气孔运动机理word版

合集下载

气孔(器)

气孔(器)
气孔(器)
植物表皮上两个特化的细胞──保卫细胞和由其围绕形成的开口(孔)的总称。气孔是植物体与外界交换气体的主要门户。有些植物气孔的周围还有一个或几个和一般表皮细胞形状不同的副卫细胞。副卫细胞常常有一定的排列方式。
气孔存在于所在维管植物地上部分的器官中,在叶子上最多。有些苔藓植物也有气孔,如葫芦藓。大多数双子叶植物的保卫细胞为肾形,而单子叶植物多为哑铃形。
气孔开闭的生理生态意义 陆生植物的主要矛盾之一,是在吸收CO2同时,不可避免地散失大量水分。由于植物经常面临水分胁迫,使气孔对环境的响应,倾向于以最小的蒸腾来换取最大的光合作用。气孔昼开夜闭,使叶片白天能进行光合作用,夜间却不蒸腾失水。黎明时气孔很快开启,可使植物在高湿度、低蒸腾情况下固定CO2。之后,随光照增强,气孔开张度加大,可容许更快的CO2交换以利用较多的辐射能。中午的烈日、高温常使植物缺水加剧,气孔趋向关闭。虽暂时妨碍光合作用,但可使植物免受永久性伤害。待水分亏缺缓解后,气孔还可开张。某些沙漠植物的气孔只在凌晨短时间中张开,同化少量CO2,在严酷的干旱中勉强生存。CAM植物的气孔夜开昼闭,将CO2的固定与还原在时间上分开,从而极大地提高了耐旱性和水分利用效率。气孔开闭对环境的不同响应,反映了植物应付生态环境的生存战略的差异。
气孔对环境因素的响应 光照、CO2浓度、水分胁迫和温度是影响气孔开闭的主要环境因素。多数植物的气孔早晨随光强增强而开张,黄昏时随光照减弱而关闭〔景天科酸代谢(CAM)植物相反〕。叶子中CO2含量减低时,气孔开张;反之关闭。光与CO2能分别影响气孔运动。例如低于光补偿点的弱光就能引起气孔开张,蓝光的作用远高于红光;用无CO2的空气吹过叶肉细胞间隙会使在暗中关闭的气孔张开,高浓度CO2使气孔在光下闭合等。但在昼夜节奏现象中,二者有交互作用。土壤缺水和大气干旱均能引起气孔关闭。气孔开张度有最适温度;温度过低或过高都不利于气孔开放。在自然环境下,气孔的开闭受多种环境因素的综合影响;也受内部因素如叶龄、发育阶段等的制约。

实验 2 气孔运动的观察及钾离子对气孔开度的影响

实验 2  气孔运动的观察及钾离子对气孔开度的影响

实验2 气孔运动的观察及钾离子对气孔开度的影响一、实验目的1、了解气孔的运动情况。

2、了解钾离子对气孔开度的影响。

二、实验原理气孔的开闭运动是由组成气孔器的两个保卫细胞的膨压控制的,将叶片表皮放在高渗溶液中,保卫细胞失水,气孔关闭;置换成低渗溶液后,保卫细胞吸水,气孔开启。

气孔的开闭运动可在显微镜下直接观察。

保卫细胞的渗透系统可由钾离子所调节,无论是环式或非环式光合磷酸化都可形成ATP,A TP不断供给保卫细胞膜上的H+—泵作功,使保卫细胞中的H+泵出,并从周围表皮细胞吸收钾离子,降低保卫细胞的水势,使保卫细胞吸水,气孔张开。

三、实验材料、试剂与工具材料与试剂:鸭跖草、5%甘油溶液、1%KNO3溶液、1%NaNO3溶液、等渗蔗糖水工具:有光源的显微镜1台、载玻片与盖玻片若干、尖头镊子1把、滴管、刀片、吸水纸四、实验步骤1、取一片鸭跖草叶片,用尖头镊子撕取一小片下表皮,浸入有水滴的载玻片上,盖上盖玻片后立即在显微镜下观察。

