北京市海淀区2020-2021学年高一上学期期末练习数学试题
北京市海淀区2022-2023学年高三上学期期末考试数学试题含答案
海淀区2022—2023学年第一学期期末练习高三数学2023.01本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无 效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求 的一项。
(1)已知集合{}23A x x =-≤≤,{}0B x x =>,若A B =(A )[2,3]-(B )[0,3] (C )(0,)+∞ (D )[2,)-+∞(2)在复平面内,复数12i-对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(3)已知函数1()1f x x=-,在下列区间中,包含()f x 零点的区间是 (A )11(,)42 (B )1(,1)2(C )(1,2)(D )(2,3)(4)已知 13lg5,sin ,27a b c π===,则A. a b c <<B. b a c <<C. b c a <<D. a c b <<(5)若圆222220x y x ay a +--+=截直线210x y -+=所得弦长为2,则a = (A )-1(B )0 (C ) 1(D )2(6)已知{}n a 为等差数列,13a =,4610a a +=-.若数列{}n b 满足1n n n b a a +=+,(n = = 1, 2,…),记{}n b 的前n 项和为n S ,则8S = (A )-32(B ) -80(C ) -192(D ) -224(7)某校高一年级计划举办足球比赛,采用抽签的方式把全年级6个班分为甲、乙两组,每组3个 班,则高一(1)班、高一(2)班恰好都在甲组的概率是 (A )13 (B )14(C )15(D )16(8)设α, β是两个不同的平面,直线m α⊂,则“对β内的任意直线l ,都有m l ⊥”是“α⊥β”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(9)已知函数()cos 2f x x = =cos2x 在区间[,]()3t t t R π+∈上的最大值为()M t ,则()M t 的最小值为(A (B ) (C )12(D ) 12-(10)在实际生活中,常常要用到如图1所示的“直角弯管”.它的制作方法如下:如图2,用一个 与圆柱底面所成角为450的平面截圆柱,将圆柱截成两段,再将这两段重新拼接就可以得到 “直角弯管”.在制作“直角弯管”时截得的截口是一个椭圆,若将圆柱被截开的一段(如图3) 的侧面沿着圆柱的一条母线剪开,并展开成平面图形,则截口展开形成的图形恰好是某正弦 型函数的部分图象(如图4).记该正弦型函数的最小正周期为T ,截口椭圆的离心率为. 若圆柱的底面直径为2,则(A ) 12,2T e π==(B ) 2,T e π==(C ) 14,2T e π==(D ) 4,2T e π==第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
2020-2021北京市高中必修一数学上期末试题含答案
2020-2021北京市高中必修一数学上期末试题含答案一、选择题1.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .22D .23.函数y =a |x |(a >1)的图像是( ) A .B .C .D .4.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦7.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .48.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .69.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .1410.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 11.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+12.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .5二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.14.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______15.如果函数()22279919mm y m m x--=-+是幂函数,且图像不经过原点,则实数m =___________.16.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 17.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .18.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.