事件的概率题目
概率全集汇编含答案解析
概率全集汇编含答案解析一、选择题1.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.2.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.3.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.4.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.5.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.6.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.7.下列事件中是确定事件的为( )A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。
随机事件的概率知识点和基本题型
随机事件的概率知识点和基本题型1、 确定事件和随机事件。
(1)“必然事件”是指事先可以肯定一定会发生的事件。
1)(=A P ,比如:今天星期一,明天就是星期二。
(2)“不可能事件”是指事先可以肯定一定不会发生的事件。
0)(=A P ,比方:今天星期一,明天是星期天。
(3)“不确定事件”或“随机事件”是指结果的发生与否具有随机性的事件。
比方:丢硬币,第一次是正面朝上,第二次还是正面朝上。
1)(0<<A P练习:1.在一个袋子中装有50个黄色乒乓球,小明在里面随便摸出一个来,他摸到黄球的可能性是( )%,摸到白球的可能性是( )%。
2.在括号中填上“必然发生”或“不可能发生”或“可能发生”;掷两个骰子,把两个点数相加:(1)和为1( );(2)和为7( ); (3)和为12( );(4)和为17( ); (5)和大于2( );(6)和小于2( ); (7)和小于20( )。
3.下列事件中,必然发生的事件是( )A. 明天会下雨B.小明考试得99分C.今天是星期一,明天就是星期二D.明年有370 天4.下列语名描述的事件中,是随机事件的是( ).A 水能载舟,亦能覆舟 .B 只手遮天,偷天换日 .C 瓜熟蒂落,水到渠成 .D 心想事成,万事如意 5.下列成语描述的事件为随机事件的是( ).A 守株待兔 .B 缘木求鱼 .C 水中捞月 .D 水涨船高 2、可能性的大小(1)事件的频数、频率。
设总共做n 次重复实验,而事件A 发生了m 次,则称事件A 发生的次数m 为频数。
称比值nm为A 发生的频率。
(2)概率:一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,所以我们常用一个随机事件发生的频率来估计它的概率。
练习:1.有10张大小相同的卡片,分别写有0至9十个数字,将它们背面朝上洗匀后任抽一张,则P (是偶数)=________,P (是3的倍数)=________。
概率与数理统计习题及详解答案
概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A 1={第i 次拨号接通电话},i =1,2,3. (1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P(2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为 P (A 1+32121A A A A A +)=P(A 1)+P(21A A )+P(321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9; 当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分 (Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )] =(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分 (Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅) = P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P Θ)6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P ΘΘΘ(II ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ΘΘ ∴线路通过信息量的数学期望 5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分) 答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.5.(12分)6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为321521]41411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下: 图1中发生故障事件为(A 1+A 2)·A 3 ∴不发生故障概率为3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分) 说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求: (1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率. 解:设事件A=“从甲机床抽得的一件是废品”;B=“从乙机床抽得的一件是废品”. 则P (A )=0.05, P(B)=0.1, (1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率)12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差解:(1)记甲、乙分别解出此题的事件记为A 、B. 设甲独立解出此题的概率为P 1,乙为P 2.