =0,'12H ='21H =ν 21E 1=E 1(0)+'11H +)0(2)0(12'21E E H-=-ω 21+0-ων2241=-ω21-ων241 E 2=E2(0)+'22H +)0(1)0(22'12E E H -=ω 21+ων2414、E 1=2222ma π,)(1x ψ=0sin 2a xa π a x x a x ≥≤<<,00x =dx x a ?021ψ=2sin 202a dx a x x a a=?π x p =-i ?=a dx dx d011ψψ-i ?=aa x d a 020)sin 21(2π x xp =-i ??-=aaa x d a x x a i dx dx d x 0011)(sin sin 2ππψψ =-a a x xd a i 02)(sin 1π =0sin [12a a x x a i π --?adx a x 02]sin π=0+?=ai dx ih 02122 ψ 四项各5分5、(i ),(ii )各10分(i )s =0,为玻色子,体系波函数应交换对称。

量子力学作业及参考答案

量子力学作业及参考答案

15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。

答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。

答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。

答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。

答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。

答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。

求该粒子在基态时的能量和波函数。

答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。

2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。

求该粒子的能级和相应的波函数。

答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。

量子力学试题含答案

量子力学试题含答案

量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。

这种相互转化的现象称为________。

答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。

答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。

答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。

答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。

这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。

实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。

当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。

同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。

b) 请解释量子力学中的不确定性原理及其意义。

答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。

不确定性原理的意义在于限制了我们对微观世界的认知。

它告诉我们,粒子的位置和动量无法同时被精确地确定。

这是由于测量过程中的不可避免的干扰和相互关联性导致的。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。

波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。

这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。

现代物理(量子力学习题)

现代物理(量子力学习题)

现代物理(量⼦⼒学习题)思考题(程守诛江之永《普通物理学》)1两个相同的物体A 和B,具有相同的温度,如A 物体周围的温度低于A ,⽽B物休周围的温度⾼于B.试问:A 和B 两物体在温度相同的那⼀瞬间.单位时间内辐射的能量是否相等?单位时间内吸收的能量是否相等?2绝对⿊体和平常所说的⿊⾊物体有何区别?绝对⿊体在任何温度下,是否都是⿊⾊的?在同温度下,绝对⿊体和⼀般⿊⾊物休的辐出度是否⼀样? 3你能否估计⼈体热辐射的各种波长中,哪个波长的单⾊辐出度最⼤?4有两个同样的物体,⼀个是⿊⾊的,⼀个是⽩⾊的且温度相同.把它们放在⾼温的环境中,哪⼀个物体温度升⾼较快?如果把它们放在低温环境中.哪⼀个物体温度降得较快?5 若⼀物体的温度(绝对温度数值)增加⼀倍.它的总辐射能增加到多少倍? 6在光电效应的实验中,如果:(1)⼊射光强度增加1倍;(2)⼊射光频率增加1倍,按光⼦理论,这两种情况的结果有何不同?;7已知⼀些材料的逸出功如下:钽4.12eV ,钨4.50eV ,铝 4.20eV ,钡2. 50eV ,锂2. 30eV .试问:如果制造在可见光下⼯作的光电管,应取哪种材料?8在彩⾊电视研制过程中.曾⾯临⼀个技术问题:⽤于红⾊部分的摄像管的设计技术要⽐绿、蓝部分困难,你能说明其原因吗?·9光⼦在哪些⽅⾯与其他粒⼦(譬如电⼦)相似?在哪些⽅⾯不同? 10⽤频率为v 1的单⾊光照射某光电管阴极时,测得饱和电流为I 1,⽤频率为v 2的单⾊光以与v1的单⾊光相等强度照射时,测得饱和电流为I2,:若I2>I1,v 1和v 2的关系如何?11⽤频率为v1的单⾊光照射某光电管阴极时,测得光电⼦的最⼤动能为E K1 ;⽤频率为v 2的单⾊光照射时,测得光电⼦的最⼤动能为E k2 ,若E k1 >E k2,v 1和v 2哪⼀个⼤?12⽤可见光能否观察到康普顿散射现象?13光电效应和康普倾效应都包含有电⼦与光⼦的相互作⽤,这两过程有什么不同?14在康普顿效应中,什么条件下才可以把散射物质中的电⼦近似看成静⽌的⾃由电⼦?15在康普顿效应中,反冲电⼦获得的能量总是⼩于⼊射光⼦的能量这是否意味着⼊射光的光⼦分成两部分,其中的⼀部分被电⼦吸收.这与光⼦的粒⼦性是否⽭盾?16 (1) 氢原⼦光谱中.同⼀谱系的各相邻谱线的间隔是否相等?(2) 试根据氢原⼦的能级公式说明当量⼦数n 增⼤时能级的变化情况以及能级间的间距变化情况.17了由氢原⼦理论可知.当氢原⼦处于 n=4的激发态时,可发射⼏种波长的光?18如图所⽰.被激发的氢原⼦跃迁到低能级时,可发射波长为λ1、λ2、λ3的辐射.问三个波长之间的关系如何?19设实物粒⼦的质量为m, 速度为v, 由德布罗意公式mV h mc hv /,2==λ得 V c v /2=λλ根据Vv=得Vc=显然以上的结论是错误的,试问错误的根源何在?8-20为什么说不确定度关系与实验技术或仪器的改进⽆关?习题1、估测星球表⾯温度的⽅法之⼀是:将星球看成⿊体,测量它的辐射峰值波长。

