3的倍数特征

合集下载

3的倍数的特征教案

3的倍数的特征教案

3的倍数的特征教案第三课时“3的倍数的特征”教学设计教学内容:人教版五年级下册第19、20页教学目标:1、通过观察、猜测、交流、验证等活动,使学生经历探索3的倍数的特征的过程,理解3的倍数特征,能判断一个数是不是3的倍数。

2、培养学生观察、分析及概括问题的能力,发展学生的抽象思维,培养合作交流意识,提高学生的合情推理能力。

3、让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

教学重点:理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

教学难点:3的倍数的数的特征的归纳过程。

教学准备:课件教学过程:1一、复习旧知激趣引入1、2的倍数有什么特征, 5的倍数有什么特征,2、123这个数,它是2或5的倍数吗,是3的倍数吗,213、231也是3的倍数,信不信,口算验证一下。

今天我们研究3的倍数的特征,二、猜想验证探究新知(一)猜一猜:3的倍数有什么特征,(二)探索规律、验证猜想1、找寻3的倍数若干写算式,从3的1倍写起,写出若干个3的倍数2、观察验证请同学们观察一下,3的倍数个位上是哪些数字,刚才那位同学的猜想正确吗,举例验证:如13、16、19是不是3的倍数,要判断一个数是不是3的倍数,能不能只看个位,3、猜想研究的途径从个位研究一个数的倍数的特征,不适合研究3的倍数的特征,想一想,还可以从哪个方面研究呢,从一个数的十位去研究、把各个数位上的数加起来研究4、探究特征,验证猜想:3的倍数究竟有什么样的特征呢,小组内交流谈论,说说自己的发现。

2班内汇报交流:每个小组的发现。

汇报交流:?3的倍数交换两个数字的位置后,得到的还是3的倍数。

?3 的倍数各位上数字相加,和是3,没有变还是3的倍数。

5、引导概括规律:观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系,分组讨论。

用自己的话说出3的倍数的特征。

同桌交流。

教师板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3的倍数的特征教案

3的倍数的特征教案

《3的倍数的特征》说课稿一、教材分析《3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。

因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。

因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。

而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定如下教学目标:1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。

2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。

以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。

3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

根据以上的目标,我确定了本课的教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

教学难点:3的倍数的数的特征的归纳过程。

二、说教法和学法。

根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:1、创设情景,激趣导入。

2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

3、采用让学生自主发现的学习方法。

苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。

这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。

本课的设计旨在摒弃“满堂灌输,填鸭式”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

《3的倍数特征》教学反思

《3的倍数特征》教学反思

《3的倍数特征》教学反思《3的倍数特征》教学反思「篇一」2、5、3的倍数特征是分为两节课完成的,上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,2、5的倍数的特征这节课,概念比较多,学生很容易混淆。

