简单随机抽样 优秀教案

合集下载

高中数学简单随机抽样教案

高中数学简单随机抽样教案

高中数学简单随机抽样教案
教学目标:
1. 了解简单随机抽样的原理和方法。

2. 学会使用数学方法进行简单随机抽样。

3. 掌握简单随机抽样的应用场景和意义。

教学内容:
1. 简单随机抽样的概念和特点。

2. 简单随机抽样的步骤和方法。

3. 简单随机抽样的应用案例。

教学步骤:
1. 引入:介绍简单随机抽样的概念和重要性。

2. 讲解:讲解简单随机抽样的步骤和方法。

3. 演示:进行简单随机抽样的实际操作演示。

4. 练习:让学生进行简单随机抽样的练习。

5. 总结:总结本节课学习的内容,并强调简单随机抽样的应用意义。

教学资源:
1. 教学课件。

2. 抽样器具。

3. 实际数据样本。

教学评价:
1. 口头回答问题。

2. 练习题答题。

3. 实际操作抽样。

教学延伸:
1. 学生可根据所学内容,设计简单随机抽样实验,并分析结果。

2. 学生可在现实生活中应用简单随机抽样方法,进行一些实际调查或研究。

教学反思:
本节课主要讲解了简单随机抽样的原理和方法,通过实际操作演示,帮助学生掌握了简单随机抽样的应用技巧。

在教学中应注重理论与实践相结合,激发学生的学习兴趣,提高学习效果。

简单随机抽样教学设计

简单随机抽样教学设计

简单随机抽样教学设计第1篇:上海教师资格证考试:简单随机抽样教案2017上海教师资格证考试:简单随机抽样教案简单随机抽样教案一、教学目标【知识与技能】能够准确叙述出随机抽样的概念,可以利用抽签法解决简单的实际问题。

【过程与方法】在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

【情感态度与价值观】通过对现实生活统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

二、教学重、难点【重点】掌握简单随机抽样常见的抽签法.【难点】理解简单随机抽样的科学性,以及由此推断结论的可靠性.三、教学过程(一)创设情境,导入新课请问下列调查是“普查”还是“抽样”调查?(1)一锅水饺的味道(2)旅客上飞机前的安全检查(3)一批炮弹的杀伤半径(4)一批彩电的质量情况(5)美国总统的民意支持率学生经过讨论后得出答案。

引出课题。

(二)师生互动,探索新知在学生明确了抽样与普查的区别之后,为了加深对抽样概念的理解设计如下例题。

例1:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么? A.在班级12名班委名单中逐个抽查5位同学进行背诵B.在班级45名同学中逐一抽查10位同学进行背诵先让学生分析、选择B后,师生一起归纳其特征,让学生体验B 种抽样的科学性,然后教师指出这就是简单随机抽样,最后板书课题——简单随机抽样及其定义。

简单随机抽样的含义:一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样。

教师总结简单随机抽样的特点:(1)总体的个数有限;(2)样本的抽取式逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体(4)每个个体被抽到的机会都相等,抽样具有公平性例2.在班级45名同学中逐一抽查10位同学进行背诵的抽签步骤是什么呢? 先让学生独立思考,然后分小组合作学习,各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤,教师板书上面步骤。

2.1.1 简单随机抽样精品课教案

2.1.1  简单随机抽样精品课教案
课 后 反 思
-4-
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62
87 35 20 96 43 84 26 34 91 64
21 76 33 50 25 83 92 12 06 76
12 86 73 58 07 44 39 52 38 79
15 51 00 13 42 99 66 02 79 54
解法 2:(随机数表法)将 100 件轴编号为 00,01,…99,在随 机数表中选定一个起始位置,如取第 21 行第 1 个数开始,选取 10 个 为 68,34,30,13,70,55,74,77,40,44,这 10 件即为所要抽取
教 的样本。
【课堂练习】见课本
学 【课堂小结】
1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽

仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容
法 量较少的抽样类型。
3、简单随机抽样每个个体入样的可能性都相等,均为 n/N,但 是这里一定要将每个个体入样的可能性、第 n 次每个个体入样的可能 性、特定的个体在第 n 次被抽到的可能性这三种情况区分开业,避免 在解题中出现错误。
教 学 通过本节的学习,应明确什么是系统抽样,系统抽样的适用范围,如何用系统抽样获 小 取样本. 结
种抽样方法是否是简单随机抽样?
[分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而
这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张
在谁手里已被确定,所以不是简单随机抽样。
例 2:某车间工人加工一种轴 100 件,为了了解这种轴的直径,要从中
抽取 10 件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样

2.1.1简单随机抽样-优秀教案

2.1.1简单随机抽样-优秀教案

1、某校高一级有932名学生,现在需要抽取86名学生的期末数学成绩作为样本进行统计分析。

下面说法正确的是:()
A、这932名学生是一个总体
B、这86名学生是一个样本
C、每个学生是一个个体
D、这个样本的容量为86
2,某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:
(1)1000名考生是总体的一个样本;
(2)1000名考生数学成绩的平均数是总体平均数;
(3)70000名考生是总体;
(4)样本容量是1000,其中正确的说法有:
A.1种B.2种C.3种D.4种
3. 某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是
A.40
B.50
C.120
D.150
4. 对于简单随机抽样,个体被抽到的机会
A.相等
B.不相等
C.不确定
D.与抽取的次数有关
5. 抽签法中确保样本代表性的关键是
A.制签
B.搅拌均匀
C.逐一抽取
D.抽取不放回
6.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.试用简单随机抽样方法中的抽签法取样.写出操作过程。

答案:D,B,C,A,B
6,解:抽签法:以姓名制签,在容器中搅拌均匀,每次从中抽取一个,连续抽取5次,从而得到一容量为5的人选样本.。

《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。

1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。

2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。

【教学难点】对样本随机性的理解。

抽签纸,图表等。

(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。

统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。

数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。

个体:总体中的每一个考察对象。

样本:从总体中抽取的一部分个体叫做这个总体的一个样本。

样本容量:样本中个体的数目。

(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。

为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。

于是此杂志预测兰顿将在选举中获胜。

实际选举结果正好相反,最后罗斯福在选举中获胜。

其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。

数学《简单随机抽样》教案

数学《简单随机抽样》教案

数学《简单随机抽样》教案一、教学目标:1. 能够正确理解和定义简单随机抽样。

2. 能够通过例子和实例解决简单随机抽样的相关问题。

二、教学重点:1. 理解简单随机抽样的概念和原理。

2. 了解简单随机抽样的应用领域和常见问题。

三、教学难点:1. 解决复杂问题中的简单随机抽样。

2. 掌握相关的统计方法和计算公式。

四、教学方法:讲解法、案例分析法、问题解决法。

五、教学过程:1. 引入:请学生们回忆一下自己前些天的一些活动,比如上学、做作业、出门逛街等,问问同学们这些活动中有哪些是随机的,哪些不是随机的。

2. 讲解:简单随机抽样是统计学中的一种基本抽样方法。

在简单随机抽样中,我们从总体中随机地选出 n 个样本,使得每个样本被选中的概率相等。

这样的样本叫做简单随机样本。

3. 例子:例如,我们在一家公司进行问卷调查时,可以先从公司全体员工中随机抽取一部分人做为样本,对这部分人进行问卷调查,并将调查结果推广到整个员工群体中。

这样的调查结果,就是一个基于简单随机抽样的统计结果。

4. 练习:下面有几个案例,请根据已知信息进行简单随机抽样。

(1)某小学有200名学生,现在要从中抽取40名学生进行问卷调查,请问应该如何进行简单随机抽样?(2)某厂家要对自己生产的汽车零部件进行质量检测,为此需要从生产线上随机抽取100个零部件,请问应该如何进行简单随机抽样?5. 解答:(1)将200名学生标号为1~200,然后使用随机数生成器生成40个1~200之间的随机数,将对应的学生选中即可。

(2)随机选取100个零部件,每个零部件被选中的概率相等,可以使用随机数生成器或抽签等方法进行抽样。

六、教学总结:通过以上例子,我们可以看出,简单随机抽样是一种基本的统计学方法,广泛应用于各个领域。

在进行简单随机抽样时,我们需要确保每个样本被选中的概率相等,这样才能保证样本的代表性和可靠性。

简单随机抽样--优质获奖精品教案 (19)