计算221(1).log 24lglog lg 2log 32+--32601(8)9⎛⎫--- ⎪⎝⎭- 23.设函数()()2log xxf x a b =-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.24.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?25.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?26.若()221x x a f x +=-是奇函数.(1)求a 的值;(2)若对任意()0,x ∈+∞都有()22f x m m ≥-,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .4.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.5.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m∴∈-∞时,8 ()9f x≥-成立,即73m≤,7,3m⎛⎤∴∈-∞⎥⎝⎦,故选B.【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.6.C解析:C【解析】分析:由题意分别确定函数f(x)的图象性质和函数h(x)图象的性质,然后数形结合得到关于k的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log1f x x=+右移一个单位,得()21logy f x x=-=,所以g(x)=2x,h(x-1)=h(-x-1)=h(x+1),则函数h(x)的周期为2.当x∈[0,1]时,()21xh x=-,y=kf(x)-h(x)有五个零点,等价于函数y=kf(x)与函数y=h(x)的图象有五个公共点.绘制函数图像如图所示,由图像知kf(3)<1且kf(5)>1,即:22log41log61kk<⎧⎨>⎩,求解不等式组可得:61log22k<<.即k的取值范围是612,2log⎛⎫⎪⎝⎭.本题选择C选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.7.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <n 所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.8.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.9.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.10.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立; ∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.11.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.12.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
2020-2021学年北京市101中学高一(上)期末数学试卷 (解析版)
2020-2021学年北京市101中学高一(上)期末数学试卷一、选择题(共10小题).1.已知函数f(x)=lg(4﹣x)的定义域为M,函数的定义域为N,则M∩N =()A.M B.N C.{4}D.∅2.sin2021°可化简为()A.sin41°B.﹣sin41°C.cos41°D.﹣cos41°3.向量“,不共线”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数y=sin(x+),x∈(﹣,]的值域为()A.B.C.D.5.已知偶函数f(x)在(﹣∞,0)上单调递减,若a=f(1),b=f(2),,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b6.甲、乙两人解关于x的方程:log2x+b+c log x2=0,甲写错了常数b,得到根为,;乙写错了常数c,得到根为,x=64.那么原方程的根正确的是()A.x=4B.x=3C.x=4或x=8D.x=2或x=3 7.已知2cos2α﹣3sin2α=1,α∈(﹣,﹣π),那么tanα的值为()A.2B.﹣2C.D.8.如图是函数y=sin x(0≤x≤π)的图象,A(x,y)是图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合).设线段AB的长为f(x),则函数f(x)的图象是()A.B.C.D.9.已知3sin(﹣α)﹣sin(π+α)=﹣,则cosα﹣sinα的取值可以为()A.B.C.D.10.如图,一个摩天轮的半径为10m,轮子的最低处距离地面2m.