北京市海淀区2020学年度初一上期末数学试题及答案
2020-2021学年北京市海淀区七年级上期末数学试卷(附答案解析)
2020-2021学年北京市海淀区七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.下列说法中,正确的是( ) A .绝对值等于他本身的数必是正数 B .若线段AC =BC ,则点C 是线段AB 的中点 C .角的大小与角两边的长度有关,边越长,则角越大 D .若单项式12x n y 与x 3y m﹣1是同类项,则这两个单项式次数均为42.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为( ) A .164×103B .16.4×104C .1.64×105D .0.164×1063.在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是( ) A .﹣5B .﹣0.9C .0D .﹣0.014.下列运算正确的是( ) A .3a +2a =5a 2 B .3a ﹣a =3C .2a 3+3a 2=5a 5D .﹣0.25ab +14ab =05.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y +1=12y ﹣□,小明想了想后翻看了书后的答案,此方程的解是y =−53,然后小明很快补好了这个常数,这个常数应是( ) A .−32B .32C .52D .26.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,正确的结论是( )A .a >cB .b +c >0C .|a |<|d |D .﹣b <d7.下列等式变形错误的是( ) A .若a =b ,则a 1+x 2=b 1+x 2B .若a =b ,则3a =3bC .若a =b ,则ax =bxD.若a=b,则am =b m8.如图,在A、B两处观测到C处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东35°,北偏西50°9.根据如图所示的图形,下列语句中:①过A,B两点画直线l;②直线l过A,B两点;③点A,点B在直线l上;④A,B是直线l上的两点,其中,能正确表达图形的语句有()A.1个B.2个C.3个D.4个10.如图,O为圆锥的顶点,M为圆锥底面上一点,点P在OM上,一只蜗牛从点P出发,绕圆锥侧面沿最短路线爬行一圈回到点P,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)如果收入100元记作+100,那么支出30元记作.12.(2分)观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.13.(2分)计算:。
北京市海淀区2019-2020学年初一期末数学试题及答案
海 淀 区 七 年 级 第 一 学 期 期 末 调 研一、选择题(本题共30分,每小题3分)1. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V”字手势早已成为世界用语了.右图的“V”字手势中,食指和中指所夹锐角α的度数为A .25︒B .35︒C .45︒D .55︒2. 2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人. 将“1.5万”用科学记数法表示应为A .31.510⨯B .31510⨯C .41.510⨯D .41510⨯ 3. 下表是11月份某一天北京四个区的平均气温:区县 海淀怀柔密云昌平 气温o (C)+132这四个区中该天平均气温最低的是 A .海淀B .怀柔C .密云D .昌平4. 下列计算正确的是A .220m n nm -=B . m n mn +=C .325235m m m +=D . 3223m m m -=-5. 已知关于x 的方程2mx x +=的解是3x =,则m 的值为A .13B .1C .53D . 36. 有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .4a <-B .0bd >C .0b c +>D .||||a b >7. 下列等式变形正确的是A . 若42x =,则2x =B . 若4223x x -=-,则4322x x +=-C . 若4(1)32(1)x x +-=+,则4(1)2(1)3x x +++=D.若3112123x x+--=,则3(31)2(12)6x x+--=8.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力. 跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道. 如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB与正北方向所成角的度数为A.20° B.70° C.110°D.160°9.已知线段8AB=cm,6AC=cm,下面有四个说法:①线段BC长可能为2cm;①线段BC长可能为14cm;①线段BC长不可能为5cm;① 线段BC长可能为9cm.所有正确说法的序号是A.①① B.①① C.①①① D.①①①①10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是A.P→A B.P→BC.P→C D.P→D二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是_______.+1.5 −3.5 +0.7 −0.6甲乙丙丁12.一个单项式满足下列两个条件:①系数是2-;①次数是3.请写出一个同时满足上述两个条件的单项式_______.13.计算48396731''︒+︒的结果为_______.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长_______ (填:大或小),北O ABGFAB E理由为__________________________________________________ . 15.已知一个长为6a ,宽为2a 的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长方形,按图2的方式拼接,则阴影部分正方形的边长是_______.(用含a 的代数式表示)图1 图216.如下图,点C 在线段AB 上,D 是线段CB 的中点. 若47AC AD ==,,则线段AB 的长为_______.17. 历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式3()5f x mx nx =++,当2x =时,多项式的值为(2)825f m n =++,若(2)6f =,则(2)f -的值为_______.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A 、B 两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示. 目前该商场有促销活动,促销方案如表2所示.则选择_______品牌的洗衣机和_______品牌的烘干机支付总费用最低,支付总费用最低为_______元.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分) 19.计算:(1)()76(4)(3)--+-⨯- (2)2313(2)1()2-⨯--÷-2a6aB C20.解方程:(1)3265x x -=-+ (2) 325123x x +--=21.先化简,再求值:222222(2)(6)3xy x y x y xy x y --++,其中2,1x y ==-.22.如图,已知平面上三点A ,B ,C ,请按要求完成下列问题: (1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD BC =,连接CD (保留画图痕迹); (3)利用刻度尺取线段CD 的中点E ,连接BE .四、解答题(本题共10分,第23题4分,第24题6分) 23.下图是一个运算程序:(1)若2x =-,3y =,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.||3m x y=+ ||3m x y=-24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”. 2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者3-1取胜的球队积3分,负队积0分;而在比赛中以3-2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示. (1)中国队11场胜场中只有一场以3-2取胜,请将中国队的总积分填在表格中. (2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见下表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且a b <,c d <. (1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为__________________; ①求点M 表示的有理数m 的值(用含a ,b 的代数式表示);图1(2)已知a b c d +=+,①若A ,B ,C 三点的位置如图所示,请在图中标出点D 的位置;图2①a ,b ,c ,d 的大小关系为__________________.(用“< ”连接)OBA26.阅读下面材料:小聪遇到这样一个问题:如图1,AOB α∠=,请画一个AOC ∠,使AOC ∠与BOC ∠互补.图1 图2 图3小聪是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠.因此,小聪找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明; 已知:如图3,点O 在直线AD 上,射线OC 平分①BOD. 求证:①AOC 与①BOC 互补.(2)参考小聪的画法,请在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.(保留画图痕迹)(3)已知EPQ ∠和FPQ ∠互余,射线PM 平分EPQ ∠,射线PN 平分FPQ ∠. 若EPQ β∠=(090β︒<<︒),直接写出锐角MPN ∠的度数是__________________.OBAOCBAODCBA27.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为2()M x .如2(735)111M =,2(561)101M =.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如右图所示.根据以上材料,解决下列问题:(1)2(9653)M 的值为 ,22(58)(9653)M M +的值为 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”. 如2(124)100M =,2(630)010M =, 因为22(124)+(630)110M M =,2(124630)110M +=,所以222(124+630)(124)+(630)M M M =,即124与630满足“模二相加不变”. ①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;①与23“模二相加不变”的两位数有 个.1111011100+七年级第一学期期末调研数学参考答案 2020.1一、选择题(本题共30分,每小题3分)二、填空题(本题共16分,每小题2分)11. 丁. 12. 32x (不唯一) 13. 0′1°116 14. 小,两点之间线段最短 15. 2a 16. 1017. 418. B ,B ,12820注:① 第12题答案不唯一,只要符合题目要求的均可给满分;② 第14题每空1分;③ 第18题前两个空均答对给1分,第三个空1分.三、解答题(本大题共24分,第19题8分,第20题8分,第21题4分,第22题4分) 19.(每小题满分4分)(1)解:7(6)(4)(3)7612 …………………………………..2分 25 …………………………………..4分(2)解:2313(2)1()2341(8) …………………………………..2分128 …………………………………..3分 4 …………………………………..4分20.(每小题满分4分)(1)解:3265x x3562x x …………………………………..2分 24x…………………………………..3分2x …………………………………..4分(2)解:325123x x 3(32)2(5)16x x …………………………………..1分962106x x …………………………………..2分710x…………………………………..3分107x…………………………………..4分 21.(本小题满分4分)解: 222222(2)(6)3xy x y x y xy x y=222224263xy x y x y xy x y …………………………………..2分=22xy …………………………………..3分当2,1x y 时,原式222(1)4 ………………………………..4分22. (本小题满分5分) (1)(2)(3)如图所示:正确画出射线AC ,线段BC ………………………………….2分 正确画出线段AB 及延长线,点D 以及线段CD ………………………………….4分 正确画出点E 以及线段BE ………………………………….5分四、解答题(本大题共10分,第23题4分,第24题6分)23. (本小题满分4分) 解:(1) ∵2x,3y ,∴x y , ………………………………..1分 ∴32337mx y. ………………………………..2分 (2)由已知条件可得4,x y m ,当4m 时,由43m m ,得2m ,符合题意; ………………………………..3分当4m 时,由43m m 得1m ,不符合题意,舍掉.∴2y. …………………………………..4分24. (本小题满分4分)解:(1) 32 …………………………………..1分A (2) 设巴西队积3分取胜的场数为x 场,则积2分取胜的场数为(5)x 场 ………………..2分 依题意可列方程 32(5)121x x ………………………………….4分 3210121x x 530x6x …………………………………..5分则积2分取胜的场数为51x ,所以取胜的场数为617答:巴西队取胜的场数为7场. …………………………………..6分 五、解答题(本大题共19分,25~26每题6分,27题7分) 25. (本小题满分6分) (1)① 0a b…………………………………..1分②∵M M 为AB 中点, ∴AMBM . …………………………………..2分∴m a b m . ∴2+=ba m . …………………………………..3分 (2) ①如图所示 …………………………………..4分②a c d b 或者c a b d …………………………………..6分26. (本小题满分6分)(1)证明:点O 在直线AD 上, ∴180AOB BOD . 即180AOB BOCCOD .∴180AOCCOD . …………………………………..1分OC 平分BOD , ∴BOC COD .∴180AOCBOC .AOC BOC 与互补. ………………………………….2分(2)如图所示第 11 页 共 11 页或 ………………………4分 (3)45或|45| ………………………6分27.(本小题满分7分)解:(1) 10111101,………………………2分 (2)①2(23)01M ,2(12)10M ,22(12)(23)11M M ,2(1223)11M∴222(12)(23)(1223)M M M ,∴12与23 满足“模二相加不变”.2(23)01M ,2(65)01M ,22(65)(23)10M M ,2(6523)00M222(65)(23)(6523)M M M ,∴65与23不满足“模二相加不变”.2(23)01M ,2(97)11M ,22(97)(23)100M M ,2(9723)100M222(97)(23)(9723)M M M ,∴97与23满足“模二相加不变”…………………….5分 ②38……………………7分。
2020学年北京市海淀区人教版七年级上期末数学考试题含答案
海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 2020.1学校 班级 姓名 成绩 一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是A .8482210⨯ B . 114.82210⨯ C . 1048.2210⨯ D . 120.482210⨯ 2.从正面观察如图的两个立体图形,得到的平面图形是3.若30a +=,则a 的相反数是 A .3 B .13 C .13-D .3- 4.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是5.下列运算结果正确的是A. 55=-x xB. 532422x x x =+ C. b b b 34-=+- D. 022=-ab b a6.西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4km .隧道贯通后,往来海淀山前山后地区较之前路程有望缩短一半,其主要依据是 A .两点确定一条直线 B .两点之间,线段最短 C .直线比曲线短 D .两条直线相交于一点7.已知线段10AB =cm ,点C 在直线AB 上,且2AC =cm ,则线段BC 的长为 A .12 cm B .8 cm C .12 cm 或8 cm D .以上均不对 8.若关于x 的方程042=-+a x 的解是2=x ,则a 的值等于 A . 8- B .0 C .2 D .89.下表为某用户银行存折中2020年11月到2020年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为 A .738.53元 B .125.45元 C .136.02元 D .477.58元 10.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是A .0ab >B .0a b +>C .0a b -< D .0a b -<11.已知点A 、B 、C 、D 、E 的位置如图所示,下列结论中正确的是A .=130AOB ∠︒ B .AOB ∠=DOE ∠C .DOC ∠与BOE ∠互补D .AOB ∠与COD ∠互余日期 摘要 币种 存/取款金额 余额 操作员备注151101 北京水费 RMB 钞 -125.45 874.55 010005B25 折 160101 北京水费 RMB 钞 -136.02 738.53 010005Y03折160301 北京水费 RMB 钞 -132.36 606.17 010005D05 折 160501北京水费RMB 钞-128.59477.5801000K19折12. 小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为 A .14,17 B .14,18 C .13,16 D .12,16二、填空题(本题共24分,每小题3分)13. 用四舍五入法,精确到百分位,对2.017取近似数是 . 14. 请写出一个只含有字母m 、n ,且次数为3的单项式 . 15.已知()2120x y ++-=,则yx 的值是 .16.已知2=-b a ,则多项式233--b a 的值是 .17. 若一个角比它的补角大3648'︒,则这个角为 ︒ '. 18.下面的框图表示解方程320425x x +=-的流程.第1步的依据是 .19.如图,在正方形网格中,点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ,则∠DOE 的度数为 ︒.2020面是一道尚未编完的应用题,请你补充完整,使列出的方程为24(35)94x x +-=. 七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,. 三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.计算: (1)111()12462+-⨯. (2)1031(1)2()162-÷+-⨯.22.解方程:12324x x+--=.23.设11324()()2323A x x y x y =---+-+. (1)当1,13x y =-=时,求A 的值;(2)若使求得的A 的值与(1)中的结果相同,则给出的x 、y 的条件还可以是 .24.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图: ①射线BA ;②直线AD ,BC 相交于点E ;③在线段DC 的延长线上取一点F ,使CF=BC ,连接EF . (2)图中以E 为顶点的角中,小于平角的角共有 个.25.以下两个问题,任选其一作答,问题一答对得4分,问题二答对得5分. 如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线. 问题一:若∠AOC =36°,∠BOC =136°,求∠DOE 的度数. 问题二:若∠AOB =100°,求∠DOE 的度数.26.如图1,由于保管不善,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,COAD E磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足2020只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长2020拔河比赛专用绳EF .请你按照要求完成下列任务:(1)在图1中标出点E 、点F 的位置,并简述画图方法; (2)说明(1)中所标EF 符合要求.图1 图227.在数轴上,把表示数1的点称为基准点,记作点O •. 对于两个不同的点M 和N ,若点M 、点N到点O •的距离相等,则称点M 与点N 互为基准变换点. 例如:图1中,点M 表示数1-,点N 表示数3,它们与基准点O •的距离都是2个单位长度,点M 与点N 互为基准变换点.图1(1)已知点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点.① 若a,则b = ;若4a =,则b = ;② 用含a 的式子表示b ,则b = ; (2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B . 若点A 与点B 互为基准变换点,则点A 表示的数是 ;(3)点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动k (k >0)个单位长度得到1P ,2P 为1P 的基准变换点,点2P 沿数轴向右移动k 个单位长度得到3P ,4P 为3P 的基准变换点,……,依此顺序不断地重复,得到5P ,6P ,…,n P . 1Q 为Q 的基准变换点,将数轴沿原点对折后1Q 的落点为2Q ,3Q 为2Q 的基准变换点, 将数轴沿原点对折后3Q 的落点为4Q ,……,依此顺序不断地重复,得到5Q ,6Q ,…,n Q .若无论k 为何值,n P 与n Q 两点间的距离都是4,则n = .海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案 2020.1一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)13.2.02 ; 14. 22m n -(答案不唯一); 15.1; 16. 4; 17.108 ,24; 18.等式两边加(或减)同一个数(或式子),结果仍相等;19.22.5 ; 2020品为两种书签,共35份,单价分别为2元和4元,共花费94元,则两种书签各多少份.(答案不唯一)三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.(1)解:原式326=+- ----------------------3分1=-. ----------------------4分(2)解:原式11()1628=+-⨯ --------------------2分 122=- --------------------3分 32=-. ----------------------4分22.解:()2+1122x x -=- . ---------------------2分2+2122x x -=-. ----------------------3分 312x =. ---------------------- 4分4x =. ---------------------- 5分23.解:(1)143242323A x x y x y =--+-+ ---------------------2分。
北京市海淀区2020—2021学年七年级上期末数学试卷含答案解析