简单随机抽样--优质获奖精品教案 (19)

2.1 随机抽样【教学目标】1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.【教法指导】本节重点是能从现实生活或其他学中提出具有一定价值的统计问题及学会简单随机抽样方法,了解分层和系统抽样方法;难点是对样本随机性的理解;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】课本导读一、总体、个体、样本在统计里,把所考察对象的某一数值指标的全体构成的集合看成总体,其中构成总体的每一个考察的对象为个体.从总体中随机抽取若干个个体构成的集合叫做总体的一个样本,样本中包含的个体数目叫做样本容量.二、随机抽样抽样时保持每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样.三、简单随机抽样1.定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样的方法抽签法和随机数法.四、系统抽样1.定义当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取1个个体得到所需要的样本,这种抽样方法叫做系统抽样.五、分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.2.分层抽样的操作步骤第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.六、三种抽样方法的区别与联系适用范围总体中个体数较少总体中个体数较多总体由差异明显的几部分组成疑难辨析1.简单随机抽样(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最大.( )[ 学 ](2)从20个零件中用简单随机抽样一次性抽取3个进行质量检测.( )(3)从100件玩具随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.( )2.系统抽样(1)当总体中个体数较多时,应采取系统抽样法.( )(2)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )3.分层抽样(1)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )(2)某地区教育部门要调查中小学生的近视情况及形成原因,要抽取1 的学生进行调查,可用分层抽样进行.( )[ 学 ]4.三种抽样方法的比较(1)某班有45人,现抽取5人参加一项社会活动,则可以用简单随机抽样法抽取.( )(2)某校即将召开学生代表大会,现要从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.( )(3)三种抽样方法,不论是哪一种,总体中每一个个体被抽到的机会均等.( )(3)根据三种抽样方法的规则可知,每个个体被抽到的机会均等.题型一简单随机抽样例1第十二届全运会将于2013年8月31日至9月12日在辽宁省沈阳市举行,沈阳某大学为了支持大运会,从报名的30名大三学生中选8人组成志愿小组,请用抽签法和随机数表法设计抽样方案.探究一通过本例题让学生了解利用简单随机抽样抽取样本时条件及步骤.1.条件(1)总体的个数较少,利用随机数表法或抽签法可容易获得样本;2.步骤(1)随机数表法的操作步骤 编号、选起始数、读数、获取样本;(2)抽签法的操作步骤 编号、制签、搅匀、抽取.学思考题一1、下列问题中,最适合用简单随机抽样方法抽样的是 ( )A .某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D .某乡农田有 山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量 答案 B解析 A 的总体容量较大,用简单随机抽样法比较麻烦;B 的总体容量较少,用简单随机抽样法比较方便;C 由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D 总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.2.利用抽签法,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.10273.用随机数表进行抽样有以下几个步骤①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为( )A.①②③ B.①③②C.③②① D.③①②4.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同5.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【分析】已知N=120,n=10,用随机数表法抽样时编号000,001,002,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080, 003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.题型二 系统抽样例2、 1、某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数 =80050=16,即每16人抽取一人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是________.【解析】 (1)因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7,所以在第 组抽到的是7+16( -1),所以从33~48这16个数中应取的数是7+16×2=39.【答案】392、某装订厂平均每小时大约装订图书360册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.3.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.【分析】 按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【解析】 按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是(1)编号按现有的号码;(2)确定分段间隔=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5(=0,1,2,...,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13, (288)293.[ 学 ]探究二通过本例题让学生理解系统抽样的特点及步骤.(1)通过例2的(1)(2)让学生理解系统抽样的特点是等距离抽样,若第一组抽取号码a,然后以d为间距依次等距离抽取后面的编号,抽出的所有号码为a+d ( =0,1,2,…,n-1),其中n是组数.(2)通过例2的(3)让学生理解系统抽样的步骤第一步,将总体的N个个体编号.第二步,确定分段间隔,对编号进行分段.第三步,在第1段用简单随机抽样确定起始个体编号l.第四步,按照一定的规则抽取样本.思考题二(1)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定如果在第一组随机抽取的号码为m,那么在第(=2,3,…,10)组中抽取的号码的个位数字与m +的个位数字相同.若m=6,则该样本的全部号码是__________________.(2)将某班的60名学生编号 01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.题型三、分层抽样例3、(1)(2013·湖南卷)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法 B.随机数法C.系统抽样法 D.分层抽样法(2)[2012·江苏卷] 某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)[2012·天津卷] 某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.(4)某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.15,5,25 B.15,15,15C.10,5,30 D.15,10,20(5)某城市有210家百货商店,其中大型商店20家、中型商店40家、小型商店150家,为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?并写出抽样过程.探究三通过本例题让学生理解分成抽样的特点及步骤,各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的.分层抽样中,个体被抽中的机会均等,体现了抽样的公平性.(1)通过例3(1)让学生了解什么情况采用分层抽样;(2)通过例3(2)(3)(4)让学生理解分层抽样的抽样比如何计算;(3)通过例3(5)让学生理解分层抽样的步骤.思考题三、(1)[2012·南阳一模] 某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表 相关人员数[ ] 抽取人数 公务员35 b 教师a 3 自由职业者28 4则调查小组的总人数为( )A .84B .12C .81D .14(2)[2012·江西重点中学一模] 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本 ①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( )A .不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C .①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同(3)[2012·吉林一模] 从总数为N的一群学生中抽取一个容量为100的样本,若每个学生被抽取的概率为14,则N的值为( )A.25 B.75 C.400 D.5004.某公司有三个部门,第一个部门800个员工,第二个部门604个员工,第三个部门500个员工,现在用按部门分层抽样的方法抽取一个容量为380名员工的样本,求应该剔除几个人,每个部门应该抽取多少名员工?随堂测评1.现要完成下列3项抽样调查①从10盒酸奶中抽取3盒进行食品卫生检查.②技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取听众意见,需要请32位听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意义,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样[2012·漳州三校二联] 某学校为了调查高二年级的80名文学生和高三年级的120名文学生完成课后作业所需时间,采取了两种抽样调查的方式第一种由学生会的同学随机抽取高二年级8名和高三年级12名同学进行调查;第二种由教务处对该年级的文学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为( )A.分层抽样,简单随机抽样B.抽签法,随机数表法C.分层抽样,系统抽样D.简单随机抽样,系统抽样3.[2013·南通中学联考] 某地有居民2万户,从中随机抽取200户,调查是否已安装安全救助报警系统,调查结果如下表所示[ ] 外户原住户已安装60 35未安装45 604.某商场想通过检查发票及销售记录的 2 快速估计每月的销售总额.采取如下方法从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…,发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A.抽签法 B.随机数表法C.系统抽样法 D.其他方式的抽样5.为了考察某校的教学水平,将抽查这个学校高三年级部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察14个学生的成绩;③把学校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是什么?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.。

2.1.简单随机抽样-苏教版必修3教案

2.1.简单随机抽样-苏教版必修3教案

2.1.简单随机抽样-苏教版必修3教案
一、教学目标
1.了解简单随机抽样的概念和特点;
2.掌握简单随机抽样的方法和步骤;
3.认识简单随机抽样的应用场景和意义;
4.培养学生独立思考和合作探究的能力。