如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P(点P与摩天轮天轮中心O的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m的时间大约是()A.8分钟B.10分钟C.12分钟D.14分钟二、填空题(共6小题).11.已知向量=(1,﹣2),=(x,4),且∥,则实数x=.12.若角β与角的终边关于直线y=x对称,则角β的终边上的所有角的集合可以写为13.已知幂函数在(0,+∞)上单调递增,则实数m的值为14.在如图所示的方格纸中,向量,,的起点和终点均在格点(小正方形顶点)上,若与x+y(x,y为非零实数)共线,则的值为.15.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳的含量达到了危险状态,经抢修后恢复正常.排气4分钟后测得车库内一氧化碳浓度为64ppm(ppm为浓度单位,1ppm表示百万分之一),经检验知,该地下车库一氧化碳浓度y(ppm)与排气时间t (分钟)之间存在函数关系y=27﹣mt(m为常数).求得m=;若空气中一氧化碳浓度不高于0.5ppm为正常,那么至少需要排气分钟才能使这个地下车库中一氧化碳含量达到正常状态.16.已知△ABC,点P是平面上任意一点,且(λ,μ∈R),给出以下命题:①若,,则P为△ABC的内心;②若λ=μ=1,则直线AP经过△ABC的重心;③若λ+μ=1,且μ>0,则点P在线段BC上;④若λ+μ>1,则点P在△ABC外;⑤若0<λ+μ<1,则点P在△ABC内.其中真命题为.三、解答题(共4小题).17.已知函数.(1)求函数f(x)的值域:(2)若函数g(x)=log a x的图象与函数f(x)的图象有交点,请直接写出实数a的取值范围.18.已知关于x的方程的两根为sinθ和cosθ,.(1)求实数b的值;(2)求的值.19.已知函数,.(1)①直接写出函数f(x)的奇偶性;②写出函数f(x)的单调递增区间,并用定义证明;(2)计算:=;f(4)﹣5f(2)g(2)=;f(9)﹣5f(3)g(3)=;(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式,并加以证明.20.设A是由n个实数构成的一个有序数组,记作A=(a1,a2,…,a i,…,a n).其中a i(i=1,2,…,n)称为数组A的“元”,i称为数组A的“元”a i的下标,如果数组S=(b1,b2,…,b m)(m≤n,m∈N+)中的每个“元”都是来自数组A中不同下标的“元”,则称S为A的“子数组”.定义两个数组A=(a1,a2,…,a n),B=(b1,b2,…,b n)的“关系数”为C(A,B)=a1b1+a2b2+…+a n b n.(1)若,B=(b1,b2,b3,b4),且B中的任意两个“元”互不相等,B 的含有两个“元”的不同“子数组”共有p个,分别记为S1,S2,…,S p.①p=;②若b j∈N+,1≤b j≤101(j=1,2,3,4),记,求X的最大值与最小值;(2)若,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的“子数组”,求C(A,S)的最大值.参考答案一、选择题(共10小题).1.已知函数f(x)=lg(4﹣x)的定义域为M,函数的定义域为N,则M∩N =()A.M B.N C.{4}D.∅解:根据题意得,M={x|x<4},N{x|x≥4},∴M∩N=∅.故选:D.2.sin2021°可化简为()A.sin41°B.﹣sin41°C.cos41°D.﹣cos41°解:sin2021°=sin(360°×60﹣139°)=sin(﹣1390)=﹣sin139°=﹣sin41°.故选:B.3.向量“,不共线”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当向量“,不共线”时,由向量三角形性质得“”成立,即充分性成立,反之当向量“,方向相反时,满足“”,但此时两个向量共线,即必要性不成立,即向量“,不共线”是“”的充分不必要条件,故选:A.4.函数y=sin(x+),x∈(﹣,]的值域为()A.B.C.D.解:y=sin(x+)=cos x,因为x∈(﹣,],所以cos x∈[﹣,1],即函数的值域为[﹣,1].故选:B.5.已知偶函数f(x)在(﹣∞,0)上单调递减,若a=f(1),b=f(2),,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b解:因为偶函数f(x)在(﹣∞,0)上单调递减,所以f(x)在(0,+∞)上单调递增,因为a=f(1),b=f(2),=f(),又2>1>>0,则b>a>c.故选:C.6.甲、乙两人解关于x的方程:log2x+b+c log x2=0,甲写错了常数b,得到根为,;乙写错了常数c,得到根为,x=64.那么原方程的根正确的是()A.x=4B.x=3C.x=4或x=8D.x=2或x=3解:原方程可变形为:,因为甲写错了常数b,得到根为,,所以,又因为乙写错了常数c,得到根为,x=64,所以,所以原方程为,解得log2x=2或3,所以x=4或8.故选:C.7.已知2cos2α﹣3sin2α=1,α∈(﹣,﹣π),那么tanα的值为()A.2B.﹣2C.D.