解一元二次方程(公式法)
一元二次方程的解法-公式法
一元二次方程根的判别式
b 4ac
2
(1) (2)
>0 =0 <0 ≥0
两个不相等实根 两个相等实根 无实数根 两个实数根
(3)
( 4)
应用1.
不解方程判断方程根的情况:
(1) x2-2kx+4(k-1)=0 (k为常数) 解:△=4 k2-16k+16 =4( k2-4k+4) =4( k-2) 2
一般形式 缺一次项
缺常数项 缺一次项及常数项
ax2 bx c 0(a 0)
ax2 c 0(a 0, b 0, c 0)
ax2 bx 0(a 0, b 0, c 0) ax2 0(a 0, b c 0)
2
特别注意:当 b2 4ac 0 时,方程无实数解;
当b 4ac 0时, 一元二次方程才有实数根.
2
b b2 4ac 3、代入求根公式 : x 2a
x2 4、写出方程的解: x1、
动手试一试吧!
1、方程3 x2 +1=2 x中, b2-4ac= 0 .
2、若关于x的方程x2-2nx+3n+4=0 有两个相等的实数根,则n= -1或4 3、练习:用公式法解方程: x2 - 2
x 8 0 2 (3) x x 1 0 2 (5) 2 x x 3 0
(1)
2
9 0 2 (4) x x 1 0 2 (6) 2 x x 3 0
(2) x
2
有两个实数根的方程的序号是( (1) (4) (6) )
没有实数根的方程的序号是( (2)(3) (5)) a、c异号,一元二次方程 有两个不相等的实数根
公式法解一元二次方程的公式步骤
公式法解一元二次方程的公式步骤在代数学中,一元二次方程是一个常见的方程类型。
解决这种方程可以使用不同的方法,其中一种常见的方法是通过使用公式法。
这个方法基于一元二次方程的通用解法,其基本步骤如下:1. 确定方程的形式首先,我们需要确定方程的标准形式为ax^2 + bx + c = 0,其中a、b和c是已知的常数,且a ≠ 0。
2. 计算判别式我们需要计算方程的判别式∆,其公式为∆ = b^2 - 4ac。
判别式描述了实数根的性质,可以帮助我们确定方程的解的类型。
3. 根据判别式确定解的类型根据计算得到的判别式∆,我们可以确定方程的解的类型: - 如果∆ > 0,则方程有两个不相等的实数解。
- 如果∆ = 0,则方程有两个相等的实数解。
- 如果∆< 0,则方程没有实数解,而是有两个共轭复数解。
4. 根据解的类型计算解根据前面确定的解的类型,我们可以使用以下公式计算方程的解: - 如果方程有两个不相等的实数解,则解可以通过以下公式计算:x = (-b ± √∆) / 2a。
-如果方程有两个相等的实数解,则解可以通过以下公式计算:x = -b / 2a。
- 如果方程没有实数解而是有两个共轭复数解,则解可以通过以下公式计算:x = (-b ± i√(-∆)) / 2a,其中i是虚数单位。
5. 求解实际问题理解了如何使用公式法解决一元二次方程后,我们可以应用这个方法来解决实际的问题。
对于给定的实际问题,我们可以将其转化为一元二次方程,然后使用公式法求解。
以下是一个示例:问题:设某物体从离地面100米高的位置自由下落,在空气阻力忽略不计的情况下,求物体落地所需要的时间。
解答: - 在这个问题中,我们可以使用以下公式来描述物体的高度h(单位: 米)与时间t(单位: 秒)之间的关系:h = 100 - 4.9t^2。
这是一个典型的二次方程。
- 我们希望知道物体落地时的高度h为零。
一元二次方程的解法(公式法3种题型)(解析版)
一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。
一元二次方程公式大全
一元二次方程公式大全一、因式分解法:设一元二次方程为ax^2+bx+c=0,其中a、b、c为已知常数,且a≠0。
如果方程可以被因式分解为(a_1x+d_1)(a_2x+d_2)=0的形式,则根据零乘性质可得x=-d_1/a_1或x=-d_2/a_2,即方程的根为这两个值。