怎样才能把抽象的概念转化为形象直观的知识让学生们接受呢?一、互动、质疑,激发学生的探究兴趣。

好的开始等于成功了一半。

课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。

几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。

你们想知道是什么吗?”由此引出课题。

这样大大的调动了学生学习的积极性,激发了其探究的欲望。

二、鼓励学生独立思考,经历猜测验证的过程。

数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。

由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。

首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5的倍数。

”而这只是猜测,结论还需要进一步的验证。

我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1―100这个小范围。

是不是在所有不等于0的自然数中都适用呢?还需要研究。

在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。

在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。

这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。

三、小组合作,发挥团体的作用。

动手实践、合作交流是学生学习数学的重要方式。

与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。

第二单元《3的倍数的特征》教案

第二单元《3的倍数的特征》教案
4.3的倍数在数列中的规律和性质。
5.3的倍数在日常生活中的应用。
二、核心素养目标
《3的倍数的特征》教学旨在培养学生的以下核心素养:
1.数学抽象:通过探究和归纳,使学生理解数的倍数概念,提高数学抽象思维能力。
2.逻辑推理:培养学生运用逻辑推理方法,分析并证明3的倍数的特征,增强推理能力。
3.数学建模:让学生运用所学知识解决实际问题,建立数学模型,提高数学建模素养。
-重点三:分析数列中3的倍数的规律,如每隔两个数出现一个3的倍数等。
-重点四:结合实际情境,让学生学会将数学知识应用于生活,如购物时如何判断总价是否为3的倍数。
2.教学难点
(1)理解并掌握如何运用各位数字之和判断一个数是否为3的倍数。
(2)在数列中找出并应用3的倍数的规律。
(3)将抽象的数学概念应用于解决具体问题。
五、教学反思
在今天的课堂中,我们探讨了《3的倍数的特征》,整体教学过程让我有了以下几点思考。
首先,我发现同学们对3的倍数的概念掌握得还不错,但在运用各位数字之和判断一个数是否为3的倍数时,部分同学还是感到有些困难。这一点让我意识到,在今后的教学中,需要加强对这一知识点的讲解和练习,让学生更好地理解并运用这一方法。
其次,在实践活动环节,同学们分组讨论和实验操作的过程中,我注意到他们对3的倍数在实际生活中的应用有了更深刻的认识。但同时,我也发现有些小组在讨论时,观点较为片面,未能全面考虑到3的倍数在各种情境下的应用。针对这一问题,我计划在接下来的课堂中,引入更多丰富多样的实例,激发学生的思考,帮助他们更好地将数学知识应用于实际生活。
3.重点难点解析:在讲授过程中,我会特别强调3的倍数的定义和判断方法这两个重点。对于难点部分,如理解各位数字之和与3的倍数的关系,我会通过举例和图示来帮助大家理解。

是3的倍数的特征

是3的倍数的特征

是3的倍数的特征
3的倍数的特征有以下几个方面:
1.整除性质:3的倍数具有整除3的性质,即一个数能够被3整除,那么它就是3的倍数。

例如,6除以3的结果是2,说明6是3的倍数。

2.数位和:一个数的各个位数之和如果能够被3整除,那么这个数也是3的倍数。

例如,123的各个位数之和是6,因为6能被3整除,所以123是3的倍数。

3.末尾为0:为0、3、6、9的数字都能被3整除,因此如果一个数的末尾是0、3、6、9中的一个,那么它就是3的倍数。

4.各位数字之和为3的倍数:如果一个数的各位数字之和能够被3整除,那么这个数也是3的倍数。

例如,624的各位数字之和是12,因为12能被3整除,所以624是3的倍数。

5.间隔为3的倍数:如果一个数的个位数和十位数的差能被3整除,那么这个数也是3的倍数。

例如,27的个位数为7,十位数为2,它们的差为5,5不能被3整除,所以27不是3的倍数;而30的个位数为0,十位数为3,它们的差为3,3能被3整除,所以30是3的倍数。

即个位数与十位数之差能被3整除。

6.整数规律:3的倍数的个位数如果是0、3、6、9,那么这个数还是3的倍数。

如果一个数的个位数是0、3、6、9,那么它一定能被3整除,并且这个规律也可以递归应用于数的每一位。

例如,231的个位数为1,因此它不是3的倍数;而234的个位数为4,因此可以通过判断234除以10后的结果是否是3的倍数来判断234是否是3的倍数。

这些都是3的倍数的特征,根据这些特征可以判断一个数是否是3的倍数。

同时,这些特征也可以用于解决一些与3的倍数有关的问题,例如编写算法求解3的倍数的个数或者求给定范围内3的倍数之和等。

《3的倍数特征》教学反思

《3的倍数特征》教学反思

《3的倍数特征》教学反思《3的倍数特征》教学反思《3的倍数特征》教学反思1【初次理论】课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的料想。

“老师,我知道其中的机密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。

”……又有几个学生偷偷地翻开了数学书。

“怎么办?”谜底都被学生揭开了。

面对这一生成,我没有死守教案,而是果断地调整了预设,变“探究”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进展一系列稳固练习……[反思]课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提早把要探究的新知识和盘托出。

我们的习惯做法就是变“探究”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的开展?假如经常进展这样的教学,还容易使学生形成急躁浅薄,不求甚解,甚至只要结论的不良学习风气。

怎么办,置之不理吗?假如这样,不仅没有尊重学生已有的知识经历,而且在已经揭开“谜底”的情况下,再试图引导学生进展猜测、实验、发现,体验遭受挫折后获得成功的那种冲动,也只能是一种奢望。