2、尽可能找到开得最大的气孔观察。

3、在盖玻片的一端用滤纸吸去水,而从另一端滴上5%甘油溶液,使甘油溶液取代水,再次观察同个气孔开启关闭的情况。

4、在盖玻片的一端用滤纸吸去甘油,而从另一端滴上水,使水取代甘油溶液,再次观察同个气孔开启关闭的情况。

观察完毕后取下载玻片。

5、取三个培养皿编号,分别放入2-3ml的1%KNO3溶液,1%NaNO3溶液和等渗蔗糖水中。

6、用尖头镊子撕取几小片鸭跖草叶片表皮分别放入上述3个培养皿中。

7、把3个培养皿放入灯光下照30分钟,分别取出叶表皮,加盖玻片,在显微镜下观察气孔的开度。

五、实验现象与结果气孔运动的观察:一开始在清水中的时候气孔是打开状态的,后来加入甘油,放置一段时间,气孔稍微关闭了,最后再次加入清水放置一段时间气孔再次打开并且开度与刚开始在清水中的差不多。

钾离子对气孔开度的影响:钾离子溶液中的气孔开度最大,其次是钠离子溶液,开度最小的是蔗糖等渗溶液。

气孔的结构及运动word版

气孔的结构及运动word版

气孔的结构及运动气孔是植物叶表皮组织上的小孔,为气体出入的门户,气孔在叶的上下表皮都有,但一般在下表皮分布较多,花序,果实,尚未木质化的茎,叶柄等也有气孔存在。

气孔的大小随植物的种类和器官而异,一般长约20~40um,宽约5~10um.每平方厘米叶面上约有气孔2000~4000个。

气孔是由两个保卫细胞围绕而成的缝隙,保卫细胞有两种类型:一类存在于大多数植物中,呈肾形;另一类存在于禾本科与莎草科等单子叶植物中,呈哑铃形,与其他表皮细胞不同,保卫细胞中有叶绿体和磷酸化酶,保卫细胞与叶肉细胞也不同,前者叶绿体较小,数目较少,片层结构发育不良,且无基粒存在,但能进行光合作用,保卫细胞内外壁厚度不同,内壁厚,外壁薄,当液泡内溶质增多,细胞水势下降,吸收邻近细胞的水分而膨胀,这时较薄的外壁易于伸长;细胞向外弯曲,气孔就张开。

反之,当溶质减少,保卫细胞水势上升而失水缩小,内壁伸长互相靠拢,导致气孔关闭。

这种自主运动可以根据体内水分的多少自动控制气孔的开闭,以调节气体交换和蒸腾作用。

气孔总面积只占叶面积的1%~2%,但当气孔全部开放时,其失水量可高达与叶面积同样大小的自由水面蒸发量的80%~90%,为什么气孔散失水分有这样高的效率呢?当水分从较大的面积上蒸发时,其蒸发速率与蒸发面积成正比;但从很小的面积上蒸发时,其蒸发速率与周长成正比,而不与小孔的面积成正比。