例如,对于方程x^2+5x+6=0,可以通过因式分解得到(x+2)(x+3)=0,因此方程的根为x=-2和x=-3二、求根公式法:求根公式法适用于任意一元二次方程。
设一元二次方程为ax^2+bx+c=0,其中a、b、c为已知常数,且a≠0。
根据求根公式,方程的根可以表示为:x=\frac{-b±\sqrt{b^2-4ac}}{2a}其中±表示可以取正负两个值。
例如,对于方程x^2+5x+6=0,根据求根公式可得x=\frac{-5±\sqrt{5^2-4×1×6}}{2×1},计算可得根为x=-2和x=-3三、配方法:配方法适用于一元二次方程中b较大的情况,通过配方将方程转化为一个完全平方的形式。
具体步骤如下:1. 将一元二次方程写成标准形式:ax^2+bx+c=0。
2.根据方程中的b项,将方程分成两部分,将x^2系数a与x系数c分别进行配方。
3.将分离的两部分进行配方,使其转化为完全平方。
4.将配方后的两部分相加或相减,消去中间项,得到一个完全平方。
5.将方程转化为(x±d)^2=n的形式,其中d为常数,n为已知数。
6.通过求平方根或其他方法求解方程。
例如,对于方程x^2+7x+12=0,可以通过配方法进行解答:1.将方程写成标准形式,即x^2+7x+12=0。
2.将方程分成两部分,即a为x^2的系数1,b为x的系数7,c为常数123.配方后得到(x+4)(x+3)=0。
4.将配方后的两部分相加,得到(x+4)+(x+3)=2x+7=0。
5.将方程转化为(x+7/2)^2=49/4的形式。
用公式法解一元二次方程的一般步骤
用公式法解一元二次方程的一般步骤
根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。
一元二次方程求根公式法步骤
把方程化成一般形式ax²+bx+c=0,求出判别式△=b²-4ac的值;
当Δ>0时,x=[-b±(b²-4ac)^(1/2)]/2a,方程有两个不相等的实数根;
当Δ=0时,方程有两个相等的实数根;
当Δ<0时,方程无实数根,但有2个共轭复根。
一元二次方程求根公式的推导过程
(1)ax2+bx+c=0(a≠0,),等式两边都除以a,得x2+bx/a+c/a=0。
(2)移项得x2+bx/a=-c/a,方程两边都加上一次项系数b/a的
一半的平方,即方程两边都加上b2/4a2。
(3)配方得x2+bx/a+b2/4a2=b2/4a2-c/a,即(x+b/2a)2=(b2-
4ac)/4a。
(4)开根后得x+b/2a=±[√(b2-4ac)]/2a(√表示根号),最终可得
x=[-b±√(b2-4ac)]/2a。
一元二次方程配方法步骤
(1)把原方程化为一般形式;
(2)方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
(3)方程两边同时加上一次项系数一半的平方;
(4)把左边配成一个完全平方式,右边化为一个常数;
(5)进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
用公式法解一元二次方程
2.2用公式解一元二次方程
(第二节)
一、复习
1、一元二次方程的一般形式: a2x+bx+c=0 (a≠0). a=3,b=-2,c=7. 3x2-2x+7=0, -2x2+x=0,
x2=8, x2-8=0. (x-4)2-9=0. a=-2,b=1,c=0.
a=1,b=0,c=-8.
配方法的基本步骤: 2 x 2 8 x 3 0.
• 将二次项的系数化成1;
2
• 将常数项移到等号的右边;
• 配方x 4 x 0. 2 3 2 x 4x . 2 3
2
• 写成()2的形式; • 开平方; • 解一元一次方程;
三、例题与练习
用公式法解一元二次方程的步骤:
• 1、将方程化为一般形式; • 2、确定二次项系数、一次项系数和常数项; • 3、计算b2-4ac的值; • 4、当b2-4ac ≥0时,代入公式求解;
当b2-4ac ≤0时,原方程无实数解.