(2分) 则P (A )=P 1=0.6,P(B)=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξE E D D E9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -ap .8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .10分 即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a .12分10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2. (1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.83×0.88分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.210分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096.12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛.比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少? 解:(I )参加单打的队员有23A 种方法.参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分 所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31.(I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(II )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431)311)(311(=--=P …………………………………………4分 (II )依题意ξ~),31,6(B ……………………………………………………7分2316=⋅=∴ξE ……………………………………………………………9分34)311(316=-⋅⋅=ξD ……………………………………………………12分14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD1、 写出下列随机试验的样本空间。
概率论
一1、若事件A 出现,事件B 和事件C 都不出现,则可表示为 。
2、已知,6.0)(,4.0)(,==⊂B P A P B A 则)(A B P -= 。
3、皮尔逊做掷一枚均匀硬币的试验,观察“正面朝上”这一事件A ,在12000次试验中,事件A 出现了6019次,则事件A 出现的频率是 。
4、已知随机变量A 的概率,5.0)(=A P 随机事件B 的概率,6.0)(=B P 条件概率,8.0)|(=A B P 则=⋂)(B A P 。
5、某工厂有甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的%,40%,35%,25各个车间产品的次品率分别为%,2%,4%,5则该厂产品的次品率为 。
6、假设X 是连续型随机变量,其概率密度函数为⎩⎨⎧<<=.030)(2其它,;,x cx x f ,则=c 。
7、设二维随机变量),(Y X 的联合分布函数为),arctan )(arctan (),(y C x B A y x F ++=则=A ,=B ,=C 。
8、设Y 服从)4,5.1(N ,则=>}2{X P 。
9、设随机变量)16,1(~),4,1(~N Y N X ,则=+)(Y X E 。
10、设X 和Y 是相互独立,X 服从标准正态分布,Y 服从自由度为n 的卡方分布,称随机变量:n Y XT =的分布为自由度为 的 分布。
二、设有一批量为50的同型号产品,其中次品10件,现按以下两种方式随机抽取2件产品:(1)有放回抽取,即先任取一件,观察后放回批中,再从中任取一件;(2)不放回抽取,即先任取一件,观察后不放回批中,从剩余的产品中再任取一件。
试分别按这两种抽取方式,求(a)、两件都是次品的概率?(b)、第一件是次品,第二件是正品的概率?三、一批零件共100个,其中次品有20个,今从中不放回的抽取2个,每次取1个,球第一次取到次品,第二次取到正品的概率?四、一项血液化验以概率95.0将带菌病人检出阳性,但也有%1的概率误将健康人检出阳性,设已知该种疾病的发病率为%5.0,求已知一个个体检出阳性的条件下,该个体确实患有疾病的概率?五、已知事件A 与事件B 相互独立,求证:事件A 与事件B 也独立。
高一数学随机事件及其概率试题
高一数学随机事件及其概率试题1.某环靶由中心圆Ⅰ和两个同心圆环Ⅱ、圆环Ⅲ构成,某射手命中区域Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则该射手射击一次未命中环靶的概率为()A.0.1B.0.65C.0.70D.0.75【答案】A【解析】由对立事件概率计算公式得,射手射击一次未命中环靶的概率为1-(0.35+0.30+0.25)=0.1,故选A。
【考点】本题主要考查对立事件的概念及其概率计算公式。
点评:“射手射击一次未命中环靶”就是“脱靶”。
2.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是.【答案】2=21种选法,【解析】∵从7人中选2人共有C72=6种选法从4个男生中选2人共有C4∴没有女生的概率是=,∴至少有1名女生当选的概率1-=。
【考点】本题主要考查古典概型及其概率计算公式。
点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
3.下列事件属于不可能事件的为A.连续投掷骰子两次,掷得的点数和为4B.连续投掷骰子两次,掷得的点数和为8C.连续投掷骰子两次,掷得的点数和为12D.连续投掷骰子两次,掷得的点数和为16【答案】D【解析】骰子点数的最大值为6,两次点数和的最大值为12,不可能为16。
【考点】随机事件、不可能事件点评:解答本题要正确区分和理解随机事件、必然事件和不可能事件。
4.给出下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A、B、C,满足AÍB,BÍC,则AÍC;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥7月天下雪;⑦从1,3,9中任选两数相加,其和为偶数;⑧骑车通过10个十字路口,均遇红灯.其中属于随机事件的有A.4个 B.4个 C.5个 D.6个【答案】C【解析】⑤是必然事件;任意两奇数的和都是偶数,所以⑦是必然事件;①②③⑥⑧为随机事件,故选C。
小学数学概率练习题