北京市海淀区2020—2021学年七年级上期末数学试卷含答案解析一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣22.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来确实是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.30000003.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|4.下列运算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b5.用四舍五入法对0.02020(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.02026.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.47.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,假如设这件夹克衫的成本价是x元,那么依照题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+289.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<010.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点动身,沿着圆锥侧面通过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能通过的点是()A.M B.N C.S D.T二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是.(写出所有符合题意的数)12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为°.13.运算:180°﹣20°40′=.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,假如设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是;若|x|=2,则x的值是.16.某小组几名同学预备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,依照题意可列方程为.17.如图所示,AB+CD AC+BD.(填“<”,“>”或“=”)18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=;②若|x+x1+x2+x3+…+x20|的值最小,则x3=.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.运算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是;关于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是.21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,靠近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由运算机精准操纵,每一只小球能够“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机操纵.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),操纵电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?五.解答题(本大题共12分,第25题6分,第26题各6分)25.一样情形下不成立,但有些数能够使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,连续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,连续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始连续旋转2α至OA2;第3步,从OA2开始连续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问关于任意角α(α的度数为正整数,且α=180°),旋转是否能够停止?写出你的探究思路.2020-2021学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣2【考点】相反数.【分析】依照只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:B.2.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来确实是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.3000000【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300万用科学记数法表示为3×106.故选C.3.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|【考点】正数和负数.【分析】依照小于零的数是负数,可得答案.【解答】解:A、﹣(﹣1)=1是正数,故A错误;B、(﹣1)4=1是正数,故B错误;C、﹣|﹣1|=﹣1是负数,故C正确;D、|1﹣2|=1,故D错误;故选:C.4.下列运算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b【考点】合并同类项.【分析】依照合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项是解题关键,故A错误;B、不是同类项不能合并,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.用四舍五入法对0.02020(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.0202【考点】近似数和有效数字.【分析】把万分位上的数字1进行四舍五入即可.【解答】解:0.02020≈0.020(精确到千分位).故选B.6.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.4【考点】余角和补角.【分析】依照图形和余角的概念解答即可.【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵∠CDB=90°,∴∠A+∠ACD=90°,∴∠A互余的角的个数是2.故选:B.7.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣【考点】同解方程.【分析】依照解方程,可得x的值,依照同解方程,可得关于a的方程,依照解方程,可得答案.【解答】解:解2x+1=﹣1,得x=﹣1.把x=﹣1代入1﹣2(x﹣a)=2,得1﹣2(﹣1﹣a)=2.解得a=﹣,故选:D.8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,假如设这件夹克衫的成本价是x元,那么依照题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+28【考点】由实际问题抽象出一元一次方程.【分析】设这件夹克衫的成本价是x元,依照题意可得,利润=标价×80%﹣成本价,据此列出方程.【解答】解:设这件夹克衫的成本价是x元,由题意得,0.8(1+50%)x﹣x=28,即0.8(1+0.5)x=28+x.故选A.9.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<0【考点】数轴.【分析】依照数轴和ac<0,b+a<0,能够判定选项中的结论是否成立,从而能够解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴假如a=﹣2,b=0,c=2,则b+c>0,故选项A错误;假如a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;假如a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.10.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点动身,沿着圆锥侧面通过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能通过的点是()A.M B.N C.S D.T【考点】线段的性质:两点之间线段最短;几何体的展开图;平面展开-最短路径问题.【分析】依照圆锥画出侧面展开图,依照两点之间线段最短可得它最有可能通过的点是N.【解答】解:如图所示:依照圆锥侧面展开图,此蚂蚁所走的路线最短,那么M,N,S,T (M,N,S,T均在PB上)四个点中,它最有可能通过的点是N,,故选B.二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是1,+,0.(写出所有符合题意的数)【考点】有理数.【分析】依照大于或等于零的有理数是非负有理数,可得答案.【解答】解:非负有理数是1,+,0.故答案为:1,+,0.12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为120°.【考点】余角和补角.【分析】先依照图形得出∠AOB=60°,再依照和为180度的两个角互为补角即可求解.【解答】解:由题意,可得∠AOB=60°,则∠AOB的补角的大小为:180°﹣∠AOB=120°.故答案为120.13.运算:180°﹣20°40′=159°20′.【考点】度分秒的换算.【分析】先变形得出179°60′﹣20°40′,再度、分分别相减即可.【解答】解:180°﹣20°40′=179°60′﹣20°40′=159°20°.故答案为:159°20′.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,假如设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)【考点】列代数式.【分析】依照4名工人3月份完成的总工作量比此月人均定额的4倍多15件得到总工作量是(4x+15)件,再把总工作量除以4可得这4名工人此月实际人均工作量.【解答】解:(4x+15)÷4=(件).答:这4名工人此月实际人均工作量为件.故答案为:.15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是数轴上表示﹣2的点与原点的距离;若|x|=2,则x的值是±2.【考点】绝对值;数轴.【分析】直截了当利用绝对值的定义得出|﹣2|的含义以及求出x的值.【解答】解:|﹣2|的含义是数轴上表示﹣2的点与原点的距离;|x|=2,则x的值是:±2.故答案为:数轴上表示﹣2的点与原点的距离;±2.16.某小组几名同学预备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,依照题意可列方程为+=1.【考点】由实际问题抽象出一元一次方程.【分析】设该小组共有x名同学,依照题意可得,全体同学整理8小时完成的任务+(x﹣2)名同学整理4小时完成的任务=1,据此列方程.【解答】解:设该小组共有x名同学,由题意得,+=1.故答案为:+=1.17.如图所示,AB+CD<AC+BD.(填“<”,“>”或“=”)【考点】线段的性质:两点之间线段最短.【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BE>AB,同理得到CE+DE >DC,从而得到AB+CD<AC+BD.【解答】解:如图所示:由两点之间线段最短可知AE+BE>AB.同理:CE+DE>DC.∴AE+BE+CE+DE>AB+DC.∴AC+BD>AB+DC,即AB+DC<AC+BD.故答案为:<.18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=7;②若|x+x1+x2+x3+…+x20|的值最小,则x3=﹣3.【考点】规律型:图形的变化类.【分析】(1)按照规律写出x14即可.(2)当x=﹣6时,|x+x1+x2+x3+…+x20|的值最小,由此能够解决问题.【解答】解:①由题意:x1=2,x2=3,x3=4,x4=5,x5=6,x6=7,x7=4,x8=,5,x9=6,x10=7,x11=4,x12=5,x13=6,x14=7.故答案为x14=7.②由题意当x=﹣6时,x1=﹣5,x2=﹣4,x3=﹣3,x4=﹣2,x5=﹣1,x6=0,x7=1,x8=2,x9=3,x10=4,x11=5,x12=6,x13=7,x14=4,x15=5,x16=6,x17=7,x18=4,x19=5,x20=6,|x+x1+x2+x3+…+x20|=50最小,∴x3=﹣3.故答案为﹣3.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.运算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.【考点】有理数的混合运算.【分析】(1)依照有理数的乘法和减法进行运算即可;(2)依照有理数的乘方、除法、乘法和减法进行运算即可.【解答】解:(1)3﹣6×=3﹣6×=3﹣1=2;(2)﹣42÷(﹣2)3﹣×=﹣16÷(﹣8)﹣=2﹣1=1.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为90°(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是BC=AC;关于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是BC′=AC′.【考点】作图—复杂作图.【分析】(1)利用线段垂直平分线的作法得出D点位置,进而得出答案;(2)利用量角器得出∠ADC的大小;(3)利用线段垂直平分线的性质得出线段BC,AC的大小关系以及线段BC′与AC′的大小关系.【解答】解:(1)如图所示:直线DC即为所求;(2)90°(只要相差不大都给分).故答案为:90°;(3)BC=AC,BC′=AC′,(若(2)中测得的角不等于90°,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.)21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:3x+6﹣2=x+2,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:2(7﹣5y)=12﹣3(3y﹣1),去括号得:14﹣10y=12﹣9y+3,移项合并得:﹣y=1,解得:y=﹣1.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】第一依照整式的加减运算法则将原式化简,再代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.【考点】两点间的距离.【分析】依照点A在线段CB上,AC=,点D是线段BC的中点,CD=3,能够求得BC的长,从而能够求得CA的长,从而得到AD的长.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,靠近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由运算机精准操纵,每一只小球能够“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机操纵.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),操纵电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?【考点】一元一次方程的应用.【分析】设②号小球运动了x米,依照图中的造型和“②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒”列出方程并解答.【解答】解:设②号小球运动了x米,由题意可得方程:=,解方程得:x=2答:从造型一到造型二,②号小球运动了2米.五.解答题(本大题共12分,第25题6分,第26题各6分)25.一样情形下不成立,但有些数能够使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【考点】整式的加减;代数式求值.【分析】(1)利用“相伴数对”的定义化简,运算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入运算即可求出值.【解答】解:(1)∵(1,b)是“相伴数对”,∴+=,解得:b=﹣;(2)(2,﹣)(答案不唯独);(3)由(m,n)是“相伴数对”可得:+=,即=,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,连续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,连续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始连续旋转2α至OA2;第3步,从OA2开始连续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是45°;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是,,,.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问关于任意角α(α的度数为正整数,且α=180°),旋转是否能够停止?写出你的探究思路.【考点】角的运算.【分析】(1)依照题意,明确每次旋转的角度,运算即可;(2)依照各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情形讨论,求出α的度数即可;(4)不管a为多少度,旋转专门多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,可不能显现OA i是∠A i OA K是的角平分线,因此旋转会中止.【解答】解:(1)解:如图所示.aφ=45°,(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2+=4α,解得:.(3),,(4)关于角α=120°不能停止.理由如下:不管a为多少度,旋转过若干次后,一定会显现OA i是∠A i OA K是的角平分线,因此旋转会停止.但专门的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会显现“与OM重合”或“与OA1重合”两种情形,可不能出第三条射线,因此可不能显现OA i是∠A i OA K是的角平分线这种情形,旋转可不能停止.2021年6月9日。
2019-2020学年北京市海淀区初一年级第一学期期末数学试题(含答案)
海 淀 区 七 年 级 第 一 学 期 期 末 调 研数 学 2020.1学校 班级 姓名 成绩 一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory (胜利)的首字母.现在“V”字手势早已成为世界用语了.右图的“V”字手势中,食指和中指所夹锐角α的度数为A .25︒B .35︒C .45︒D .55︒2. 2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人. 将“1.5万”用科学记数法表示应为A .31.510⨯B .31510⨯C .41.510⨯D .41510⨯ 3. 下表是11月份某一天北京四个区的平均气温:这四个区中该天平均气温最低的是 A .海淀B .怀柔C .密云D .昌平4. 下列计算正确的是A .220m n nm -=B . m n mn +=C .325235m m m +=D . 3223m m m -=-5. 已知关于x 的方程2mx x +=的解是3x =,则m 的值为A .13B .1C .53D . 36. 有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .4a <-B .0bd >C .0b c +>D .||||a b >7. 下列等式变形正确的是A . 若42x =,则2x =B . 若4223x x -=-,则4322x x +=-C . 若4(1)32(1)x x +-=+,则4(1)2(1)3x x +++=D . 若3112123x x+--=,则3(31)2(12)6x x +--= 8. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力. 跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道. 如图,侧向跑道AB 在点O 南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为 A .20°B . 70°C .110°D .160°9. 已知线段8AB =cm ,6AC =cm ,下面有四个说法:①线段BC 长可能为2cm ; ②线段BC 长可能为14cm ; ③线段BC 长不可能为5cm ;④ 线段BC 长可能为9cm .所有正确说法的序号是A . ①②B .③④C .①②④D .①②③④10. 某长方体的展开图中,P 、A 、B 、C 、D (均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A 、B 、C 、D 四点,则蚂蚁爬行距离最短的路线是A . P→AB . P→BC . P→CD . P→D二、填空题(本题共16分,每小题2分) 11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数机场记为负数,结果如图所示,其中最接近标准质量的足球是_______.+1.5 −3.5 +0.7 −0.6甲乙丙丁12. 一个单项式满足下列两个条件:①系数是2-;②次数是3.请写出一个同时满足上述两个条件的单项式_______.13. 计算48396731''︒+︒的结果为_______.14. 如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长_______ (填:大或小),理由为__________________________________________________ .15. 已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长方形,按图2的方式拼接,则阴影部分正方形的边长是_______.(用含a的代数式表示)2a6a图1 图216. 如下图,点C在线段AB上,D是线段CB的中点. 若47AC AD==,,则线段AB的长为_______.17. 历史上数学家欧拉最先把关于x的多项式用记号()f x来表示,把x等于某数a时的多项式的值用()f a来表示.例如,对于多项式3()5f x mx nx=++,当2x=时,多项式的值为(2)825f m n=++,若(2)6f=,则(2)f-的值为_______.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示. 目前该商场有促销活动,促销方案如表2所示.B则选择_______品牌的洗衣机和_______品牌的烘干机支付总费用最低,支付总费用最低为_______元. 三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分) 19.计算:(1)()76(4)(3)--+-⨯- (2)2313(2)1()2-⨯--÷-20.解方程:(1)3265x x -=-+(2)325123x x +--=21.先化简,再求值:222222(2)(6)3xy x y x y xy x y --++,其中2,1x y ==-.22.如图,已知平面上三点A ,B ,C ,请按要求完成下列问题: (1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD BC =,连接CD (保留画图痕迹);B(3)利用刻度尺取线段CD 的中点E ,连接BE .四、解答题(本题共10分,第23题4分,第24题6分) 23.下图是一个运算程序:(1)若2x =-,3y =,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者3-1取胜的球队积3分,负队积0分;而在比赛中以3-2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示.||3m x y =+||3m x y =-(1)中国队11场胜场中只有一场以3-2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见下表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且a b <,c d <. (1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为__________________; ②求点M 表示的有理数m 的值(用含a ,b 的代数式表示);图1(2)已知a b c d +=+,①若A ,B ,C 三点的位置如图所示,请在图中标出点D 的位置;图2②a ,b ,c ,d 的大小关系为__________________.(用“< ”连接)26.阅读下面材料:小聪遇到这样一个问题:如图1,AOB α∠=,请画一个AOC ∠,使AOC ∠与BOC ∠互补.OBAOBAOCBAODCBA图1 图2 图3小聪是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠.因此,小聪找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明; 已知:如图3,点O 在直线AD 上,射线OC 平分∠BOD. 求证:∠AOC 与∠BOC 互补.(2)参考小聪的画法,请在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.(保留画图痕迹)(3)已知EPQ ∠和FPQ ∠互余,射线PM 平分EPQ ∠,射线PN 平分FPQ ∠. 若EPQ β∠=(090β︒<<︒),直接写出锐角MPN ∠的度数是__________________.27.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为2()M x .如2(735)111M =,2(561)101M =.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次1111011100+将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如右图所示.根据以上材料,解决下列问题:(1)2(9653)M 的值为 ,22(58)(9653)M M +的值为 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”. 如2(124)100M =,2(630)010M =,因为22(124)+(630)110M M =,2(124630)110M +=,所以222(124+630)(124)+(630)M M M =,即124与630满足“模二相加不变”. ①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有 个.。