例1、
2
b 4ac 8 4 2 3 64 24 40.
x 4x 4 4 . 5 2 2 x 2 . 2 5 x2 . 2 10
x 2 .
• 写出方程的解.
2 4 10 4 10 x1 , x2 . 2 2
二、公式的推导
• 将二次项的系数化成1;
c 0a 0. 配方法的基本步骤: ax bx b c 2
3、配方法
形如 ax2+bx+c=0 (a≠0, b≠0, c≠0)或 ax2+bx=0 (a≠0, b≠0)的一元二次方程 需先配方然后再开平方。
解一元二次方程的公式法
解一元二次方程的公式法
一元二次方程的公式法是通过求根公式来解方程的方法。
解一元二次
方程的公式为:
$$x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$$。
其中,a、b、c代表方程ax^2+bx+c=0中的系数。
这个公式叫做二次
方程的求根公式。
步骤:
1.根据已知的一元二次方程确定系数a、b、c。
2.将系数带入求根公式中。
3.对于正负号的两个根分别进行计算。
4.根据题目所求的答案,合理的选取一个或两个根。
注意:
1.如果方程中系数为0或不存在常数项,就无法使用求根公式。
2.求解过程中需要注意开方的正负性。
3.如果Delta=b^2-4ac<0,则方程无解。
4. 如果Delta=b^2-4ac=0,则方程存在唯一解:x=-b/(2a)。
5. 如果Delta=b^2-4ac>0,则方程有两个根:x1=(-
b+sqrt(Delta))/(2a),x2=(-b-sqrt(Delta))/(2a),并且x1≠x2。
其中,sqrt(Delta)表示Delta的正平方根。
解1元2次方程公式法
解1元2次方程公式法解一元二次方程公式法是初中数学中比较重要的一个知识点,也是进一步学习高中数学、大学数学的基础。
本篇文章就为大家详细介绍一下解一元二次方程公式法的内容和方法,希望读者在阅读后能够更加深入地了解这一知识点,掌握解题方法。
一、什么是一元二次方程先来了解一下什么是一元二次方程。
一元二次方程是形如ax²+bx+c=0的方程,其中a、b、c是已知的实数,x是未知数。
其中a≠0,这个不等于号起到限制条件的作用,保证x²项系数不为0,从而把一元二次方程与其他形式的方程进行区分。
二、公式法的推导过程公式法是解一元二次方程的一种常用方法。
我们先来看一下它的推导过程。
1.将一元二次方程ax²+bx+c=0移项,得到ax²+bx=-c。
2.两边同时乘以4a,得到4a²x²+4abx=-4ac。
3.左边加上b²,得到4a²x²+4abx+b²=b²-4ac。
4.因为4a²x²+4abx+b²=(2ax+b)²,所以(2ax+b)²=b²-4ac。
5.开方得到2ax+b=±√(b²-4ac),再移项,得到2ax=-b±√(b²-4ac)。
6.最后,除以2a,得到x=(-b±√(b²-4ac))/(2a)。
这就是公式法的推导过程。
将解出的x带入原方程验证,若方程成立,则已经得到正确答案。
三、公式法的应用接下来让我们来看一些具体的例题,来了解一下公式法的应用。
例1:求解2x²-5x+2=0的解根据公式法的推导过程,我们可以知道a=2,b=-5,c=2。
那么代入公式x=(-b±√(b²-4ac))/(2a)即可,得到x1=2,x2=1/2。
因此2x²-5x+2=0的解为x1=2,x2=1/2。
一元二次方程的解法——公式法
一元二次方程的解法——公式法1.公式法:一元二次方程20ax bx c ++=(a ≠0)的求根公式 ,利用求根公式解一元二次方程的方法叫做公式法。
问题:求根公式是怎样得来的呢?如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),能否用上面配方法的步骤求出它们的两根??已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2=2b a- 解:移项,得:ax 2+bx=-c 二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a )2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0直接开平方,得:x+2b a =±即∴x 1=2b a -x 2=2b a- 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c 代入式子 (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.2.一元二次方程的判别公式:关于x 的一元二次方程20ax bx c ++=(a ≠0)的根的判别式为①240b ac -≥ <﹦> 一元二次方程有两个 的实数根,1x =,2x =; ②240b ac -= <﹦> 一元二次方程有两个 的实数根,122b x x a-==; ③240b ac -< <﹦> 一元二次方程有两个 的实数根;3.一元二次方程跟与系数的关系 一元二次方程的两根与方程中各系数有如下关系:, (也称韦达定理)。
4. 用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a ,b ,c 的值(注意符号);②求出判别式的值,判断根的情况; ③在的前提下,把a 、b 、c 的值代入公式进行计算,求出方程的根。
解一元二次方程——公式法
1 3 1 3 x1 ; x2 . 2 2
2 12 2式计算;
5.定根:写出原方程的 根.