小学数学概率练习题题目一:概率基础1. 掷一个骰子,问出现偶数的概率是多少?2. 一袋中有5个红球、3个蓝球和2个黄球,从中任意取出一个球,问取出红球的概率是多少?3. 一张扑克牌从52张牌中随机抽取一张,问抽到一张黑桃的概率是多少?题目二:事件概率计算1. 班级有30个男生和20个女生,从中随机抽取一名学生,问抽到女生的概率是多少?2. 有三个红色球和两个蓝色球,从中任意取出两个球,问取出两个红色球的概率是多少?3. 一副扑克牌中去掉所有的黑桃,剩下的牌共有39张,从中抽取一张牌,问抽到一张红桃的概率是多少?题目三:条件概率1. 一袋中有5个红球、3个蓝球和2个黄球,从中任意取出一个球,已知取出的球是红球,问这个球原本是黄球的概率是多少?2. 一盒中有10个苹果,其中3个是有虫子的,从中任意取出一个苹果,已知取出的苹果有虫子,问这个苹果原本是好的概率是多少?3. 有两个袋子,一个袋子中有3个红球和2个蓝球,另一个袋子中有4个红球和1个蓝球,先随机选择一个袋子,再从袋子中随机取出一个球,已知取出的球是红球,问这个球来自第一个袋子的概率是多少?题目四:互斥事件概率1. 掷两个骰子,问至少一个骰子出现1点的概率是多少?2. 有一副扑克牌,从中抽取一张牌,问抽到红桃或红心的概率是多少?3. 某班级有20名男生和30名女生,从班级中随机选择一名学生,问选择到男生或高年级学生的概率是多少?题目五:独立事件概率1. 一副扑克牌中任选两张牌,问两张牌都是红色的概率是多少?2. 一袋中有4个红球和5个蓝球,从中随机取出一个球,不放回,再从中取出一个球,问两次取出的球都是红球的概率是多少?3. 有两个盒子,一个盒子中有4个红球和2个蓝球,另一个盒子中有3个红球和3个蓝球,分别从两个盒子中随机取出一个球,问两次取出的球颜色相同的概率是多少?这些题目涵盖了概率基础知识、事件概率计算、条件概率、互斥事件概率和独立事件概率等内容。
事件的概率计算综合练习题
事件的概率计算综合练习题一、单项选择题1. 在一副标准扑克牌中,抽取一张牌,这张牌为黑桃的概率是多少?答案:1/42. 一个装有10个红球和20个蓝球的箱子中,随机抽取一个球,得到红球的概率是多少?答案:10/30 = 1/33. 一枚均匀硬币抛掷两次,至少一次出现正面的概率是多少?答案:1 - (1/2) * (1/2) = 3/44. 从1到10中随机抽取一个数,抽到3的倍数的概率是多少?答案:3个满足条件的数,总共有10个数,所以概率为3/105. 一次抛掷两个六面骰子,恰好一个骰子出现6点的概率是多少?答案:2 * (1/6) * (5/6) = 5/18二、计算题1. 一个装有30只彩球的箱子中,有10只红球、8只蓝球、6只绿球和6只黄球。
从中连续抽出两只球,求:a) 先抽出一只红球,再抽出一只蓝球的概率;b) 先抽出一只红球或一只绿球,再抽出一只蓝球的概率。
解答:a) 先抽出一只红球的概率为10/30 = 1/3,再抽出一只蓝球的概率为8/29。
所以,概率为(1/3) * (8/29) ≈ 0.091b) 先抽出一只红球或一只绿球的概率为(10/30) + (6/30) = 4/10 =2/5,再抽出一只蓝球的概率为8/29。
所以,概率为(2/5) * (8/29) ≈ 0.112. 一台印刷机每小时平均故障两次,如果某个小时内发生了至少一次故障的事件,则需要花费1000元维修费用。
求:a) 一小时内不需要花费维修费用的概率;b) 一天(24小时)内需要花费维修费用的概率。
解答:a) 一小时内发生故障的平均次数为2次,所以不发生故障的概率为e^(-2) ≈ 0.135。
因此,不需要花费维修费用的概率为1 - 0.135 ≈0.865b) 一天内不需要花费维修费用的概率为(0.865)^24 ≈ 0.040。
因此,需要花费维修费用的概率为1 - 0.040 ≈ 0.960三、应用题1. 某校篮球队在常规赛中的三分球命中率为35%,某比赛中该队投掷三分球10次,求命中至少5次的概率。
概率问题例题
概率问题例一:有6个房间安排4个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住几个人求下列事件的概率:(1)事件A:指定的4个房间中各有1人;(2)事件B:恰有4个房间中各有1人;(3)事件C:指定的某个房间中有两人;(4)事件D:第1号房间有1人,第2号房间有3人(1)1/54(2)5/18(3)25/216 (4)1/324解析:4个人住进6个房间,所有可能的住房结果总数为:6*6*6*6(种)(1)指定的4个房间每间1人共有6*5*5*4=3600种不同住法(2)恰有4个房间每间1人共有种不同住法(3)指定的某个房间两个人的不同的住法总数为:6*5*5(种),(4)第一号房间1人,第二号房间3人的不同住法总数为:4(种),P(D)=4/1296=1/324例二:假设订一份报纸,送报人可能在6间在早上7:30至7:30把报纸送到家里,父亲离开家去工作间在早上7:30--8:00例三:一个圆周上任取3个点,求三点构成的三角形为锐角三角形的概率是多少。
【解析】就是把圆割成三段弧,每段弧长<兀因为三角形的三内角对应的就是弧的圆周角嘛设每段弧长分别为x,y,z有x+y+z=2兀且0<x<兀0<y<兀0<z<兀三维的线性规划中,x+y+z=2兀是个面就是以(0,0,2兀) (2兀,0,0) (0,2兀,0)为顶点的三角形状的一个面,其中0<x<兀, 0<y<兀,0<z<兀去截,应该是一个正三角形里再一个倒的小正三角形(就是把中位线都连好)所以小的面积除以大的面积就是概率,0.25一、特殊元素和特殊位置优先策略【例1】某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种分析:甲、乙、丙有特殊要求,可以优先考虑。
随机事件的概率典型例题
1.3典型例题解析【例1】一盒装有2个伍分,3个贰分,5个壹分的硬币,求取出硬币的总值超过壹角的概率。
〖解析〗设A={取出硬币总值超过壹角}。
此题可以看成组合问题,故其样本空间含样本点个数为C 105。
对于事件A ,一是可以从2个伍分中任意取1个,另外4个可以先从3个贰分中任意取2个,再从5个壹分中任意取2个。
或者从3个贰分中任意取3个,再从5个壹分中任意取一个,所有的取法为C 21(C 32C 52+C 33C 51)。
二是也可以将2个伍分的全部取出,再从8个贰分、壹分的硬币中任取3个。
所有的取法为C 22C 83。
所以P(A)=C 21C 21(C 32C 52+C 33C 51)+C 22C 83C 105=12此题也可以用逆事件方法做。
A 的逆事件就是取出硬币总值不超过壹角,即P(A)=1-C 21C 54+C 32C 53+C 33C 52+C 55+C 21C31C 53C 105=12【例2】从0至9这10个数码中任意取4个数码,求索取的4个数码能排成四位偶数的概率。
〖解析〗设A={取到的4个号码排成四位偶数}此题可以看成排列问题,故其样本空间所含样本点个数为A 104,对于事件A ,先从0、2、4、6、8这5个数码中任取1个排在个位数上,然后从剩下的9个数码中任取3个排列在其他3个位置上,可能排列法为A 51A 93。
但应注意到0不能放在千位数上,应去掉此种情况的样本点数A 11A 41A 82。