那么又该如何激发学生探究的热情,促使学生进展深化探究呢?【再次理论】〔与第一次教学情况根本一样,有些学生可以正确地判断一个数是不是3的倍数,这时一些学生却仍然感到困惑,我设法将这一困惑激发出来。

〕师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的特征只和什么有关?生:只和一个数的个位有关。

师:与今天学习的知识比拟一下,你有什么疑问吗?生1:为什么判断一个数是不是3的倍数只看个位不行?生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?……师:同学们考虑问题确实比拟深化,提出了非常有研究价值的问题。

数学人教版五年级下册《3的倍数特征》教材解析

数学人教版五年级下册《3的倍数特征》教材解析

《3的倍数特征》教材解析一、教材的地位、作用及前后联系《3的倍数的特征》是人教版小学数学五年级下册的内容,属于“数与代数”领域,从知识体系上分析,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。

因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

二教材的编写意图更加突出学生的自主探索,使学生在观察——猜想——推翻猜想——再观察——再猜想——验证的过程中,概括出3的倍数的特征。

教材上通过逐步增加提示的方式,减缓学生在概括时的思考难度。

三、学情分析学生是在学完2、5的倍数的特征后再学3的倍数的特征。

因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。

而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,所以学生理解起来有一定的困难。

四教学目标及重、难点1.使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。

2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。

以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。

3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

根据以上的目标,我确定了本课的教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

教学难点:3的倍数的数的特征的归纳过程。

五、教学实施的思考。

基于以上的教材解析及学情分析,我认为在教学实施的过程中应该这样做1.师生互动,自由对话,激发生命的活力。

教师与学生是课堂生态系统中的两个主体因素。

教师是学生的知心朋友,是学生的学习伙伴,学生是学习的主人。

本节课在教学过程的每一个环节都应通过平等对话实现了师生互动,生生互动,使得课堂教学不只是学生学习知识的过程,而且是师生共同建构知识意义的过程,实现了师生知识共识。

2、3、4、5、7、8、9、11、13的倍数的特征

2、3、4、5、7、8、9、11、13的倍数的特征

2、3、4、5、7、8、9、11、13、25、125
的倍数的特征
2的倍数特征:
整数末尾是0、2、4、6、8、……的数。

3的倍数特征:
整数各个位数字和是3的倍数。

例如:3、6、9、12、15、18……、156……
4的倍数特征:
整数末两位被4整除。

例如:124、764、1148……
5的倍数特征:
整数的末尾是0或5的数。

7的倍数特征:
整数末三位与前几位的差是7的倍数。

8的倍数特征:
整数末三位是8的倍数。

9的倍数特征:
整数各个位数字和是9的倍数。

11的倍数特征:
1、整数末三位与前几位的差是11的倍数。

2、整数奇数位数字之和与偶数位数字之和的差是11的倍数。

13的倍数特征:
整数末三位与前几位的差是13的倍数。

25的倍数特征:
整数末两位是25的倍数。

125的倍数特征:
整数末三位是125的倍数。

《3的倍数的特征》教学反思

《3的倍数的特征》教学反思

《3的倍数的特征》教学反思《3的倍数的特征》教学反思《3的倍数的特征》教学反思11.以学生原有认知为基础,激发学生的探究欲望。

教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。

本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。

2.以问题为中心组织学生展开探究活动。

在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。

《3的倍数的特征》教学反思23的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究。

上课开始先让学生回顾旧知:2的倍数和5的倍数有什么特征?学生们发现都只要看一个数个位上的数就行了,于是很顺利地设下了陷阱:“同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。

由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测“个位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。

本课到这里都很顺利,因为完全在我的预设之中。

下面进入验证环节,先让学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流,学生发现这些数不一定是3的倍数。

学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢?于是进入到动手操作环节。

《3的倍数特征》教学反思

《3的倍数特征》教学反思

《3的倍数特征》教学反思《3的倍数特征》教学反思1《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。

而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。

我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

1、找准知识冲突激发探索愿望。

找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。

由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。

但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

2、激发学习中的困惑,让探究走向深入。

找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,而我从孩子们的学号为入重点,让孩子们判断自己的学号是否是3的倍数,并再次探究3的倍数特征,并且发现3的倍数和数字排列顺序的有关系。

