拉格朗日乘数法在消费者均衡原则中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南财经大学Southwestern University of Finance and Economics 微观数学方法期末论文

学生姓名:**

所在学院:经济学院

专业:西方经济学

学号:************

消费者均衡中拉格朗日乘数法的应用

一.引言

本文主要通过介绍拉格朗日乘数的方法,推导出古典经济学中消费者均衡的条件。通过分析得出消费者均衡原则是各个商品消费的比率等于相应商品价格的比率。

二.数学理论

1.条件极值的必要条件

设在约束条件0),(=y x ϕ之下求函数=z ),(y x f 的极值 . 当满足约束条件的点),(00y x 是函数),(y x f 的条件极值点 , 且在该点函数),(y x ϕ满足隐函数存在条件时, 由方程0),(=y x ϕ决定隐函数)(x g y =, 于是点0x 就是一元函数())( , x g x f z =的极限点 , 有 0)(='+=x g f f dx dz y x .代入 ),(),()(00000y x y x x g y x ϕϕ-=', 就有 0)

,(),(),(),(00000000=-y x y x y x f y x f y x y x ϕϕ, 即 x f -y ϕy f x ϕ0= , 亦即 (x f , y f ) (⋅y ϕ ,x ϕ-)0= .

可见向量(x f , y f )与向量(y ϕ , x ϕ-)正交. 注意到向量(x ϕ , y ϕ)也与向量(y ϕ , x ϕ-)正交, 即得向量(x f , y f )与向量(x ϕ , y ϕ)线性相关, 即存在实数λ, 使 (x f , y f ) + λ(x ϕ , y ϕ)0=.

亦即 0x x f λϕ+=,0y y f λϕ+=

2.拉格朗日乘数法

在利用偏导数求多元函数的极值时,若函数的自变量有附加条件,则称之为条件极值。这时,可用拉格朗日乘数法求条件极值。具体方法如下:

拉格朗日乘数法:设给定二元函数z=f(x,y)和附加条件φ(x,y)=0,为寻找z=f(x,y)在附加条件下的极值点,先做拉格朗日函数

L(x,y)=f(x,y)+λφ(x,y),其中λ为参数。求L(x,y)对x 和y 的一阶偏导一阶充分条件为:

L 'x(x,y)=f 'x(x,y)+λφ'x(x,y)=0,

L 'y(x,y)=f 'y(x,y)+λφ'y(x,y)=0,

φ(x,y)=0

由上述方程组解出x ,y 及λ,如此求得的(x,y),就是函数z=f(x,y)在附加条件φ(x,y)=0下的可能极值点。

三.消费者均衡原则

微观经济学研究消费者行为时,所要阐述的核心问题是消费者均衡的原则。所谓消费者均衡指的是一个有理性的消费者所采取的均衡购买行为。进一步说,它是指保证消费者实现效用最大化的均衡购买行为。

但人的需要或欲望是无限的,而满足需要的手段是有限的。所以微观经济学所说的效用最大化只能是一种有限制的效用最大化。而这种限制的因素就是各种商品的价格和消费者的货币收入水平。

首先,我们先引入一些名词解释:

总效用(TU):消费者在一定时间内消费一定数量某种商品或商品组合所得到的总的满足。

边际效用(MU):消费者在所有其它商品的消费水平保持不变时,增加消费一单位某种商品所带来的满足程度的增加,也就是说指增加一单位某种商品所引起的总效用的增加。

商品数量(Q),商品价格(P), 收入(I)

边际效用的公式表达为:MU=∂TU/∂Q

那么如何才能实现在制约条件下效用最大化的商品组合呢?

就是当消费者把全部收入用于购买各种商品时,他从所购买的每一种商品所得到的边际效用与其价格的比例都相同,这样的商品组合就是最佳的或均衡的商品组合。

假设当消费者选择两种商品x,y 时,消费者均衡原则的公式表达为:X Y X Y

MU MU P P 制约条件的公式表达式为:I=Px ∙Qx+Py ∙Qy 。那么这一结论是如何推导出来的呢?解决这一问题最直接的方法就是拉格朗日乘数法。

设效用函数U(Qx,Qy),为使它在制约条件下取得极值,首先建立拉格朗日函数:L=U(Qx,Qy)+λ(I-Px ∙Qx-Py ∙Qy),λ为参数。求L(x,y)对x 和y 的一阶偏导数,令它们等于零,并与附加条件连立。

∂L/∂Qx=∂U/∂Qx-λPx=0 ⑴

∂L/∂Qy=∂U/∂Qy-λPy=0 ⑵

I-Px∙Qx-Py∙Qy=0 ⑶

将方程⑴除以方程⑵,得:

∂U/∂Qx ‗ Px 即 MUx ‗ MUy

∂U/∂Qy Py PX Py

所以,消费者要实现两种商品的效用最大化,边际效用的比率应该等于价格比率。

以上是关于x和y两种商品所说的,是否同样适用于多种商品呢?答案是肯定的。如果消费者在n种商品中做出选择,则消费者均衡的原则可表达为: MU1 ‗ MU2 ‗ MU3 ‗…‗MUn

P1 P2 P3 Pn

这一结论同样可用拉格朗日乘数法证明。

拉格朗日乘数法可推广到求n元函数f(x1,x2,…,xn)在m个附加条件φ(x1,x2,…,xn)下的条件极值。

方法如下:

⑴做拉格朗日函数L(x1,x2,…,xn)=f(x1,x2,…,xn)+ ∑λiφi(x1,…xn);

⑵求L(x1,…xn)关于x1,…xn的偏导数,令它们等于零,并与附加条件联立,即

m

L'xi==ƒ'xi+ ∑λiφ'i=0 ,i=1,2,…,n

i=1

φk(x1,x2,…,xn)=0 ,k=1,2,…,n

求解此方程组,可得到极值点。

现在回到我们的问题中,设效用函数U(Qx1,Qx2,…Qxn),为使它在制约条件下取得极值,首先建立拉格朗日函数:

L=U(Qx1,Qx2,…Qxn )+λ(I-Px1∙Qx1-P2∙Qy2-…-Pxn∙Qxn),λ为参数。求L(x1,x2,…xn)对x1,…,xn的一阶偏导数,令它们等于零,并与附加条件联立。

∂L/∂Qx1=∂U/∂Qx1-λPx1=0 (1)

∂L/∂Qx2=∂U/∂Qx2-λPx2=0 (2)

………

∂L/∂Qxn=∂U/∂Qxn-λPx n=0 (n)

I-Px1∙Qx1-P2∙Qy2-…-Pxn∙Qxn

将方程⑴到(n)相除,即得,

MU x1 ‗ MU x2 ‗…‗ MU xn

相关文档
最新文档