量子力学考试题库及答案

量子力学考试题库及答案

量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。

下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。

以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。

答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。

答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。

答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。

这一现象在经典物理学中是不可能发生的。

一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。

6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。

答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。

这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。

四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。

答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。

A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。

A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。

A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。

A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。

A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。

答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。

答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。

答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。

德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。

这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。

2. 什么是量子隧穿效应?请给出一个实际应用的例子。

量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。

这一效应是量子力学中特有的,与经典物理学预测的结果不同。

一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。

量子力学练习一+解答

量子力学练习一+解答

量子力学练习一1.爱因斯坦在解释光电效应时,提出 概念;爱因斯坦光电效应方程为 ;电子的康普顿波长为 。

光量子(光子)21v 2h m A ν=+ 20 2.4310Ac h m cλ-==⨯ 2.玻尔氢原子理论的三个基本假设是:(1)(2) (3) 。

定态假设 跃迁假设 角动量量子化假设3.能量为100eV 的电子,其德布罗意物质波的波长为 。

101.210m -⨯4.在量子力学中,描述系统的运动状态用波函数()r ψ,一般要求波函数满足三个条件即 ; ; 。

根据玻恩对波函数的统计解释,电子呈现的波动性只是反映客体运动的一种统计规律,称为 波,波函数模的平方()2r ψ表示粒子在空间的几率分布,称为 。

而()2r d ψτ表示 ,要表示粒子出现的绝对几率,波函数必须 。

单值的、连续的、平方可积的;几率或概率 几率密度或概率密度;在空间体积d τ中找到粒子的几率或概率;归一化 5.测不准关系/2x x p ∆∆≥ 表明,微观粒子的位置(坐标)和动量 ,这是 的反映,当0→ 时,量子力学将回到经典力学,或者说 可以忽略。

而/2E t ∆∆≥ 说明原子处于激发态时有一定的时间限制,则原子激发能级有一定 ,这是原子光谱存在 的根源。

不能同时具有完全确定的值 粒子的波动-粒子两重性 量子效应 宽度 自然宽度6.在量子力学中,力学量通常用算符表示,在坐标表象中,动量变为动量算符即ˆp = ,在动量表象中,坐标变为坐标算符,即ˆr=。

i -∇ p i ∇7.设波函数()22xx Aeαψ-=,α为常数,求归一化常数A()222222222*21x x x x dx A e Ae dx Ae dx Aαααψ∞∞∞----∞-∞-∞====⎰⎰⎰其中利用2xe dx ∞--∞=⎰A =1/41/22απ⎛⎫⎪⎝⎭8.已知做直线运动的粒子处于状态()11x ixψ=- (1)将()x ψ归一化;(2)求出粒子坐标取值几率为最大处的位置和最大几率密度。