二、教学重点
1.简单随机抽样的概念和特点;
2.简单随机抽样的方法和步骤。

三、教学难点
1.简单随机抽样的应用场景和意义;
2.学生独立思考和合作探究的能力。

四、教学过程
1. 导入(5分钟)
介绍调查调研的概念和意义,引出简单随机抽样的概念。

2. 讲解(15分钟)
•简单随机抽样的概念和特点;
•简单随机抽样的方法和步骤。

3. 分组探究(20分钟)
将学生分成小组,让他们根据教师提供的数据,在一定的条件下进行简单随机抽样,并填写实验记录表。

4. 总结(10分钟)
让学生口头汇报实验结果和心得体会。

教师对学生的表现给予评价和指导。

5. 作业布置(5分钟)
布置相关的课后习题作业和实践探究作业。

五、教学方式
采用小组探究和讲解相结合的教学方式。

六、教学工具
黑板、粉笔、多媒体课件。

七、教学反思
本课以小组探究为主要教学方式,让学生在实践中探索简单随机抽样的方法和步骤。

通过互相交流和协作,学生逐渐理解简单随机抽样的意义和重要性。

本课也注重启发学生的思维,引导学生去思考简单随机抽样在实际中的应用和拓展。

在今后的教学实践中,应当继续加强学生的实践操作和思维启发,让学生更好地掌握简单随机抽样的方法和意义。

(完整版)随机抽样教案

(完整版)随机抽样教案

随机 抽 样一.知识点归纳1.简单随机抽样 :设一个总体的个数为 N 。

如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等, 就称这样的抽样为简单随机抽样。

实现简单随机抽样,常用抽签法和随机数表法( 1)抽签法制签:先将总体中的所有个体编号(号码可以从 1 到 N ),并把号码写在形状、大小相同的号签上,,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1 个号签,连续抽取n 次;成样:对应号签就得到一个容量为 n 的样本。

抽签法简便易行,当总体的个体数不多时,适宜采用这种方法( 2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。

在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。

成样:对应号签就得到一个容量为 结论:① 简单随机抽样,从含有Nn 的样本个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为1;在整个抽样过程中各个个体被抽到的概率为n;N N② 基于此,简单随机抽样体现了抽样的客观性与公平性;③ 简单随机抽样特点: 它是不放回抽样; 它是逐个地进行抽取; 它是一种等概率抽样。

2.系统抽样 :当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取 1 个个体, 得到所需要的样本, 这种抽样叫做系统抽样(也称为机械抽样)。

系统抽样的步骤可概括为: (1)将总体中的个体编号。

采用随机的方式将总体中的个体编号;( 2)将整个的编号进行分段。

为将整个的编号进行分段, 要确定分段的间隔k .当 N是N;当N不是整数时, 通过从总体中剔除一些个体使剩下的个体数n整数时, k N ′能被nn n整除,这时kN;nl ; ( 3)确定起始的个体编号。

简单随机抽样 优秀教案

简单随机抽样 优秀教案

简单随机抽样优秀教案教学目标】1.理解简单随机抽样的概念,能够描述抽签法和随机数表法的步骤。

2.能够根据样本情况选择适当的抽样方法。

教学重点】理解简单随机抽样的概念,掌握抽签法和随机数表法的步骤,能够从总体中抽取样本。

教学难点】理解简单随机抽样的概念,掌握抽签法和随机数表法的步骤。

教学过程】一、情境导入:1.国务院在2000年11月1日进行了第五次全国人口普查的登记工作,结果显示我国人口总数为万。

这个例子用到了什么统计方法?它的优缺点是什么?你有其他的想法吗?答:这个例子用到了普查的统计方法。

优点是全面准确,缺点是工作量大,在大部分统计案例中无法实现(检查具有破坏性)。

还可以使用随机抽样的方法。

2.你认为在这个例子中预测结果出错的原因是什么?答:所选样本没有代表性。

3.假设你是一名食品卫生工作人员,需要对某食品店内的一批小包装饼干进行卫生达标检验,你会怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。

那么,应当怎样获取样本呢?二、新知探究:一)简单随机抽样的概念:一般地,从一个总体含有N个个体中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)二)抽签法和随机数表法:1.抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

抽签法的一般步骤:1)将总体的个体编号;2)连续抽签获取样本号码。

思考:抽签法有什么优点和缺点?当总体个体数较多时,使用抽签法方便吗?解析:操作简便易行,但当总体个数较多时工作量大,也很难做到“搅拌均匀”。

2.随机数表法利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。

如何利用随机数表进行样本抽取?以检验某公司生产的500克袋装牛奶质量为例,从800袋牛奶中抽取60袋进行检验。

随机抽样教案范文

随机抽样教案范文

随机抽样教案范文讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性.接下来是小编为大家整理的随机抽样教案范文,希望大家喜欢!随机抽样教案范文一一、内容和内容解析1.内容本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题.2.内容解析本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法.在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的.统计有两种.一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查.但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常的大或者有的产品的质量检查是破坏性的.统计和概率的基础知识已经成为一个未来公民的必备常识.抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体.其中蕴涵了重要的统计思想样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.二、目标和目标解析1.目标(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;(3)以问题链的形式深刻理解样本的代表性.2.目标解析本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题.让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识.对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性.抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解.为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本.由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.三、教学问题诊断分析学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想样本估计总体以及统计结果的不确定性.学生已有知识经验与本节要达成的教学目标之间还有很大的差距.主要的困难有:对样本估计总体的思想、对统计结果的不确定性产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力.在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳.根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体.四、教学支持条件分析准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.五、教学过程设计(一)感悟数据、引入课题问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?普查:为了一定的目的而对考察对象进行的全面调查称为普查.总体:所要考察对象的全体称为总体(population)个体:组成总体的每一个考察对象称为个体(individual)普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等.设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的.(二)操作实践、展开课题问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(sampling investigation).样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.列举:一个著名的案例在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:候选人预测结果%选举结果%Roosevelt4362Landon5738随机抽样教案范文二一、教材背景与内容分析本节内容是新课标实验教材(人教版A版)必修③第二章统计的第一课时。

《简单随机抽样》教学设计、导学案、同步练习

《简单随机抽样》教学设计、导学案、同步练习

《9.1.1 简单随机抽样》教学设计【教材分析】本节《普通高中课程标准数学教科书-必修二(人教A版)第九章《9.1.1 简单随机抽样》,本节的主要内容包括:统计问题的特征、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及两种抽样方法,(1)抽签法,(2)随机数法,这两种种方法的操作步骤和注意事项。