所以符合事件A 的样本点为 A 51A 93−A 11A 41A 82。
因此P(A)= A 51A 93−A 11A 41A 82A 104=4190或 P(A)=A 11A 93+C 41(A 93−A 82)A 104=4190【例3】从1到100的100个整数中任取1个数,问取出的数能被3或4整除的概率。
〖解析〗设A={取到的数能被3整除},B={取出的数能被4整除}, C={取到的数能被3或者4整除} 在1,2,3······,100中,能被3整除的数的个数[1003]=33;1,2,·······,100中能被4整除的数的个数[1004]=25。
初三数学概率试题
初三数学概率试题一、选择题1、下列哪个事件发生的可能性最小? ( )A.通过长期努力学习,小明的成绩有所提高B.明天会有暴风雨C.在太阳上看到一个黑点D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是蓝球发生可能性最小的是:B.明天会有暴风雨。
解释:选项A、C、D都是有可能发生的事件,而选项B中的“明天会有暴风雨”不是必然会发生的事件,它只是一种可能发生的情况,因此可能性最小。
2、以下哪个事件发生的可能性最大? ( )A.在地球上找到两片完全相同的叶子B.在太阳上看到一个黑点C.在一个密封、不透明的袋子里随机抽取一个球,恰好是红球D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是蓝球发生可能性最大的是:C.在一个密封、不透明的袋子里随机抽取一个球,恰好是红球。
解释:选项C中,袋子里有10个红球,因此随机抽取一个球,恰好是红球的可能性最大。
而选项A中,找到两片完全相同的叶子是不可能的;选项B中,太阳上看到一个黑点也是不可能的;选项D中,袋子里蓝球的个数少,抽到蓝球的可能性也较小。
因此,选项C发生的可能性最大。
3、下列哪个事件发生的可能性最小? ( )A.在地球上找到两片完全相同的叶子B.在太阳上看到一个黑点C.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是红球D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取两个球,都是蓝球发生可能性最小的是:D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取两个球,都是蓝球。
解释:选项A中虽然找到两片完全相同的叶子是不可能的,但是这并不是一个随机事件;选项B中太阳上看到一个黑点也是不可能的;选项C中随机抽取一个球恰好是红球的可能性较大;而选项D中随机抽取两个球都是蓝球的可能性非常小。
因此选项D发生的可能性最小。
随着全球的教育改革,数学教育在中考中占据了越来越重要的地位。
概率经典测试题附答案解析
【解析】
【分析】
根据题意,用黑色方砖的面积除以正方形地砖的面积即可.
【详解】
停在黑色方砖上的概率为: ,
故选:A.
【点睛】
本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.
4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()
A. B. C. D.
D、∵ >0,∴ 是不可能事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
12.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
3.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )
A. B. C. D.
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.
故选:A.
【点睛】
本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.
13.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )
随机事件的概率典型例题
1.3典型例题解析【例1】一盒装有2个伍分,3个贰分,5个壹分的硬币,求取出硬币的总值超过壹角的概率。
〖解析〗设A={取出硬币总值超过壹角}。
此题可以看成组合问题,故其样本空间含样本点个数为C 105。
对于事件A ,一是可以从2个伍分中任意取1个,另外4个可以先从3个贰分中任意取2个,再从5个壹分中任意取2个。
或者从3个贰分中任意取3个,再从5个壹分中任意取一个,所有的取法为C 21(C 32C 52+C 33C 51)。
二是也可以将2个伍分的全部取出,再从8个贰分、壹分的硬币中任取3个。
所有的取法为C 22C 83。
所以P(A)=C 21C 21(C 32C 52+C 33C 51)+C 22C 83C 105=12此题也可以用逆事件方法做。
A 的逆事件就是取出硬币总值不超过壹角,即P(A)=1-C 21C 54+C 32C 53+C 33C 52+C 55+C 21C31C 53C 105=12【例2】从0至9这10个数码中任意取4个数码,求索取的4个数码能排成四位偶数的概率。
〖解析〗设A={取到的4个号码排成四位偶数}此题可以看成排列问题,故其样本空间所含样本点个数为A 104,对于事件A ,先从0、2、4、6、8这5个数码中任取1个排在个位数上,然后从剩下的9个数码中任取3个排列在其他3个位置上,可能排列法为A 51A 93。
但应注意到0不能放在千位数上,应去掉此种情况的样本点数A 11A 41A 82。
所以符合事件A 的样本点为 A 51A 93−A 11A 41A 82。
因此P(A)= A 51A 93−A 11A 41A 82A 104=4190或 P(A)=A 11A 93+C 41(A 93−A 82)A 104=4190【例3】从1到100的100个整数中任取1个数,问取出的数能被3或4整除的概率。
〖解析〗设A={取到的数能被3整除},B={取出的数能被4整除}, C={取到的数能被3或者4整除} 在1,2,3······,100中,能被3整除的数的个数[1003]=33;1,2,·······,100中能被4整除的数的个数[1004]=25。
(易错题精选)初中数学概率难题汇编附答案