解:因为2cos2α﹣3sin2α=2(1﹣sin2α)﹣3sin2α=1,可得sin2α=,cos2α=,因为α∈(﹣,﹣π),所以sinα=,cosα=﹣,可得tanα==﹣.故选:D.8.如图是函数y=sin x(0≤x≤π)的图象,A(x,y)是图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合).设线段AB的长为f(x),则函数f(x)的图象是()A.B.C.D.解:当x=时,A,B两点重合,此时f(x)=0,故排除C,D;当x∈(0,)时,f(x)=π﹣2x是关于x的一次函数,其图象是一条线段,故选:A.9.已知3sin(﹣α)﹣sin(π+α)=﹣,则cosα﹣sinα的取值可以为()A.B.C.D.解:因为3sin(﹣α)﹣sin(π+α)=3cosα+sinα=﹣,所以,整理得,所以,①当时,,则②当cos时,,则故选:C.10.如图,一个摩天轮的半径为10m,轮子的最低处距离地面2m.如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P(点P与摩天轮天轮中心O的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m的时间大约是()A.8分钟B.10分钟C.12分钟D.14分钟解:由题意知,在t时摩天轮上某人所转过的角为t=t,所以在t时此人相对于地面的高度为h=10sin(t﹣)+12(t≥0);由10sin(t﹣)+12≥17,得sin(t﹣)≥,解得≤t﹣≤,即5≤t≤15;所以此人有10分钟相对于地面的高度不小于17 m.故选:B.二、填空题共6小题,每小题5分,共30分.11.已知向量=(1,﹣2),=(x,4),且∥,则实数x=﹣2.解:由已知,且,所以1×4﹣(﹣2)x=0,解得x=﹣2,故答案为:﹣212.若角β与角的终边关于直线y=x对称,则角β的终边上的所有角的集合可以写为{}.解:角α的取值集合是{α|α=2kπ+,k∈Z},角β与角的终边关于直线y=x对称,可得β=2kπ+﹣2×(﹣)=﹣+2kπ,k∈Z,可得角β的取值集合是{β|β=﹣+2kπ,k∈Z},故答案为:{β|β=﹣+2kπ,k∈Z}.13.已知幂函数在(0,+∞)上单调递增,则实数m的值为0解:由题意得:m﹣1=±1,解得:m=0或m=2,m=0时,f(x)=x2在(0,+∞)递增,符合题意,m=2时,f(x)=1,是常函数,不合题意,故答案为:0.14.在如图所示的方格纸中,向量,,的起点和终点均在格点(小正方形顶点)上,若与x+y(x,y为非零实数)共线,则的值为.解:设图中每个小正方形的边长为1,则=(2,1),=(﹣2,﹣2),=(1,﹣2),∴x+y=(2x﹣2y,x﹣2y),∵与x+y共线,∴﹣2(2x﹣2y)=x﹣2y,∴5x=6y,即=故答案为:15.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳的含量达到了危险状态,经抢修后恢复正常.排气4分钟后测得车库内一氧化碳浓度为64ppm(ppm为浓度单位,1ppm表示百万分之一),经检验知,该地下车库一氧化碳浓度y(ppm)与排气时间t (分钟)之间存在函数关系y=27﹣mt(m为常数).求得m=;若空气中一氧化碳浓度不高于0.5ppm为正常,那么至少需要排气32分钟才能使这个地下车库中一氧化碳含量达到正常状态.解:(1)∵函数y=27﹣mt(m为常数)经过点(4,64),∴64=27﹣4m,解得m=;(2)由(1)得y=,由,解得t≥32.故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态.故答案为:(1);(2)32.16.已知△ABC,点P是平面上任意一点,且(λ,μ∈R),给出以下命题:①若,,则P为△ABC的内心;②若λ=μ=1,则直线AP经过△ABC的重心;③若λ+μ=1,且μ>0,则点P在线段BC上;④若λ+μ>1,则点P在△ABC外;⑤若0<λ+μ<1,则点P在△ABC内.其中真命题为②④.解:对于①,,此时P点在∠BAC平分线上,但未必在△ABC 的内心,则①错;对于②,由λ=μ=1知,AP=,由向量加法法则知APBC中点,AP经过△ABC的重心,则②对;对于③,λ+μ=1⇒λ=1﹣μ⇒=,当μ>1,P点在BC延长线上,不在BC边上,则③错;对于④,令t=λ+μ>1,=t,t>1,由向量加法法则知,P点在△ABC外,则④对;对于⑤,取λ═﹣1/4,μ=1/2,λ+μ=1/4,0<λ+μ<1,但P点在△ABC外,则⑤错;故答案为:②④.三、解答题共4小题,共50分.解答应写出文字说明、演算步骤或证明过程.17.已知函数.(1)求函数f(x)的值域:(2)若函数g(x)=log a x的图象与函数f(x)的图象有交点,请直接写出实数a的取值范围.解:(1)函数.则f(x)=,因为y=1﹣x在(﹣2,0)单调递减,可得f(x)值域为[1,3).(2)当0<a<1,当0<x≤2时,g(x)=log a x的图象与函数f(x)的图象恒有交点,当1<a时,当0<x≤2时,g(x)=log a x是单调递增函数,则log a2≥1,可得a≤2.则1<a≤2.故得实数a的取值范围是0<a<1或1<a≤2.18.