从而发展学生的直观想象、逻辑推理、数学建模的核心素养。

【教学目标与核心素养】【教学重点】:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.【教学难点】:抽签法和随机数法的实施步骤.【教学过程】当的统计图表对数据进行整理和描述,在此基础上用各种统计方法对数据进行分析,从样本数据中提取需要的信息,推断总体的情况,进而解决相应的实际问题.名称定义总体所要的全体叫作总体样本从总体中抽取出的组成的集合叫作总体的一个样本个体总体中的每一个考察对象叫作个体样本样本中个体的叫作样本容量容量考察对象;统计的相关概念;若干个个体;数目[讨论] 样本与样本容量有什么区别?解:样本与样本容量是两个不同的概念.样本是从总体中抽取的个体组成的集合,是对象;样本容量是样本中个体的数目,是一个数.人口普查需要花费巨大的财力、物力,因而不宜经常进行,为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查.这种调查是抽取一部分居民进行调查,根据抽取的居民情况来推断总体的人口变动情况.像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量.调查样本获得的变量值称为样本的观测数据,简称样本数据.抽样调查的目的是为了了解总体的情况.例如,抽样调查一批待售袋装牛奶的细菌数是否超标,其目的是要了解整批牛奶的细菌含量超标情况,而不只是局限在抽查到的那几袋牛奶的情况.因此,通过抽样调查了解总体的情况,自然希望抽取的样本数据能很好地反映总体的情况,即样本含有和总体基本相同的信息.假设口袋中有红色和白色共1000个小球,除颜色外,小球的大小、质地完全相同,你能通过抽样调查的方法估计带中红球所占的比例吗?这里袋中所有小球是调查的总体,每一个小球是个体,小球的颜色是所关心的变量.我们可以从袋中随机地摸出一个球,记录颜色后放回,摇匀后再摸出一个球,如此重复n次.根据初中的概率知识可知,随着摸球次数的增加,摸到红球的频率会逐渐稳定于摸到红球的概率,即口袋中红球所占的比例,因此,我们可以通过放回摸球,用频率估计出红球的比例. 在有放回地摸球中,同一个小球有可能被摸中多次,极端情况是每次摸到同一个小球,而被重复摸中的小球只能提供同一个小球的颜色信息,如果我们采用不放回摸球,即从袋中摸出一个球后不再放回袋中,每次摸球都在余下的球中随机摸取,这样就可以避免同一个小球被重复摸中.特别地,当样本量n=1000时,不放回摸球已经把袋中的所有球取出,这就完全了解了袋中红球的比例,而有放回摸球一般还不能对袋中红球的比例作出准确的判断.1.概念:一般地,设一个总体含有N个个体,从中地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会,就把这种抽样方法叫作简单随机抽样,这样抽取的样本,叫作简单随机样本.;简单随机抽样;逐个不放回;都相等不同编号个数等于样本所需要的人数.一般说来,在计算器或计算机软件没有特殊设定的情况下,它们生成的随机数,都是可重复的.为了确认你使用的计算器或计算机软件的情况,可以查阅它的说明书,也可以通过测试它能否生成3个整数随机数1或2来进行判断.(1)用随机试验生成随机数(2)用信息技术生成随机数准备10个大小、质地一样的小球,小球上分别写上数字0,1,2, (9)把它们放入一个不透明的袋中,从袋中有放回摸取3次,每次摸取前充分搅拌,并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个三位随机数.如果这个三位数在1~712范围内,就代表对应编号的学生被抽中,否则舍弃编号. 这样产生的随机数可能会有重复. 进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机数的函数并设置参数,例如RandInt# (1, 712),按“=”键即可生成1~712范围内的整数随机数.重复按“=”键,可以生成多个随机数.这样产生的随机数可能会有重复.①用计算器生成随机数在电子表格软件的任一单元格中,输入“=RANDBETWEEN (1,712)”,即可生成一个1~712范围内的整数随机数.再利用电子表格软件的自动填充功能,可以快速生成大量的随机数(如下图1).这样产生的随机数可能会有重复.②用电子表格软件生成随机数在R软件的控制台中,输入“sample (1: 712, 50, replace=F) ”,按回车键,就可以得到50个1~712范围内的不重复的整数随机数(如下图).③用R统计软件生成随机数R软件是免费的统计软件,该软件具有比较强大数据处理、绘图和分析等统计功能,在统计学研究和学习中被广泛使用.抽签法随机数表法步骤①将总体中的个体编号为1~N;②将所有编号1~N写在形状、大小相同的号签上;③将号签放在一个不透明的容器中,搅拌均匀;④从容器中每次抽取一个号签,并记录其编号,连续抽取n次;⑤从总体中将与抽取到的签的编号相一致的个体取出①将总体中的个体;②在随机数表中数作为开始;③规定一个方向作为从选定的数读取数字的④开始读数字,若不在编号中,则,中,则,依次取下去,直到取满为止只计一次)⑤根据选定的号码抽取样本要点编号、制签、搅匀、抽取、确定样本编号、选起始数、读数、获取样本编号;任选一个;方向;跳过;取出【教学反思】本节从生活中的实际问题出发,引导学生认识统计知识的重要性,理解统计问题的特征、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及两种抽样方法,(1)抽签法,(2)随机数法,这两种种方法的操作步骤和注意事项。

简单随机抽样教学设计

简单随机抽样教学设计

简单随机抽样教学设计教学目标:1.了解简单随机抽样的定义和原则。

2.掌握简单随机抽样的方法和步骤。

3.通过实际操作,能够进行简单随机抽样。

教学过程:一、导入(5分钟)通过提问调动学生的思维,引导他们思考“什么是抽样”和“为什么要进行抽样”。

二、讲解简单随机抽样的定义和原则(10分钟)1.定义:简单随机抽样是指从总体中随机地抽取一些样本,使得每一个样本都有相同被抽取的机会。

2.原则:(1)每个样本都有相同的被抽取机会。

(2)抽取的样本是随机的,不受抽样者的影响。

三、讲解简单随机抽样的方法和步骤(15分钟)1.方法:(1)把每一个样本编上号码。

(2)利用随机数表或随机数发生器,通过抽取数字的方式确定要抽取的样本。

2.步骤:(1)确定样本容量。

(2)编制总体名单,每个样本编上号码。

(3)利用随机数表或随机数发生器,确定要抽取的样本。

(4)按照所确定的号码,抽取样本。

四、实践操作简单随机抽样(30分钟)1.将学生分成小组,每个小组有一份总体名单和一个随机数表。

2.每个小组的成员依次根据随机数表上的数字,确定要抽取的样本。

3.记录每个小组抽取的样本,并进行简单分析。

五、总结(10分钟)1.向学生征集他们的实践感想和体会。

2.提出一些问题,引导学生进行思考和讨论,如“随机数表和随机数发生器有何区别?”、“你们觉得简单随机抽样有什么应用场景?”等。

六、拓展延伸(15分钟)1.介绍其他抽样方法,如系统抽样、分层抽样等。

2.让学生在实际生活中找到应用抽样方法的案例,并进行分享。

七、课堂作业(5分钟)要求学生总结本节课所学的内容,并根据自己的理解写一篇关于简单随机抽样的小文章。

教学评价:1.观察学生在实践操作中的表现,包括参与度、操作准确度等。

2.评价学生在总结小结中对简单随机抽样的理解和应用能力。

教学反思:本节课教学内容相对较为简单,但是实践操作环节需要引导学生进行实际操作,确保学生对简单随机抽样有自主的了解和掌握。

9.1.1.1简单随机抽样+教学设计

9.1.1.1简单随机抽样+教学设计

9.1 随机抽样9.1.1.1 简单随机抽样教学目标:1.通过阅读课本了解数据的调查方法;2.通过阅读课本了解简单随机抽样;3.通过问题掌握简单随机抽样的常用方法.教学重点:了解简单随机抽样和良种常用方法教学难点:会用抽签法和随机数法进行简单随机抽样教学过程:一、导入新课,板书课题想必大家都听说过人口普查,那么人口普查是如何进行的,面对庞大的数据不方便全面收集的时候,又该如何处理呢,本节课我们就来学习一下简单随机抽样。

【板书:简单随机抽样】二、出示目标,明确任务1.了解调查数据的方法。

2.了解何为简单随机抽样3.掌握简单随机抽样的常用方法三、学生自学,独立思考学生看书,教师巡视,督促学生认真看书下面,阅读课本P173-P177页内容,思考如下问题(4min):1.找出阅读内容中的知识点。

2.找出阅读内容中的重点。

3.找出阅读内容中的困惑点,疑难点。

四、自学指导,紧扣教材1.自学指导1(5min)阅读课本173-175页问题1以上内容,思考并完成如下问题(1)什么是全面调查?人口普查是否为全面调查?(2)什么是总体?什么是个体?(3)什么是抽样调查?何为样本,何为样本容量?(4)抽样调查的目的是什么?(5)放回和不放回简单抽样分别是什么?统称为什么?自学指导2(5min)阅读课本175-177页,思考并完成以下问题(1)简单随机抽样常用的两种方法有?(2)抽签法如何操作,优点是什么?(3)随机数法如何操作,优点是什么?(4)用简单随机抽样方法抽取样本,样本量是否越大越好?五、自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT)2.书面检测:在以下调查中,总体、个体各是什么?哪些适合用全面调查?哪些适合用抽样调查?(1)调查一个班级学生每周的体育锻炼时间(2)调查一个地区结核病的发病率(3)调查一批炮弹的杀伤半径(4)调查一个水库所有鱼中草鱼所占的比例精讲点拨:自学指导1:点拨1.全面调查与抽样调查的区别;全面调查是对每一个对象进行调查,抽样调查时抽取一部分进行调查。

4.2简单随机抽样-青岛版七年级数学上册教案

4.2简单随机抽样-青岛版七年级数学上册教案

4.2 简单随机抽样-青岛版七年级数学上册教案
一、教学目标
1.理解简单随机抽样的概念;
2.掌握简单随机抽样的方法;
3.能够应用简单随机抽样的方法解决问题。

二、教学重难点
1.教学重点:简单随机抽样的概念及方法;
2.教学难点:如何合理选取简单随机抽样的样本。

三、教学过程
3.1 导入与概念解释
1.导入:老师通过提问和引入问题的方式,使学生进入简单随机抽样的学习状态。

2.定义:对简单随机抽样的概念进行解释,让学生明确抽样的目的及主要方式。

3.2 抽样方法及样本的选取
1.常见的抽样方法:老师介绍几种常见的抽样方法,着重讲解简单随机抽样的定义及其特点;
2.样本选取方法及注意事项:老师结合实例,讲解样本选取的方法及注意事项,比如样本量的大小、样本的可靠性等。