(易错题精选)初中数学概率难题汇编附答案一、选择题1.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.3.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 =.故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.5.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.6.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()A.34B.23C.12D.14【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.7.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.8.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.9.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.10.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88xx -的解为整数的概率是( ) A .12B .13C .14D .23【答案】B 【解析】 【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8xx π-=3x+88xx -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88xx -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+, ∵x ≠8,∴163π+≠8, ∴m ≠8,∵分式方程8mx x -=3x+88xx -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88xx -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88x x -的解为整数的概率为26=13;故选:B . 【点睛】本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.11.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.12.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误; D 、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16, 故选D .13.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x上的概率为( ) A .118B .112C .19 D .16【答案】C 【解析】 画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1), ∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .14.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )个. A .20B .16C .12D .15【答案】C【解析】【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴41 44x=+,解得:12x=,经检验,12x=是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.15.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.16.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.38B.58C.14D.12【答案】B【解析】【分析】【详解】试题分析:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是105 168=,故选B.考点:列表法与树状图法;绝对值.17.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6, 故选:D .【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.18.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是( ).A .2B .2πC .πD .2π【答案】D【解析】【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得.【详解】∵半径为2的圆内接正方形边长为∴圆的面积为4π,正方形的面积为8, 则石子落在此圆的内接正方形中的概率是82=4ππ, 故选D .【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.19.下列说法正确的是( ).A .“购买1张彩票就中奖”是不可能事件B .“概率为0.0001的事件”是不可能事件C .“任意画一个三角形,它的内角和等于180°”是必然事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【解析】试题解析:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.20.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .13 B .16 C .12 D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.。
概率试题及答案
概率考试题目一、单项选择题(本题共 10 小题,每小题 2 分,共 20 分)1.当事件A 与事件B 同时发生时,事件C 必发生,则( ).. ()() . ()(). ()() . ()()A P C P AB B PC P AB C P C P ABD P C P A B ≤≥==⋃2.对于任意两个事件A 与B,必有P(A-B)=( ).A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)3. 某种动物活到25岁以上的概率为0.8,活到30岁以上的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是( ). A. 0.76 B. 0.4 C. 0.32 D. 0.54、设0() 1 , 0()1,(|)(|)1P A P B P A B P A B <<<<+=,则下列结论成立的是( ).A. 事件A 和B 互不相容;B. 事件A 和B 互相对立;C. 事件A 和B 互不独立;D. 