量子力学习题

量子力学习题

第二章 波函数与薛定谔方程(1)一、填空题1、在量子力学中,描述系统的运动状态用波函数()r ψ,一般要求波函数满足三个条件即 有限性 ; 连续性 ;单值性 。

根据玻恩对波函数的统计解释,电子呈现的波动性只是反映客体运动的一种统计规律,称为 概率 波,波函数模的平方()2r ψ 表示粒子在空间的几率分布,称为 概率密度 。

而()2r d ψτ 表示在空间体积 dt 中概率,要表示粒子出现的绝对几率,波函数必须 归一化 。

2r 点处小体积元dτ内粒子出现的几率与波函数模的平方(|Ψ|2)成正比。

3、根据波函数的统计解释,dx t x 2),(ψ的物理意义为 粒子在xdx 范围内的概率 。

4、在量子力学中,描述系统的运动状态用波函数()r ψ,一般要求波函数满足三个条件即 有限性 ; 单值性 ;连续的。

5、波函数的标准条件为(1)波函数可归一化(2)波函数的模单值(3)波函数有限。

6、三维空间自由粒子的归一化波函数为()r pψ= ,()()=⎰+∞∞-*'τψψd r r p p见书P18 。

7、动量算符的归一化本征态=)(r p ψ ,='∞⎰τψψd r r p p )()(* 见书P18 。

8、按照量子力学理论,微观粒子的几率密度w = 见网页收藏 ,几率流密度= 。

9、设)(r ψ描写粒子的状态,2)(r ψ是 概率波 ,在)(rψ中力学量Fˆ的平均值为F = 。

10、波函数ψ和ψc 是描写 状态,δψi e 中的δi e 称为 ,δi e 不影响波函数ψ的归一化,因为 。

11、定态是指 的状态,束缚态是指 的状态。

12、定态波函数的形式为 。

13、)i exp()()iexp()(),(2211t Ex t E x t x-+-=ψψψ是定态的条件是 ,这时几率密度和 都与时间无关。

14、波函数的统计解释 15.描述微观粒子状态的波函数ψ应满足的三个标准条件 。

16、粒子作自由运动时,能量本征值是 ___ __。

量子力学试题

量子力学试题

量子力学试题(一)及答案 一. (20分)质量为m 的粒子,在一维无限深势阱中 中运动,若0=t 时,粒子处于状态上,其中,()x n ϕ为粒子能量的第n 个本征态。

(1) 求0=t 时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为 (1) 首先,将()0,x ψ归一化。

由可知,归一化常数为于是,归一化后的波函数为 能量的取值几率为能量取其它值的几率皆为零。

(2) 因为哈密顿算符不显含时间,故0>t 时的波函数为(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。

二. (20分)质量为m 的粒子在一维势阱中运动()00>V ,若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。

解:对于02<-=V E 的情况,三个区域中的波函数分别为 其中,在a x =处,利用波函数及其一阶导数连续的条件 得到 于是有此即能量满足的超越方程。

当021V E -=时,由于故40ππ-=n a mV, ,3,2,1=n最后,得到势阱的宽度三.(20分)设厄米特算符Hˆ的本征矢为n ,{n 构成正交归一完备系,定义一个算符(1) 计算对易子()[]n m U H,ˆ,ˆ; (2) 证明()()()p m U q p U n m U nq ,ˆ,ˆ,ˆδ=+;(3) 计算迹(){}n m U,ˆTr ; (4) 若算符A ˆ的矩阵元为nm mn A A ϕˆ=,证明 解:(1)对于任意一个态矢ψ,有 故(2)()()()p m U q p U n m U nq q p n m ,ˆ,ˆ,ˆδϕϕϕϕ== (3)算符的迹为(4)算符 而四. (20分)自旋为21、固有磁矩为s γμ=(其中γ为实常数)的粒子,处 于均匀外磁场k 0 B B =中,设0=t 时,粒子处于2=x s 的状态,(1) 求出0>t 时的波函数;(2) 求出0>t 时x sˆ与z s ˆ的可测值及相应的取值几率。