2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析
2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。
11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。
2019-2020学年北京市海淀区七年级上册期末数学试题(有答案)【优质版】
2019-2020学年北京市海淀区七年级(上)期末数学试卷一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.1.﹣5的相反数是()A.B.﹣C.5D.﹣52.10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,网站PC端成为报道大会的主阵地.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为()A.17.4×105B.1.74×105C.17.4×104D.1.74×1063.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|4.下列是一元一次方程的是()A.x2﹣2x﹣3=0B.2x+y=5C.D.x+1=05.如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>06.下列等式变形正确的是()A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=17.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上10.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6B.5C.4D.3二、填空题(每小题2分,共16分)11.计算:48°37'+53°35'=.12.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b 元则小何共花费元.(用含a,b的代数式表示)13.已知|a﹣2|+(b+3)2=0,则b a的值等于.14.北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC=°.15.若2是关于x的一元一次方程2(x﹣1)=ax的解,则a=.16.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).17.线段AB=6,点C在直线AB上,BC=4,则AC的长度为.18.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积是否会变化,(填写“会”或者“不会”),图形的周长为.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)(﹣)×(﹣8)+(﹣6)2;(2)﹣14+(﹣2).20.解方程:(1)3(2x﹣1)=15;(2).21.已知3a﹣7b=﹣3,求代数式2(2a+b﹣1)+5(a﹣4b)﹣3b的值.22.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.23.几何计算:如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=°所以∠AOC=+=°+°=°因为OD平分∠AOC所以∠COD==°.24.如图1,线段AB=10,点C,E,F在线段AB上.(1)如图2,当点E,点F是线段AC和线段BC的中点时,求线段EF的长;(2)当点E,点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.25.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?26.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(2,﹣3)★(3,﹣2)=;(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x=;(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数时,求整数k的值.27.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.2019-2020学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.1.﹣5的相反数是()A.B.﹣C.5D.﹣5【分析】依据相反数的定义求解即可.【解答】解:﹣5的相反数是5.故选:C.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,网站PC端成为报道大会的主阵地.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为()A.17.4×105B.1.74×105C.17.4×104D.1.74×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:174000用科学记数法表示为 1.74×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|【分析】根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.【解答】解:A、(﹣3)2=9,﹣32=﹣9,故(﹣3)2≠﹣32;B、(﹣3)2=9,32=9,故(﹣3)2=32;C、(﹣2)3=﹣8,﹣23=﹣8,则(﹣2)3=﹣23;D、|﹣2|3=23=8,|﹣23|=|﹣8|=8,则|﹣2|3=|﹣23|.故选:A.【点评】此题确定底数是关键,要特别注意﹣32和(﹣3)2的区别.4.下列是一元一次方程的是()A.x2﹣2x﹣3=0B.2x+y=5C.D.x+1=0【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、不是一元一次方程,故此选项错误;D、是一元一次方程,故此选项正确;故选:D.【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.5.如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>0【分析】A、根据数轴上的数右边的总比左边的大,可得结论;B、根据0<b<1<c,可得结论;C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;D、根据a<0,b>0,c>0,可得结论.【解答】解:A、由数轴得:a<b<c,故选项A不正确;B、∵0<b<1<c,∴>,故选项B正确;C、由数轴得:|a|>|b|,故选项C不正确;D、∵a<0,b>0,c>0,∴abc<0,故选项D不正确;故选:B.【点评】本题考查了数轴的意义、绝对值的定义及有理数的乘法法则,熟练掌握数轴的有关性质是关键.6.下列等式变形正确的是()A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=1【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A、若﹣3x=5,则x=﹣,错误;B、若,则2x+3(x﹣1)=6,错误;C、若5x﹣6=2x+8,则5x﹣2x=8+6,错误;D、若3(x+1)﹣2x=1,则3x+3﹣2x=1,正确;故选:D.【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.7.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB 上.10.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6B.5C.4D.3【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选:B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.二、填空题(每小题2分,共16分)11.计算:48°37'+53°35'=102°12'.【分析】1度=60分,即1°=60′,1分=60秒,即1′=60″,依据度分秒的换算即可得到结果.【解答】解:48°37'+53°35'=101°72'=102°12',故答案为:102°12'.【点评】本题主要考查了度分秒的换算,在进行度、分、秒的运算时也应注意借位和进位的方法.12.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b 元则小何共花费(4a+10b)元.(用含a,b的代数式表示)【分析】根据单价×数量=总费用进行解答.【解答】解:依题意得:4a+10b;故答案是:(4a+10b).【点评】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.13.已知|a﹣2|+(b+3)2=0,则b a的值等于9.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a、b的值,再代入原式中即可.【解答】解:依题意得:a﹣2=0,b+3=0,∴a=2,b=﹣3.∴b a=(﹣3)2=9.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC=59°.【分析】根据题意可得∠CAS=18°,∠BAS=77°,然后利用角的和差关系可得答案.【解答】解:∠BAC=77°﹣18°=59°,故答案为:59.【点评】此题主要考查了方向角,方向角是从正北或正南方向到目标方向所形成的小于90°的角.15.若2是关于x的一元一次方程2(x﹣1)=ax的解,则a=1.【分析】根据一元一次方程的解的定义列出方程,解方程即可.【解答】解:∵2是关于x的一元一次方程2(x﹣1)=ax的解,∴2a=2,解得,a=1,故答案为:1.【点评】本题考查的是方程的解的定义,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=﹣8(直接写出答案).【分析】原式利用已知的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣8【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.线段AB=6,点C在直线AB上,BC=4,则AC的长度为2或10.【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解答】解:当C在线段AB上时,AC=1B﹣BC=6﹣4=2;当C在线段AB的延长线上时,AC=AB+BC=10.综上所述:AC的长度为2或10.故选:2或10.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.18.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积是否会变化,不会(填写“会”或者“不会”),图形的周长为2n+4a.【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【解答】解:周长依次为16a,32a,64a,128a,…,2n+4a,即无限增加,所以不断发展下去到第n次变化时,图形的周长为2n+4a;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a2.故答案为:不会、2n+4a.【点评】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键,本题有一定难度.三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)19.计算:(1)(﹣)×(﹣8)+(﹣6)2;(2)﹣14+(﹣2).【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据幂的乘方、有理数的除法和减法可以解答本题.【解答】解:(1)(﹣)×(﹣8)+(﹣6)2=4+36=40;(2)﹣14+(﹣2)=﹣1+2×3﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.解方程:(1)3(2x﹣1)=15;(2).【分析】(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【解答】解:(1)去括号得,6x﹣3=15,移项得,6x=15+3,合并同类项得,6x=18,系数化为1得,x=3;(2)去分母得,2(x﹣7)﹣3(1+x)=6,去括号得,2x﹣14﹣3﹣3x=6,移项得,2x﹣3x=6+14+3,合并同类项得,﹣x=23,系数化为1得,x=﹣23.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.21.已知3a﹣7b=﹣3,求代数式2(2a+b﹣1)+5(a﹣4b)﹣3b的值.【分析】根据整式的运算法则即可求出答案.【解答】解:当3a﹣7b=﹣3时,原式=4a+2b﹣2+5a﹣20b﹣3b=9a﹣21b﹣2=3(3a﹣7b)﹣2=﹣9﹣2=﹣11【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.【分析】(1)连接AM,以M为圆心,MA为半径画弧交直线l于N,点N即为所求;(2)连接AB交直线l于点O,点O即为所求;【解答】解:(1)作图如图1所示:(2)作图如图2所示:作图依据是:两点之间线段最短.【点评】本题考查作图﹣复杂作图,两点之间线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.几何计算:如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=120°所以∠AOC=∠AOB+∠BOC=40°+120°=160°因为OD平分∠AOC所以∠COD=∠AOC=80°.【分析】先求出∠BOC的度数,再求出∠AOC的度数,根据角平分线定义求出即可.【解答】解:∵∠BOC=3∠AOB,∠AOB=40°,∴∠BOC=120°,∴∠AOC=∠AOB+∠BOC=40°+120°=160°,∵OD平分∠AOC,∴∠COD=∠AOC==80°,故答案为:120,∠AOB,∠BOC,40,120,160,∠AOC,80.【点评】本题考查了角平分线定义和角的有关计算,能求出∠AOC的度数和得出∠COD =∠AOC是解此题的关键.24.如图1,线段AB=10,点C,E,F在线段AB上.(1)如图2,当点E,点F是线段AC和线段BC的中点时,求线段EF的长;(2)当点E,点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.【分析】(1)根据线段的中点得出AE=CE=AC,CF=FB=CB,求出EF=AB,代入求出即可;(2)根据线段的中点得出AE=CE=AC,CF=FB=CB,即可求出EF=AC.【解答】解:(1)∵当点E、点F是线段AC和线段BC的中点,∴AE=CE=AC,CF=FB=CB,∵AB=10,∴EF=CE+CF=AC+CB=(AC+CB)=AB=10=5;(2)如图:EF=AC,理由是:∵当点E、点F是线段AB和线段BC的中点,∴AE=EB=AB,CF=FB=CB,∴EF=EB﹣FB=AB﹣CB=(AB﹣CB)=AC.【点评】本题考查了求两点之间的距离和线段的中点,能根据线段的中点定义得出AE =EB=AB和CF=FB=CB是解此题的关键.25.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为2:3;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?【分析】探究一:依据3个A型号钢球与2个B型号钢球的体积相等,即可得到A型号与B型号钢球的体积比为2:3;探究二:设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由放入A 型号与B型号钢球共10个后,水面高度涨到57mm,可得方程,进而得出结论.【解答】解:探究一:由题可得,3个A型号钢球与2个B型号钢球的体积相等,∴A型号与B型号钢球的体积比为2:3;故答案为:2:3;探究二:每个A型号钢球使得水面上升(36﹣30)=2 mm,每个B型号钢球使得水面上升(36﹣30)=3mm,设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由题意列方程:2x+3(10﹣x)=57﹣30,解得:x=3,所以10﹣x=7,答:放入水中的A型号钢球3个,B型号钢球7个.【点评】本题主要考查了一元一次方程的应用,解决问题的关键是依据等量关系列方程求解.26.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(2,﹣3)★(3,﹣2)=﹣5;(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x=1;(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数时,求整数k的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x的值;(3)原式利用题中的新定义计算,求出整数k的值即可.【解答】解:(1)根据题意得:原式=﹣9+4=﹣5;故答案为:﹣5;(2)根据题意化简得:2x﹣1+3x+3=7,移项合并得:5x=5,解得:x=1;故答案为:1;(3)∵等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数,∴(2x﹣1)k﹣(﹣3)(x+k)=5+2k,∴(2k+3)x=5,∴x=,∵k是整数,∴2k+3=±1或±5,∴k=1,﹣1,﹣2,﹣4.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.27.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.【分析】(1)根据角平分线的定义计算即可;(2)①根据∠FCD=∠ACF﹣∠ACD,求出∠ACF,∠ACD即可;②猜想:∠BCE=2α.根据∠BCE=∠AOB﹣∠ECD﹣∠ACD计算即可;(3)求出α,β(用t表示),构建方程即可解决问题;【解答】解:(1)如图1中,∵∠EOD=90°,OF平分∠EOD,∴∠FOD=∠EOD=45°,故答案为45°(2)①如图2中,当t=1时,∵∠DCA=30°,∠ECD=90°,∴∠ECA=120°,∵CF平分∠ACE,∴∠FCA=∠ECA=60°∴α=∠FCD=60°﹣30°=30°故答案为30°.②如图2中,猜想:∠BCE=2α.理由:∵∠DCE=90°,∠DCF=α,∴∠ECF=90°﹣α,∵CF平分∠ACE,∴∠ACF=∠ECF=90°﹣α,∵点A,O,B共线∴AOB=180°∴∠BCE=∠AOB﹣∠ECD﹣∠ACD=180°﹣90°﹣(90°﹣2α)=2α.(3)如图3中,由题意:α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|β﹣α|=20°,∴|30t|=20°,解得t=.故答案为.【点评】本题考查角的计算、角平分线的定义、数轴、旋转变换等知识,解题的关键是熟练掌握角的和差定义,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.。
2019-2020学年北京市海淀区七年级上期末数学试卷及答案解析
2019-2020学年北京市海淀区七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=2GH B.EF>GH C.EF>2GH D.EF=GH2.4的绝对值为()A.±4B.4C.﹣4D.23.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107 4.若x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,则a﹣2b的值为()A.﹣5B.﹣3C.3D.45.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.16.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′7.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm 8.已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.09.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.10.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.﹣x+2B.﹣x﹣2C.x+2D.﹣2二.填空题(共8小题,满分16分,每小题2分)11.(2分)比较大小:﹣﹣(填“>”“<”或“=”)12.(2分)在一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm.如果点D是线段AC的中点,那么线段DB的长度是cm.13.(2分)已知多项式2+3x4﹣5xy2﹣4x2y+6x3,将其按x的降幂排列为.14.(2分)矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.15.(2分)如图,点O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中互为补角的角有对.16.(2分)某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为.17.(2分)点A在数轴上距原点2个单位长度,若一个点从点A处向右移动3个单位长度,再向左移动4个单位长度,此时终点所表示的数是.18.(2分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒米.三.解答题(共4小题,满分24分)19.(8分)计算(1)12﹣(﹣18)+(﹣7)﹣15.(2)﹣0.25++﹣0.5.(3)×(﹣)×÷.(4)﹣42﹣(﹣1)10×|﹣3|÷.20.(8分)解方程(1)4﹣3(2﹣x)=5x(2)=21.(4分)(1)设A=2a2﹣a,B=a2+a,若,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.22.(4分)如图,∠MON内有定点P.(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).四.解答题(共2小题,满分11分)23.(6分)已知线段AB=m(m为常数),点C为直线AB上一点(不与A、B重合),点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=(用含m的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.24.(5分)蜗牛沿10米高的柱往上爬,每天清晨到傍晚向上爬5米,晚上又滑下4米,像这样从某天清晨开始爬,第几天爬到柱顶?五.解答题(共3小题,满分19分)25.(6分)解方程a(a﹣)x=.26.(6分)如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD =∠BOE时,求∠AOE的度数:(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?27.(7分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).2019-2020学年北京市海淀区七年级上期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=2GH B.EF>GH C.EF>2GH D.EF=GH【分析】依据点F是线段EG的中点,点G是线段FH的中点,即可得到EF=FG,FG =GH,进而得出结论.