3.3 实例操作
1.根据教材中给出的实例,进行简单随机抽样的操作;
2.学生根据所学知识,完成相关的计算和数据处理,从而得出相应的结论。

3.4 练习题
1.教师布置若干练习题,要求学生掌握简单随机抽样的方法;
2.学生自主完成并相互交流。

四、教学反思
本节课的教学是基于《青岛版七年级数学上册》的教学内容,围绕着简单随机抽样的概念及方法进行了指导,并在实例操作和练习题的环节中巩固了所学知识。

但是,教学过程中如果能够加入一些互动环节,如学生小组内的角色扮演活动或是学生自行设计并实施简单随机抽样的实践活动等,将更有利于学生的学习效果。

因此,接下来的教学中可以适当增加这样的活动形式,来促进学生对知识的理解和应用。

《简单随机抽样》示范课教案【高中数学】

《简单随机抽样》示范课教案【高中数学】

《简单随机抽样》教学设计◆教学目标1.通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法;2.掌握用抽签法、随机数表法进行抽样的步骤,了解随机数表的制作方法和思想;3.在简单的实际情境中,能够根据实际问题的特点,设计恰当的抽样方法解决问题.◆教学重难点◆教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:理解等可能性的含义、抽签法和随机数法的实施步骤.◆教学过程一、新课导入情境:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.以下几种抽取方法,你认为可行吗?(1)从戴眼镜的学生中抽取10名进行严查;(2)从没有佩戴眼镜的学生中抽取10名进行检查;(3)从女生中抽取10名进行检查.显然,以上3中抽样方法都具有一定的片面性.那么,怎样抽取样本才是合理的呢?这节课我们就一起来探究!设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会抽样的必要性,为下面的学习做铺垫.二、新知探究问题1:怎样抽取样本,才能使样本更好地代表总体?答案:尽量使样本的分布能近似于总体的分布,例如,在调查学校学生的身高时,若身高在160 cm~170 cm的学生占总体的40%,那么样本中160 cm~170 cm的学生占样本容量的40%,这样得出的结论更准确.因为抽查是由部分来推断总体,所以其结果具有不确定性,在处理这个矛盾的过程中,人们经过长期的实践总结,得出了抽查的基本方法——随机抽样.定义:在抽样调查中,每个个体被抽到的可能性均相同的抽样方法,称为随机抽样.一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法通常叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法,对于不知道某些特别信息的总体,往往采用简单随机抽样.【概念巩固】下面抽取样本的方式是简单随机抽样吗?为什么?1.从无限多个个体中抽取50个个体作为样本.2.箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.3.从50个个体中一次性抽取5个个体作为样本.思路点拨:要判断所给的抽样方式是否是简单随机抽样,关键是看它们是否符合简单随机抽样的特点.答案:1.不是简单随机抽样.因为被抽取样本的总体的个体数是无限的而不是有限的;2.不是简单随机抽样.简单随机抽样是不放回抽样,而它是放回抽样;3.不是简单随机抽样.因为它是一次性抽取,而不是“逐个”抽取.总结:简单随机抽样具备以下四个特点:①总体的个体数较少,②逐个抽取,③不放回抽样,④等可能抽样.判断抽样方法是否是简单随机抽样,只需看是否符合上述四个特点,若有一条不符合就不是简单随机抽样.设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会简单随机抽样的特点,提高学生的抽象概括能力和语言表达能力.问题2:在解决实际问题时,怎样才能保证等可能抽取呢?探究:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.答案:将这45名学生进行编号;再做45个编号分别为1~45的“签”(也称“阄”),放入密封的容器或袋中(从外面看不见内部),并充分搅拌;最后从容器或袋中随机抽取10个签,记下10个签的编号,与签的编号相同的学生的视力即组成需要的样本,这种抽样方法称为抽签法.一般地,用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤是:(1)给总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽取1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.追问1:哪些步骤保证每个个体被抽到的可能性是一样的?答案:形状、大小相同的号签;不透明的箱子;搅拌均匀.追问2:抽签法有哪些优点和缺点?答案:优点:简单易行;缺点:总体容量非常大时,费时费力,不容易搅拌均匀,会导致抽样不公平.问题3:当总体中所含个体数较多时,抽签法虽然能够保证样本的代表性,但是制签的过程也比较麻烦,如何简化制签的过程呢?答案:制作一个表,这个表由0,1,2,3,4,5,6,7,8,9这10个数字组成,表中任一位置出现任一数字的概率相同,且不同位置的数字之间是独立的.这样的表称为随机数表,其中的每个数都称为“随机数”,于是,我们只要按一定的规则从随机数表中选取号码就可以了,这种抽样方法叫作随机数表法.抽签法和随机数表法都是简单随机抽样.思考:如何用随机数表法求解本节开头的问题?(1)对45名学生按01,02,03,…,45编号;(2)在随机数表中随机地确定一个数字,如第8行第29列的数字7作为开始,为便于说明,我们将附录中的6~10行摘录如下:(3)从数字7开始向右读下去,每次读两位,凡不在01~45中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到12,07,44,39,38,33,21,34,29,42这10个号码,编号为这10个号码的学生的视力即组成一个容量为10的样本.当随机地选定开始的数后,读数的方向可以向右,也可以向左、向上、向下等.追问:你能总结出用随机数表法抽取样本的步骤吗?答案:(1)对总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.总结:在用随机数法抽取样本时,应注意以下几点:(1)编号位数一致,一是为了便于查找,二是要保证每个个体被抽取的概率相等;(2)抽样时所需的随机数表可临时产生,也可以沿用已有的随机数表;(3)读数的起点、读取方向都是随机的,且事先定好.设计意图:帮助学生了解随机数表,熟悉随机数法抽取样本的过程,进一步积累基本活动经验.三、应用举例例1:(多选)下列关于简单随机抽样的叙述正确的是( )A .一定要逐个抽取B .它是一种最简单、最基本的抽样方法C .总体中的个数必须是有限的D .先被抽取的个体被抽到的可能性要大解析:由简单随机抽样的特点可以得出判断.A 、B 、C 都正确,并且在抽样过程中,每个个体被抽到的可能性都相等,不分先后.答案:ABC .例2:用随机数表法从1000 名学生男生抽取25 人参加某项运动,则某男学生被抽到的概率是_______;将1000名学生分别编号000、001、002……999,从随机数表的第5行(下表为随机数表的第5-8行)第11列开始,向右读取,则抽取的第5个样本的号码是____.5556 8526 6166 8231 2438 8455 4618 44452635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 1620解析:根据简单随机抽样的特点,每个个体被抽到的概率相同.所以某男生被抽到的概率为25÷1000×100%=2.5%;抽取出的号码分别为668、231、243、884、554,所以第五名被抽取出的学生编号为554.例3:用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A .110,110B .310,15C .15,310D .310,310 解析:根据简单随机抽样的定义知个体a 两次被抽到的可能性相同,均为310.答案:D . 四、课堂练习1.下面的抽样方法是简单随机抽样的个数是( )①某班45名同学,学校指定个子最高的5名同学参加学校的一项活动;②从2021生产线连续生产的产品中一次性抽取3个进行质检;③一儿童从玩具箱中的2022个玩具中随意拿出一件玩,玩完放回再拿一件,连续玩了5次.A .1B .2C .3D .02.总体由编号为 01,02,…,19,20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983202 9234 4935 8200 3623 4869 6938 7481A . 08B . 07C .02D .013.某总体容量为M,其中带有标记的有N个,现用简单随机抽样从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为_______.4.下列抽样试验中,适合用抽签法的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验参考答案:1.解析:①不是,因为它不是等可能;②不是,因为它是“一次性”抽取;③不是,因为它是有放回的.答案:D.2、解析:由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.答案:D.3、解析:总体中带有标记的比例是NM ,则抽取的m个个体中带有标记的个数估计为NmM.答案:NmM.4、解析:A中总体容量较大,样本量也较大,不适宜用抽签法;B中总体容量较小,样本量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D中虽然样本量较小,但总体容量较大,不适宜用抽签法.故选B.答案:B.五、课堂小结设计意图:引导学生对本节课所学知识方法有一个全面的认识,培养学生的归纳总结能力,帮助学生深化对知识的理解与掌握,体会研究解决实际问题的思路、途径、方法,为进一步学习打下坚实基础.六、布置作业教材第216页练习第1,2题.。