这是因为气体分子穿过小孔时,边缘的分子比中央的分子扩散速度较大,由于气孔很小,符合小孔扩散原理,所以气孔蒸腾散失的水量比同面积的自由水面蒸发的水量大得多。

如上所述,气孔运动是保卫细胞内膨压改变的结果。

这是通过改变保卫细胞的水是而造成的。

人们早知道气孔的开闭与昼夜交替有关。

在温度合适和水分充足的条件下,把植物从黑暗移到光照下,保卫细胞的水势下降而吸水膨胀,气孔就张开。

日间蒸腾过多,供水不足或在黑夜时,保卫细胞因水势上升而失水缩小,使气孔关闭。

是什么原因引起保卫细胞水势的下降与上升呢?目前存在以下学说:1,淀粉—糖转化学说,光合作用是气孔开放所必需的。

植物中气孔运动的调控和机制研究

植物中气孔运动的调控和机制研究

植物中气孔运动的调控和机制研究气孔是植物表面的通道,能够调节气体交换和水分蒸发,对于植物的生长发育和环境适应具有重要的作用。

气孔的开闭是由气孔两侧的成对肾形细胞所控制,这些细胞的伸缩运动直接影响气孔通道的开闭,从而调节植物体内的气体交换和水分利用。

植物中气孔运动的调控和机制在生物学领域一直是一个热门的研究方向。

近年来,研究人员通过组成分析、基因表达分析、生物化学分析等方法,取得了许多关键性的研究进展,对于揭示气孔在植物生长发育和逆境适应中的机制具有重大意义。

植物中气孔运动的调控气孔能够通过调节肾形细胞的细胞壁弹性变形来伸长或缩短,从而影响气孔通道的大小。

这种细胞壁弹性变形主要由细胞的糖胞质酸化或碱化、细胞壁的酸碱作用、细胞膜的离子通道等信号通路所调控。

在植物细胞中,钾离子起着重要的调控作用。

钾离子在气孔肾形细胞内外分布不均,形成了高钾、低钾的梯度,这种梯度可以通过细胞膜上的离子通道来控制。

当细胞内钾离子浓度升高时,均质液压力增大,肾形细胞伸长,气孔通道扩大;当细胞内钾离子浓度下降时,均质液压力下降,肾形细胞收缩,气孔通道缩小。

这表明,钾离子在气孔开闭的调控中起着重要的作用。

除了离子通道外,植物中还存在其他的信号通路对气孔运动进行调控。

例如,气孔收缩可以受到ABA(脱落酸)的调节,这种植物内源性激素能够在环境逆境下诱导气孔收缩,从而减少水分的蒸发。

此外,光信号、温度等环境因素也能够通过复杂的信号通路对气孔开闭进行调控。

植物中气孔运动的机制研究植物中气孔运动的机制研究主要集中在肾形细胞细胞壁的分子机制、离子通道的功能和信号通路的调控等方面。

细胞壁分子机制的研究主要探讨肾形细胞的细胞壁松弛和紧张机制。

研究表明,植物中的纤维素、半纤维素等细胞壁成分具有弹性,可以通过不同的化学调节来影响其弹性指数和体积弹性模量,从而影响细胞壁的形态和气孔通道的开闭状态。

离子通道的研究主要集中在肾形细胞细胞膜上的离子通道,例如,KAT1、MscS等通道在气孔开闭中起着重要的作用。

六论述题1.试述气孔运动的机理2.试述水对植物生长发育的影响

六论述题1.试述气孔运动的机理2.试述水对植物生长发育的影响

六论述题1.试述气孔运动的机理2.试述水对植物生
长发育的影响
1.试述气孔运动的机理
气孔开闭由保卫细胞吸排水引起,因此气孔开闭机理的研究主要是研究保卫细胞任何吸、排水的。

1、无机离子吸收假说:实验:用K+预处理叶片表皮,使K+进入保卫细胞,再移至清水中结果气孔开放。

由此推论保卫细胞中高浓度的K+是气孔开放的关键。

根据上述试验有人提出无机离子假说,认为:照光→ ATP上升→质膜H+-ATP泵活化→ H+排出→同时带动K+进入→水势下降→保卫细胞吸水→气孔张开。

2、苹果酸-生成假说:照光后由于C4途径的存在,形成了草酰乙酸,引起了保卫细胞水势的下降。

3、淀粉-糖转化学说:植物在光下,保卫细胞进行光合作用,导致 CO2 浓度的下降,pH 值升高,淀粉磷酸化酶促使淀粉转化为葡萄糖-1-磷酸,细胞里糖分高,水势下降,吸收水分,气孔开放。