【解答】解:如图,∵点F是线段EG的中点,点G是线段FH的中点,∴EF=FG,FG=GH,∴EF=GH,故选:D.【点评】本题主要考查了线段的中点,线段的中点就是把一条线段分成两条相等的线段的点.2.4的绝对值为()A.±4B.4C.﹣4D.2【分析】数轴上某个数与原点的距离叫做这个数的绝对值.根据绝对值的定义求解.【解答】解:∵数轴上表示4的点与原点的距离为4,∴4的绝对值是4,故选:B.【点评】此题考查了绝对值的定义,数轴上某个数与原点的距离叫做这个数的绝对值.3.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示1326000的结果是1.326×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,则a﹣2b的值为()A.﹣5B.﹣3C.3D.4【分析】先将原式去括号、合并同类项化简,再由多项式的值与x无关知x的项的系数为0,据此求得a和b的值,最后代入计算可得.【解答】解:x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)=x2+ax﹣2y+7﹣2bx2+4x﹣18y+2=(1﹣2b)x2+(a+4)x﹣20y+9,∵x2+ax﹣2y+7﹣2(bx2﹣2x+9y﹣1)的值与x的取值无关,∴1﹣2b=0且a+4=0,则a=﹣4,b=,∴a﹣2b=﹣4﹣2×=﹣5,故选:A.【点评】本题主要考查整式的加减,解题的关键是掌握整式的加减混合运算顺序和运算法则.5.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.1【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:﹣2﹣m﹣5=0,解得:m=﹣7,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【点评】此题主要考查了度分秒的换算,正确掌握运算法则是解题关键.7.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm 【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意画出的图形进行解答.【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:D.【点评】考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0【分析】令x=1,即可求出所求.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【解答】解:从上面看,是正方形右边有一条斜线,如图:故选:B.【点评】本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.10.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.﹣x+2B.﹣x﹣2C.x+2D.﹣2【分析】首先根据BC=2,C点所表示的数为x,求出B表示的数是多少,然后根据OA =OB,求出A点所表示的数是多少即可.【解答】解:∵BC=2,C点所表示的数为x,∴B点表示的数是x﹣2,又∵OA=OB,∴B点和A点表示的数互为相反数,∴A点所表示的数是﹣(x﹣2),即﹣x+2.故选:A.【点评】此题主要考查了列代数式,在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.二.填空题(共8小题,满分16分,每小题2分)11.(2分)比较大小:﹣>﹣(填“>”“<”或“=”)【分析】根据两个负数比较大小,绝对值大的反而小可得答案.【解答】解:||=,|﹣|=,∵,∴﹣>﹣,故答案为:>.【点评】此题主要考查了有理数的大小比较,关键是掌握有理数比较大小的方法.12.(2分)在一条直线上顺次取A,B,C三点,使得AB=5cm,BC=3cm.如果点D是线段AC的中点,那么线段DB的长度是1cm.【分析】先画出图象,则AC=AB+BC=5cm+3cm=8cm,根据点D是线段AC的中点可得到AD=4cm,然后利用DB=AB﹣AD进行计算.【解答】解:如图,∵AB=5cm,BC=3cm,∴AC=AB+BC=5cm+3cm=8cm,∵点D是线段AC的中点,∴AD=AC=×8cm=4cm,∴DB=AB﹣AD=5cm﹣4cm=1cm.故答案为1.【点评】本题考查了两点间的距离:两点间的连线段的长度叫这两点间的距离.也考查了线段中点的定义.13.(2分)已知多项式2+3x4﹣5xy2﹣4x2y+6x3,将其按x的降幂排列为3x4+6x3﹣4x2y﹣5xy2+2.【分析】根据字母x的指数从大到小排列即可.【解答】解:按x的降幂排列为:3x4+6x3﹣4x2y﹣5xy2+2,故答案为:3x4+6x3﹣4x2y﹣5xy2+2.【点评】此题主要考查了多项式,关键是掌握降幂排列定义.14.(2分)矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠P AH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD﹣AP=2,GD=GC﹣CD=4﹣2=2∴GP==2∴GH=GP=故答案为:【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.15.(2分)如图,点O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中互为补角的角有6对.【分析】根据补角的概念、角平分线的定义计算,得到答案.【解答】解:∵∠AOD=120°,∴∠BOD=180°﹣120°=60°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=30°,∴∠AOE=150°,则∠AOD+∠COE=180°,∠AOE+∠BOE=180°,∠AOE+∠DOE=180°,∠AOD+∠DOC=180°,∠AOC+∠BOC=180°,∠AOD+∠EOC=180°,∴图中互为补角的角有6对,故答案为:6.【点评】本题考查的是补角的概念,如果两个角的和等于180°,就说这两个角互为补角.16.(2分)某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为45x+16=50x﹣9.【分析】设有x辆汽车,根据去郊游的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x辆汽车,根据题意得:45x+16=50x﹣9.故答案为:45x+16=50x﹣9.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.(2分)点A在数轴上距原点2个单位长度,若一个点从点A处向右移动3个单位长度,再向左移动4个单位长度,此时终点所表示的数是1或﹣3.【分析】根据数轴上点的位置特征确定出终点表示的数即可.【解答】解:根据题意得:2+3﹣4=1或﹣2+3﹣4=﹣3,此时终点所表示的数是1或﹣3,故答案为:1或﹣3【点评】此题考查了数轴,弄清题意是解本题的关键.18.(2分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒6米.【分析】设甲的速度为x米/秒,根据50秒时,甲追上乙列方程求出甲的速度.【解答】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:=4,设甲的速度为x米/秒,则50x﹣50×4=100,x=6,故答案为:6【点评】本题是函数图象的信息题,又是行程问题,首先要明确三个量:路程、时间和速度,题中有三人:甲、乙、丙,正确读出图形中甲、乙相遇及到达目的地的时间是本题的关键;重点理解图象中x与y所表示的含义,也是本题的难点.三.解答题(共4小题,满分24分)19.(8分)计算(1)12﹣(﹣18)+(﹣7)﹣15.(2)﹣0.25++﹣0.5.(3)×(﹣)×÷.(4)﹣42﹣(﹣1)10×|﹣3|÷.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式通分后,计算即可求出值;(3)原式先计算括号中的运算,再计算乘除运算即可求出值;(4)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=﹣++﹣==;(3)原式=×(﹣)××=﹣;(4)原式=﹣16﹣1×3×=﹣16﹣16=﹣32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程(1)4﹣3(2﹣x)=5x(2)=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣6+3x=5x,移项合并得:﹣2x=2,解得:x=﹣1;(2)去分母得:4x﹣2+6=2x+1,移项合并得:2x=﹣3,解得:x=﹣1.5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(4分)(1)设A=2a2﹣a,B=a2+a,若,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.【分析】(1)把A、B的值代入得出A﹣2B=(2a2﹣a)﹣2(a2+a),去括号后合并后再代入计算即可求解;(2)设去年乙类收入为a,则甲类收入是2a;进一步表示出预计今年甲类收入为(1﹣20%)×1.5a,乙类收入为(1+40%)a;分别算出两年甲类、乙类两种经营总收入,进一步比较得出答案.【解答】解:(1)A﹣2B=(2a2﹣a)﹣2(a2+a)=2a2﹣a﹣2a2﹣2a=﹣3a,当时,原式=﹣3×(﹣)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1﹣9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1﹣9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.【点评】(1)考查了整式的加减﹣求值,主要考查学生化简能力和计算能力.(2)考查列代数式,比较有理数的大小,列式时注意单位“1”,以单位“1”为标准列示解决问题.22.(4分)如图,∠MON内有定点P.(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).【分析】(1)根据线段的垂直平分线的性质即可作图;(2)作点P关于ON的对称点P′,根据两点之间线段最短即可作图.【解答】解:(1)如图点A即为所求作的点.(2)如图点B即为所求作的点,此时△ABP周长最短.【点评】本题考查了尺规作图、线段的垂直平分线的性质,解决本题的关键是准确画图.四.解答题(共2小题,满分11分)23.(6分)已知线段AB=m(m为常数),点C为直线AB上一点(不与A、B重合),点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C恰好在线段AB中点时,则PQ=m(用含m的代数式表示);(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.【分析】(1)根据已知AB=m(m为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得2AP+CQ﹣2PQ=0,即可得出2AP+CQ﹣2PQ与1的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵点C恰好在线段AB中点,∴AC=BC=AB,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×AB+×AB=AB=m;故答案为:m;(2)①点C在线段AB上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ+CP=AC+BC=×(AC+BC)=AB=m;②点C在线段BA的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CP﹣CQ=BC﹣AC=×(BC﹣AC)=AB=m;③点C在线段AB的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=AC,CP=BC,∵AB=m(m为常数),∴PQ=CQ﹣CP=AC﹣BC=×(AC﹣BC)=AB=m;故PQ是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0,∴2AP+CQ﹣2PQ<1.【点评】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.24.(5分)蜗牛沿10米高的柱往上爬,每天清晨到傍晚向上爬5米,晚上又滑下4米,像这样从某天清晨开始爬,第几天爬到柱顶?【分析】规定向上爬为“+”,则向下滑为“﹣”,然后根据题意,列出算式来解答.【解答】解:设第x天爬到柱顶,规定向上爬为“+”,则向下滑为“﹣”,则根据题意,得5x﹣4(x﹣1)=10,解得x=6.故蜗牛在第6天爬到柱顶.【点评】在解答此题时注意,蜗牛在最后一天爬到顶端后,不用再滑下来了,即在计算天数时,上爬的天数应该比下滑的天数多一天.五.解答题(共3小题,满分19分)25.(6分)解方程a(a﹣)x=.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:a(a﹣)x=a+x+,移项合并得:(a2﹣﹣)x=a+,去分母得:(6a2﹣a﹣1)x=3a+1,解得:x=.【点评】此题考查了单项式乘多项式,以及解一元一次方程,熟练掌握运算法则是解本题的关键.26.(6分)如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分∠BOC;(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD =∠BOE时,求∠AOE的度数:(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?【分析】(1)由角平分线的性质及同角的余角相等,可得答案;(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.【解答】解:(1)∵OD恰好平分∠AOC∴∠AOD=∠COD∵∠DOE=90°∴∠AOD+∠BOE=90°,∠COD+∠COE=90°∴∠BOE=∠COE∴OE平分∠BOC.(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,∠AOD=∠AOC+∠COD=40°+α∵∠AOD+∠BOE=180°﹣90°=90°∴40°+α+3α=90°∴α=12.5°∴∠AOE=180°﹣3α=142.5°∴∠AOE的度数为142.5°.(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;当OD与OC重合时,6t﹣2t=40°∴t=10(秒);当OD与OC的反向延长线重合时,6t﹣2t=180°+40°∴t=55(秒)∴第10秒或第55秒时,OD恰好与OC在同一条直线上.【点评】本题考查了余角和补角的计算,牢固掌握相关性质并正确列式,是解题的关键.27.(7分)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①则2S=2+22+…+22018+22019②②﹣①得2S﹣S=S=22019﹣1∴S=1+2+22+…+22017+22018=22019﹣1请仿照小明的方法解决以下问题:(1)1+2+22+…+29=210﹣1;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【分析】(1)利用题中的方法设S=1+2+22+...+29,两边乘以2得到2S=2+22+ (210)然后把两式相减计算出S即可;(2)利用题中的方法设S=3+32+33+34+…+310 ,两边乘以3得到3S=3+32+33+34+35+…+311 ,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【解答】解:(1)设S=1+2+22+ (29)则2S=2+22+ (210)②﹣①得2S﹣S=S=210﹣1∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1(2)设S=3+32+33+34+…+310 ①,则3S=32+33+34+35+…+311 ②,②﹣①得2S=311﹣3,所以S =,即3+32+33+34+…+310=;故答案为:;(3)设S=1+a+a2+a3+a4+..+a n①,则aS=a+a2+a3+a4+..+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,a=1时,不能直接除以a﹣1,此时原式等于n+1;a不等于1时,a﹣1才能做分母,所以S =,即1+a+a2+a3+a4+..+a n =,【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.第21 页共21 页。
2020~2021学年北京海淀区北京市中关村中学初一(七年级)上学期期末数学试卷-学生用卷(含答案)
2020~2021学年北京海淀区北京市中关村中学初一(七年级)上学期期末数学试卷-学生用卷(含答案)一、选择题(本大题共12小题,每小题2分,共24分)1、据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次.将数字338600000用科学记数法可表示为().A. 3.386×108B. 3.386×109C. 0.3386×109D. 33.86×1072、如图所示,∠MON的大小可由量角器测得,则∠MON的余角..大小为().A. 70°B. 20°C. 110°D. 120°3、下列图形中,∠1与∠2是对顶角的是().A. B. C. D.4、下列运算正确的是().A. 4m−m=3B. a3−a2=aC. a2b−ab2=0D. 2xy−yx=xy5、下列变形正确的是().;A. 由−3+2x=1,得2x=1−3;B. 由3y=−4,得y=−34C. 由3=x+2,得x=3+2;D. 由x−4=9,得x=9+4.6、如图,下列结论正确的是().A. c>a>bB. b+a>0C. |a|>|b|D. abc>07、如图,测量运动员跳远成绩选取的是AB的长度,其依据是().A. 两点确定一条直线B. 两点之间直线最短C. 两点之间线段最短D. 垂线段最短8、已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°,则∠AOC的度数是().A. 78°B. 68°C. 46°D. 22°9、已知多项式2x2+4y的值是−2,则多项式x2+2y−6的值是()A. −7B. −1C. 1D. 710、在以下形状不规则的组件中,图1不可能是下面哪个组件的视图().A. B. C. D.11、“☆”表示一种运算符号,其定义是a☆b=−2a+b,例如:3☆7=−2×3+7,如果x☆(−5)=3,那么x等于().A. −1B. −4C. 7D. 112、下图是某区2019年1月份每天的最低和最高气温,观察此图,下列说法正确的是().A. 在1月份中,最高气温为10°C,最低气温为−2°CB. 在10号至16号的气温中,每天温差最大为7°CC. 1月份每天的最高气温均高于0°C,最低气温均低于0°CD. 从27日开始到月底,每天的最高气温持续走低二、填空题(本大题共8小题,每小题3分,共24分)13、34.24°=°′′′.14、如图所示的网格是正方形网格,∠COD∠AOB.(填“>”,“=”或“<”)15、写出一个一元一次方程,使它的解为x=5,方程为.16、右图是一所住宅的建筑平面图(长度单位:m),用式子表示这所住宅的建筑面积是m2.17、点A,B,C在直线l上,线段AB=6cm,AB=2AC,则BC的长度为cm.18、如图,AD是∠EAC的平分线,AD//BC,∠B=30°,则∠C=.19、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?”设有x个人共同买鸡,根据题意列一元一次方程.20、在2021年迎新联欢会上,数学老师和同学们做了一个游戏.她在A,B,C三个盘子里分别放了一些小球,小球数依次为a0,b0,c0,记为G0=(a0,b0,c0).游戏规则如下:三个盘子中的小球数a0≠b0≠c0,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n次操作后的小球数记为G n=(a n,b n,c n).若G0=(3,5,19),则G 3= ,G 2021= .三、解答题(本大题共5小题,共32分)21、计算:(1) (−12)×(−8)+(−6)2. (2) −14+(−2)÷(+13)+|−9|. 22、解方程:(1) 2(x +1)=7−(x −4). (2) 4x−16=1−3x−13. 23、先化简,再求值:3(a 2b +ab 2)−(3a 2b −1)−ab 2−1,其中a =1,b =−3. 24、如图,根据下列要求画图:(1) 画线段BC ,射线BA .(2) 画出点A 到线段BC 的垂线段AD .(3) 用量角器(半圆仪)测量∠ABC 的度数是 °.(精确到度) 25、如图,已知:BE 平分∠ABC ,CF 平分∠BCD ,且BE//CF ,求证:AB//CD .证明:∵BE 平分∠ABC ,∴∠1=12∠ABC ,∵CF 平分∠BCD ,∴ ∠2=12 (),又∵BE//CF ,∴∠1= (),∴∠ABC=,∴AB//CD().四、解答题(本大题共3小题,共20分)26、暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:(1) 其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元.②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金.(2) 若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.27、点O是直线AB上的一点,射线OC从OA出发绕点O顺时针方向旋转,旋转到OB停止,设∠AOC=α(0∘⩽α⩽180∘),射线OD⊥OC,作射线OE平分∠BOD.(1) 如图1,若α=40∘,且OD在直线AB的上方,依题意补全图形,求∠DOE度数(要求写出几何推理过程).(2) 射线OC顺时针旋转一定的角度得到图2,当射线OD在直线AB的下方时,其他条件不变,请你直接用含α的代数式表示∠DOE的度数.(3) 射线OC从OA出发绕点O顺时针方向旋转到OB,在旋转过程中你发现∠DOE与∠AOC(0∘⩽∠AOC⩽180∘,0∘⩽∠DOE⩽180∘)之间有怎样的数量关系?请你直接用含α的代数式表示∠DOE的度数.,19},我们28、把几个互不相等的数用大括号围起来,中间用逗号断开,如:{1,2,−3}、{−2,7,34称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,代数式的值6−a也必是这个集合的元素,这样的集合我们称为“完美”集合.例如集合{6,0}就是一个“完美”集合.因为:a=6时,6−a=0;a=0时,6−a=6;即这个集合中两个元素对应的代数式的值6,0也都是这个集合的元素.(1) 判断集合{1,2},{−2,1,3,5,8}中,是“完美”集合的是.(2) 已知有理数a,b,c(a<b<c)在数轴上分别对应为A,B,C三点,若{a,b,c}为“完美”集合,则称A,B,C为“完美点”:①若A,B,C为“完美点”,则b=,A,B,C在数轴上的位置关系是:.②数轴上P、Q两点对应的有理数为−10、30.动点A从P出发以每秒1个单位的速度沿数轴在P、Q两点之间往返运动,同时动点C从Q出发以每秒2个单位的速度沿数轴在Q、P两点之间往返运动,当运动时间为t秒时,存在点B使A,B,C为“完美点”(0<t<40),求t的值.1 、【答案】 A;【解析】将数字338600000用科学记数法可表示为3.386×108.故选A.2 、【答案】 B;【解析】由图可知,∠MON=70°,∴∠MON的余角大小为90°−70°=20°.故选B.3 、【答案】 C;【解析】A选项:∠1与∠2没有公共点,故A不是对顶角,故A错误;B选项:∠1与∠2的两边没有互为反向延长线,故B不是对顶角,故B错误;D选项:∠1与∠2的两边没有互为反向延长线,故D不是对顶角,故D错误;故选C.4 、【答案】 D;【解析】 A选项 : 原式=3m,所以本选项运算错误,不符合题意;B选项: a3和a2的次数不同,不是同类型,不能直接加减合并,所以本选项运算错误,不符合题意;C选项 : a2b和ab2相同字母的次数不同,不是同类型,不能直接加减合并,所以本选项运算错误,不符合题意;D选项 : 原式=xy,所以本选项运算正确,符合题意.5 、【答案】 D;【解析】 A选项 : 由−3+2x=1,得2x=1+3,故A错误.B选项 : 由3y=−4,得y=−4,故B错误.3C选项 : 由3=x+2,得x=2−3,故C错误.D选项 : 由x−4=9,得x=9+4,正确.6 、【答案】 C;【解析】由a、b、c在数轴上的关系可知c>b>a;b+a<0;|a|>|b|;abc<0,故选C.7 、【答案】 D;【解析】垂线段的长度即为点到直线的距离,垂线段最短,故选D.8 、【答案】 B;【解析】∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°−22°=68°,故选B.9 、【答案】 A;【解析】解:∵2x2+4y=−2,∴2(x2+2y)=−2,∴x2+2y=−1,∴x2+2y−6=−1−6=−7,故选:A.10 、【答案】 C;【解析】观察图形可发现不可能是C项的视图.11 、【答案】 B;【解析】由题意可知:−2x−5=3,∴−2x=8,∴x=−4.