苏教版必修3《简单随机抽样》教案及教学反思

苏教版必修3《简单随机抽样》教案及教学反思

苏教版必修3《简单随机抽样》教案及教学反思一、引言简单随机抽样是统计学中最重要的抽样方式之一,它可以帮助调查者进行更为准确的数据收集,从而得到更为可靠的统计结果。

苏教版必修3中《简单随机抽样》一课涵盖了这一重要主题的相关知识和实际应用,本文将探讨如何设计一份完整的教案,以及对教学效果的反思。

二、教案设计1. 教学目标本节课程的教学目标如下:•掌握简单随机抽样的定义和基本原理;•理解简单随机抽样的优点和不足;•能够根据抽样数据估计总体参数;•了解其他抽样方法与简单随机抽样的区别。

2. 教学内容本节课程的教学内容主要包括:•简单随机抽样的定义和基本原理;•简单随机抽样的优点和不足;•样本和总体的定义;•如何利用抽样数据估计总体参数;•其他抽样方法与简单随机抽样的区别。

3. 教学方法本节课程的教学方法包括:•PPT讲解:通过PPT讲解,帮助学生快速掌握抽样方法的基本概念和原理;•实例演示:通过实例演示,展现简单随机抽样在实际应用中的作用和效果;•练习与讨论:通过练习巩固学生对简单随机抽样的掌握程度,并鼓励学生在讨论中提出问题和思考。

4. 教学过程根据上述教学目标、内容和方法,本节课程的教学过程如下:•引入:通过举一个简单的例子引入本节课程,例如“小明要统计班级同学中每人的月用电量,他该如何收集和分析数据呢?”•PPT讲解:通过PPT讲解简单随机抽样的基本概念和原理,让学生掌握其定义和优点不足。

•实例演示:通过实例演示,向学生展示在实际应用中如何使用简单随机抽样方法。

•练习与讨论:让学生进行练习,巩固对简单随机抽样方法的掌握程度,同时鼓励学生在讨论中提出问题和思考。

•总结:对本节课程进行总结,概括简单随机抽样的基本知识和应用。

三、教学反思本节课程采用了PPT讲解、实例演示和练习讨论相结合的教学方法,机构合理,使学生能够快速透彻地掌握简单随机抽样的应用及其基本概念和优缺点。

但是,在教学过程中,我发现还存在一些可以优化的问题:1. 缺乏教材配套练习本节课程的教材没有提供足够的练习题和实例演算,导致学生在理解简单随机抽样的原理时缺乏实际操作,影响了他们的应用水平。

初中简单随机抽样教案

初中简单随机抽样教案

教案:初中简单随机抽样教学目标:1. 让学生理解随机抽样的概念,知道随机抽样的意义和作用。

2. 学会使用简单随机抽样的方法进行数据收集和分析。

3. 培养学生的观察能力、思考能力和动手能力。

教学重点:1. 随机抽样的概念和意义。

2. 简单随机抽样的方法。

教学难点:1. 随机抽样的实际操作。

教学准备:1. PPT课件。

2. 学生分组,每组准备一些小物品,如糖果、小球等。

教学过程:一、导入(5分钟)1. 利用PPT课件,展示一些生活中的随机抽样现象,如彩票抽奖、糖果包装上的随机颜色等。

2. 引导学生思考:这些现象有什么共同特点?它们的意义和作用是什么?二、自主学习(10分钟)1. 让学生阅读教材,了解随机抽样的概念和意义。

2. 学生分享学习心得,教师点评并总结。

三、课堂讲解(15分钟)1. 讲解简单随机抽样的方法,如抽签法、随机数表法等。

2. 举例说明如何使用这些方法进行数据收集和分析。

四、实践操作(15分钟)1. 学生分组,每组选择一种物品进行随机抽样。

2. 教师巡回指导,解答学生在操作过程中遇到的问题。

3. 各组汇报抽样结果,教师点评并总结。

五、课堂小结(5分钟)1. 让学生回顾本节课所学内容,总结随机抽样的概念、意义和作用。

2. 强调随机抽样在实际生活中的应用价值。

六、课后作业(课后自主完成)1. 结合教材,思考生活中还有哪些随机抽样的现象?它们是如何实现的?2. 尝试使用简单随机抽样的方法,对身边的物品进行数据收集和分析。

教学反思:本节课通过引导学生观察生活中的随机抽样现象,让学生了解随机抽样的概念和意义。

通过课堂讲解和实践操作,让学生学会使用简单随机抽样的方法进行数据收集和分析。

在教学过程中,要注意关注学生的学习情况,及时解答学生的问题,确保学生能够掌握所学知识。

同时,要注重培养学生的观察能力、思考能力和动手能力,提高学生的学习兴趣和积极性。

简单随机抽样--优质获奖精品教案 (17)

简单随机抽样--优质获奖精品教案 (17)