1.变形:化已知方 程为一般形式; 解:方程可化简为 2x2+2x-1=0 2.确定系数:用a,b,c写 出各项系数; a 2, b 2, c 1
1.变形:化已知方程为 用公式法解方程: 一般形式; 解:方程可化简为 2x2+2x-1=0 2.确定系数:用a,b,c写 出各项系数; a 2, b 2, c 1 2x2+2x=1
b2 4ac 22 4 2 (1) 12 0. 3.计算: b2-4ac的值;
b2 4ac 22 4 2 (1) 12 0. 3.计算: b2-4ac的值;
x b b 2 4ac 2a
1 3 1 3 x1 ; x2 . 2 2
2 12 2 2 22 3 . 4 1 3 2
4.代入:把有关数值代 入公式计算;
一般地,对于一元二次方程
当b 4ac 0时, 它的根是 :
2
ax2+bx+c=0(a≠0)
b b 2 4ac 2 x . b 4ac 0 . 2a
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式 法(solving by formular). 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方 程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
5.定根:写出原方程的 根.
一元二次方程的解法(公式法)
2
2
即
b b 4ac x 2a 4a 2
2
2
求解,得: x b b 4ac 2a 2 定解 2 b b 4ac b b 4ac x x1 2 2a 2a
2
4a 2 2 b b 4ac 开方,得: x 2a 2 4a
4 1 x x 0 3 3 4 1 2 x x 3 3
2
2 2
解:两边都除以-3,得
系数化为1 移项 配方 开方 求解 定解
移项,得
配方,得
4 1 2 2 2 x x 3 3 3 3
2 7 即 x 3 9
开方,得
2
b² -4ac>0两个 根不一样大
1 定值,得 x1 2 ; x2 4
用公式法解方程
x² +3= 2 3 x 解:把方程化成标准形式 x² + 2 3 x+3 =0 确定系数 a=1,c=3,b=
2 3
计算:b² -4ac=0
代入公式,得
b b 2 4ac 2 3 0 x 2a 2
b² -4ac=0两 个 根一样大
定值,得 x1 x2 3
用公式法解方程
5x² =2(x-10) 解:把方程化成标准形式 5x² -2x+20 =0 确定系数 a=5,b=-2,c=20 计算:b² -4ac=(-2)² -4×5×20<0 所以 原方程无实数解
b² -4ac<0 无实数根
用这种方法求出方程的根的方法叫做公式法;
练习1(见教材练习)
(1)把下列方程化成标准形式,并指出a b c 的值
用公式法解方程
2x² +7x-4=0 解:确定系数 a=2,b=7,c=-4 计算:b² -4ac=7² -4×2×﹙-4﹚=81>0 代入公式,得
一元二次方程的解法-公式法
2
x
1 2
25
1 5 2
x
6 60 23
3 15 3
3 15 3
x1 2, x2 3.