故选B.12 、【答案】 D;【解析】 A选项 : 如图所示,在一月份中,最高气温是10°C,最低气温是−10°C,所以本选项说法错误,不符合题意;B选项 : 如图所示,14号时,最高气温是6°C,最低气温是−8°C,温差是14°C,所以本选项说法错误,不符合题意;C选项 : 如图所示,9号时,最高气温是0°C,15号时,最高气温是−2°C,所以本选项说法错误,不符合题意;D选项 : 如图所示,从27号开始,每天的气温持续走低,所以本选项说法正确,符合题意.13 、【答案】34;14;24;【解析】0.24°×60=14.4′,0.4′×60=24′′,34.24°=34°14′24′′.14 、【答案】<;【解析】取格点E,连接OE,由图可知∠AOB=∠DOE,∠DOE>∠COD,∴∠AOB>∠COD,即∠COD<∠AOB,故答案为:<.15 、【答案】2x−3=7;【解析】写出一个一元一次方程,使它的解为x=5,方程可以是2x−3=7,故答案为:2x−3=7(答案不唯一).16 、【答案】22.5a;【解析】建筑面积=4×6a−(6a−3a−1.5a)=24a−1.5a=22.5a,故答案为:22.5a.17 、【答案】3或9;【解析】分两种情况,第一种情况如下图:∵AB=6,AB=2AC,∴AC=12AB=12×6=3,∴BC=AB−AC=6−3=3(cm),第二种情况如下图:∵AB=6,AB=2AC,AC=12AB=12×6=3,∴BC=AB+AC=6+3=9(cm),故答案为:3或9.18 、【答案】30°;【解析】∵AD//BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC =∠B +∠C ,∴∠C =∠EAC −∠B =30°.19 、【答案】 9x −11=6x +16;【解析】 等量关系为:9×买鸡人数−11=6×买鸡人数+16,即可解答.20 、【答案】 (6,8,13);(8,10,9);【解析】 ∵G 0=(3,5,19),∴G 1=(4,6,17),G 2=(5,7,15),G 3=(6,8,13),G 4=(7,9,11),G 5=(8,10,9),G 6=(9,8,10),G 7=(10,9,8),G 8=(8,10,9),G 9=(9,8,10),G 10=(10,9,8),⋯⋯∴从G 5开始每3次为一个周期循环,∵(2021−4)÷3=672⋯⋯1,∴G 2021=G 5=(8,10,9),故答案为:(6,8,13),(8,10,9),21 、【答案】 (1) 40.(2) 2.【解析】 (1) 原式=4+36=40.(2) 原式=−1+(−2)×(+3)+9=−1−6+9=2.22 、【答案】 (1) x =3.(2) x =910. 【解析】 (1) 2(x +1)=7−(x −4)2x +2=7−x +42x +x =7+4−23x=9x =3.(2) 4x−16=1−3x−134x −1=6−2(3x −1)4x −1=6−6x +24x +6x =6+2+110x=9x =910. 23 、【答案】 见解析【解析】 解:原式=3a 2b +3ab 2−3a 2b +1−ab 2−1=2ab 2,当a =1,b =−3时,原式=2×1×(−3)2=2×9=18.24 、【答案】 (1) 画图见解析.(2) 画图见解析.(3) 70;【解析】 (1) 线段BC :以点B 和点C 为端点,连接起来.射线BA :以点B 为端点,过点A 画射线BA .如图所示:(2) 过点A 向线段BC 作垂线,垂足为点D .如图所示:(3) 经测量∠ABC 的度数为70°.如图所示:25 、【答案】∠BCD;角平分线的定义;∠2;两直线平行,内错角相等;∠BCD;内错角相等,两直线平行.【解析】∵BE平分∠ABC,∠ABC,∴∠1=12∵CF平分∠BCD,∠BCD(角平分线的定义),∴∠2=12又∵BE//CF,∴∠1=∠2(两直线平行,内错角相等),∴∠ABC=∠BCD,∴AB//CD(内错角相等,两直线平行).26 、【答案】 (1) 见解析;(2) 见解析【解析】 (1) 解:设两人船每艘x元/小时,则八人船每艘(2x−30)元/小时,由题意,可列方程2x+3(2x−30)=630,解得:x=90,∴2x−30=150,答:两人船每艘90元/小时,则八人船每艘150元/小时.(2) 解:如下表所示:27 、【答案】 (1) ∠DOE=25∘,画图见解析,证明见解析.−45∘.(2) ∠DOE=α2α−45∘|.(3) ∠DOE=|12【解析】 (1) 如图1所示,依题意补全图形,∵点O是直线AB上一点,∴∠AOB=180∘,∵OD⊥OC,∴∠COD=90∘,∵∠AOC=α=40∘,∴∠BOD=∠AOB−∠AOC−∠COD=180∘−40∘−90∘=50∘,∵射线OE平分∠BOD,∴∠BOD=2∠DOE,则∠DOE=25∘.(2) 如图2所示,射线OD在直线AB下方,∵点O是直线AB上一点,∴∠AOB=180∘,∵OD⊥OC,∴∠COD=90∘,∵∠AOC=α,∴∠BOC=∠AOB−∠AOC=180∘−α,∴∠BOD=∠COD−∠BOC=90∘−(180∘−α)=α−90∘,∵射线OE平分∠BOD,∴∠BOD=2∠DOE,则∠DOE=α2−45∘.(3) 当射线OD在直线AB上方时,∠BOD=∠AOB−∠AOC−∠COD=180∘−α−90∘=90∘−α,∵OE平分∠BOD,∴∠DOE=12∠BOD=45∘−α2,即∠DOE=45∘−12∠AOC;当射线OD在直线AB下方时,∠BOC=∠AOB−∠AOC=180∘−α,∠BOD=∠COD−∠BOC=90∘−(180∘−α)=α−90∘.∵OE平分∠BOD,∴∠DOE=12∠BOD=12α−45∘,∠AOC−45∘,即∠DOE=12∠AOC−45∘|,∴∠DOE=|12α−45∘|.∠DOE=|1228 、【答案】 (1) {−2,1,3,5,8};(2)①3;点A在最左侧,点B在中间,点C在最右侧,且点A与点C关于点B对称②14或22.【解析】 (1) 由题意得:“完美集合”即当a是集合内的元素时,6−a也是集合内的元素,(新概念问题,理解题意),{1,2}中,当a=1时,6−a=5不在集合{1,2}内,故不是,而{−2,1,3,5,8}中,a=−2时,6−a=8,a=1时,6−a=5,a=3时,6−a=3,a=5时6−a=1,a=8时,6−a=−2,此时6−a均在集合内,故是“完美集合”.(2)①∵“完美集合”a与6−a要一一对应,而集合内仅有a、b、c且规定a<b<c,∴当B是在b=6−b时的点,那b=3时,明显b也是6−b,才会是奇数个的元素,而无论a取任何值时,c总是为6−a,故两者关于3对称,那关于点B对称,∴点A在最左侧,点B在中间,点C在最右侧,且点A与点C关于点B对称.②由题意得P=−10+1×t,Q=30−2×t(0<t<40),当点A与点C关于3对称,存在点B,∴−10+t+30−2t=6或−10+t+−10+2(t−20)=6,∴t=14或22.。
北京市海淀区2019-2020学年第一学期七年级期末数学试题及答案(初一)
北京市海 淀 区 2019~2020学年度第一学期七 年 级 第 一 学 期 期 末 调 研一、选择题(本题共30分,每小题3分)1. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V”字手势早已成为世界用语了.右图的“V”字手势中,食指和中指所夹锐角α的度数为A .25︒B .35︒C .45︒D .55︒2. 2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人. 将“1.5万”用科学记数法表示应为A .31.510⨯B .31510⨯C .41.510⨯D .41510⨯ 3. 下表是11月份某一天北京四个区的平均气温:这四个区中该天平均气温最低的是 A .海淀B .怀柔C .密云D .昌平4. 下列计算正确的是A .220m n nm -=B . m n mn +=C .325235m m m +=D . 3223m m m -=-5. 已知关于x 的方程2mx x +=的解是3x =,则m 的值为A .13B .1C .53D . 36. 有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .4a <-B .0bd >C .0b c +>D .||||a b >7. 下列等式变形正确的是A . 若42x =,则2x =B.若4223x x-=-,则4322x x+=-C.若4(1)32(1)x x+-=+,则4(1)2(1)3x x+++=D.若3112123x x+--=,则3(31)2(12)6x x+--=8.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力. 跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道. 如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB与正北方向所成角的度数为A.20°B.70°C.110°D.160°9.已知线段8AB=cm,6AC=cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是A.①②B.③④C.①②④D.①②③④10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是A.P→A B.P→BC.P→C D.P→D二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是_______.+1.5 −3.5 +0.7 −0.6甲乙丙丁12.一个单项式满足下列两个条件:①系数是2-;②次数是3.请写出一个同时满足上述两个条件的单项式_______.13.计算48396731''︒+︒的结果为_______.14.如图,将五边形ABCDE 沿虚线裁去一个角得到六边形ABCDGF ,则该六边形的周长一定比原五边形的周长_______ (填:大或小),理由为__________________________________________________ . 15.已知一个长为6a ,宽为2a 的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长方形,按图2的方式拼接,则阴影部分正方形的边长是_______.(用含a 的代数式表示)图1 图216.如下图,点C 在线段AB 上,D 是线段CB 的中点. 若47AC AD ==,,则线段AB 的长为_______.17.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式3()5f x mx nx =++,当2x =时,多项式的值为(2)825f m n =++,若(2)6f =,则(2)f -的值为_______. 18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A 、B 两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示. 目前该商场有促销活动,促销方案如表2所示.则选择_______品牌的洗衣机和_______品牌的烘干机支付总费用最低,支付总费用最低为_______元.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分) 19.计算:2a6aB C(1)()76(4)(3)--+-⨯- (2)2313(2)1()2-⨯--÷-20.解方程:(1)3265x x -=-+ (2) 325123x x +--=21.先化简,再求值:222222(2)(6)3xy x y x y xy x y --++,其中2,1x y ==-.22.如图,已知平面上三点A ,B ,C ,请按要求完成下列问题: (1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD BC =,连接CD (保留画图痕迹); (3)利用刻度尺取线段CD 的中点E ,连接BE .四、解答题(本题共10分,第23题4分,第24题6分) 23.下图是一个运算程序:(1)若2x =-,3y =,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.||3m x y =+ ||3m x y =-24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”. 2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者3-1取胜的球队积3分,负队积0分;而在比赛中以3-2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示. (1)中国队11场胜场中只有一场以3-2取胜,请将中国队的总积分填在表格中. (2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见下表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且a b <,c d <. (1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为__________________; ②求点M 表示的有理数m 的值(用含a ,b 的代数式表示);图1(2)已知a b c d +=+,①若A ,B ,C 三点的位置如图所示,请在图中标出点D 的位置;图2②a ,b ,c ,d 的大小关系为__________________.(用“< ”连接)OBA26.阅读下面材料:小聪遇到这样一个问题:如图1,AOB α∠=,请画一个AOC ∠,使AOC ∠与BOC ∠互补.图1 图2 图3小聪是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠.因此,小聪找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明; 已知:如图3,点O 在直线AD 上,射线OC 平分∠BOD. 求证:∠AOC 与∠BOC 互补.(2)参考小聪的画法,请在图4中画出一个AOH ∠,使A O H ∠与BOH ∠互余.(保留画图痕迹)(3)已知EPQ ∠和FPQ ∠互余,射线PM 平分EPQ ∠,射线PN 平分FPQ ∠. 若EPQ β∠=(090β︒<<︒),直接写出锐角MPN ∠的度数是__________________.O BAOCBAODCBA27.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为2()M x .如2(735)111M =,2(561)101M =.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如右图所示.根据以上材料,解决下列问题:(1)2(9653)M 的值为 ,22(58)(9653)M M +的值为 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”. 如2(124)100M =,2(630)010M =, 因为22(124)+(630)110M M =,2(124630)110M +=,所以222(124+630)(124)+(630)M M M =,即124与630满足“模二相加不变”. ①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有 个.1111011100+七年级第一学期期末调研数学参考答案 2020.1一、选择题(本题共30分,每小题3分)二、填空题(本题共16分,每小题2分)11. 丁. 12. 32x -(不唯一) 13. 0′1°116 14. 小,两点之间线段最短 15. 2a 16. 1017. 418. B ,B ,12820注:① 第12题答案不唯一,只要符合题目要求的均可给满分;② 第14题每空1分;③ 第18题前两个空均答对给1分,第三个空1分.三、解答题(本大题共24分,第19题8分,第20题8分,第21题4分,第22题4分) 19.(每小题满分4分)(1)解:7(6)(4)(3)--+-?7612=++ …………………………………..2分 25= …………………………………..4分(2)解:2313(2)1()2-?-? 341(8)=-?? …………………………………..2分128=-+ …………………………………..3分 4=- …………………………………..4分20.(每小题满分4分)(1)解:3265x x -=-+3562x x -=-+ …………………………………..2分 24x -=- …………………………………..3分2x = …………………………………..4分(2)解:325123x x +--=3(32)2(5)16x x +--=? …………………………………..1分962106x x +-+= …………………………………..2分710x =- …………………………………..3分107x =- …………………………………..4分 21.(本小题满分4分)解: 222222(2)(6)3xy x y x y xy x y --++=222224263xy x y x y xy x y ---+ …………………………………..2分 =22xy - …………………………………..3分当2,1x y ==-时,原式222(1)=-创- 4=- ………………………………..4分 22. (本小题满分5分) (1)(2)(3)如图所示:正确画出射线AC ,线段BC ………………………………….2分 正确画出线段AB 及延长线,点D 以及线段CD ………………………………….4分 正确画出点E 以及线段BE ………………………………….5分四、解答题(本大题共10分,第23题4分,第24题6分)23. (本小题满分4分) 解:(1) ∵2x =-,3y =,∴x y <, ………………………………..1分 ∴32337m x y =-=--?-. ………………………………..2分(2)由已知条件可得4,x y m ==,当4m >时,由43m m +=,得2m =-,符合题意; ………………………………..3分 当4m £时,由43m m -=得1m =,不符合题意,舍掉.∴2y =-. …………………………………..4分 24. (本小题满分4分)解:(1) 32 …………………………………..1分A (2) 设巴西队积3分取胜的场数为x 场,则积2分取胜的场数为(5)x -场 ………………..2分 依题意可列方程 32(5)121x x +-+= ………………………………….4分 3210121x x +-+= 530x =6x = …………………………………..5分则积2分取胜的场数为51x -=,所以取胜的场数为617+=答:巴西队取胜的场数为7场. …………………………………..6分 五、解答题(本大题共19分,25~26每题6分,27题7分) 25. (本小题满分6分)(1)① 0a b += …………………………………..1分 ②∵M M 为AB 中点,∴AM BM =. …………………………………..2分 ∴m a b m -=-. ∴2+=ba m . …………………………………..3分 (2) ①如图所示 …………………………………..4分②a c d b <<<或者c a b d <<< …………………………………..6分26. (本小题满分6分)(1)证明:点O 在直线AD 上, ∴180AOB BOD ?? . 即180AOB BOC COD ???.∴180AOC COD ??. …………………………………..1分OC 平分BOD Ð,∴BOC COD ??. ∴180AOC BOC ??.\AOC BOC 与互补行. ………………………………….2分(2)如图所示期末试题北京市2019-2020学年 或 ………………………4分(3)45或|45|b - ………………………6分27.(本小题满分7分)解:(1) 10111101,………………………2分 (2)①2(23)01M =,2(12)10M =,22(12)(23)11M M +=,2(1223)11M +=∴222(12)(23)(1223)M M M +=+,∴12与23 满足“模二相加不变”.2(23)01M =,2(65)01M =,22(65)(23)10M M +=,2(6523)00M +=222(65)(23)(6523)M M M +?,∴65与23不满足“模二相加不变”.2(23)01M =,2(97)11M =,22(97)(23)100M M +=,2(9723)100M +=222(97)(23)(9723)M M M +=+,∴97与23满足“模二相加不变”…………………….5分 ②38……………………7分。
2020年北京市海淀区七年级上学期期末考试数学模拟试卷(附答案)
北京市海淀区七年级上学期期末考试数学模拟试卷一、选择题(本题共36分,每题3分) 1、—6的相反数是 A 、—6B 、6C 、61-D 、61 2、下列四个数中,最小的数是 A 、|—6| B 、—2C 、0D 、21-3、右图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是A B C D4、据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,把数3 120 000用科学记数法表示为A 、51012.3⨯ B 、710312.0⨯ C 、5102.31⨯ D 、61012.3⨯5、若53=x 是关于x 的方程05=-m x 的解,则m 的值为 A 、3 B 、31 C 、-3 D 、31-6、如图,下列说法中不正确...的是 (A )直线AC 经过点A(B )射线DE 与直线AC 有公共点 (C )点B 在直线AC 上(D )直线AC 与线段BD 相交于点A 7、下列运算正确的是A 、42633=-a a B 、532532b b b =+ C 、b a ba b a 22245=- D 、ab b a =+8、将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是A B C D9、若α∠与β∠互为补角, β∠是α∠的2倍,则α∠为A 、30°B 、40°C 、60°D 、120°10、如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,且︒=∠140BOE ,则BOC ∠为 A 、140° B 、100° C 、80° D 、40°11、如图,从边长(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则AD 、AB 的长分别是 A 、3、2a+5B 、5、2a+8C 、5、2a+3D 、3、2a+212、在三角形ABC 中,AB=8,AC=9,BC=10.o P 为BC 边上的一点,在边AC 上取点1P ,使得01CP CP =。
2019-2020学年北京市海淀区七年级(上)期末数学试卷