事件A 和B 互相独立.5.将一枚硬币重复投掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 与Y 的相关系数等于( ).A. -1B. 0C. 1/2D. 16.设1()F x 和2()F x 分别为随机变量1X 和2X 的分布函数,为使 12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组值中应取( ).. 3, 4 . 0.5,0.5. 0, 1 . 1,0A a bB a bC a bD a b ========7. 设F(x)和f(x)分别为某随机变量的分布函数和概率密度,则必有( ).A. f(x)单调不增B.()1F x dx +∞-∞=⎰ C. ()0F -∞= D. ()()F x f x dx +∞-∞=⎰8. 设在总体2(,)N μσ中抽取样本123,,X X X ,其中μ已知,2σ未知,则下面选项中哪项不是统计量( )A. 3114i i X =∑ B .311ii Xσ=∑ C .223X μ+ D .123min(,,)X X X9. 设X 1,X 2,…X 6是来自正态总体N(0,1)的样本,则统计量X 12+X 22+…+X 62服从( )分布A 正态分布B t 分布C F 分布D 2χ分布10. 设X 为随机变量,且()1,()3,E X D X =-=则)]2(3[2-X E =( ).A. 6B. 9C. 30D. 36二、填空题(本题共 15 小题,每小题 2 分,共 30 分)1.设事件A 与B 相互独立,P(A)=0.4,P(B)=0.5,则P(A ⋃B)= .2.已知随机变量X 服从[0,3]上的均匀分布,则()E X = .3.设随机变量X 服从p n ,为参数的二项分布且()12,()6E X D X ==,则参数=p .4. 设X1, X2, ···, X12是来自总体X 的样本,X 是样本均值,若E ( X )=120,()144D X =,则()E X = . 5.随机变量X 和Y 相互独立,且22(10),(5),XY χχ则随机变量105X Y _______.6. 设A,B 为随机事件,A 与B 互不相容,P(B)=0.2,则()P AB =__________.7. 设随机变量X 的分布函数为21,0()0,x e x F x -⎧->=⎨⎩其他,其概率密度为(),f x 则(1)f =_______.8. 已知Cov(,)3,()1,()2,X Y D X D Y ===则(23)D X Y ++=___________. 9. 设总体X 服从正态分布2(,)N μσ,12,,,n X X X 为来自总体的一个样本,2S 为样本方差,且222(1),cS n χσ-则c =__________.10. 设(0,1),()XN x Φ为其分布函数,则(0)Φ=_______.11. 已知(,)X Y 的联合概率密度为(,)f x y ,则Z X Y =+的概率密度为________. 12. 已知(3)Xπ,则{3}P X ==________.13. 已知X 的概率密度为()f x ,则2Y X =的概率密度为________.14. 已知X 的概率密度为01()0cxx f x <<⎧=⎨⎩其它,则c=________.15. 已知(1,9)XU ,则{6}P X <=________.三、判断题(本题共 5 小题,每小题2 分,共 10分)P {X=3}=0 . ( ) 2. (,)2f x y =可作为随机变量(,)X Y 的密度函数 . ( ) 3. ()()()E X Y E X E Y +=+ . ( ) 4. 随机变量X 和Y 满足Cov(,)0X Y =,则X 与Y 相互独立. ( ) 5.设 {X n} 为独立同分布随机变量序列,数学期望为μ, 方差为 σ2>0,则当 n充分大时,有lim ()n n i n P y y X μ→∞-≤=Φ⎧⎫⎪⎪⎪⎬⎪⎪⎪⎩⎭∑ . ( )四、综合题(本题共 1 小题,每小题 30 分,共 30分)1、 求c 的值;2、求{X+Y<4}P;3、 求X 的边缘分布律; 4、求Z=X+2Y 的分布律; 5、求E (max (X ,Y ));6、求Y=2时,X 的分布律; 7、判断X 与Y 是否相互独立; 8、求相关系数XY ρ.五、应用题(本题共 1 小题,每小题 10 分,共 10分)20%,30%,50%, 它们生产的产品中分别有5%,4%,2%的次品,将这些产品混在一起,今随机地取一产品,问它是次品的概率是多少?若取出一件是次品,那么这次品是由三台机器中的哪台机器生产的概率最大?1、A complex-valued sequence converges if and only if both the real part and the imaginary part converge separately.2、This device for representing real numbers geometrically is a very worthwhile aid that helps us to discover and understand better certain properties of real numbers.参考答案及评分标准一、选择题(本题共 10 小题,每小题 2 分,共 20 分)1、B2、 C3、 D4、D5、A6、 D7、C8、B.29、 D 10、 A二、填空题(本题共 15 小题,每小题 2 分,共 30 分)1、 0.72、1.53、 0.54、1205、F(10,5) 6. 0.2 7. 2e -28、21 9、n-1 10、 0.5 11、(,)(-z+y,y)y f x z x dx f d +∞+∞-∞-∞-+⎰⎰或12、 9e -3/2 13、 f(y/2)/2 14. 2 15、 5/8三、判断题(本题共 5 小题,每小题 2 分,共 10 分)1、√2、 ×3、√4、×5、√四、综合题(本题共 1 小题,每小题 30 分,共 30分)解:1、0.1+0.1+0.1+0.1+c+0.1+0.1+0.1+0.1=1 2分 C=0.2 1分 2、{X+Y<4}=P{X=0,Y=1}+P{X=0,Y=2}+P{X=1,Y=1}+P{X=1,Y=2}+P{X=2,Y=1}=0.1+0.1+0.1+0.1+c =0.6P3分3、X 的边缘分布律为3分4、Z=2X+Y3分 5、=0.1*1+0.1*2+0.1*4+0.1*1+0.2*2+0.1*4+2*0.1+0.1*2+4*0.1=2.4E[max(X,Y)]3分6、 Y=2时,X 的分布列为3分7、P{X=0}*P{Y=1}=0.3*0.3P{X=0,Y=1}≠ 2分故X 与Y 是不相互独立。
概率论题目和答案