但和这个数的个位上的数字有关。

使之所探究的问题是渐渐完整而清晰,而后我又组织孩子们用摆小棒的方法来探究和验证,这种层层递进环环相扣的方法,促使探究活动走向深入,让学生获得更大的发展。

3、课后反思使之完美。

这节课结束后,我感觉最大的缺憾之处,最后点选了的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。

而老练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。

3的倍数的特征

3的倍数的特征
36 46
7 17 27
37 47
8 18 28
38 48
9 19 29
39 49
10 20 30
40 50
51
61 71 81 91
52
62 72 82 92
53
63 73 83 93
54
64 74 84 94
55
65 75 85 95
56
66 76 86 96
57
67 77 87 97
58
68 78 88 98
4 14
5 16 25 26
7 17
8 19 28 29
10 20
31
41
32
43 52 53
34
44
35
46 55 56
37
47
38
49 58 59
40
50
61
71
62
73 82 83
64
74
65
76 85 86
67
77
68
79 88 89
70
80
91
92
94
ห้องสมุดไป่ตู้
95
97
98
100
为什么3的倍数要看各个数位呢? 2 4 (3的倍数)
54
66 75 84 96
57
69 78 87 99
60
90
9
18 27
36
45 54 63 72 81
3 12 21
33 42 45
6 15 24
36 48
9 18 27
39
30
51
63 72 81 93

《3的倍数的特征》教案3篇

《3的倍数的特征》教案3篇

4、“三倍数特征”教案一等奖一、学习目标(一)学习内容《义务教育教科书数学》(人民教育版)五年级第二册第10页的例子2。

例子2是探索3的倍数特征。

教科书仍然使用百数表,让学生先圈数,然后观察和思考。

(二)核心能力在探索三倍特征的过程中,学会从不同的角度观察和思考,进一步积累观察、猜测、验证和归纳的思维活动经验。

(三)学习目标1.借助百数表,通过探索三倍数特征的过程,了解三倍数特征,可以正确判断一个数是否为三倍数,解决生活中的实际问题。

2.在探索三倍数特征的过程中,学会从不同的角度观察和思考,发展合理推理的能力,积累数学思维活动的经验。

(四)学习重点探索三倍数的特征。

(五)学习难点总结证据3倍数的特征(六)配套资源百数表,计算器二、教学设计(一)课前设计(1)回忆我们研究过的2、五倍数的特点是什么?并且可以向学生解释如何探索。