2019-2020学年北京市海淀区七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25∘B.35∘C.45∘D.55∘【答案】B【考点】角的概念【解析】直接利用量角器量出其角度或估算得出答案.【解答】如图所示:食指和中指所夹锐角α的度数为:35∘.故选:B.2. 2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人将“1.5万”用科学记数法表示应为()A.1.5×103B.15×103C.1.5×104D.15×104【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】将“1.5万”用科学记数法表示应为1.5×104.3. 下表是11月份某一天北京四个区的平均气温:A.海淀B.怀柔C.密云D.昌平【答案】B【考点】有理数大小比较正数和负数的识别【解析】由表格可知:−3<−2<0<1即可求解.【解答】∵−3<−2<0<1,∴最低的是怀柔,4. 下列计算正确的是()A.m2n−nm2=0B.m+n=mnC.2m3+3m2=5m5D.2m3−3m2=−m【答案】A【考点】合并同类项【解析】根据合并同类项法则逐一判断即可.【解答】A.m2n−nm2=0,正确,故本选项符合题意;B.m与n不是同类项,所以不能合并,故本选项不合题意;C.2m3与3m2不是同类项,所以不能合并,故本选项不合题意;D.2m3与−3m2不是同类项,所以不能合并,故本选项不合题意.5. 已知关于x的方程mx+2=x的解是x=3,则m的值为()A.1 3B.1C.53D.3【答案】A【考点】一元一次方程的解【解析】把x=3代入关于x的方程mx+2=x,得到关于m的新方程,通过解新方程求得m的值即可.【解答】把x=3代入关于x的方程mx+2=x,得3m+2=3.解得m=13.6. 实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>−4B.bd>0C.b+c>0D.|a|>|b|【答案】D【考点】数轴实数在数轴上表示实数【解析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【解答】A、∵a<−4,∴结论A错误;B、∵b<−1,d=4,∴bd<0,结论B错误;C、∵−2<b<−1,0<c<1,∴b+c<0,结论C错误;D、∵a<−4,b>−2,∴|a|>|b|,结论D正确.7. 下列等式变形正确的是()A.若4x=2,则x=2B.若4x−2=2−3x,则4x+3x=2−2C.若4(x+1)−3=2(x+1),则4(x+1)+2(x+1)=3D.若3x+12−1−2x3=1,则3(3x+1)−2(1−2x)=6【答案】D【考点】等式的性质【解析】根据等式的性质即可解决.【解答】A、若4x=2,则x=12,原变形错误,故这个选项不符合题意;B、若4x−2=2−3x,则4x+3x=2+2,原变形错误,故这个选项不符合题意;C、若4(x+1)−3=2(x+1),则4(x+1)−2(x+1)=3,原变形错误,故这个选项不符合题意;D、若3x+12−1−2x3=1,则3(3x+1)−2(1−2x)=6,原变形正确,故这个选项符合题意;8. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70∘的方向上,则这条跑道所在射线OB与正北方向所成角的度数为()A.20∘B.70∘C.110∘D.160∘【答案】C【考点】方向角【解析】根据方向角的定义解答.【解答】如图,∠BOD即这条跑道所在射线OB与正北方向所成角.由于∠BOC=70∘,∴∠BOD=180∘−70∘=110∘所以这条跑道所在射线OB与正北方向所成角的度数为110∘.9. 已知线段AB=8cm,AC=6cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④【答案】C【考点】三角形三边关系【解析】直接利用当A,B,C在一条直线上,以及当A,B,C不在一条直线上,分别分析得出答案.【解答】∵线段AB=8cm,AC=6cm,∴如图1,当A,B,C在一条直线上,∴BC=AB−AC=8−6=2(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=8+6=14(cm),故②正确;如图3,当A,B,C不在一条直线上,8−6<BC<8+6,故线段BC可能为5或9,故③错误,④正确.10. 某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是()A.P→AB.P→BC.P→CD.P→D【答案】D【考点】平面展开-最短路径问题几何体的展开图【解析】根据线段的性质:两点之间线段最短,可直接得出.【解答】由题意得:蚂蚁爬行距离最短的路线是P→D;二、填空题(本题共16分,每小题2分)厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是________.【答案】丁【考点】正数和负数的识别【解析】根据绝对值最小的最接近标准,可得答案.【解答】|+1.5|=1.5,|−3.5|=3.5,|0.7|=0.7,|−0.6|=0.6,0.6<0.7<1.5<3.5,故最接近标准质量的足球是丁.一个单项式满足下列两个条件:①系数是−2;②次数是3.写出一个满足上述条件的单项式:________.【答案】−2x3(答案不唯一)【考点】单项式的概念的应用【解析】利用单项式次数与系数的定义即可得出答案.【解答】一个单项式满足下列两个条件:①系数是−2;②次数是3.则满足上述条件的单项式:−2x3(答案不唯一).计算:48∘39′+67∘31′=________.【答案】116∘10′【考点】度分秒的换算【解析】根据度、分、秒的进制为60直接计算即可.【解答】解:39′+31′=70′=1∘10′,故48∘39′+67∘31′=116∘10′.故答案为:116∘10′.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长________(填:大或小),理由为________.【答案】小,三角形的两边之和大于第三边【考点】多边形【解析】任意两边上的点和两点间的顶点恰好构成一个三角形,利用三角形的三边关系可以得出结论.【解答】将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小,理由是三角形的两边之和大于第三边.已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长形,按图2的方式拼接,则阴影部分正方形的边长是________.(用含a的代数式表示)【答案】2a【考点】列代数式【解析】根据题意和题目中的图形,可以得到图2中小长方形的长和宽,从而可以得到阴影部分正方形的边长.【解答】由图可得,图2中每个小长方形的长为3a,宽为a,则阴影部分正方形的边长是:3a−a=2a,如图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为________.【答案】10【考点】两点间的距离【解析】先根据线段的和差关系求得CD,再根据中点的定义求得BD,再根据线段的和差关系求得AB.【解答】∵AC=4,AD=7,∴CD=7−4=3,∵D是线段CB的中点,∴BD=3,∴AB=AD+BD=7+3=10.历史上数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如,对于多项式f(x)=mx3+nx+5,当x=2时,多项式的值为f(2)=8m+2n+5,若f(2)=6,则f(−2)的值为________.【答案】4【考点】数学常识列代数式求值多项式的概念的应用【解析】根据f(2)=6,可得:8m+2n+5=6,所以8m+2n=1,据此求出f(−2)的值为多少即可.【解答】∵f(2)=6,∴8m+2n+5=6,∴8m+2n=1,∴f(−2)=−8m−2n+5=−(8m+2n)+5=−1+5=4小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表表二:商场促销方案1.所有商品均享受8折优惠.2.所有洗衣机均可享受节能减排补贴,补贴标准为:在折后价的基础上再减免13%.3.若同时购买同品牌洗衣机和烘干机,额外可享受“满两件减400元”则选择________品种的洗衣机和________品种的烘干机支付总费用最低,支付总费用最低为________元.【答案】B,B,12820【考点】一元二次方程的应用【解析】根据题意分四种方案:A品牌洗衣机和A品牌烘干机;A品牌洗衣机和B品牌烘干机;B 品牌洗衣机和A品牌烘干机;B品牌洗衣机和B品牌烘干机.分别计算出支付总费用即可得出答案.【解答】购买A品牌洗衣机和A品牌烘干机费用=(7000+11000)×0.8−7000×0.8×13%−400=13272(元);购买A品牌洗衣机和B品牌烘干机费用=(7000+10000)×0.8−7000×0.8×13%=12872(元);购买B品牌洗衣机和A品牌烘干机费用=(7500+11000)×0.8−7500×0.8×13%=14020(元);购买B品牌洗衣机和B品牌烘干机费用=(7500+10000)×0.8−7500×0.8×13%−400=12820(元);综上所述,选择购买B品牌洗衣机和B品牌烘干机支付总费用最低,支付总费用最低为三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分)计算:(1)7−(−6)+(−4)×(−3);(2)−3×(−2)2−1+(−12)3.【答案】7−(−6)+(−4)×(−3)=7+6+12=25;−3×(−2)2−1+(−1 2 )3=−3×4−1+(−18)=−12−1+(−18)=−1318.【考点】有理数的混合运算【解析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】7−(−6)+(−4)×(−3)=7+6+12=25;−3×(−2)2−1+(−1 2 )3=−3×4−1+(−18)=−12−1+(−18)=−1318.解方程:(1)3x−2=−6+5x;(2)3x+22−x−53=1.移项,合并同类项,可得:−2x=−4,系数化为1,可得:x=2.去分母,可得:3(3x+2)−2(x−5)=6,去括号,可得:9x+6−2x+10=6,移项,合并同类项,可得:7x=−10,.系数化为1,可得:x=−107【考点】解一元一次方程【解析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【解答】移项,合并同类项,可得:−2x=−4,系数化为1,可得:x=2.去分母,可得:3(3x+2)−2(x−5)=6,去括号,可得:9x+6−2x+10=6,移项,合并同类项,可得:7x=−10,.系数化为1,可得:x=−107先化简,再求值:2(2xy2−x2y)−(x2y+6xy2)+3x2y,其中x=2,y=−1.【答案】原式=4xy2−2x2y−x2y−6xy2+3x2y=−2xy2,当x=2,y=−1时,原式=−4.【考点】整式的加减--化简求值【解析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】原式=4xy2−2x2y−x2y−6xy2+3x2y=−2xy2,当x=2,y=−1时,原式=−4.如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE.【答案】射线AC,线段BC即为所求作的图形;线段AB及延长线,点D以及线段CD即为所求作的图形;点E以及线段BE即为所求作的图形【考点】作图—复杂作图直线、射线、线段【解析】(1)画射线AC,线段BC即可;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD即可;(3)利用刻度尺取线段CD的中点E,连接BE即可.【解答】射线AC,线段BC即为所求作的图形;线段AB及延长线,点D以及线段CD即为所求作的图形;点E以及线段BE即为所求作的图形四、解答题(本题共10分,第23题4分,第24题6分)如图是一个运算程序:(1)若x=−2,y=3,求m的值;(2)若x=4,输出结果m的值与输入y的值相同,求y的值.【答案】∵x=−2,y=3,−2<3,∴x<y,∴m=|−2|−3×3=−7.∵x=4,输出结果m的值与输入y的值相同,∴y=m,①4>m时,∵|4|+3m=m,解得m=−2,符合题意.②4≤m时,∵|4|−3m=m,∴4−3m=m,解得m=1,不符合题意,∴y=−2.【考点】有理数的混合运算列代数式求值【解析】(1)若x=−2,y=3,根据−2<3,把x、y的值代入|x|−3y即可.(2)若x=4,输出结果m的值与输入y的值相同,则y=m,分两种情况:4>m;4≤m,求出y的值是多少即可.【解答】∵x=−2,y=3,−2<3,∴x<y,∴m=|−2|−3×3=−7.∵x=4,输出结果m的值与输入y的值相同,∴y=m,①4>m时,∵|4|+3m=m,解得m=−2,符合题意.②4≤m时,∵|4|−3m=m,∴4−3m=m,解得m=1,不符合题意,∴y=−2.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3−0或者3−1取胜的球队积3分,负队积0分;而在比赛中以3−2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示:(1)中国队11场胜场中只有一场以3−2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表,求巴西队胜场的场数.【答案】32;巴西队取胜的场数为7场【考点】推理与论证一元一次方程的应用——其他问题一元一次方程的应用——工程进度问题【解析】(1)依据中国队11场胜场中只有一场以3−2取胜,即可得到中国队的总积分.(2)设巴西队积3分取胜的场数为x场,依据巴西队总积分为21分,即可得到方程,进而得出x的值.【解答】中国队的总积分=3×10+2=32;故答案为:32;设巴西队积3分取胜的场数为x场,则积2分取胜的场数为(x−5)场,依题意可列方程3x+2(x−5)+1=21,3x+2x−10+1=21,5x=30,x=6,则积2分取胜的场数为x−5=1,所以取胜的场数为6+1=7,答:巴西队取胜的场数为7场.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)在数轴上,四个不同的点A,B,C,D分别表示有理数a,b,c,d,且a<b,c<d.(1)如图1,M为线段AB的中点,①当点M与原点O重合时,用等式表示a与b的关系为________;②求点M表示的有理数m的值(用含a,b的代数式表示);(2)已知a+b=c+d,①若三点A,B,C的位置如图所示,请在图中标出点D的位置;②a,b,c,d的大小关系为________(用“<”连接)【答案】a+b=0a<c<d<b【考点】有理数大小比较数轴列代数式【解析】(1)①根据M为线段AB的中点,点M与原点O重合,可知a与b互为相反数,则a+b=0;②根据M为线段AB的中点,可知m为a和b的平均数,从而可以用a、b的代数式表示出来;(2)①根据a+b=c+d,可以在图2中标出点D的位置;②根据①中画出的数轴可以得到a,b,c,d的大小关系.【解答】①∵M为线段AB的中点,点M与原点O重合,∴a与b的关系为:a+b=0,故答案为:a+b=0;②∵M为线段AB的中点,∴点M表示的有理数m的值:a+b;2①∵a+b=c+d,a<b,c<d,∴点D的位置的如下图2所示,;②由图2可得,a<c<d<b,故答案为:a<c<d<b.阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOC.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0∘<β<90∘),直接写出锐角∠MPN的度数是________.【答案】证明:点O在直线AD上,∴∠AOB+BOD=180∘.即∠AOB+∠BOC+∠COD=180∘.∴∠AOC+∠COD=180∘.OC平分∠BOD,∴∠BOC=∠COD.∴∠AOC+∠BOC=180∘∴∠AOC与∠BOC互补.如图所示即为所求作的图形.45∘或|β−45∘|【考点】余角和补角角平分线的定义作图—基本作图【解析】(1)根据画法写出了已知和求证,即可完成证明;(2)根据小聪的画法,画出一个∠AOH,使∠AOH与∠BOH互余即可;(3)根据∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0∘<β<90∘),画出图形即可写出锐角∠MPN的度数.【解答】证明:点O在直线AD上,∴∠AOB+BOD=180∘.即∠AOB+∠BOC+∠COD=180∘.∴∠AOC+∠COD=180∘.OC平分∠BOD,∴∠BOC=∠COD.∴∠AOC+∠BOC=180∘∴∠AOC与∠BOC互补.如图所示即为所求作的图形.如图,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.锐角∠MPN的度数是45∘∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β,PQ平分∠FPF′.则锐角∠MPN的度数是|β−45∘|.故答案为:45∘或|β−45∘|.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为M2(x).如M2(735)=111,M2(561)=101.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如图所示.根据以上材料,解决下列问题:(1)M2(9653)的值为________,M2(58)+M2(9653)的值为________;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如M2(124)=100,M2(630)=010,因为M2(124)+M2(630)=110,M2(124+630)=110,所以M2(124+630)=M2(124)+M2(630),即124与630满足“模二相加不变”.①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有________个.【答案】1011,110138【考点】规律型:数字的变化类规律型:点的坐标规律型:图形的变化类【解析】(1)M2(9653)的值为1011,M2(58)=12M2(9653)=1011,所以M2(58)+M2(9653)的值为1101;(2)①M2(23)=01,M2(12)=10,求出M2(23)+M2(12)=11,M2(23+12)=11,可得M2(23)+M2(12)=M2(23+23);M2(23)=01,M2(65)=01,求出M2(23)+M2(65)=10,M2(23+65)=00,可得M2(23)+M2(65)≠M2(23+65);M2(23)=01,M2(97)=11,求出M2(23)+M2(97)=100,M2(23+297)=100,可得M2(23)+M2(97)=M2(23+97);②模二结果是10有:12,32,52,72,14,34,54,74,16,36,56,76,18,38,10,30,50,70满足题意;模二结果是11有:77,97,79,99满足题意;模二结果是01有:27,29,47,49,67,69,87,89满足题意;模二结果是00有:20,22,24,26,40,42,44,46,60,62,64,66满足题意;38个.【解答】M2(9653)的值为1011,M2(58)=12M2(9653)=1011,∴M2(58)+M2(9653)的值为1101;①M2(23)=01,M2(12)=10,∴M2(23)+M2(12)=11,M2(23+12)=11,∴M2(23)+M2(12)=M2(12+23),∴12与23满足“模二相加不变”,∵M2(23)=01,M2(65)=01,∴M2(23)+M2(65)=10,M2(23+65)=00,∴M2(23)+M2(65)≠M2(23+65),∴65与23不满足“模二相加不变”,∵M2(23)=01,M2(97)=11,∴M2(23)+M2(97)=100,M2(23+97)=100,∴M2(23)+M2(97)=M2(23+97),∴97与23满足“模二相加不变”;②模二结果是10有:12,32,52,72,92,14,34,54,74,94,16,36,56,76,96,18,38,58,78,98,10,30,50,70,90共25个,它们与模二数23的和是11,∴12,32,52,72,14,34,54,74,16,36,56,76,18,38,10,30,50,70满足题意;模二结果是11有:11,31,51,71,91,13,33,53,73,93,15,35,55,75,95,17,37,57,77,97,19,39,59,79,99共30个,它们与模二数23的和是100,∴77,97,79,99满足题意;模二结果是01有:21,23,25,27,29,41,43,45,47,49,61,63,65,67,69,81,83,85,87,89共20个,它们与模二数23的和是10,∴27,29,47,49,67,69,87,89满足题意;模二结果是00有20,22,24,26,28,40,42,44,46,48,60,62,64,66,68,80,82,84,86,88共20个,它们与模二数23的和是01,∴20,22,24,26,40,42,44,46,60,62,64,66满足题意;∴共有38个.。
2020-2021学年北京海淀区七年级上期末数学试卷
2020-2021学年北京海淀区七年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)如图,能用∠1、∠ABC、∠B三种方法表示同一个角的是()A.B.
C.D.
【解答】解:A、∠1、∠ABC、∠B三种方法表示的是同一个角,故此选项正确;
B、∠1、∠AB
C、∠B三种方法表示的不一定是同一个角,故此选项错误;
C、∠1、∠ABC、∠B三种方法表示的不一定是同一个角,故此选项错误;
D、∠1、∠ABC、∠B三种方法表示的不一定是同一个角,故此选项错误;
故选:A.
2.(3分)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为()
A.1.02×106B.1.02×105C.10.2×105D.102×104
【解答】解:1020000=1.02×106.
故选:A.
3.(3分)如表是四个城市今年一月份某一星期的平均气温;其中,平均气温最低的城市是()
城市吐鲁番乌鲁木齐喀什阿勒泰气温(℃)﹣9﹣16﹣7﹣25 A.阿勒泰B.喀什C.吐鲁番D.乌鲁木齐
【解答】解:所给的数的大小顺序为﹣7>﹣9>﹣16>﹣25,
∴阿勒泰的气温最低,
故选:A.
第1 页共15 页。
解析版】北京市海淀区2020—2021学年七年级上期末数学试卷
解析版】北京市海淀区2020—2021学年七年级上期末数学试卷北京市海淀区2020-2021学年七年级上学期末数学试卷一、选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的。
请将正确选项前的字母填在表格中相应的位置。
1.-2的相反数是(。
)。
A。
-。
B。
-2.C。
2.D。
无法确定2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重。
其中推进燃煤电厂脱硫改造 000千瓦是《政府工作报告》中确定的重点任务之一。
将数据15 用科学记数法表示为(。
)。
A。
15×10^6.B。
1.5×10^7.C。
1.5×10^8.D。
0.15×10^83.下列各式结果为正数的是()。
A。
-(-2)^2.B。
(-2)^3.C。
-|-2|。
D。
(-2)^44.下列运算正确的是()。
A。
5a+2a=7a。
B。
5a-2b=3abC。
5a-2a=3.D。
-ab^3+2ab^3=ab^35.如图,把原先弯曲的河道改直,A,B两地间的河道长度变短,如此做的道理是()。
A。
两点确定一条直线。
B。
两点确定一条线段C。
两点之间,直线最短。
D。
两点之间,线段最短6.从三个不同方向看一个几何体,得到的平面图形如图所示,则那个几何体是()。
A。
圆柱。
B。
圆锥。
C。
棱锥。
D。
球7.若2是关于x的方程x+a=-1的解,则a的值为()。
A。
-3.B。
2.C。
-2.D。
-68.有理数a,b在数轴上的位置如图所示,则下列各式成立的是()。
A。
b-a>0.B。
-b>aC。
a>-b。
D。
-ab<09.已知x-3y=3,则5-x+3y的值是()。
A。
8.B。
2.C。
-2.D。
-810.已知线段AB=6cm,若M是AB的三等分点,N是AM的中点,则线段MN的长度为()。
A。
1cm。
B。
2cm。
C。
1.5cm。
D。
1cm或2cm二、填空题(本大题共24分,每小题3分)11.比较大小:-2 ________ -3.12.写出一个解为1的一元一次方程 ________。
北京市海淀区北京大学附属中学2020-2021学年七年级上学期期末数学试题及参考答案
解:当输入 经过一次运算即可得到输出的结果为
当输入 经过两次运算即可得到输出的结果为
当输入 经过三次运算即可得到输出的结果为
(不合题意,舍去)
综上:开始输入的x值可能是 或
故选:
【点睛】
本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.
13.两点确定一条直线
∴ ,
,
故答案填:0.
【点睛】
本题主要考查了同类项的定义,熟记同类项的概念是解决本题的关键.
17.5
【分析】
先解x+1=4,把解代入方程(a-2)x=9,即可求得a值.
【详解】
∵x+1=4,
∴x=3,
∵方程 与 的解相同,
∴3(a-2)=9,
∴a=5.
故答案为:5.
【点睛】
本题考查了一元一次方程的解法,方程同解的意义,熟练掌握一元一次方程解法的基本步骤,借助同解转化新一元一次方程是解题的关键.
7.D
【分析】
根据图形,结合互补的定义判断即可.
【详解】
A、 与 相等,不互补,故本选项错误;
B、 与 不互补,故本选项错误;
C、 与 互余,故本选项错误;
D、 和 互补,故本选项正确;
故选:D.
【点睛】
本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.
8.B
【分析】
根据角平分线的定义判断即可.
【详解】
解:36 000用科学记数法表示为:3.6×104,
故选:C.
【点睛】
本题考查科学记数法,掌握用科学记数法表示数的方法是解题的关键.
3.D
【分析】
2020-2021学年北京市海淀区七年级上学期期末数学试卷(附解析)