12.设在一次试验中事件A发生的概率为P现重复进行n次独立试验则事件A至多发生一次的概率为(1-P)nD.(1-P)n+nP(1-P)n-1正确答案:D13.一工人看管3台机床,在1小时内机床不需要照顾的概率分别为,设X为1小时内需要照顾的机床台数()正确答案:A14.离散型随机变量X,X所有取值为012,且P(X=0)=(X=1)=,P(X=2)=,则P(X3)=( )正确答案:D15.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为3364正确答案:B二、判断题(25分)16.样本量较小时,二项分布可以用正态分布近似。
A.错误B.正确正确答案:A17.抛一个质量均匀的硬币n次,当n为奇数时,正面出现(n+1)/2和(n-1)/2次的概率最大。
A.错误B.正确正确答案:B18.甲、乙二人做如下的游戏:从编号为1到20的卡片中任意抽出一张,若抽到的数字是奇数,则甲获胜,否则乙获胜,这个游戏对甲、乙双方是公平的。
A.错误B.正确正确答案:B19.小概率事件在一次实验中能够认为不会发生,飞机失事就是小概率事件,虽然乘坐飞机有危险,但是人们还是会乘坐飞机旅行。
A.错误B.正确正确答案:B20.任何情况都可以利用等可能性来计算概率。
A.错误B.正确正确答案:A【奥鹏】[东北大学]19春学期《概率论》在线作业2试卷总分:100 得分:100第1题设X、Y的联合分布函数是F(x,y),则F(+∞,y)等于:A、0;B、1;C、Y的分布函数;D、Y的密度函数。
正确答案:C第2题若P(A)=0B为任一事件,则A、A为空集B、B包含AC、AB相互独立D、AB互不相容正确答案:C第3题如果随机事件A,B相互独立,则有:A、AB=空集;B、P(A)=P(B);C、P(A|B)=P(A);正确答案:C第4题从概率论的角度来看,你认为下列生活中的哪一种现象具有合理的成分?A、某同学认为某门课程太难,考试不可能及格,因此放弃了努力学习;B、某人总是用一个固定的号码去买彩票,她坚信总有一天这个号码会中奖;C、某人总是抢先第一个抽签,认为这样抽到好签的可能性最大;D、某足球教练认为比赛时他的衣服颜色与比赛的结果有关,所以总穿着同一件“幸运服”去指挥比赛。
典型例题_概率论
第一部分 随机事件及其概率例 1 设A B C 、、为三个随机事件,试用A B C 、、表示下列事件。
1)“A B 与发生,而C 不发生”(表示为A B C ); 2)“三个事件都发生”(表示为A B C ); 3)“三个事件至少有一个发生”(表示为A B C⋃⋃);4)“三个事件恰好有一个发生”(表示为A B C A B C A B C++);5)“三个事件至少有两个发生”(表示为A B B C A C ⋃⋃或A B CA B C A B C A B C+++)6)“三个事件至多有两个发生”(表示为A B C 或A B C⋃⋃)。
例2 将n 只球随机地放入N (N ≥n )个盒子中去,假定盒子装球容量不限, 试求1)每个盒子至多装一只球的概率,2)指定其中一个盒子装一只球的概率。
解: 设事件A =“N 个盒子中,每个盒子至多装一只球”,事件B=“指定其中一个盒子装一只球”。
1)一个球放入N 个盒子中的放法有N 种,n 个球放入N 个盒子中的放法有nN 种。
假设固定前n 个盒子各装一球,其分配方法有!n 种,从N 个盒子中任取n 个盒子各装一球,取法有nN C 种,所以,事件A 的样本点数为nNC !n ,即事件A 的概率为nn NNn CA P !)(=2)若指定一个盒子里装一只球,首先考虑球的取法有1nC 种,其次,剩余的1N-个盒子中,1n -只球的放法有1(1)n N --种,所以事件B 的样本点数为1n C 1(1)n N --,即事件B 的概率为11(1)()n n nC N P B N--=注:还可以将模型推广,如生日问题,求事件“n 个人中至少有两人的生日相同”的概率。
设想一年有365天,将“天”看成‘盒子’,n 个人好比‘n 只球’,考虑事件A 的对立事件A =“n 个人在一年中生日全不相同”,它等价于“n 个球装入365个盒子中各装一球”,由前面的计算知:nnn C A P 365!)(365=,所以nnn C A P 365!1)(365-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:
(1)此人会讲英语和日语,但不会讲法语的概率;
(2)此人只会讲法语的概率。
2、一居民区有6部公用电话,平均每小时每用户用6分钟,而且各用户是否用电话是相互独立的。
求
(1)刚好有2户用电话的概率;
(2)至少有2户用电话的概率;
(3)最多有2户用电话的概率。
3、设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份,随机地从所有报名表中先后抽取两份。
(1)求先抽到的一份是女生表的概率;
(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率。
4、一只盒子装有2只白球,2只红球,在盒中取球两次,每次任取一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另一只也是红球的概率。
5、某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9、0.7、0.5、0.2。
在小组内任意选拔一名射手,求该射手能通过选拔进入决赛的概率。
6、某工厂的车床、钻床、磨床、刨床的台数之比为9:3:2:1,它们在一定的时间内需要修理的概率之比为1:2:3:1。
当有一台机床需要修理时,求这台机床是车床的概率。
7、若从10件正品2件次品的一批产品中,任取2次,每次取一个,不放回,求第二次取出产品为次品的概率。
8、假设患肺癌的人中吸烟的占90%,不患肺癌的人中吸烟的占60%,假设患肺癌率为0.5%,求不吸烟的得肺癌的概率。
9、为了防止意外,在矿内同时设有甲、乙两种报警系统,每种系统单独使用时,其有效的概率:系统甲为0.92,系统乙为0.93;在甲系统失灵的条件下,乙系统
仍有效的概率为0.85,求
(1)发生意外时,这两个报警系统至少有一个有效的概率;
(2)在乙失灵的条件下,甲仍有效的概率。
10、三个箱子中,第一箱装有4个黑球,1个白球,第二箱装有3个黑球3个白球,第三箱装有3个黑球,5个白球,现先任取一箱,再从该箱中任取一球,求
(1)取出的球是白球的概率;
(2)若取出了白球,则该球属于第二箱的概率。
11、设10件产品中有4件不合格品,从中任取两件,已知两件中有一件是不合格品,求另一件也是不合格品的概率。
12、在第一个箱中有10个球,其中8个是白的;在第二个箱中有20个球,其中4个是白的;现从每个箱中任取一球,然后从这两球中任取一球,取到白球的概率是多少?