量子力学试题含答案

量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。

2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。

3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。

4.量子力学中力学量用 厄米 算符表示。

5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。

6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。

7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。

8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。

9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。

10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。

二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案1. 关于量子态,以下说法正确的是()A. 量子态是可连续变化的B. 量子态是离散的答案:B2. 量子叠加原理是指()A. 多个量子态可以同时存在B. 量子态只能有一个答案:A3. 量子纠缠现象说明了()A. 量子之间存在相互作用B. 量子之间存在非定域性关联答案:B4. 在量子力学中,测量会导致()A. 量子态的改变B. 量子态的保持不变答案:A5. 关于波函数,以下说法正确的是()A. 描述了量子系统的状态B. 是一个实数函数答案:A6. 海森堡不确定性原理涉及到哪两个物理量的不确定性()A. 位置和动量B. 能量和时间答案:A7. 量子力学中的算符表示()A. 物理量B. 对量子态的操作答案:B8. 泡利不相容原理适用于()A. 电子B. 所有费米子答案:B9. 以下哪种现象与量子力学有关()A. 黑体辐射B. 光电效应答案:B10. 在量子力学中,能量的量子化表现为()A. 能量只能取特定的值B. 能量可以连续变化答案:A11. 关于量子隧道效应,以下说法正确的是()A. 粒子可以穿过势垒B. 粒子不能穿过势垒答案:A12. 量子力学中的可观测量对应的是()A. 厄米算符B. 非厄米算符答案:A13. 狄拉克方程描述的是()A. 电子的运动B. 所有粒子的运动答案:B14. 关于量子力学的诠释,以下说法正确的是()A. 只有一种诠释是正确的B. 有多种诠释,且都有实验支持答案:B15. 量子力学中的全同粒子()A. 是完全相同的B. 可以区分答案:A16. 关于量子力学的基本假设,以下说法错误的是()A. 物理量都可以用实数来描述B. 量子态的演化是确定性的答案:AB17. 量子力学中的概率幅表示()A. 概率的大小B. 概率的相位答案:B18. 以下哪种实验验证了量子力学的基本原理()A. 双缝干涉实验B. 迈克尔逊-莫雷实验答案:A19. 量子力学中的守恒量对应的是()A. 不变的物理量B. 随时间变化的物理量答案:A20. 关于量子力学中的对称性,以下说法正确的是()A. 存在多种对称性B. 对称性与物理规律无关答案:A21. 量子力学中的密度算符描述的是()A. 量子系统的概率分布B. 量子系统的能量分布答案:A22. 以下哪种量子系统具有简并性()A. 氢原子B. 自由粒子答案:A23. 量子力学中的散射理论主要研究()A. 粒子的碰撞过程B. 粒子的传播过程答案:A24. 关于量子力学中的表象,以下说法正确的是()A. 有多种表象可以选择B. 表象是唯一确定的答案:A25. 量子力学中的时间演化算符描述的是()A. 量子态随时间的变化B. 物理量随时间的变化答案:A26. 以下哪种量子系统的能级是分立的()A. 谐振子B. 自由电子答案:A27. 量子力学中的角动量算符具有()A. 分立的本征值B. 连续的本征值答案:A28. 关于量子力学中的路径积分表述,以下说法正确的是()A. 是一种量子力学的表述方式B. 与薛定谔方程等价答案:AB29. 量子力学中的对称性破缺会导致()A. 新的物理现象B. 物理规律的改变答案:A30. 以下哪种量子系统的波函数可以用球谐函数来描述()A. 氢原子B. 原子核答案:A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波长变长--------------1 分
10: 1/ 3 ----------------3 分
11: 0.0549----------------3 分
12: 粒子在 t 时刻在(x,y,z)处出现的概率密度-------------2 分
单值、有限、连续---------------------------------------------1 分
0 得:
B
=
k 0;
=
nπ a