2020-2021学年北京市海淀区七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,已知点M是直线AB上一点,∠AMC=52°48′,∠BMD=72°19′,则∠CMD等于()A. 49°07′B. 54°53′C. 55°53′D. 53°7′2.据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A. 2.78×106B. 27.8×106C. 2.78×105D. 27.8×1053.下列说法:①−a是负数;②−2的倒数是−1;③−(−3)的相反数是−3;④绝对值等于2的2数2.其中正确的是()A. 1个B. 2个C. 3个D. 4个4.下面的式子,正确的是()A. 3a2+5a2=8a4B. 5a2b−6ab2=−abC. 2x+3y=5xyD. 6xy−9xy=−3xy5.若关于x的一元一次方程2x+3a=1的解为x=2,则关于m的一元一次不等式3−m>a的解集为()A. m<2B. m<4C. m>2D. m>46.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③√3是3的平方根;④在1和3之间的无理数有且只有√2,√3,√5,√7这4个;⑤π是分数,它是有理数,2⑥1+√6是多项式.其中正确的个数是()A. 1B. 2C. 3D. 47.江苏卫视《一站到底》栏目中,有一期的题目如图,两个天平都保持平衡,则三个球体的重量等于()个正方体的重量.A. 2B. 3C. 4D. 58.某人在点A处看点B在北偏东40°的方向上,看点C在北偏西35°的方向上,则∠BAC的度数为()A. 65°B. 75°C. 40°D. 35°9.若一个三角形的两边长分别为4和7,则第三边长可能是()A. 2B. 3C. 10D. 1110.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.二、填空题(本大题共8小题,共16.0分)11. 如果全班某次数学成绩的平均分是84分,某同学得了85分,记作+1分,那么−5分表示的是______分.12. 写出一个与5x 2y 是同类项且系数为负数的单项式:______.13. 转换角的单位:1.6°=______,48°15′−30°45′=______.14. 如果等腰三角形的两条边长分别等于4厘米和8厘米,那么这个等腰三角形的周长等于______厘米.15. 在运动会中,一班总成绩为m 分,二班比一班总成绩的23还多5分,用含有m 的代数式表示二班的总成绩为______ .16. 如果点C 在线段AB 上,下列表达式:①AC =12BC ;②AB =2BC ;③AC =BC ;④AC +BC =AB 中,能表示C 是线段AB 中点的有______ 个.17. 代数式2x 2−4x +7的值为9,则2x −x 2+6的值为______ .18. 两年前生产某种药品的成本是5000元,现在生产这种药品的成本是3000元,设平均每年降价的百分率为x ,根据题意列出的方程是______.三、计算题(本大题共1小题,共8.0分)19. 涟水外国语中学七年级同学在学习完《有理数》后,对运算产生了浓厚的兴趣.为庆祝“国庆节”,他们借助有理数的运算,定义了一种新运算“−”,规则如下:(1)求(−2)−(−3)的值;(2)试用学习有理数的经验和方法来探究这种新运算“−”是否具有交换律?请写出你的探究过程.四、解答题(本大题共8小题,共46.0分)20. 解方程:(x +14)2−(x +14)(x −14)=14.21. 先化简再求值:(1)−a 2b+(2ab 2−a 2b)−2(2ab 2−a 2b),其中a=−1,b=−2.(2)22. 按要求画图:(1)如图1,平面上有五个点A,B,C,D,E,按下列要求画出图形.①连接BD;②画直线AC交BD于点M;③画出线段CD的反向延长线;④请在直线AC上确定一点N,使B,E两点到点N的距离之和最小,并写出画图的依据.(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注意:只需添加一个符合要求的正方形,并用阴影表示.)23. 某地电话拨号入网有两种收费方式,用户可任选其一(A)计时制:0.05元/分;(B)包月制:40元/月(限一部个人住宅电话上网)此外,每一种上网方式都得加收通信费0.02元/分,(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用:(2)若某用户估计一个月上网时间是50小时,他应该选择哪一种方式.24. 某学校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,甲种方式:收制版费6元,每印一份收印刷费0.1元;乙种方式:没有制版费,每印一份收印刷费0.12元,若数学学案需印刷x份.(1)填空:按甲种收费方式应收费________________ 元,按乙种收费方式应收费________________ 元;(2)若该校一年级需印500份,选用哪种印刷方式合算?(3)印刷多少份时,甲、乙两种收费方式一样多?25. 已知有理数a,b,c在数轴上的位置如图所示.(1)用“>”或“<”填空:b−a______ 0,c−b______ 0,a+b______ 0;(2)化简:|b−a|−|c−b|+|a+b|.26. 如图,AB、CD交于点O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(题中所说的角均是小于平角的角).(1)求∠AOE的度数;(2)请写出∠AOC在图中的所有补角;(3)从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.27. 已知A、B、C三个数集,每一个数集中所包含的数都写在各自的大括号内,请把这些数填在图圈内相应的位置.A:{−2,−3,−8,6,7,…}B:{−3,−5,1,2,6,…}C:{−1,−3,−8,2,5,…}.参考答案及解析1.答案:B解析:此题考查了角的计算,掌握平角的定义是本题的关键,是一道基础题,根据∠AMC=52°48′,∠BMD= 72°19′和∠CMD=180°−∠AMC−∠BMD,代入计算即可.解:∵∠AMC=52°48′,∠BMD=72°19′,∴∠CMD=180°−∠AMC−∠BMD=180°−52°48′−72°19′=54°53′,故选B.2.答案:C解析:解:将27.8万用科学记数法表示为2.78×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.答案:B解析:解:①−a不一定是负数,错误;②−2的倒数是−1,正确;2③−(−3)的相反数是−3,正确;④绝对值等于2的数是±2,错误;故选:B.利用负数,倒数,相反数以及绝对值的意义判断即可.此题考查了负数,倒数,相反数以及绝对值的意义,熟练掌握定义是解本题的关键.4.答案:D解析:解:A、3a2+5a2=8a2,原计算错误,故此选项不符合题意;B、5a2b与6ab2不是同类项,不能合并,原计算错误,故此选项不符合题意;C、2x与3y不是同类项,不能合并,原计算错误,故此选项不符合题意;D、6xy−9xy=−3xy,原计算正确,故此选项符合题意.故选:D.先判断是否是同类项,再进行合并同类项即可.此题考查了合并同类项,熟练掌握合并同类项法则是解题的关键.5.答案:B解析:解:把x=2代入方程得:2x+3a=1,解得:a=−1,∴一元一次不等式为3−m>−1,解得m<4,故选:B.把x=2代入方程计算即可求出a的值,即可得到关于m的一元一次不等式3−m>−1,解不等式即可求得解集.此题考查了一元一次方程的解以及解一元一次不等式,方程的解即为能使方程左右两边相等的未知数的值.6.答案:B解析:本题考查了实数,利用无理数的意义,实数与数轴的关系是解题关键.根据无理数的意义,实数与数轴的关系,可得答案.解:①任何无理数都是无限小数,故①符合题意;②实数与数轴上的点一一对应,故②不符合题意;③√3是3的平方根,故③符合题意;④在1和3之间的无理数有无数个,故④不符合题意;⑤π是无理数,故⑤不符合题意;2⑥1+√6是无理数,故⑥不符合题意;故选B.7.答案:D解析:解:设一个球体重x,圆柱重y,正方体重z.z,根据等量关系列方程2x=5y;2z=3y,消去y可得:x=53则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.本题主要考查了等式的性质,此题的关键是找到球,正方体,圆柱体的关系.8.答案:B解析:解:如图所示:∵某人在A处看点B在北偏东40°的方向上,看点C在北偏西35°的方向上,∴∠BAD=40°,∠CAD=35°,∴∠BAC=∠BAD+∠CAD=40°+35°=75°.故选:B.根据方位角的概念画出图形,再根据已知结合角的和差关系求解.本题考查了方向角,解答此类题关键是需要从运动的角度,正确画出方位角,再结合角的和差关系求解.9.答案:C解析:解:设第三边的长为l,则7−4<l<7+4,即3<l<11,故选:C.设第三边的长为l,再根据三角形的三边关系进行解答即可.本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.10.答案:D解析:本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.根据正方体的表面展开图进行分析解答即可.解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,正面的图的斜线方向相反,故C错误,只有D选项符合条件,故选:D.11.答案:79解析:解:如果全班某次数学成绩的平均分是84分,某同学得了85分,记作+1分,那么−5分表示的是79分.故答案为:79.根据全班某次数学成绩的平均分是84分,某同学得了85分,记作+1分,可以得到−5分表示的分数.本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.12.答案:−4x2y(答案不唯一)解析:解:同类项是指字母相同,并且相同字母的次数也相同.与5x2y是同类项且系数为负数的单项式,可以是:−4x2y.故答案为:−4x2y(答案不唯一).根据单项式系数及同类项的定义进行解答即可.本题考查的是单项式系数及同类项的定义,单项式中的数字因数叫做单项式的系数,同类项是指字母相同,并且相同字母的次数也相同.13.答案:1°36′17°30′解析:解:1.6°=1°36′,48°15′−30°45′=17°30′.故答案是:1°36′;17°30′.根据度分秒间的进制单位是60解答.考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.14.答案:20解析:解:当4厘米是腰时,则4+4=8,不能组成三角形,应舍去;当8厘米是腰时,则三角形的周长是4+8×2=20(厘米).故答案为:20.分两种情况讨论:当4厘米是腰时或当8厘米是腰时.根据三角形的三边关系,知4,4,8不能组成三角形,应舍去.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.m+515.答案:23m+5.解析:解:由题意得:二班的总成绩=23m+5.故答案为:23×一班成绩+5,根据题意列代数式即可.二班的总成绩=23本题考查了列代数的知识,解答本题的关键是读懂题意,找到所求的量的等量关系.16.答案:2解析:解:如图,C为AB的中点,则有②AB=2BC;③AC=BC这2个正确.故答案为:2.利用线段中点的意义:在线段上平分线段的点,画出图形判定即可.此题考查线段中点的意义,注意结合图形,直观理解.17.答案:5解析:解:∵2x2−4x+7=9,即x2−2x=1,∴原式=−(x2−2x)+6=−1+6=5.故答案为:5.根据题意求出x2−2x的值,原式变形后代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.答案:5000(1−x)2=3000解析:解:设平均每年降价的百分率为x,由题意得,5000(1−x)2=3000.故答案为:5000(1−x)2=3000.设平均每年降价的百分率为x,根据题意可得,两年前的生产成本×(1−降价百分率)2=现在的生产成本,据此列方程即可.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.19.答案:(1)2;(2)(−2)−(−3)=2,则(−3)−(−2)=(−3)×(−2)+2×(−3)=6−6=0,因为2≠0,所以这种新运算“−”不具有交换律。
北京市海淀区2019-2020学年七年级上学期期末数学试卷 (含解析)
北京市海淀区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,点O在直线AB上,若∠BOC=89°50′,则∠AOC的大小是()A. 90°50′B. 90°10′C. 90°D. 89°10′2.北京时间2019年4月10日21点整,全球新闻发布会宣布首次直接拍摄到黑洞的照片,这颗黑洞距离地球5300万光年之遥,其中5300万这个数据可以用科学记数法表示为()A. 5.3×108B. 5.3×107C. 5.3×103D. 53×1023.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A. −3℃B. 15℃C. −10℃D. −1℃4.下列计算正确的是()A. 2a+3a=5a2B. 5a2b−3ab2=2abC. 3x2−2x2=x2D. 6m2−5m2=15.若关于x的方程2x+a−4=0的解是x=1,则a的值等于()A. 2B. −2C. 6D. −66.实数a,b在数轴上的位置如图所示,则a−ba+b的值().A. 大于0B. 小于0C. 等于0D. 为非负数7.下列四组等式变形中,正确的是()A. 由5x+7=0,得5x=−7B. 由2x−3=0,得2x−3+3=0C. 由x6=2,得x=13D. 由5x=7.得x=578.下面图形中,射线OP是表示北偏东60°方向的是()A. B.C. D.9.以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数为()A. 1个B. 2个C. 3个D. 4个10.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A. 40cmB. 20√2cmC. 20cmD. 10√2cm二、填空题(本大题共8小题,共16.0分)11.7筐西红柿,每筐以12kg为标准,超过或不足的千克数分别用正数、负数表示,称重记录如下(单位:kg):−1,+1.5,2,−0.5,−1.5,1.5,1.则这7筐西红柿的总质量为______.12.单项式−3ab次数是______.13.90°−39°32′=______ .14.若三角形的两边长分别为3和5,且周长为奇数,则第三边可以是______(只填符合条件的一个即可).15.已知长方形的长是a,面积是s,用含a、s的代数式表示长方形的宽是______.16.如图,点M是线段AB的中点,AC:CB=1:2,CM=2.则AB=______.17.如果多项式−2a+3b+8的值为5,则多项式9b−6a+2的值等于______.18.由于提倡环保节能,自行车已成为市民日常出行的主要工具之一,据某自行车经销店4至6月份统计,某品牌自行车4月份销售200辆,6月份销售338辆.该品牌自行车销售量的月平均增长率为____________.三、计算题(本大题共1小题,共8.0分))]×[−10+(−3)2]19.[−12−(1−0.5×13四、解答题(本大题共8小题,共46.0分)20.解方程:(1)5(2−x)=−(2x−7);(2)x+36=1−3−2x4.21.先化简,再求值:3x2−[6xy+2(x2−y2)]−3(y2−2xy),其中x=−2,y=3.22.如图,已知点A、B、C,根据下列语句画图:(尺规作图,要保留作图痕迹.)(1)画出直线AB;(2)画出射线AC;(3)在线段AB的延长线上截取线段BD,使得AD=AB+BC;(4)画出线段CD.23.如图是一个数值转换机的示意图,若输入的x的值为6,y的值为−4,求输出的结果.24.在某年全军足球甲级A组的前11场比赛中,某队保持连续不败,共积23分.按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?25.在数轴上,有理数m,n的位置如图所示:(1)试在数轴上标出有理数−m,−n的大致位置;(2)试将m,n,−m,−n用“<”连接起来.26.如图,∠AOM与∠BOM互余,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.27.从2开始,连续的偶数相加,它们的和的情况如下表:加数m的个数和(S)1-----------→2=1×22--------→2+4=6=2×33------→2+4+6=12=3×44----→2+4+6+8=20=4×55--→2+4+6+8+10=30=5×6(1)按这个规律,当m=6时,和为______;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:______;(3)应用上述公式计算:①2+4+6+⋯+200②202+204+206+⋯+300.-------- 答案与解析 --------1.答案:B解析:本题考查的是角的计算有关知识,根据点O在直线AB上,∠BOC=89°50′,即可得出∠AOC的度数.解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=89°50′,∴∠AOC=90°10′.故选B.2.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,据此即可解答.解:5300万=53000000,53000000=5.3×107.故选B.3.答案:C解析:本题考查了有理数大小的比较,属于基础题.先比较大小,再判断结果即可.解:因为−10℃<−3℃<−1℃<15℃,所以平均气温最低的是−10℃.故选C.4.答案:C解析:解:A、2a+3a=5a,故本选项错误;B、5a2b−3ab2不能合并同类项,故本选项错误;C、正确;D、6m2−5m2=m2,故本选项错误;故选:C.根据合并同类项是把同类项系数相加减而字母和字母的指数不变,由此计算即可.本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.5.答案:A解析:把x=1代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.解:把x=1代入方程得:2+a−4=0,解得:a=2,故选:A.6.答案:B解析:本题考查了实数与数轴,根据数轴得出−1<a<0,b>2,可判断出a−b<0,a+b>0,进而可得答案.解:根据数轴可知:−1<a<0,b>2,所以a−b<0,a+b>0,<0.所以a−ba+b7.答案:A解析:解:A、由5x+7=0,得5x=−7,故正确;B、由2x−3=0,得2x−3+3=0+3,故错误;=2,得x=12,故错误;C、由x6D、由5x=7.得x=7,故错误;5故选A.根据等式的性质进行选择即可.本题考查了等式的性质,掌握等式的性质是解题的关键.8.答案:C解析:本题考查的是方向角的概念,熟知方向角的表示方法是解答此题的关键.根据方向角的概念进行解答即可.解:∵方向角是以正北,正南方向为基准,来描述物体所处的方向,∴射线OP是表示北偏东60°方向可表示为如图.故选C.9.答案:C解析:解:分成四种情况:①4cm,6cm,8cm;②4cm,6cm,10cm;③4cm,8cm,10cm;④6cm,8cm,10cm,∵4+6=10,∴②不能够成三角形,故可以画出三角形的个数为3个.故选:C.此题分成四种情况,再利用三角形的三边关系讨论即可.此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.答案:C解析:本题考查了两点之间线段最短在实际问题中的应用,熟练掌握两点之间线段最短这一性质是解决本题的关键.根据两点之间线段最短这一性质,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.解:如图,根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.11.答案:87kg解析:解:−1+1.5+2−0.5−1.5+1.5+1=3(kg),3+12×7=87(kg).即这7筐西红柿的总质量为87kg.故答案为:87kg.先求出7筐西红柿称重记录的和,再加上7筐西红柿标准质量的和,即可求解.本题考查了正负数在实际生活中的应用,利用有理数的加法运算是解题关键.12.答案:2解析:解:单项式−3ab次数是:2.故答案为:2.直接利用单项式的次数确定方法分析得出答案.此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.答案:50°28′解析:解:90°−39°32′=50°28′.故答案为:50°28′.根据度、分、秒是60进制进行计算即可得解.本题考查了度、分、秒的换算,关键在于度分秒是60进制.14.答案:3或5或7(其中一个即可)解析:解:根据三角形的三边关系,得第三边应大于5−3=2,而小于5+3=8.又三角形的两边长分别为3和5,且周长为奇数,所以第三边应是奇数,则第三边是3或5或7(任意填其中一个即可).根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围;再根据已知的两边和是8,即为偶数,结合周长为奇数,则第三边应是奇数,即可求解.考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.15.答案:sa解析:解:由题意可得:,长方形的宽是:sa.故答案为:sa根据题意可以用含a、s的代数式表示长方形的宽.本题考查列代数式,解答本题的关键是根据面积公式找出a,s和宽之间的关系式,列出相应的代数式.16.答案:12解析:解:∵点M是线段AB的中点,AC:CB=1:2,∴AM=12AB,AC=13AB,∴CM=12AB−13AB=16AB,∵CM=2.∴AB=12.故答案为:12.由中点的定义、线段的倍分关系可求AM=12AB,AC=13AB,根据线段的和差关系和已知条件可求AB即可.考查了两点间的距离,解题的关键是由中点的定义、线段的倍分关系得到AM=12AB,AC=13AB.17.答案:−7解析:解:∵−2a+3b+8=5,∴−2a+3b=−3,则原式=3(−2a+3b)+2=3×(−3)+2=−9+2=−7,故答案为:−7.根据−2a+3b+8=5可得−2a+3b=−3,将其代入到由原式变形所得多项式3(−2a+3b)+2,计算可得.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.答案:30%解析:本题考主要查了一元二次方程的应用.判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.设该品牌自行车销售量的月均增长率为x.等量关系为:4月份的销售量×(1+增长率)2=6月份的销售量,把相关数值代入求解即可.解:设该品牌自行车销售量的月均增长率为x,根据题意列方程:200(1+x)2=338,解得x1=−2.3(不合题意,舍去),x2=30%.答:该品牌自行车销售量的月均增长率30%.故答案为30%.19.答案:解:[−12−(1−0.5×13)]×[−10+(−3)2]=[−1−(1−12×13)]×[−10+9]=[−1−(1−16)]×(−1)=[−1−56]×(−1)=−11×(−1)=116.解析:本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法:先算乘方,后算乘除,最后算加减,有括号的先算括号里面的.根据有理数混合运算的运算法则可以解答本题.20.答案:解:(1)去括号,可得:10−5x=7−2x,移项,合并同类项,可得:3x=3,解得x=1.(2)去分母,可得:2(x+3)=12−3(3−2x),去括号,可得:2x+6=12−9+6x,移项,合并同类项,可得:4x=3,解得x=0.75.解析:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求解即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.答案:解:3x2−[6xy+2(x2−y2)]−3(y2−2xy)=3x2−(6xy+2x2−2y2)−3y2+6xy=3x2−6xy−2x2+2y2−3y2+6xy=x2−y2,当x=−2,y=3时,原式=(−2)2−32=4−9=−5.解析:此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.22.答案:解:如图所示:(1)直线AB即为所求;(2)射线AC即为所求;(3)D点即为所求;(4)线段CD即为所求.解析:此题主要考查了直线、射线、线段的定义,正确把握相关定义是解题关键.直接利用直线、射线、线段的定义分别得出答案.23.答案:解:根据题意得,[2x+(y)2]÷4=(2x+y2)÷4,把x=6,y=−4代入得,(12+16)÷4=7.即输出的结果为7.解析:本题考查的是有理数的混合运算,求代数式的值,解题关键是理解题意,依据图示把x,y的值代入所给程序计算即可.24.答案:解:设设该队共胜了x场,根据题意得:3x+(11−x)=23,解得x=6.故该队共胜了6场.解析:可设该队共胜了x场,根据“11场比赛保持连续不败”,那么该队平场的场数为11−x,由题意可得出:3x+(11−x)=23,解方程求解.此题考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.25.答案:解:(1)如图,(2)m<−n<n<−m.解析:根据有理数的大小比较,即可解答.本题考查了有理数的大小比较,解决本题的关键是熟记有理数的大小比较.26.答案:解:∵∠AOM与∠BOM互余,∴∠AOM+∠BOM=90°,即∠AOB=90°.∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12(∠AOC−∠BOC)=12∠AOB=12×90°=45°.解析:此题考查角平分线定义,互余的定义.根据题意得出∠MON=12∠AOB是解题的关键.先由∠AOM与∠BOM互余,得出∠AOB=90°,再根据角平分线定义得出∠MOC=12∠AOC,∠NOC=12∠BOC,那么∠MON=∠MOC−∠NOC=12∠AOB=45°.27.答案:(1)42;(2)2+4+6+⋯+2m=m(m+1);(3)①2+4+6+⋯+200=100×101,=10100;②∵2+4+6+⋯+300=150×151=22650,∴202+204+206+⋯+300.=22650−10100,=12550.解析:解:(1)∵2+2=2×2,2+4=6=2×3=2×(2+1),2+4+6=12=3×4=3×(3+1),2+4+6+8=20=4×5=4×(4+1),∴m=6时,和为:6×7=42;(2)∴和S与m之间的关系,用公式表示出来:2+4+6+⋯+2m=m(m+1);(3)①2+4+6+⋯+200=100×101,=10100;②∵2+4+6+⋯+300=150×151=22650,∴202+204+206+⋯+300.=22650−10100,=12550.(1)仔细观察给出的等式可发现从2开始连续两个偶数和1×2,连续3个偶数和是2×3,连续4个,5个偶数和为3×4,4×5,从而推出当m=6时,和的值;(2)根据分析得出当有m个连续的偶数相加是,式子就应该表示成:2+4+6+⋯+2m=m(m+1).(3)根据已知规律进行计算,得出答案即可.此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键.。