(2)自制百数表。

(二)课堂设计1.复习引入老师:谁来介绍给大家?2、5的倍数特征是什么?我们是怎么研究出来的?学生自由发言,重点引导学生回忆知识形成的过程。

总结:我们先用百数表找数,然后观察猜测,最后验证归纳,得到2、5倍数的特征。

老师:本课我们来研究一下“三倍数特征”。

(板书题目)[设计意图:通过复习2、5倍数特征和探索方法唤醒学生的记忆,为探索3倍数特征铺平道路。

]2.问题探究(1)找3倍数老师:你打算如何研究“三倍数特征”?自由发言。

老师:你要用百数表,用研究2、研究三倍数特征的方法是五倍数特征,现在拿出你准备的百数表。

先找出同桌合作的三倍数,然后观察圈数,看看发现了什么。

(2)全班交流讨论①发现问题学生展示圈好的百数表。

老师:谈谈你的发现?预设:不能只看个位。

老师:为什么不呢?横着看:个位上有0-9个数字,竖着看:个位上也有0-9个数字。

②分析问题老师:学生们发现,在百数表(课件显示)中,水平和垂直观察是三倍,只看位置上的数量,没有规则可循。

水平和垂直观察,看不到规则,从另一个角度思考,我们还能看到什么?我们还能看到什么?学生可以自由发言,引导学生斜视。

3的倍数的特征

3的倍数的特征

2的倍数个位是0﹑2﹑4﹑6﹑8。
5的倍数个位是0﹑5
3的倍数各数位上数的和是3的倍数。
1﹑一个数同时是3﹑ 5的倍数,这个数有 什么特征?
这个数的个位上是0或5,并且各数位上 数的和是3的倍数。 2﹑一个数同时是2 ﹑3﹑5的倍数,这个数 有什么特征?
这个数的个位上是0,并且各 数位上数的和是3的倍数。
所以
5169 , 5+1=6 是3的倍数 。
所以5169
判断下面这个数是否是3的倍数:
396336933631
弃3的倍数
判断下面的数是否是3的倍数:
12 36946572819816
弃和为3的倍数的数
小裁判:下面哪些数能被3整除? 请你打上对勾。
319
3936636
( )
( )
12372694
( )
从0、4、5、7四个数中,任选三个数 字组成同时是2、3、5的倍数的三位数, 这样的三位数有几个,各是多少?
看谁能用最快的方法判断出 5169 这个四 位数是否是3的倍数。
因为5+1+6+9=21 所以5169是3的倍数。
看谁能用最快的方法判断出5169这个 四位数是否是3的倍数。
5169, 5+1+6+9=21 5169是3的倍数.
1、在下面的方框里填上一个数字,使这个 数是3的倍数。
3
(0、3、6、9)
4
17 706
6(2Biblioteka 5、8) (1、4、7) 5(0、3、6、9)
方法: 找出最小的数然后依次加3
判断(正确划√,错误划×) (1)个位上是3、6、9的是一定是3的倍数。 ( × ) (2)是3的倍数的数一定是6的倍数。( × ) (3) 3的倍数一定是奇数。 ( × ) (4)同时是2、3的倍数的数一定是6的倍数。 (√ )

3的倍数的特征(教案)

3的倍数的特征(教案)

第2课时预习3的倍数的特征【教学内容】3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)。

【教学目标】1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

【重点难点】理解并掌握3的倍数的特征。

【复习导入】1. 练习:下面哪些数是2的倍数?哪些数是5的倍数?324 153 345 2460 986 1172.学生说明117为什么不是2的倍数,也不是5的倍数?然后再口述2的倍数的特征,5的倍数的特征。

3.教师:2、5的倍数为什么只与个位有关?4.课件演示:(1)117的方格图。

(2)任意四位数是不是2、5的倍数。

5.师:那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

板书课题:3的倍数的特征。

【新课讲授】1.教学例2(1)课件出示例2,上表中哪些是3的倍数,把它们圈出来。

(2)横着看,圈起来的前10个数,个位分别是哪些数字?想一想:判断一个数是不是3的倍数,只看个位行吗?为什么?(3)斜着看,你发现了什么?①斜着看,这些3的倍数都在斜线上。

②(出现斜线)这些数被斜线分成两部分,两边的数基本上都是调换了十位数字和个位数字的位置。

如:45和54、57和75、39和93、……师:调换位置后还是3的倍数,那3的倍数有什么奥妙呢?(4)学生思考后回答(如果把3的倍数的各位上的数相加,它们的和是3的倍数)举例子,找两个3的倍数,42、78,将十位和个位上的数字相加,和分别是6和15,是3的倍数。