已知关于x的方程的两根为sinθ和cosθ,.(1)求实数b的值;(2)求的值.解:(1)∵方程的两根为sinθ、cosθ,∴sinθ+cosθ=,sinθcosθ=>0,∵,∴θ+∈(,π),即sinθ+cosθ=sin(θ+)>0,∴(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+2×=,解得:b=(负值舍去),则b=;(2)∵(sinθ﹣cosθ)2=sin2θ+cos2θ﹣2sinθcosθ=1﹣2×=,∴sinθ﹣cosθ=,∵sinθ+cosθ=,∴===.19.已知函数,.(1)①直接写出函数f(x)的奇偶性;②写出函数f(x)的单调递增区间,并用定义证明;(2)计算:=0;f(4)﹣5f(2)g(2)=0;f(9)﹣5f(3)g(3)=0;(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式,并加以证明.解:(1)①函数f(x)为奇函数.②f(x)的单调递增区间为(﹣∞,0),(0,+∞),证明:任取x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=﹣=(﹣)(1+)因为x1,x2∈(0,+∞),且x1<x2,所以<,所以﹣<0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以f(x)在(0,+∞)上单调递增,由奇函数的性质可得f(x)在(﹣∞,0)上单调递增,故(x)的单调递增区间为(﹣∞,0),(0,+∞).(2)经过代入计算可得=0,f(4)﹣5f(2)g(2)=0,f(9)﹣5f(3)g(3)=0.(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式为f(x2)﹣5f(x)g(x)=0(x≠0),证明:f(x2)﹣5f(x)g(x)=0=﹣5••=﹣=0.20.设A是由n个实数构成的一个有序数组,记作A=(a1,a2,…,a i,…,a n).其中a i(i=1,2,…,n)称为数组A的“元”,i称为数组A的“元”a i的下标,如果数组S=(b1,b2,…,b m)(m≤n,m∈N+)中的每个“元”都是来自数组A中不同下标的“元”,则称S为A的“子数组”.定义两个数组A=(a1,a2,…,a n),B=(b1,b2,…,b n)的“关系数”为C(A,B)=a1b1+a2b2+…+a n b n.(1)若,B=(b1,b2,b3,b4),且B中的任意两个“元”互不相等,B 的含有两个“元”的不同“子数组”共有p个,分别记为S1,S2,…,S p.①p=6;②若b j∈N+,1≤b j≤101(j=1,2,3,4),记,求X的最大值与最小值;(2)若,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的“子数组”,求C(A,S)的最大值.解:(1)①根据“子数组”的定义可得,B的含有两个“元”的不同“子数组”有(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4)共6个,∴p=6;②不妨设b1<b2<b3<b4,=,∵1≤b j≤101(j=1,2,3,4),则当b1=1,b2=2,b3=100,b4=101时,X取得最大值为,当b1,b2,b3,b4是连续的四个整数时,X取得最小值为;(2)由B=(0,a,b,c),且a2+b2+c2=1可知,实数a,b,c具有对称性,故分为S中含0和不含0两种情况进行分类讨论,①当0是S中的“元”时,由于中的三个“元”都相等及B中三个“元”a,b,c的对称性,可只计算的最大值,∵a2+b2+c2=1,则(a+b)2≤2(a2+b2)≤2(a2+b2+c2)=2,可得,故当时a+b达到最大值,故;②当0不是S中的“元”时,,又a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,则,当且仅当时,取到最大值,故C(A,S)max=1,综上,C(A,S)max=1.。
2020-2021学年北京八中高一(上)期末数学试卷
2020-2021学年北京八中高一(上)期末数学试卷试题数:22,总分:1501.(单选题,5分)已知集合A={-1,0,1,2},B={x|x 2≤1},则A∩B=( ) A.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1,2}2.(单选题,5分)化简 AB ⃗⃗⃗⃗⃗ + BC ⃗⃗⃗⃗⃗ - AD ⃗⃗⃗⃗⃗ 等于( ) A. CD ⃗⃗⃗⃗⃗ B. DC ⃗⃗⃗⃗⃗ C. AD ⃗⃗⃗⃗⃗ D. CB⃗⃗⃗⃗⃗ 3.(单选题,5分)已知角α的终边经过点P (3,-4),那么sinα=( ) A. 35 B. −45 C. 34 D. −344.(单选题,5分)| a |=6 √3 ,| b ⃗ |=1, a • b ⃗ =-9,则 a 与 b ⃗ 的夹角( ) A.120° B.150° C.60° D.30°5.(单选题,5分)以下函数既是偶函数又在(0,+∞)上单调递减的是( ) A.f (x )=x 4 B. f (x )=√x C. f (x )=(12)xD. f (x )=log 12|x |6.