2.1.1 简单随机抽样三维目标1.知识与技能理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概论,掌握简单随机抽样的两种方法.2.过程与方法通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力.3.情感、态度与价值观通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质.重点难点1.理解随机抽样的概念;2.掌握简单随机抽样中的抽签法、随机数法的一般步骤;3.学会用简单随机抽样方法从总体中抽取样本.知识掌握1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧抽签法随机数法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.学生已有的认知基础是,初中学习过统计的基础知识,并对总体、样本、个体等知识有了初步的了解,对为什么要进行抽样已有了感性认识,但对如何实施抽样缺乏系统的了解.对简单随机抽样的概念的认识上,学生对抽签法有感性认识,但对抽样过程的科学、合理、使每个个体被抽到的可能性相等的理解存在差异,因而对概念的本质理解也可能有所差异.在利用抽签法进行简单随机抽样时,学生对此方法比较熟悉,但对程序化或流程图式的解决问题模式接触不多,因而可能出现解题过程的不完善.在利用随机数法进行简单随机抽样时,学生在对物件进行标号时由于位数的不一致而可能产生抽样过程的错误,同时在选号的规则上可能带来一些误差.(教师用书独具)教学建议考虑到学生的知识水平和理解能力以及课堂教学的信息量,教师可从信息技术和数学知识的有效整合入手,从实际生活中提炼数学素材,从激励学生探究知识入手,通过直观演示,优化教学,使学生在熟悉的知识背景下探求新知.通过视频片断,实例图片,Excel表格的综合应用,丰富学生的体验,给学生多一点空间和时间,把任务角色还给学生,使学生亲历数学发现、创造的过程,获得对数学价值的认识,通过分层激励,让不同层次的学生获得最大进步.教学流程设置情境,提出问题一锅水饺的味道如何品尝?⇒引导学生结合现实生活中的实际问题,思考讨论得出随机抽样的概念⇒引导学生明确抽样的必要性,掌握抽样的特点及方法突出“等可能性”特征⇒通过例1及变式训练使学生进一步明确随机抽样的特征,明确什么是简单随机抽样⇒通过例2及变式训练使学生掌握抽签法的应用,体会抽签法的“公平性”,突破难点,突出重点⇒通过例3及变式训练使学生掌握随机数法的应用,体会该种方法的科学性与优越性⇒课堂小结,总结升华,让学生对知识有一个系统的认识,突出重点,抓住关键⇒完成当堂双基达标,落实各个知识点,突出重点,强化难点问题导思1.为了了解高一学生身高的情况,我们找到了某地区高一八千名学生的体检表,从中随机抽取了150张,表中有体重、身高、血压、肺活量等15个数据,那么我们收集的个体数据是什么?提示因为我们了解的是高一学生身高的情况,所以需要收集的个体数据是表中学生的身高的数据.2.要判断一锅汤的味道需要把整锅汤都喝完吗?应该怎样判断?提示不需要.只要将锅里的汤“搅拌均匀”,品尝一小勺就知道汤的味道.3.在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?提示在1936年电话和汽车只有少数富人拥有,仅抽取这些富人作为民意调查的个体,导致样本的代表性不强,所以由样本数据得出的结论可能不正确.4.要用随机抽样的方法从总体中抽出高质量的样本,应对总体做怎样的处理?提示要将总体“搅拌均匀”,即使每个个体有同样的机会被抽中.小结为了使样本具有好的代表性,设计抽样方法时,最重要的是要将总体“搅拌均匀”,即使每个个体有同样的机会被抽中.1.你准备怎样做?提示从中抽取一定数量的饼干作为检验的样本.为了获取高质量的样本可以将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取.2.从含有甲、乙的9件产品中随机抽取一件,总体内的各个个体被抽到的机会相同吗?为什么?甲被抽到的机会是多少?提示总体内的各个个体被抽到的可能性是相同的.因为是从9件产品中随机抽取一件,这9件产品每件产品被抽到的机会都是1/9,甲也是1/9.小结简单随机抽样的含义:一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样.3.根据以上讨论,你认为简单随机抽样有哪些主要特点?提示(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.4.假设要在我们班选派5个人去参加某项活动,为了体现选派的公平性,你有什么办法确定具体人选?如何操作?提示用抽签法(抓阄法)确定人选,具体如何操作如下:用小纸条把每个同学的学号写下来放在盒子里,并搅拌均匀,然后随机从中逐个抽出5个学号,被抽到学号的同学即为参加活动的人选.小结一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,然后将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n 的样本.5.一般地,抽签法的操作步骤如何?提示第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀.第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.6.你认为抽签法有哪些优点和缺点?提示优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.7.阅读教材,回答当总体个数较多时,怎么抽取质量比较高的样本?提示利用随机数法.小结利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数法,我们仅研究随机数法.8.一般地,利用随机数法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?提示第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.例1一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?为什么?解不是简单随机抽样.因为简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.反思与感悟判断一个抽样方式是不是简单随机抽样,就是看这个抽样符不符合简单随机抽样的4个特点,符合就是,否则就不是.跟踪训练1下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.解(1)不是.因为(1)中总体的个体数不是有限的.(2)不是.因为(2)中的抽取是有放回的抽取,不符合简单随机抽样的特点.例2治工作,请用抽签法设计抽样方案.解方案如下:第一步,将18名志愿者编号,号码为01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.反思与感悟一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.跟踪训练2从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解第一步:将20架钢琴编号,号码是01,02, (20)第二步:将号码分别写在一张纸条上,揉成团,制成号签;第三步:将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步:从袋子中逐个不放回的抽取5个号签,并记录上面的编号;第五步:所得号码对应的5架钢琴就是要抽取的对象.例3假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时应如何操作?解第一步,将800袋牛奶编号为000,001, (799)第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7为起始数).第三步,从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.反思与感悟抽签法和随机数法对个体的编号是不同的,抽签法可以利用个体已有的编号,如学生的学籍号,产品的记数编号等,也可以重新编号,例如总体个数为100,编号可以为1,2,3,…,100.随机数法对个体的编号要看总体的个数,总体数为100,通常为00,01,…,99.总体数大于100小于1 000,从000开始编起,然后是001,002,….跟踪训练3某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?解方法一(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,搅拌均匀,接着连续抽取10个号签,然后测量这10个号签对应的轴的直径.方法二(随机数法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.当堂检测1.为了了解某市高三毕业生升学考试中数学成绩的情况,从参加考试的学生中随机地抽查了1 000名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是() A.总体指的是该市参加升学考试的全体学生B.个体指的是1 000名学生中的每一名学生C.样本容量指的是1 000名学生D.样本是指1 000名学生的数学升学考试成绩【解析】因为是了解学生的数学成绩的情况,因此样本是指1 000名学生的数学成绩,而不是学生.【答案】D2.在简单随机抽样中,某个个体被抽中的可能性是() A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样【解析】简单随机抽样中每个个体被抽取的可能性相等.【答案】B3.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是() A.总体是240B.个体是每个学生C.样本是40名学生D.样本容量是40【答案】D4.下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取20个个体作为样本.(2)从50台冰箱中一次性抽取5台冰箱进行质量检查.(3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛.(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.解(1)不是简单随机抽样.因为总体的个数是无限的,而不是有限的.(2)不是简单随机抽样.虽然“一次性”抽取和“逐个”抽取不影响个体被抽到的可能性,但简单随机抽样的定义要求的是“逐个抽取”.(3)不是简单随机抽样.因为是指定5名同学参加比赛,每个个体被抽到的可能性是不同的,不是等可能抽样.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能地进行抽样.课堂小结1.简单随机抽样是一种简单、基本、不放回的抽样方法,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量大时,费时、费力,并且标号的签不易搅拌均匀,这样会导致抽样不公平;随机数法的优点也是简单易行,缺点是当总体容量大时,编号不方便.两种方法只适合总体容量较少的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为n/N,但要将每个个体入样的可能性与第n次抽取时每个个体入样的可能性区分开,避免在解题中出现错误.。