2020-2021学年北京市海淀区清华附中七年级(上)期末数学试卷(附答案详解)
2020-2021学年北京市海淀区清华附中七年级(上)期末数学试卷1.下面四个几何体中,主视图为三角形的是()A. B. C. D.2.若a+3=0,则a的倒数是()A. 3B. 13C. −13D. −33.若2是关于x的方程12x+a=−1的解,则a的值为()A. 0B. 2C. −2D. −64.下列各式中运算正确的是()A. a2b−ab2=0B. x+x=x2C. 2b3+2b2=4b5D. 2a2−3a2=−a25.如图,数轴上两点M,N所对应的实数分别为m,n,则m−n的结果可能是()A. −1B. 1C. 2D. 36.已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A. 5B. 6C. 5或6D. 5或6或77.如图,在下列给出的条件中,可以判定AB//CD的有()①∠1=∠2;②∠1=∠3;③∠2=∠4;④∠DAB+∠ABC=180°;⑤∠BAD+∠ADC=180°.A. ①②③B. ①②④C. ①④⑤D. ②③⑤8.如果|m−3|+(n+2)2=0,那么n m的值为()9.下面命题:①同位角相等;②对顶角相等;③若x2=y2,则x=y;④互补的角是邻补角.其中真命题有()个.A. 1B. 2C. 3D. 410.当x=2时,整式ax3+bx−1的值等于−100,那么当x=−2时,整式ax3+bx−1的值为()A. 100B. −100C. 98D. −9811.若−32x a−1y4与12y b+1x2是同类项,则a+b的值为______ .12.如图是一个正方体的展开图,如果正方体相对的两个面所标注的值均互为相反数,则字母x+y的值为______ .13.已知方程(a−2)x|a|−1=1是关于x的一元一次方程,则a=______ .14.如图,四边形ABCD为一条长方形纸带,AB//CD,将四边形ABCD沿EF折叠,A、D两点分别为A′、D′对应,若∠1=∠2,则∠AEF的度数为______ .15.若∠α=10°45′,则∠α的余角的大小为______ .16.如图,AB//CD,∠A=25°,∠C=70°,则∠E=______ .17.如图,已知△ABC,通过测量、计算得△ABC的面积约为______cm2.(结果保留一位小数)18.一副直角三角板叠放如图所示,现将含30°角的三角板ABC固定不动,把含45°角的三角板ADE绕顶点A顺时针转动,若0°<∠BAD<180°,要使两块三角板至少有一组互相平行,则符合要求的∠BAD的值为______ .19.计算:(1)8−|−5|+(−5)×(−3);(2)−12021−3.5÷78×(−14).20.解方程:(1)3x+4(1−x)=5;(2)2x+16=1−x−13.21.先化简,再求值:3(x2y−2y2)−(2x2y−6y2),其中x=−2,y=1.22.如图,已知P,A,B三点,按下列要求完成画图和解答.(1)作直线AB;(2)连接PA,PB,用量角器测量∠APB=______ .(3)用刻度尺取AB中点C,连接PC;(4)过点P画PD⊥AB于点D;(5)根据图形回答:在线段PA,PB,PC,PD中,最短的是线段______ 的长度.理由:______ .23.列方程解应用题:一列火车匀速行驶,经过一条长420米的隧道需要15秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是5秒,求这列火车的长度.24.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.25.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.26.定义:对于一个有理数x,我们把{x}称作x的相伴数;若x≥0,则{x}=12x−1;若x<0,则{x}=−12x+1.例:{1}=12×1−1=−12.(1)求{32},{−1}的值;(2)当a>0,b<0时,有{a}={b},试求代数式(a+b)2−2a−2b的值.27.如图1,OA⊥OB,∠COD=60°.∠AOD,求∠AOD的度数;(1)若∠BOC=37(2)若OC平分∠AOD,求∠BOC的度数;(3)如图2,射线OB与OC重合,若射线OB以每秒15°的速度绕点O逆时针旋转,同时射线OC以每秒10°的速度绕点O顺时针旋转,当射线OB与OA重合时停止运动.设旋转的时间为t秒,请直接写出图中有一条射线平分另外两条射线所夹角时t 的值.28.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A. −3B. −2C. −1D. 1∠EAB,∠ECF=29.如图:AB//CD,AE⊥CE,∠EAF=131∠ECD,则∠AFC=______ .330. 如图所示的网格是正方形网格,A ,B ,C ,D 是网格线的交点.我们晓观数学发现△ABD 的面积与△ABC的面积相等,则这样的点D(不包含C)共有______ 个.31. 在同一平面内有2021条直线a 1,a 2,a 3,…,a 2021,如果a 1⊥a 2,a 2//a 3,a 3⊥a 4,a 4//a 5,…,那么a 1与a 5的位置关系是______ ;a 1与a 2021的位置关系是______ .32. 取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:5→×3+116→÷28→÷24→÷22→÷21.如果自然数m 经过7步运算可得到1,则所有符合条件的m 的值为______ .答案和解析1.【答案】B【解析】【分析】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.根据主视图是从正面看得到的图形,可得答案.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.2.【答案】C【解析】解:∵a+3=0,∴a=−3,则a的倒数是:−1.3故选:C.直接利用倒数的定义、相反数的定义分析得出答案.此题主要考查了倒数和相反数,正确掌握相关定义是解题关键.3.【答案】C【解析】解:把x=2代入方程得:1+a=−1,解得:a=−2,故选C把x=2代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.【答案】D【解析】解:A、a2b与ab2不是同类项,所以不能合并,故本选项不合题意;B、x+x=2x,合并同类项错误,故本选项不合题意;C、2b3与2b2不是同类项,所以不能合并,故本选项不合题意;D、2a2−3a2=−a2,合并同类项正确,故本选项符合题意.故选:D.分别根据合并同类项法则对各个选项逐一判断即可.本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.合并同类项时,系数相加减,字母及其指数不变.5.【答案】C【解析】【分析】本题考查了实数与数轴,利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.根据在数轴上表示的两个实数,右边的总比左边的大可得−2<n<−1<0<m<1,m−n的结果可能是2.【解答】解:∵M,N所对应的实数分别为m,n,∴−2<n<−1<0<m<1,∴m−n的结果可能是2.故选:C.6.【答案】C【解析】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】D【解析】解:①∠1=∠2不能判定AB//CD,不符合题意;②∵∠1=∠3,∴AB//CD,符合题意;③∵∠2=∠4,∴AB//CD,符合题意;④∠DAB+∠ABC=180°;不能判定AB//CD,不符合题意;⑤∵∠BAD+∠ADC=180°,∴AB//CD,符合题意.故选:D.根据平行线的判定定理对各选项进行逐一判断即可.本题考查的是平行线的判定,正确掌握平行线的判定方法是解题关键.8.【答案】A【解析】解:因为|m−3|+(n+2)2=0,所以m−3=0,n+2=0,解得m=3,n=−2,所以n m=(−2)3=−8,故选:A.根据非负数的性质求出m、n的值,再代入计算即可.本题考查非负数偶次幂、绝对值的性质,求出m、n的值是解决问题的关键.9.【答案】A【解析】解:①两直线平行,同位角相等,原命题是假命题;②对顶角相等,是真命题;③若x2=y2,则x=y或x=−y,原命题是假命题;④互补的角不一定是邻补角,原命题是假命题;故选:A.根据平行线的性质、对顶角、等式的性质和邻补角判断解答即可.和邻补角,难度不大.10.【答案】C【解析】解:∵当x=2时,整式ax3+bx−1的值为−100,∴8a+2b−1=−100,即8a+2b=−99,则当x=−2时,原式=−8a−2b−1=99−1=98.故选:C.将x=2代入整式,使其值为−100,列出关系式,把x=−2代入整式,变形后将得出的关系式代入计算即可求出值.本题考查了代数式的求值,正确变形并整体代入,是解题的关键.11.【答案】6【解析】解:根据题意,得a−1=2,b+1=4,解得a=3,b=3,所以a+b=3+3=6.故答案为:6.根据同类项是字母相同,且相同的字母的指数也相同,可得a、b的值,根据有理数的加法,可得答案.本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.12.【答案】−3【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“2”是相对面,“y”与“1”是相对面,∵相对面上所标的两个数互为相反数,∴x=−2,y=−1,∴x+y=−2−1=−3.故答案为:−3.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数互为相反数,求出x、y的值,然后代入代数式计算即可得解.本题考查了正方体相对两个面上的文字.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.13.【答案】−2【解析】解:∵方程(a−2)x|a|−1=1是关于x的一元一次方程,∴|a|−1=1且a−2≠0,解得a=−2.故答案是:−2.由一元一次方程的定义得到|a|−1=1且a−2≠0,由此求得a的值.本题考查了一元一次方程的概念和解法,解题的关键在于了解一元一次方程的未知数的指数为1.14.【答案】60°【解析】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB//CD,∴∠AEF=∠2,设∠1=x,则∠AEF=∠1=∠FEA′=x,∵∠AEB=180°,∴3x=180°,∴x=60°,∴∠AEF=60°.故答案为:60°.由题意∠1=∠2,设∠2=x,易证∠AEF=∠1=∠FEA′=x,构建方程即可解决问题.本题考查平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题.15.【答案】79°15′【解析】解:∠a的余角=90°−10°45′=89°60′−10°45′=79°15′.故答案为:79°15′.用90°减去这个角即可.本题主要考查的是余角的定义、度分秒的换算,将90°转化为89°60′是解题的关键.16.【答案】45°【解析】解:∵AB//CD,∴∠1=∠C=70°,∴∠E=∠1−∠A=70°−25°=45°,故答案为:45°.根据平行线性质得出∠1=∠C=70°,根据三角形外角性质求出∠E即可.本题考查了三角形的外角性质,平行线的性质的应用,注意:两直线平行,同位角相等.17.【答案】2.6【解析】【分析】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB≈2.6cm,CD≈2cm,∴S△ABC=12AB⋅CD=12×2.6×2≈2.6(cm2).故答案为2.6.18.【答案】45°或90°或120°【解析】解:当AE//BC时,∠BAD=45°,当DE//AB时,∠BAD=90°,当DE//AC时,∠BAD=120°,综上所述,满足条件的∠BAD的值为45°或90°或120°.故答案为:45°或90°或120°.分两种情形:DE//AB,DE//AC分别求解即可.本题考查旋转变换,平行线的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.19.【答案】解:(1)8−|−5|+(−5)×(−3)=8−5+15=18;(2)−12021−3.5÷78×(−14)=−1−72×87×(−14)=−1+1=0.【解析】(1)根据有理数的加减法和乘法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.【答案】解:(1)去括号得:3x+4−4x=5,移项得:3x−4x=5−4,合并得:−x=1,解得:x=−1;(2)去分母得:2x+1=6−2(x−1),去括号得:2x+1=6−2x+2,移项得:2x+2x=6+2−1,合并得:4x=7,解得:x=74.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.21.【答案】解:原式=3x2y−6y2−2x2y+6y2=x2y,当x=−2,y=1时,原式=(−2)2×1=4.【解析】根据整式的加减进行化简,然后代入值计算即可.本题考查了整式的加减−化简求值,解决本题的关键是掌握整式加减运算法则.22.【答案】90°PD垂线段最短【解析】解:(1)如图,直线AB即为所求作.(2)测量可知,∠APB=90°.故答案为:90°.(3)如图,线段PC即为所求作.(4)如图,线段PD即为所求作.(5)根据垂线段最短可知,线段PD最短,故答案为:PD,垂线段最短.根据要求一一画出图形即可解决问题.本题考查作图−复杂作图,直线,射线,线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:设这列火车的长度为x米,根据题意可知:x+42015=x5,解得x=210,答:这列火车的长度为210米.【解析】设这列火车的长度为x米,根据经过一条长420米的隧道需要15秒的时间,灯光照在火车上的时间是5秒,以及火车的速度不变,列出方程求解即可.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.【答案】解:(1)当点C在线段AB上时,如图1,∵AB=12cm,BC=6cm,∴AC=AB−BC=6cm,∵M是AC的中点,AC,∴AM=12∴AM=1×6cm=3cm;2(2)当点C在线段AB的延长线上时,如图2,∵AB=12cm,BC=6cm,∴AC=AB+BC=18cm,∵M是AC的中点,∴AM=1AC,2×18cm=9cm,∴AM=12∴线段AM的长为3cm或9cm.AC求出即可.【解析】根据题意画出符合条件的两种情况,求出AC的长,根据AM=12本题考查了两点间的距离的应用,注意:在求解没有图形的几何题时,应根据题意画图,同时注意图形的多样性,以免漏解.25.【答案】证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD//EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD =∠DAC ,即AD 平分∠BAC .【解析】根据平行线的性质和判定解答即可.此题考查平行线的判定和性质,关键是根据平行线的判定得出AD//EC 解答.26.【答案】解:(1){32}=12×32−1=−14,{−1}=−12×(−1)+1=32;(2)a >0,b <0,{a}={b},即12a −1=−12b +1,解得:a +b =4,故(a +b)2−2a −2b =(a +b)2−2(a +b)=42−8=8.【解析】(1)根据对称数的定义求得即可;(2)由对称数的定义化简,然后代入代数式确定即可.本题考查了代数式求值,能够根据相伴数的概念化简是解题的关键.27.【答案】解:(1)∵∠COD =60°,∴∠BOC =∠COD −∠BOD =60°−∠BOD ,∵OA ⊥OB ,∴∠AOB =90°,∴∠BOD =∠AOD −∠AOB =∠AOD −90°,∴∠BOC =60°−∠BOD =60°−(∠AOD −90°)=150°−∠AOD ,∵∠BOC =37∠AOD , ∴150°−∠AOD =37∠AOD , 解得:∠AOD =105°,故∠AOD 的度数是105°;(2)∵OC 平分∠AOD ,∠COD =60°,∴∠AOC =∠COD =60°,∴∠AOD =∠AOC +∠COD =60°+60°=120°,∴∠BOD =∠AOD −∠AOB =120°−90°=30°,∴∠BOC =∠COD −∠BOD =60°−30°=30°,故∠BOC 的度数是30°;(3)根据题意,可得:∠AOD =90°+60°=150°,∠AOB =90°−15°t ,∠AOC =90°+10°t ,当OB 与OA 重合时,∠AOB =0°,即0°=90°−15°t ,解得:t =6,此时,∠AOC =90°+10°t =90°+10°×6=150°=∠AOD ,即OC 与OD 重合, ∴当OB 与OA 重合时,OC 与OD 也重合,此时停止运动,∴分三种情况讨论:①当OB 平分∠AOD 时:∵∠AOB =12∠AOD =12×150°=75°, ∴90°−15°t =75°,解得:t =1;②当OC 平分∠BOD 时:∠BOC =∠AOC −∠AOB =(90°+10°t)−(90°−15°t)=25°t ,∠COD =∠AOD −∠AOC =150°−(90°+10°t)=60°−10°t ,解得:t =127;③当OB 平分∠AOC 时:由②知,∠BOC =25°t ,∵∠AOB =∠BOC ,∴90°−15°t =25°t ,解得:t =94.综上,图中有一条射线平分另外两条射线所夹角时t 的值为1或127或94.【解析】(1)根据角的和差表示出∠BOC =60°−∠BOD =60°−(∠AOD −90°)=150°−∠AOD ,由已知条件可得方程,解方程即可得∠AOD 的度数;(2)根据角平分线的定义得∠AOC =∠COD =60°,∠AOD 的度数,根据角的和差可得∠BOD 的度数,即可求得∠BOC 的度数;(3)根据题意求出OB 与OA 重合时,OC 与OD 也重合,此时停止运动,然后分三种情况讨论即可求解.此题主要考查角的计算,角平分线的性质与一元一次方程的应用,解题的关键是根据题意找到等量关系求解.28.【答案】A【解析】【分析】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键,属于基础题.根据CO=BO可得点C表示的数为−2,据此可得a=−2−1=−3,解之即可.【解答】解:易得点C在原点的左侧,且CO=BO,且点B表示2,∴点C表示的数为−2,∵将点A向右平移1个单位长度得到点C,∴a=−2−1=−3.故选:A.29.【答案】60°【解析】解:连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y)∴∠AEC=180°−(∠CAE+∠ACE)=180°−[180°−(3x+3y)]=3x+3y=3(x+y),∠AFC=180°−(∠FAC+∠FCA)=180°−[180°−(2x+2y)]=2x+2y=2(x+y),∵AE⊥CE,∴∠AEC=90°,∴∠AFC=23∠AEC=23×90°=60°.故答案为:60°.连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2(x+y),∠AFC═2(x+y),即可得出答案.本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.30.【答案】5【解析】解:如图,满足条件的D点有5个.故答案为5.在AB的两侧作AB的平行线,且到AB的距离等于C点到AB的距离,则这两直线上的格点为D点.本题考查了三角形的面积,掌握三角形的面积公式是本题的关键.31.【答案】平行平行【解析】解:如图,a1⊥a2,a2//a3,a3⊥a4,a4//a5,…,∴a1⊥a2,a1⊥a3,a1//a4,a1//a5,依此类推,a1⊥a6,a1⊥a7,a1//a8,a1//a9,∴2021÷4=505…1,∴a1//a2021.故答案是:平行;平行.根据平行线的性质和规律得到:4条直线的位置关系为一个循环.本题考查了平行线的性质,解题的关键是找到在同一平面内有2021条直线的位置关系的规律.32.【答案】21或128【解析】解:当m为奇数时,经过第1次运算可得3m+1,而(3m+1)是偶数,再经过6次计算可得,3m+1=1,26解得,m=21,当m为偶数时,经过7次运算可得,m=1,27解得m=128,故答案为:21或128.根据m为奇数和偶数分别进行解答即可.本题考查有理数的运算,掌握运算结果的奇偶性以及每次运算结果的规律性是正确解答的关键.第21页,共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区七年级第一学期期末练习
数学
2020.1
班级姓名成绩
一.选择题(本大题共30分,每小题3分)
在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.
题号 1 2 3 4 5 6 7 8 9 10 答案
1.-A . 2
B .2
1-
C .21
D .-2
2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为
A .15×106
B . 1.5×107
C .1.5×108
D .0.15×108 3.下列各式结果为正数的是
A .22--()
B .3
2-() C .2--D .2--()
4.下列计算正确的是
A .2
527a a a +=B .523a b ab
-=
C .523a a -=
D .3
3
3
2ab ab ab -+=
5.如图,把原来弯曲的河道改直,A ,B 两地间的河道长度变短,这样做的道理是 A .两点确定一条直线 B .两点确定一条线段 C .两点之间,直线最短 D .两点之间,线段最短
B
A
6.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是
A .圆柱
B .圆锥
C .棱锥
D .球
7.若2是关于x 的方程1
12
x a +=-的解,则a 的值为 A .0
B .2
C .2-
D .6-
8.有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是
A .b -a >0
B .-b >0
C .a >-b
D .-ab <0 9.已知33x y -=,则53x y -+的值是 A .8
B .2
C .2-
D .8-
10.已知线段AB =6cm ,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为 A .1cm
B .2cm
C .1.5cm
D .1cm 或2cm
二.填空题(本大题共24分,每小题3分) 11.比较大小:2-3-(填“>”,“<”或“=”). 12.写出一个以1为解的一元一次方程. 13.若=2040α∠′,则α∠的补角的大小为.
14.商店上月收入为a 元,本月的收入比上月的2倍还多5元,本月的收入为元(用含a 的式子表示).
15.若22(3)0a b -++=,则2a b -的值为_____________.
16.将一副三角板如图放置,若=20AOD ∠︒,则
BOC ∠的大小为____________.
0 b a
17.已知关于x 的方程7kx x =-有正整数解,则整数k 的值为.
18.有一组算式按如下规律排列,则第6个算式的结果为________;第n 个算式的结果为_________________________(用含n 的代数式表示,其中n 是正整数).
1 = 1 (-2) + (-3) + (-4) = -9 3 + 4 + 5 + 6 + 7 = 25 (-4) + (-5) + (-6) + (-7) + (-8) + (-9) + (-10) = -49 5 + 6 + 7 + 8 + 9 + 10 + 11 + 1
2 + 1
3 = 81
…… 三.解答题(本大题共18分,第19题6分, 第20204分,第21题各8分) 19.计算:
(1)12(18)(7)15--+--;(2)()()2
316821⎪⎭
⎫
⎝⎛-÷-+-⨯⎪⎭⎫ ⎝⎛-.
2020图,平面上四个点A ,B ,C ,D .按要求完成下列问题: (1)连接AD ,BC ;
(2)画射线AB 与直线CD 相交于E 点;
(3)用量角器度量得∠AED 的大小为_________(精确到度).
B A
21.解方程:
(1)2(10)6x x x -+=;(2)12324
x x
+-=+
.
四.解答题(本大题共12分,每小题4分)
22.先化简,再求值:(
)(
)
a a a a a 32252
2
2
---+,其中5-=a .
23. 点A ,B ,C 在同一直线上,AB =8,AC : BC =3 : 1,求线段BC 的长度.
24.列方程解应用题:
甲种铅笔每支0.4元,乙种铅笔每支0.6元,某同学共购买了这两种铅笔30支,并且买乙种铅笔所花的钱是买甲种铅笔所花的钱的3倍,求该同学购买这两种铅笔共花了多少钱?
五.解答题(本大题共16分,第25题5分,第26题各5分,第27题各6分)
25.如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右
平移的T 字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426,若能,请求出这五个数,若不能,请说明理由.
26. 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =22ab ab a ++. 如:1☆3=2132131⨯+⨯⨯+=16. (1)求(-2)☆3的值;
(2)若(12+a ☆3)☆(-1
2
)=8,求a 的值; (3)若2☆x =m ,1
()4
x ☆3=n (其中x 为有理数),试比较m , n 的大小.。