(单选题,5分)A,B两名同学在5次数学考试中的成绩统计如茎叶图所示,若A,B两人的平均成绩分别是x A,x B,观察茎叶图,下列结论正确的是()A.x A<x B,B比A成绩稳定B.x A>x B,B比A成绩稳定C.x A<x B,A比B成绩稳定D.x A>x B,A比B成绩稳定7.(单选题,5分)函数y=|lg(x-1)|的图象是()A.B.C.D.8.(单选题,5分)设x0是函数f(x)=lnx+x-4的零点,则x0所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.(单选题,5分)已知函数f (x )的定义域是(0,+∞),满足f (2)=1且对于定义域内任意x ,y 都有f (xy )=f (x )+f (y )成立,那么f (2)+f (4)的值为( ) A.1 B.2 C.3 D.410.(单选题,5分)已知函数f (x )= {e x ,x ≤0lnx ,x >0 ,g (x )=f (x )+x+a .若g (x )存在2个零点,则a 的取值范围是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞) D.[1,+∞)11.(填空题,5分)已知幂函数f (x )=x α(α为常数)过点 (2,14) ,则f (x )=___ . 12.(填空题,5分)设m∈R ,向量 a =(1,-2), b ⃗ =(m ,m-2),若 a ∥b ⃗ ,则m 等于___ .13.(填空题,5分)某医院一天派出医生下乡医疗,派出医生人数及其概率如下:医生人数12 3 4 5人及以上概率0.1 0.16 0.30.20.20.04派出的医生至少2人的概率___ .14.(填空题,5分)已知点A 、B 分别在函数f (x )=e x 和g (x )=3e x 的图象上,连接A ,B 两点,当AB 平行于x 轴时,A 、B 两点间的距离为___ .15.(填空题,5分)如图,向量 BP ⃗⃗⃗⃗⃗ =14BA ⃗⃗⃗⃗⃗ ,若 OP ⃗⃗⃗⃗⃗ =xOA⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则x-y=___ .16.(填空题,5分)已知数集X={x 1,x 2,…,x n }(其中x i >0,i=1,2,…,n ,n≥3),若对任意的x k ∈X (k=1,2,…n ),都存在x i ,x j ∈X (x i ≠x j ),使得下列三组向量中恰有一组共线:① 向量(x i ,x k )与向量(x k ,x j );② 向量(x i,x j)与向量(x j,x k);③ 向量(x k,x i)与向量(x i,x j),则称X具有性质P,例如{1,2,4}具有性质P.(1)若{1,3,x}具有性质P,则x的取值为___(2)若数集{1,3,x1,x2}具有性质P,则x1+x2的最大值与最小值之积为___ .,乙能解决它的概率17.(问答题,10分)有一个问题,在半小时内,甲能解决它的概率是12,如果两人都试图独立地在半小时内解决它,计算:是13(1)两人都未解决的概率;(2)问题得到解决的概率.18.(问答题,12分)某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:B餐厅分数频数分布表分数区间频数[0,10) 2[10,20) 3[20,30) 5[30,40)15[40,50)40[50,60] 35(Ⅱ)从对B餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.19.(问答题,12分)平面内给定三个向量a=(3,2),b⃗=(−1,2),c =(4,1).(Ⅰ)求|3 a+b⃗−2c |;(Ⅱ)求满足a=mb⃗+nc的实数m和n;(Ⅲ)若(a+kc)⊥(2b⃗−a ),求实数k.20.(问答题,12分)已知函数f(x)= 2x−a2x+1为奇函数.(1)求函数f(x)的解析式;(2)若f(x)<0.5,求x的范围;(3)求函数f(x)的值域.21.(问答题,12分)已知集合A是满足下列条件的函数f(x)的全体:在定义域内存在实数x0.使得f(x0+1)+f(x0)=f(1)成立.(Ⅰ)判断幂函数f(x)=x-1是否属于集合A,并说明理由;(Ⅱ)设g(x)=lg(2x+a),x∈(-∞,2),若g(x)∈A,求a的取值范围.22.(问答题,12分)已知M是满足下列性质的所有函数f(x)组成的集合:对任何x1,x2∈D f(其中D f为函数f(x)的定义域),均有|f(x1)-f(x2)|≤|x1-x2|成立.(Ⅰ)已知函数f(x)=x2+1,x∈[−12,12],判断f(x)与集合M的关系,并说明理由;(Ⅱ)是否存在实数a,使得p(x)= ax+2,x∈[-1,+∞)属于集合M?若存在,求a的取值范围,若不存在,请说明理由;(Ⅲ)对于实数a ,b (a <b ),用M [a ,b]表示集合M 中定义域为区间[a ,b]的函数的集合,定义:已知h (x )是定义在[p ,q]上的函数,如果存在常数T >0,对区间[p ,q]的任意划分:p=x 0<x 1<…<x n-1<x n =q ,和式 ∑|ℎ(x i )−ℎ(x i−1)|n i=1 ≤T 恒成立,则称h (x )为[p ,q]上的“绝对差有界函数”,其中常数T 称为h (x )的“绝对差上界”,T 的最小值称为h (x )的“绝对差上确界”,符号 ∑t i n i=1=t 1+t 2+⋯+t n .