9.1.1简单随机抽样(教案)- 高一下学期数学人教A版(2019)必修第二册

9.1.1简单随机抽样(教案)- 高一下学期数学人教A版(2019)必修第二册

第九章统计9.1.1简单随机抽样教学设计一、教学目标1.正确理解总体、个体、样本、普查、抽样调查的概念.2.理解简单随机抽样的概念.3.体会用样本平均数、样本中的比例去估计总体平均数、总体中的比例.二、教学重难点1、教学重点1.普查与抽样调查的意义.2.总体与样本的意义.3.简单随机抽样及其应用.4.数据的平均数的概念及意义.2、教学难点1.简单随机抽样的应用2.平均数的意义.三、教学过程1、新课导入在现实生活中,我们经常会接触到各种统计数据,例如,人口总量、经济增长率、就业情况、物价指数、产品的合格率、商品的销售额、农作物的产量、人均水资源、居民人均年收入、电视台节目的收视率、学生的平均身高等.要正确阅读并理解这些数据,需要具备一些统计学的知识.在初中我们简单的学习过统计与概率,对于具体的统计情况,应如何收集数据?如何从所收集的数据中提取信息来认识未知现象?这种认识一定正确吗?应该如何正确解释统计的结果,是我们接下来要学习的.2、探索新知一、相关概念1.普查:像人口普查这样,对每一个调查对象都进行调查的方法,称为全面调查,又称普查.2.总体:调查对象的全体称为总体.3.个体:组成总体的每一个调查对象称为个体.也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体.4.抽样调查:根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查.(抽样调查只抽取一部分个体进行调查,因此具有花费少、效率高的特点.)5.样本:从总体中抽取的那部分个体称为样本.6.样本量:样本中包含的个体数称为样本量.7.样本数据:调查样本获得的变量值称为样本的观测数据,简称样本数据. 8.普查和抽样调查的对比9.简单随机抽样:设一个总体含有N (N 为正整数)个个体,从中逐个抽取(1)n n N ≤<个个体作为样本,如果抽取是放回的,且每次抽取总体内的各个个体被抽样的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样;如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本简称简单随机样本.简单随机抽样的特点:(1)总体个数有限:简单随机抽样要求被抽取样本的总体个数有限,这样便于通过样本对总体进行分析.(2)逐个抽取:简单随机抽样是从总体中逐个进行抽取,这样便于实际操作. (3)不放回抽样:简单随机抽样是一种不放回抽样,这样便于样本的获取和一些相关的计算.(4)等可能抽样:不仅每次从总体中抽取一个个体时各个个体被抽到的可能性相等,而且在整个抽样过程中,各个个体被抽到的可能性也相等,从而保证了这种抽样方法的公平性.二、抽签法一般地,抽签法就是把总体总的N个个体编号,把号码写在号签上,将号签放在一个不透明容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n 的样本.抽签法的操作步骤:第一步,编号:将N个个体编号(号码可以从1到N,也可以使用已有的号码).第二步,写签:将N个号码写到大小、形状相同的号签上.第三步,抽签:将号签搅拌均匀,每次从中抽取一个号签,连续不放回地抽取n次,并记录其编号.第四步,定样:从总体中找出与号签上的号码对应的个体,组成样本.抽签法的注意事项:(1)对个体编号时,也可以利用已有的编号.例如,从全班学生中抽取样本时,可以利用学生的学号、座位号等.(2)制作号签时,所使用的工具(如纸条、小球等)的形状、大小要一样,以确保每个号签被抽到的可能性相等.(3)抽取样本前总体要“搅拌均匀”,目的是让每个号签被抽到的机会相等.抽签法的优缺点优点:简单易行缺点:仅适用于个体数较少的总体.当总体容量非常大时,该方法费时费力又不方便.况且,如果号签搅拌得不均匀,还可能导致抽样不公平.三、随机数法为了克服把大量的号签搅拌均匀的困难,也为了节约制作号签和搅拌均匀的成本、时间,需要寻找代替抽签的方法.在用抽签法产生简单随机样本的过程中,第三四步的本质是等概率地在容器中抽取号签,这个步骤完全等价于产生整数值随机数.得到随机数的方法:(1)用随机试验生成随机数.(2)用信息技术生成随机数. (3)用R 统计软件生成随机数. 四、样本量的选择抽样调查中样本量的选择要根据实际问题的需要,并不一定是越大越好.样本量大的会好于样本量小的.尤其是样本量不大时,增加样板量可以较好地提高估计的效果.但是在实际抽样中,样本量的增大会导致调查的人力、费用、时间等成本的增加.五、总体平均数与样本平均数1.总体平均数:一般地,总体中有N 个个体,它们的变量值分别为12,,,N Y Y Y ,则称1211NNi i Y Y Y Y Y NN=+++==∑为总体均值,又称总体平均数2.加权平均数:如果总体的N 个变量值中,不同的值共有()k k N ≤个,不妨记为12,,,k Y Y Y ,其中i Y 出现的频数(1,2,,)i f i k =,则总体均值还可以写成加权平均数的形式11ki i i Y f Y N==∑3.样本平均数:如果从总体中抽取一个容量为n 的样本,它们的变量值分别为12,,,n y y y ,则称1211nni i y y y y y nn =+++==∑为样本均值,又称样本平均数. 4.样本平均数的特性:样本平均数也具有随机性.5.总体平均数的特性:总体平均数是一个确定的数.大部分样本平均数离总体平均数不远,在总体平均数附近波动.一般来说,样本容量越大,估计效果越好,即估计值与真实值差别越小.六、某类个体在总体中的占比用样本平均数y 估计总体平均数Y ,用样本中的比例p 估计总体中的比例P .计算样本中某类个体在样本中所占的比例的方法:拿某类个体的个数除以样本量即可. 可用样本中某类个体的比例估计总体中该类个体的比例. 3、课堂练习1.下列哪种工作不能使用抽样方法进行( ) A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况答案:D解析:抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A、B、C都是从总体中抽取部分个体进行检验.选项D是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法,故选D.2.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是( )A.1000名学生是总体B.每个学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100答案:D解析:根据有关的概念并且集合题意可得:此题的总体、个体、样本这三个概念考查的对象都是学生成绩,而不是学生,根据答案可得:而选项A、B表达的对象都是学生,而不是成绩,所以A、B都错误.C每名学生的成绩是个体,被抽取的100名学生的成绩是样本.D样本的容量是100正确.故选D.3.对于简单随机抽样,下列说法中正确的是()①它要求被抽取样本的总体的个体数有限;②它是从总体中逐个进行抽取的;③它是一种不放回抽样;④它是一种等可能抽样,在整个抽样过程中,每个个体被抽到的机会相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④答案:D解析:由简单随机抽样的特征知,全部正确.4.为了提高学生对毒品危害性的认识,某市相关部门每个月都要对学生进行“禁毒知识应知应会”测评,为了激发学生的积极性,某校对达到一定成绩的学生授予”禁毒小卫士”的荣誉称号,为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:可以推测该市学生测评成绩的平均数( )A.一定为90B.约为90C.约为93D.一定为93答案:C解析:由已知条件可得20名学生的平均成绩为93,因为样本平均数可以用来估计总体平均数,所以推测该市学生测评成绩的平均数约为93.5.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所初级中学,在这所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?答案:见解析解析:A中少年体校的男子篮球、排球运动员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确的反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.4、小结作业小结:1.本节课我们主要学习了哪些内容?2.普查的抽样调查3.简单随机抽样及两种方法4.总体平均数和样本平均数的计算5.某类个体在总体中的占比作业:四、板书设计9.1.1 简单随机抽样一、引入二、普查和抽样调查的定义三、简单随机抽样的定义四、抽签法五、随机数法六、总体平均数及样本平均数七、例题八、巩固练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单随机抽样
【教学目标】
1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤。

2.能够根据样本的具体情况选择适当的方法进行抽样。

【教学重点】
正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本。

【教学难点】
简单随机抽样的概念,抽签法及随机数法的步骤。

【教学过程】
一、情境导入:
1.根据国务院的决定,我国于2000年11月1日进行了第五次全国人口普查的登记工作。

近千万普查工作人员投入到了艰苦繁重的工作中,结果显示至普查日期为止我国人口总数为129533万。

上面的例子是一个统计上的典型事例,它用到了什么统计方法?它有什么优缺点?你有什么其他的办法吗?发表一下你的观点?
(答:用到了普查的统计方法;优点是全面准确,缺点是工作量大,在绝大部分的统计案例中无法实现(检查具有破坏性);随机抽查的方法。


2.你认为在该故事中预测结果出错的原因是什么?
(答:所选样本没有代表性。

)
3.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
显然,你只能从中抽取一定数量的饼干作为检验的样本。

(为什么?)那么,应当怎样获取样本呢?
二、新知探究:
(一)简单随机抽样的概念:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)
(二)抽签法和随机数法:
1.抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

抽签法的一般步骤:
(1)将总体的个体编号;
(2)连续抽签获取样本号码。

思考:你认为抽签法有什么优点和缺点;当总体中的个体数很多时,用抽签法方便吗?
解析:操作简便易行,当总体个数较多时工作量大,也很难做到“搅拌均匀”
2.随机数法
利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。

怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。

第一步,先将800袋牛奶编号,可以编为000,001, (799)
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62
87 35 20 96 43 84 26 34 91 64
21 76 33 50 25 83 92 12 06 76
12 86 73 58 07 44 39 52 38 79
15 51 00 13 42 99 66 02 79 54
90 52 84 77 27 08 02 73 43 28
第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

随机数表法的步骤:
(1)将总体的个体编号;
(2)在随机数表中选择开始数字;
(3)读数获取样本号码。

思考:结合自己的体会说说随机数法有什么优缺点?
解析:相对于抽签法有效地避免了搅拌不均匀的弊端,但读数和计数时容易出错。

精讲精练:
例1.下列抽取样本的方式是否属于简单随机抽样?说明理由。

(1)从无限多个个体中抽取100个个体作为样本;
(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;
(3)某班45名同学,指定个子最高的5人参加某活动;
(4)从20个零件中一次性抽出3个进行质量检测。

[解析] 根据简单随机抽样的特点进行判断,考查学生对简单随机抽样的理解;
[解](1)不是简单随机抽样,由于被抽取的样本的总体个数是无限的;
(2)不是简单随机抽样,由于它是放回抽样;
(3)不是简单随机抽样,因为不是等可能性抽样;
(4)不是简单随机抽样,因为不是逐个抽样。

[点评]判断所给抽样是不是简单随机抽样,关键是看它们是否符合简单随机抽样的四个特点。

[变式训练1] 下列问题中,最适合用简单随机抽样方法抽样的是()
A.某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观报告会结束以后听取观众的意见,要留下32名观众进行座谈
B.从十台冰箱中抽取3台进行质量检验
C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人。

教育部门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本
D.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480 亩估计全乡农田平均产量
例2.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?
[解析] 简单随机抽样一般采用两种方法:抽签法和随机数表法。

[解] 解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径。

解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本。

[点评]
(1)抽签法和随机数表法是常见的两种简单的随机抽样方法,具体问题要灵活运用这两种方法。

(2)在应用随机数表时,将100个个体编号为00,01,02,…99而非0,1,2,…99,是为了便于使用随机数表。

此外,将起始号码选为00而非01,可使100个号码都用两位数字号码表示。

[变式训练2] 某企业有150名职工,要从中随机的抽取20人去参观学习,请用抽签法和随机数表法进行抽取,写出过程。

反馈测评:
1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()
A.总体是240 B.个体是每一个学生
C.样本是40名学生D.样本容量是40
2.为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()
A.总体B.个体是每一个学生
C.总体的一个样本D.样本容量。

相关文档
最新文档