n
= 1、2、3……
ψn
所以有:
(x)
=
A
sin
⎛ ⎜⎝
nπ a
⎞ ⎟⎠

n
= 1、2、3……
∫ ∫ ∫ +∞ψ (x) 2 dx = a ψ (x) 2 dx = a A2 sin 2 ⎜⎛ nπ ⎟⎞dx = 1
归一化条件: −∞
0
0
⎝a⎠
A=
所以:
2 a
ψn
,即:
的状态跃迁到上述定态时,所发射的光子的能量为
(A) 2.56 eV
(B) 3.41 eV
(C) 4.25 eV
(D) 9.95 eV


6: 若α粒子(电荷为 2e)在磁感应强度为 B 均匀磁场中沿半径为 R 的圆形轨道运动,
则α粒子的德布罗意波长是
(A) h /(2eRB)
(B) h /(eRB)
(2) 由上一问可得 v = 2eRB / mα
对于质量为 m 的小球:
λ= h mv
= h ⋅ mα 2eRB m
= mα m
⋅ λα =6.64×10-34 m-----------3 分
2:解:先求粒子的位置概率密度:
ψ (x) 2 = (2 / a) sin 2 (πx / a) = (2 / 2a)[1 − cos(2πx / a)] --------------------2 分
(A) 25 cm


(B) 50 cm
(C) 250 cm
(D) 500 cm
10:将波函数在空间各点的振幅同时增大 D 倍,则粒子在空间的分布概率将
(A) 增 大 D2 倍
(B) 增 大 2D 倍
(C) 增 大 D 倍
(D) 不 变


11:下列各组量子数中,哪一组可以描述原子中电子的状态?
(A)
2μE / h 2
d 2ψ ,则方程为: dx2
+ k 2ψ
=0
通解为: ψ (x) = Asin kx + B cos kx
由波函数的连续性可知,在 x = 0 、 x = a 处 ψ (x) = 0 ,即:
ψ (x) = ψ (x) =
Asin 0 + B cos 0 = 0
Asin(ka) + B cos(ka) =
R 的圆周运动,那末此照射光光子的能量是:
hc (A) λ0
(B)
hc λ0
+ (eRB)2 2m
(C)
hc λ0
+ eRB m
hc (D) λ0 + 2eRB


3: 在康普顿效应实验中,若散射光波长是入射光波长的 1.2 倍,则散射光光子能量ε
与反冲电子动能 EK 之比ε / EK 为
(A) 2
(C) 1/(2eRBh)
(D) 1/(eRBh)


7:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的
(A) 动 量 相 同
(B) 能 量 相 同
(C) 速 度 相 同
(D) 动 能 相 同


ψ (x) = 1 ⋅ cos 3πx
8:已知粒子在一维矩形无限深势阱中运动,其波函数为:
a
解粒子的归一化波函数和粒子的能量。
一、选择题 1:D 2:B 3:D 4:C 5:A 6:A 7:A 8:A 9:C 10:D 11:B
二、填空题 1: 2.5---------------------2 分; 4.0×1014-----------2 分 2: 1.5×1019 ------------3 分 3: 1.5 --------------------3 分 4: 不变-----------------1 分; 变长----------------1 分; 5: -0.85---------------2 分; -3.4----------------2 分 6: 6----------------------2 分; 973----------------2 分 7: 10.2-------------------3 分 8: 1-----------------------2 分; 2----------------2 分 9: 6.56×1015 Hz-------3 分
最大动能为_________eV。
4:某一波长的 X 光经物质散射后,其散射光中包含波长________和波长__________的
两种成分,其中___________的散射成分称为康普顿散射。
5:在氢原子发射光谱的巴耳末线系中有一频率为 6.15×1014 Hz 的谱线,它是氢原子从
能级 En =__________eV 跃迁到能级 Ek =__________eV 而发出的。 6:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的各谱线组成的谱线系)的
一、选择题
1:已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV,而钠的红限波长
是 5400 Å,那么入射光的波长是
(A) 5350 Å