13、设C B n i A i ,),,,2,1( =是具有正概率的事件,∑==n
i i A 1Ω,i A 互斥,且)(i A P ,
)(),(i i A B C P A B P 已知,求概率)(B C P 。
14、设有两个盒子内装有同型号的电子元件,已知甲盒中有6个正品,3个次品,乙盒中有4个正品,3个次品。
现从甲盒中任取3个元件放入乙盒中,然后再从乙盒中任取一个元件。
(1)求从乙盒中任取的一个元件是正品的概率;
(2)已知从乙盒中任取的一个元件是正品,求最先从甲盒子中取出的3个元件是正品的概率。
15、某机器正常工作时,所生产的一等品与二等品各位50%。
该机器未能正常工作时,生产的一等品为25%,二等品为75%。
这台机器有10%的时间不能正常工作。
从该机器在某特定时间内生产的所有产品中随机抽取5个进行检查,发现4个为一等品,1个为二等品,试求该机器在该特定时间内正常工作的概率。
16、一口袋中有5枚硬币,其中有一枚是次品(两面均印有国徽),其余为正品(只有一面有国徽),现从口袋中任取一枚硬币,然后将它抛掷3次,求:
(1)3次朝上的面均为国徽的概率;
(2)在(1)发生的条件下,取出的这枚硬币是正品的概率。
17、某传染病的发病率为3%,为查出这种传染病,医院采用一种新的检验法,它能使98%的患有此病的人被检出阳性,但也会有0.5%未患有此病的人被检出阳性,求:
(1)某人被此法检出阳性的概率;
(2)若某人已用此法检出阳性,实际上此人并未患这种传染病的概率。
18、1架长机和2架僚机一同飞往某目的地进行轰炸,但要到达目的地非有无线电导航不可,而只有长机具有此项设备。
一旦到达目的地,各机将独立进行轰炸,且轰炸目标的概率均为0.3。
在到达目的地之前,必须经过高射炮阵地上空,此时任一飞机被击落的概率为0.2,求目标被炸毁的概率。
19、有一危重病人,仅当在10分钟之内能有一供血者供给足量的A-RH +血才能得救。
设化验一位供血者的血型需要2分钟,将所需的血全部输入病人体内需要2分钟,医院只有一套验血型的设备,且供血者仅有40%的人具有该型血,各人具有什么血型相互独立。
求病人能得救的概率。
20、将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01,信息A 与信息B 传送的频繁程度为2:1,若接收站收到的信息是A ,问原发信息是A 的概率是多少?
21、三人独立地去破译一份密码,已知各人能译出的概率分别为4
1,31,51,问三人中至少有一人能将此密码译出的概率是多少?
22、一医生根据以往的资料得到下面的讯息,他的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。
以A 表示事件“一病人以为自己患癌症”,以B 表示事件“病人确实患了癌症”,求下列概率
(1))(),(B P A P (2))|(A B P (3))|(A B P (4))|(B A P (5))|(B A P
23、一种用来检验50岁以上的人是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为他患关节炎。
已知人群中有10%的人患有关节炎,求一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。
24、计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6,
0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。
已知程序因打字机发生故障而被破坏,求该程序是在A,B,C 上打字的概率。
25、一学生接连参加同一课程的两次考试.第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为
2
p 。
(1)至少有一次及格则他能取得某种资格,求他取得该资格的概率;
(2)若已知他第二次及格了,求他第第一次及格的概率。
26、火炮与坦克对战,假设坦克与火炮依次发射,且由火炮先射击,并允许火炮与坦克各发射2发,已知火炮与坦克每次发射的命中概率不变,它们分别等于0.4和0.5。
我们规定只要命中就被击毁,且每次发射相互独立。
试问
(1)火炮与坦克被击毁的概率各等于多少?
(2)都不被击毁的概率等于多少?
27、自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。
为检查某一盒子内装有白球的数量,从盒中任取一球是白球,求此盒中装的全是白球的概率。
28、10张奖券中含有4张中奖的奖券,每人购买1张,求
(1)前三人中恰有一人中奖的概率;(2)第二人中奖的概率。
29、设n A A A ,,,21 为n 个相互独立的事件,且)1()(n k p A P k k ≤≤=,求下列事件的概率:(1)n 个事件全不发生;(2)n 个事件中至少发生一件;(3)n 个事件中恰好发生一件。
30、已知0)()(,81)(,21)(,41)()(======AB P BC P AC P C P B P A P ,求C B A ,,中至少有一个发生的概率。
31、每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收。
由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%,求
(1)检验一箱产品能通过验收的概率;
(2)检验10箱产品通过率不低于90%的概率。