师小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。

(板书)(5)师问:大家找到了3的倍数的特征,可是为什么是这样呢?大家想不想知道理由?用方格图来演示:①117②1272.练习(1)判断下面的数是不是3的倍数。

3402 5003 1272 2967(2)下面用数字卡片摆出的数哪些是3的倍数?在每个数后面增加一张卡片,使这个三位数成为3的倍数。

《3的倍数的特征》优秀教案

《3的倍数的特征》优秀教案

《3的倍数的特征》教学设计【教材分析】教材把课题确定为“探索活动”,其目的就是要让学生经历探索知识的过程。

教材首先提出“我们研究了2、5倍数的特征,那么3的倍数有什么特征”的问题,目的是引导学生思考和探索3的倍数的特征。

教材提供了一张百数表,引导学生发现3的倍数特征。

学生在探索过程中,发现3的倍数特征与2和5的倍数特征的不同,2、5的倍数特征主要观察数的个位,而3的倍数特征要观察各个数位数字的和是否是3的倍数。

从而发现个位和十位都没有什么规律,而要找到各个数位上的和有什么规律。

在初步得出结论的基础上,可进一步提出“这个规律对三位数是否成立”的问题,促使学生能自己造出更大的数来验证规律。

但根据评价要求,在日常的练习与评价时,一般只要求学生判断100以内的数是否是3的倍数。

因此,本课着重引导学生找到和发现着重点,从而归纳概括了3的倍数的特征。

【学生分析】学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。

【学习目标】1、经历探索3的倍数的特征的过程,理解3的倍数的特征。

2、能判断一个数是不是3的倍数。

3、提高分析、比较、猜想、验证的能力。

【教学重点】探索3的倍数的特征的过程。

【教学难点】归纳验证3 的倍数的特征。

【教学过程】一、创设情境,激趣导入1、趣味数学游戏:在你的练习本上任意写一个1—10之间的自然数,用它加上7再乘以2,再减去3,用你所得到的数乘以9,然后把你的得数的各个数位上的数字相加,如果是一位数你就不管它,如果是两位数,你再把它的各个数位上的数字再相加,最后用你们刚刚所得的结果加上1再乘10,看看你的结果是多少?和大家一起大声喊出来(100)。

2、悬念激趣:每个同学都是任意写下的数字,不可能全部相同,现在全班同学一起喊出了相同的结果(100),这是怎么回事呢?这就是数学的神奇,接下来让我们一起走进课堂,通过这节课的新知识来破解刚才的谜团。

3的倍数的特征 反思

3的倍数的特征 反思

《3的倍数的特征》教学反思《3的倍数的特征》是学生在学习过2和5的倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。

而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。

我决定在这节课中突出学生的自主特点,使学生在猜想——观察——再观察——动手探索的过程中,概括归纳出3的倍数特征。

1、找准知识冲突激发探索愿望。

在第一环节中我先让学生复习2的倍数特征并对一些数据做出了判断而后我们“来猜测一下3的倍数特征”激发学生探究的愿望。

由于学生刚刚复习了2的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。

但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不但有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

2、激发学习中的困惑,让探究走向深入。

找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处。

在第二环节中我们采用课本上的百数表来研究,找出3的倍数并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后再观察这些数的十位,也没有必然的关系,最后让学生斜着观察找出规律。

这节课结束后,我感觉最大的缺憾之处是:最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。

而练习题方面,也应形式面多样化,如用卡片练习判断等等,这样效率更高,课堂氛围更好。

课堂不是同步,学生的发展始终是教学的落脚点,我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【重点预设】使学生掌握3的倍数的特征,会判断一个数是否是3的倍数;
【难点预设】探索3的倍数的特征。
【知识链接】
【学法指导】
【学习流程】
一、自主学习
1、复习与新知识有联系的旧知识:
⑴、2和5的倍数有什么特征?
提示:可以说给家长或同学听,然后让家长和同学评价,并在预习本上打上等级,或者写在预习本上。
⑵、从2、3、5、6、9这些数字中任选3个数字组成三位数,要求:
1、汇报这部分内容与哪些知识有联系,检查自主学习1的内容。
2、小组交流复习预习1和预习新知的内容,对2(2)的问题,大胆猜想,交流,证明自己的猜想是正确的。
3、全班交流,小组代表发言,教师根据学生的汇报进行归纳,学生可能会猜想个位上是3、6、9的数是3的倍数。
教师提问:我们用什么方法来验证大家的猜想睁不正确呢?让学生举例子,师生共同讨论探究。
三、过关检测:
1、小组内的同学说一个数,让其他同学判断是不是3的倍数。
2、教材第19页做一做第一题。
【备注】(教师备案,学生笔记2和5的倍数
2、预习新知,探究体验。
⑴、从2、3、5、6、9这些数字中能不能组成3的倍数呢?
⑵、观察你组成的3的倍数,看看有什么特征?
⑶、通过预习,你还有哪些困惑?或者你认为哪些知识很重要,想提示大家?
二、合作探究、归纳展示(小组合作完成下列各题,一组展示,其余补充、评价)
五年级数学科导学案
课题:3的倍数的特征主备人:审批:
【学习目标1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数;
2、使学生在探索3的倍数的特征的过程中,进一步培养观察、比较、分析、归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣.
相关文档
最新文档