x1
, x2
3 15 3
做一做
1.用公式法解下列方程:
(4)4x2-6x=0
解: a 4, b 6, c 0 b 4ac 36 0 36 0
这是收获的
时刻,让我 们共享学习 的成果
一、由配方法解一般的一元二
次方程 ax2+bx+c=0 若 b2-4ac≥0 得
(a≠0)
求根公式 : X=
这是收获的
时刻,让我 们共享学习 的成果
二、用公式法解一元二次方
程的一般步骤:
1、把方程化成一般形式。 并写
出a,b,c的值。
2、求出b2-4ac的值。
1、把方程化成一般形式。
并写出a,b,c的值。 2、求出b2-4ac的值。 3、代入求根公式 : X=
∴ b2-4ac=52-4×2×(-3)=49 ∴x= =
即
x1= - 3 ,
x2 =
④
4、写出方程的解: x1=?, x2=?
求根公式 : X=
(a≠0, b2-4ac≥0)
做一做
1.用公式法解下列方程: (1) x2 +2x =5
1 6
即
x1 = -2 ,
x2 =
.
x1 1 6 , x2 1 6
做一做
1.用公式法解下列方程:
(2)x2+x-6=0
解: a 1, b 1, c 6 b 4ac 1 24 25 0
解一元二次方程(公式法及判别式)
1.已知 α 是一元二次方程 x2-x-1=0 较大的根,则下面对
α 的估计正确的是( )
A.0<α<1 B.1<α<1.5C.1.5<α<2 D.2<α<3
2.方程(k-1)x2- 1-kx+14=0 有两个实数根,则 k 的取值
范围是( )A.k≥1 B.k≤1 C.k>1 D.k<1
(2).如果关于 x 的一元二次方程 kx2- 2k+1x+1=0 有两个不 相等的实数根,那么 k 的取值范围是( )
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
【公式理解】
1:方程-x2+3x=1用公式法求解,先求a,b,c的值,
正确的是(
)
A.a=-1,b=3,c=-1 B.a=-1,b=3,c=1 C.a=-1,b=-3,c=-1 D.a=1,b=-3,c=-1
2.解方程 2x2+1=4x,下列代入公式正确的是(
x b b2 4ac 2a
9 17
22 9 17 .
4
2.确定系数:用a,b,c写出各项系数;
3.计算: b2-4ac的值;
4.代入:把有关数值代入公 式计算; 5.定根:写出原方程的根.
9 17 9 17 x1 4 ; x2 4 .
【学生练习】 解下列方程:
x b
b2 4αc 2α
【综合运用】
如图,已知一本数学书的长为26 cm,宽为18.5 cm,厚 为1 cm.一张长方形包书纸如图所示,它的面积为1 260 cm2,虚线表示的是折痕,由长方形相邻两边与折痕围 成的四角均为大小相同 的正方形,求正方形的 边长.
【综合运用】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用拓展
某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.
(2)若使方程为一元二次方程m 是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
①211(1)(2)0m m m ⎧+=⎨++-≠⎩或②21020m m ⎧+=⎨-≠⎩或③1020
m m +=⎧⎨-≠⎩ 解:(1)存在.根据题意,得:m 2+1=2
m 2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x 2-1-x=0
a=2,b=-1,c=-1
b 2-4ac=(-1)2-4×2×(-1)=1+8=9
134
±= x 1=,x 2=-12
因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=-
12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m 2+1=0,m 不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-13
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-
13.
布置作业
1.教材P 45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x 2-12x=3,得到( ).
A .
B .
C .x=
32-± D .x=32±
22的根是( ).
A .x 1x 2
B .x 1=6,x 2
C .x 1x 2
D .x 1=x 2 3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).
A .4
B .-2
C .4或-2
D .-4或2
二、填空题
1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x 2-8x+12的值是-4.
3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.
三、综合提高题
1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.
2.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c a
;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值. 3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100
A 元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
根据上表数据,求电厂规定的A 值为多少?。