在暗中,呼吸积累 CO2和H2CO3,使pH 值下降,淀粉磷酸化酶促使糖转化为淀粉,细胞里糖分低,水势升高,排出水分,气孔关闭。

2.试述水对植物生长发育的影响
植物的生长、发育、繁殖、休眠等都与水分有密切的关系。

水是植物生长必不可少的重要条件,植物必须在适宜的空气湿度和土壤湿度条件下才能正常生长。

活的植物体重的80%以上都是水分。

水是绿
色植物进行光合作用的重要原料之一。

花卉植物的一切生理活动,离开水都无法进行。

气孔的结构及运动

气孔的结构及运动

气孔的结构及运动气孔是植物叶表皮组织上的小孔,为气体出入的门户,气孔在叶的上下表皮都有,但一般在下表皮分布较多,花序,果实,尚未木质化的茎,叶柄等也有气孔存在。

气孔的大小随植物的种类和器官而异,一般长约20~40um,宽约5~10um.每平方厘米叶面上约有气孔2000~4000个。

气孔是由两个保卫细胞围绕而成的缝隙,保卫细胞有两种类型:一类存在于大多数植物中,呈肾形;另一类存在于禾本科与莎草科等单子叶植物中,呈哑铃形,与其他表皮细胞不同,保卫细胞中有叶绿体和磷酸化酶,保卫细胞与叶肉细胞也不同,前者叶绿体较小,数目较少,片层结构发育不良,且无基粒存在,但能进行光合作用,保卫细胞内外壁厚度不同,内壁厚,外壁薄,当液泡内溶质增多,细胞水势下降,吸收邻近细胞的水分而膨胀,这时较薄的外壁易于伸长;细胞向外弯曲,气孔就张开。

反之,当溶质减少,保卫细胞水势上升而失水缩小,内壁伸长互相靠拢,导致气孔关闭。

这种自主运动可以根据体内水分的多少自动控制气孔的开闭,以调节气体交换和蒸腾作用。

气孔总面积只占叶面积的1%~2%,但当气孔全部开放时,其失水量可高达与叶面积同样大小的自由水面蒸发量的80%~90%,为什么气孔散失水分有这样高的效率呢?当水分从较大的面积上蒸发时,其蒸发速率与蒸发面积成正比;但从很小的面积上蒸发时,其蒸发速率与周长成正比,而不与小孔的面积成正比。