求证:集合M [-1010,1010]中的函数h (x )是“绝对差有界函数”,并求h (x )的“绝对差上确界”.2020-2021学年北京八中高一(上)期末数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A={-1,0,1,2},B={x|x 2≤1},则A∩B=( ) A.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1,2} 【正确答案】:A【解析】:解求出B 中的不等式,找出A 与B 的交集即可.【解答】:解:因为A={-1,0,1,2},B={x|x 2≤1}={x|-1≤x≤1}, 所以A∩B={-1,0,1}, 故选:A .【点评】:本题考查了两个集合的交集和一元二次不等式的解法,属基础题. 2.(单选题,5分)化简 AB ⃗⃗⃗⃗⃗ + BC ⃗⃗⃗⃗⃗ - AD ⃗⃗⃗⃗⃗ 等于( ) A. CD ⃗⃗⃗⃗⃗ B. DC ⃗⃗⃗⃗⃗ C. AD ⃗⃗⃗⃗⃗ D. CB⃗⃗⃗⃗⃗ 【正确答案】:B【解析】:直接利用向量的加减法求法即可.【解答】:解: AB ⃗⃗⃗⃗⃗ + BC ⃗⃗⃗⃗⃗ - AD ⃗⃗⃗⃗⃗ = AC ⃗⃗⃗⃗⃗ - AD ⃗⃗⃗⃗⃗ = DC ⃗⃗⃗⃗⃗ . 故选:B .【点评】:本题考查斜率加减法的计算,是基础题.3.(单选题,5分)已知角α的终边经过点P (3,-4),那么sinα=( )A. 35B. −45C. 34D. −34【正确答案】:B【解析】:由条件利用任意角的三角函数的定义,求得sinα的值.【解答】:解:由于角α的终边经过点P(3,-4),∴x=3,y=-4,r=|OP|=5,∴sinα= yr=- 45,故选:B.【点评】:本题主要考查任意角的三角函数的定义,属于基础题.4.(单选题,5分)| a |=6 √3,| b⃗ |=1,a• b⃗ =-9,则a与b⃗的夹角()A.120°B.150°C.60°D.30°【正确答案】:B【解析】:由题意利用两个向量的数量积的定义,求出a与b⃗的夹角的余弦值,可得a与b⃗的夹角.【解答】:解:∵| a |=6 √3,| b⃗ |=1,a• b⃗ =-9,则设a与b⃗的夹角为θ,θ∈[0,π],由a•b⃗ =6 √3•1•cosθ=-9,求得cosθ=- √32,∴θ= 5π6=150°,故选:B.【点评】:本题主要考查两个向量的数量积的定义,属于基础题.5.(单选题,5分)以下函数既是偶函数又在(0,+∞)上单调递减的是()A.f(x)=x4B. f(x)=√xC. f(x)=(12) xD. f(x)=log12|x|【正确答案】:D【解析】:根据常见函数的奇偶性和单调性判断即可.【解答】:解:对于A,函数在(0,+∞)递增,不合题意;对于B,函数不是偶函数,不合题意;对于C,函数不是偶函数,不合题意;对于D,函数既是偶函数又在(0,+∞)上单调递减,符合题意;故选:D.【点评】:本题考查了函数的单调性和奇偶性问题,是一道基础题.6.(单选题,5分)A,B两名同学在5次数学考试中的成绩统计如茎叶图所示,若A,B两人的平均成绩分别是x A,x B,观察茎叶图,下列结论正确的是()A.x A<x B,B比A成绩稳定B.x A>x B,B比A成绩稳定C.x A<x B,A比B成绩稳定D.x A>x B,A比B成绩稳定【正确答案】:A【解析】:根据茎叶图中数据,色彩A、B的成绩,分别计算二人的平均分,再根据两人的成绩分布判断方差大小.【解答】:解:由茎叶图知,A的成绩为81、82、85、94、118,平均成绩为92;B的成绩为88、98、97、104、103,平均成绩为98;从茎叶图上可以看出B的数据比A的数据集中,B比A成绩稳定,故选:A.【点评】:本题考查了利用茎叶图计算平均数和方差的应用问题,是基础题.7.(单选题,5分)函数y=|lg(x-1)|的图象是()A.B.C.D.【正确答案】:C【解析】:求出函数的定义域,利用定义域进行排除即可.【解答】:解:由x-1>0得x>1,即函数的定义域为(1,+∞),排除A,B,D,故选:C.【点评】:本题主要考查函数图象的识别和判断,利用定义域是否满足,结合排除法是解决本题的关键,是基础题.8.(单选题,5分)设x0是函数f(x)=lnx+x-4的零点,则x0所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【正确答案】:C【解析】:由函数的解析式可得 f (2)<0,f (3)>0,再根据函数的零点的判定定理求得函数的零点x 0所在的区间.【解答】:解:∵x 0是函数f (x )=lnx+x-4的零点,f (2)=ln2-2<0,f (3)=ln3-1>0, ∴函数的零点x 0所在的区间为(2,3), 故选:C .【点评】:本题主要考查函数的零点的判定定理的应用,属于基础题.9.