(B) 5000 Å
(C) 4350 Å
(D) 3550 Å
2:在均匀磁场 B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有 电子放出,有些放出的电子(质量为 m,电荷的绝对值为 e)在垂直于磁场的平面内作半径为
动。(1) 试计算其德布罗意波长;(2) 若使质量 m = 0.1 g 的小球以与α粒子相同的速率运动。 则其波长为多少?(α粒子的质量 mα =6.64×10-27 kg,普朗克常量 h =6.63×10-34 J·s,基本 电荷 e =1.60×10-19 C)
2:已知粒子在无限深势阱中运动,其波函数为 ψ (x) = 2 / a sin(πx / a) (0≤x≤a),求
由题可知α 粒子受磁场力作用作圆周运动: qvB = mαv 2 / R , mαv = qRB
又 q = 2e 则: mαv = 2eRB ----------------4 分
故:
λα = h /(2eRB) = 1.00 ×10−11 m = 1.00 ×10−2 nm -------------3 分
2a ( -
a≤x≤a ),那么粒子在 x = 5a/6 处出现的概率密度为
(A) 1/(2a)


(B) 1/a
(C) 1/ 2a
(D) 1/ a
9:波长λ =5000 Å 的光沿 x 轴正向传播,若光的波长的不确定量Δλ =10-3 Å,则利用不
确定关系式 Δpx Δx ≥ h 可得光子的 x 坐标的不确定量至少为:
ms
n = 2,l = 2,ml = 0,
=
1 2
(B)
n
=
3,l
=
1,ml
ms
=-1,
=
−1 2
(C)
n
=
1,l =
2,ml
=
m
1,
s
=
1 2
(D)
n
=
1,l
=
0,ml
=
m
1,
s
=
−1 2




二、填空题
1:当波长为 3000 Å 的光照射在某金属表面时,光电子的能量范围从 0 到 4.0×10-19 J。
能量为 E2 的概率为
2
2
P2 =
1 10
+
2 10
=3 10 ---------------------1 分
能量为 =3 10 ---------------------1 分
能量的平均值为: E = P1E1 + P2 E2 + P3E3 -----------------------2 分
速,h 为普朗克常量)。当电子的动能等于它的静止能量时,它的德布罗意波长是λ =______λc。 11:在戴维孙——革末电子衍射实验装置中,自热
阴极 K 发射出的电子束经 U = 500 V 的电势差加速后投射到晶
体上。这电子束的德布罗意波长λ =___________nm。
K
φ G
φ
U
Ψ (rv1,2t:) 须设满描足述的微条观件粒是子_运__动_的__波__函__数__为___Ψ__(_rv_,_t)_,;则其Ψ归Ψ一*化表条示件__是________________________________________。;
8:被激发到 n =3 的状态的氢原子气体发出的辐射中,
有______条可见光谱线和_________条非可见光谱线。
9:当一个质子俘获一个动能 EK =13.6 eV 的自由电子组成一个基态氢原子时,所发出的 单色光频率是______________。
10:令 λc = h /(mec) (称为电子的康普顿波长,其中 me 为电子静止质量,c 为真空中光
其中: E1 = 13.6eV 、 E2 = −3.4eV 、 E3 = −1.51eV -----------------3 分
2
2
2
相关文档
最新文档