这是因为气体分子穿过小孔时,边缘的分子比中央的分子扩散速度较大,由于气孔很小,符合小孔扩散原理,所以气孔蒸腾散失的水量比同面积的自由水面蒸发的水量大得多。

如上所述,气孔运动是保卫细胞内膨压改变的结果。

这是通过改变保卫细胞的水是而造成的。

人们早知道气孔的开闭与昼夜交替有关。

在温度合适和水分充足的条件下,把植物从黑暗移到光照下,保卫细胞的水势下降而吸水膨胀,气孔就张开。

日间蒸腾过多,供水不足或在黑夜时,保卫细胞因水势上升而失水缩小,使气孔关闭。

是什么原因引起保卫细胞水势的下降与上升呢?目前存在以下学说:1,淀粉—糖转化学说,光合作用是气孔开放所必需的。

气孔形成的原因

气孔形成的原因

气孔形成的原因气孔形成的原因及解决的措施杨群收汇编在工厂的生产实践中,人们对气孔的叫法不一样。

有的叫气眼、气泡、气窝,丛生气孔,划为一体统称为“气孔”。

气孔是铸件最常见的缺陷之一。

在铸件废品中,气孔缺陷占很大比例,特别是在湿模砂铸造生产中,此类缺陷更为常见,有时会引起成批报废。

球墨铸铁更为严重。

气孔是在铸件成型过程中形成的,形成的原因比较复杂,有物理作用,也有化学作用,有时还是两者综合作用的产物。

有些气孔的形成机理尚无统一认识,因为其形成的原因可能是多方面的。

各类合金铸件,产生气孔缺陷有其共性,但又都是在特定条件下生成的,因此又都具有特殊性。

所以要从共性中分析产生气孔的一般规律,也要研究特性中的特有规律,以便采取有效的针对性措施,防止气孔缺陷的产生。

一、气孔的特征气孔大部分产生在铸件的内表面或内部、砂芯面以及靠近芯撑的地方。

形状有圆形的、长方形的以及不规则形状,直径有大的、小的也有似针状丛生孔形。

气孔通常具有干净而光滑的内孔面,有时被一层氧化皮所覆盖。

光滑的孔内颜色一般是白色,或带有一层暗蓝色,有的气孔内壁还有一个或几个小铁豆豆,常把这种气孔称作“铁豆气孔”。

距铸件表面很近的气孔,又叫“皮下气孔”,往往通过热处理、清滚或者机械加工后才被发现。

还有一种常见的气孔,叫做“气缩孔”,是气体和铸件凝固时的收缩而共同促使其产生的,形状又有其特殊性。

铸钢和高牌号铸铁都常出这种名称的缺陷,但形成的机理有所差异。

气孔和缩孔是可以区别开的,一般说来气孔是圆形或梨形的孔洞,内壁光滑。

而不像缩孔那样内表面比较粗糙。

二、气体的来源各类铸造合金在熔炼及成型过程中,总要和气体相接触的,气体就会进入并以各种形式存在于合金中,气体来源是多方面的,归纳起来,主要来自以下几个方面:1、原材料带进的。

各种铁类、铁合金、燃料、熔剂等,自身就含有气体,有的带有雨雪潮湿,有的锈蚀,有的带有浊污,在熔炼过程中都有可能产生气体,其中一部分就会滞留在合金液中。

植物气孔及其运动机理概述

植物气孔及其运动机理概述
而促 进气 孔的开放 。气孔对光的这种反应保证 了大部
靠 近孔的一侧 ( 内侧 ) 细胞 壁较厚 , 而与其他 细胞相 接 触的部位( 外侧 ) 的细胞壁较 薄 6。所以 , 保卫细胞 的
外侧胞壁可以有效地 响应 细胞 膨压 , 引起细胞 扩展 或
者收缩 , 以调节气孔 开闭 和孔径变 化 【 。 当保卫 细胞
物 由于大气干旱而遭受伤害的可能性 。在 久晴不雨 的 干热天 和夏天 中午 , 气孔导度较小 , 这 主要 是 由保卫细 胞 失水 , 体积变小 , 细胞壁伸直而导致 ; 而在久雨之后 , 细胞 吸水膨胀 , 保卫细胞受到挤压无法 打开 , 所 以白天
也处于关 闭状态 。
气 孔在植 物 的 同化 和 异 化过 程 中 起着 关键 的作
成熟 的保卫 细胞 间没 有胞 间连丝 , 但是 其细胞 壁上 有 从 孔侧向外 辐射状 排列 的硬质 微纤 丝和微 管 。而且 ,
壁厚 的一侧 , 使细胞 弯 曲并导致 气孔 开启 。而在 日落 时, 细胞 p H值增加 , 糖转换 为淀粉 , 细胞 内的水势下 降 而导致 失水 , 引起气孔关 闭。也有研 究表 明 , 光能促进 细胞 内苹果酸钾 的大量形 成 , 使气 孔 细胞水 势增 加进
胞孔侧细胞壁 向着 外侧 的方 向弯 曲 , 从而使 保卫 细胞
之 间的孔 隙变 宽 , 气孔 开放 。在保 卫细 胞失 水膨 压减 小时, 外侧细胞壁收缩较快 , 气孔关 闭。
4 影响气孔开 闭的环境因素
其数量 和功 能 等 对 大气 C O 2浓 度 的变 化 非 常 敏 感。 大气 C O 2 浓度 的升高 , 导致植 物细胞 间隙 C O 2 浓 度增 加, 为保持胞 间 C O 2 分 压始终 低 于大气 C O 2分压 ( 约 2 0 %一 3 0 %左右 ) , 植 物通 常通过 调节气 孔开 闭程 度或
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杂。

淀粉—糖互变学说:保卫细胞光合作用消耗CO2,细胞质PH↑,淀粉水解,可溶性糖增加,细胞水势↓,吸取水分,气孔张开。

K吸收学说:保卫细胞质膜上的ATP 质子泵,H分泌出保卫细胞,PH↑,质膜超极化,质膜内侧电视变得更负,K从表皮细胞通过K通道进入保卫细胞,液泡水势降低,吸水张开。

苹果酸生成学说:保卫细胞在PEP唆激酶作用生成苹果酸,进入液泡,水势↓,吸水气孔张开,开放气孔时保卫细胞淀粉含量下降而苹果酸的含量升高。

、C4植物的光合速率比C3快很多。

2、C4植物的PEP 羧化酶活性较强,对CO2的亲和力很大。

3、C4植物的光呼吸酶主要集中在维管束鞘薄壁细胞中,光呼吸就局限在维管束鞘内进行,他外面的叶肉细胞,具有对CO2亲和力很大的PEP 酶,即使光呼吸在维管束鞘放出CO2,也很快被叶肉细胞再次吸收利用。

4、鞘细胞中的光合产物就可就近运入维管束,从而避免了光合产物积累对光合作用可能产生的抑制作用。

:促进作用:促进雌花增加,单性结实,子房壁生长,细胞分裂,维管束分化,光合产物分配,叶片扩大,茎伸长,偏上性生长,乙烯产生,叶片脱落,形成层活性,伤口愈合,不定根形成,种子发芽,侧根形成,根瘤形成,种子和果实生长,座果,顶端优势。

2、抑制作用:抑制花朵脱落,侧枝生长,块根形成,叶片衰老。

代谢活动无序进行,透性加大。

②逆境会使光合速率下降,同化物形成减少,因为组织缺水引起气孔关闭,叶绿体受伤,有关光合过程的酶失活或变性。

③呼吸速率变化,其变化进程因逆境种类而异。

冰冻、高温、盐渍和淹水胁迫时,呼吸逐渐下降;零上低温和干旱胁迫时,呼吸先升后降;感染病菌时,呼吸显著增高。

④逆境诱导糖类和蛋白质转变成可溶性化合物增加,这与合成酶活性下降,水解酶活性增强有关。

、植物含水量下降:温度降低,吸水减少,含水量降低。

2、呼吸减弱:呼吸减弱,消耗的糖分减少,利于糖分的积累;代谢活动减弱,利于对不良反应的抵抗3、脱落酸含量增加:送到生长点,抑制茎伸长、形成休眠芽,叶子脱落,植物休眠,抵制寒冷。

4、生长停止,进入休眠:抑制细胞生长,代谢减弱,适应环境。

5、保护物质增加:可溶性糖增加,提高细胞液浓度,冰点降低,缓冲细胞质过度失水,保护细胞质基质不凝固。

脂质增加,在细胞质表层,水分不亦透过,代谢降低,不结冰,不过度脱水。

6、抗冻蛋白和冻基因:低温诱导100种以上抗冻基因表达,合成抗冻蛋白在膜内外,保护、稳定、防止冻伤,提高抗冻性
H—ATPase活性下降,溶质运输和正常的能量转换途径受到抑制。

综合性,2非等价性,3不可替代性和互补性,4限定性,5直接因子和间接因子
猛增增加种改变了生态系统发展的方向,增加种改变了生物地球的化学循环。

种流动改变了整个生态系统的结构和功能。

种流动对生态系统间接影响。

、种的迁移:一种植物的繁殖体,从一个地方传播到新定居的地方,不同植物迁移的能力和方式不同,决定于繁殖体的构造特征和数量,依靠风力,水力,动物传播的种类,迁移距离往往可以很远,依靠自身重力传播以地下茎或根向新地段延伸的迁移距离都比较近。

2、定居:繁殖体迁移到新地点后,即进入定居阶段,定居包括发芽,生长,繁殖等一系列环节,各环节能否顺利通过,决定于种的生物学,生态学特征和定居地环境。

3、竞争和反应:一个钟在新的地点开始定居,新定居点原有的其他生物与新迁移生物之间必然要产生种间竞争,竞争的能力决定于个体或中的适应性和生长速度,不同种类的生态学
特征不同,对同一环境的适应能力有一定差异。

(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档