(单选题,5分)已知函数f (x )的定义域是(0,+∞),满足f (2)=1且对于定义域内任意x ,y 都有f (xy )=f (x )+f (y )成立,那么f (2)+f (4)的值为( ) A.1 B.2 C.3 D.4【正确答案】:C【解析】:由f (4)=f (2×2)=f (2)+f (2)=2f (2),可得 f (4)=2,从而得到所求.【解答】:解:∵f (4)=f (2×2)=f (2)+f (2)=2f (2), ∴f (4)=2.∴f (2)+f (4)=1+2=3, 故选:C .【点评】:本题考查抽象函数的应用,求出f (4)=2,是解题的关键,是基础题. 10.(单选题,5分)已知函数f (x )= {e x ,x ≤0lnx ,x >0 ,g (x )=f (x )+x+a .若g (x )存在2个零点,则a 的取值范围是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞) D.[1,+∞) 【正确答案】:C【解析】:由g(x)=0得f(x)=-x-a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.【解答】:解:由g(x)=0得f(x)=-x-a,作出函数f(x)和y=-x-a的图象如图:当直线y=-x-a的截距-a≤1,即a≥-1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[-1,+∞),故选:C.【点评】:本题主要考查分段函数的应用,利用函数与零点之间的关系转化为两个函数的图象的交点问题是解决本题的关键.11.(填空题,5分)已知幂函数f(x)=xα(α为常数)过点(2,14),则f(x)=___ .【正确答案】:[1]x-2【解析】:使用待定系数法求出f(x)的解析式.【解答】:解:∵幂函数f(x)=xα(α为常数)过点(2,14),∴2α= 14,解得α=-2.∴f(x)=x-2.故答案为x-2.【点评】:本题考查了待定系数法确定函数解析式,是基础题.12.(填空题,5分)设m∈R,向量a =(1,-2),b⃗ =(m,m-2),若a∥b⃗,则m等于___ .【正确答案】:[1] 23【解析】:根据题意,由向量平行的坐标表示方法可得(m-2)=-2m,解可得m的值,即可得答案.【解答】:解:根据题意,向量a =(1,-2),b⃗ =(m,m-2),若a∥b⃗,则有1×(m-2)=-2m,解可得:m= 23,故答案为:23.【点评】:本题考查向量平行的坐标表示,涉及向量的坐标表示,属于基础题.13.(填空题,5分)某医院一天派出医生下乡医疗,派出医生人数及其概率如下:【正确答案】:[1]0.74【解析】:利用对立事件的概率计算公式即可得出.【解答】:解:设派出的医生至少2人事件A,则P(A)=1-P(A)=1-0.1-0.16=0.74.故答案为:0.74【点评】:熟练掌握对立事件的概率计算公式是解题的关键.14.(填空题,5分)已知点A、B分别在函数f(x)=e x和g(x)=3e x的图象上,连接A,B 两点,当AB平行于x轴时,A、B两点间的距离为___ .【正确答案】:[1]ln3【解析】:根据题意,由y=e x求出x=lny;由y=3•e x(k>0)求出x=ln y3,作差等于ln3【解答】:解:根据题意,∵y=f(x)=e x,∴x=lny;又∵y=g(x)=3e x,∴x=ln y3;∴A、B两点之间的距离为lny-ln y3 =ln(y÷ y3)=ln3,故答案为:ln3【点评】:本题考查了函数的性质与应用问题,解题时应根据题意,转化条件,从而求出解答,是基础题.15.(填空题,5分)如图,向量 BP ⃗⃗⃗⃗⃗ =14BA ⃗⃗⃗⃗⃗ ,若 OP ⃗⃗⃗⃗⃗ =xOA⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则x-y=___ .【正确答案】:[1]- 12【解析】:先将 BP ⃗⃗⃗⃗⃗ =14BA ⃗⃗⃗⃗⃗ 中的所有向量用 OP ⃗⃗⃗⃗⃗ , OA ⃗⃗⃗⃗⃗ , OB ⃗⃗⃗⃗⃗ 表示,从而求出x ,y 的值,即可求出所求.【解答】:解:∵ BP ⃗⃗⃗⃗⃗ =14BA ⃗⃗⃗⃗⃗ , ∴ OP ⃗⃗⃗⃗⃗ - OB ⃗⃗⃗⃗⃗ = 14 ( OA ⃗⃗⃗⃗⃗ - OB ⃗⃗⃗⃗⃗ ),即 OP ⃗⃗⃗⃗⃗ = 14 OA ⃗⃗⃗⃗⃗ + 34 OB ⃗⃗⃗⃗⃗ ,∵ OP⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ , ∴x= 14 ,y= 34 ,即x-y= −12 . 故答案为: −12.【点评】:本题主要考查了平面向量的基本定理及其意义,解题的关键是将所有向量用 OP ⃗⃗⃗⃗⃗ , OA ⃗⃗⃗⃗⃗ , OB ⃗⃗⃗⃗⃗ 表示,属于基础题.16.(填空题,5分)已知数集X={x 1,x 2,…,x n }(其中x i >0,i=1,2,…,n ,n≥3),若对任意的x k ∈X (k=1,2,…n ),都存在x i ,x j ∈X (x i ≠x j ),使得下列三组向量中恰有一组共线:① 向量(x i ,x k )与向量(x k ,x j ); ② 向量(x i ,x j )与向量(x j ,x k );③ 向量(x k ,x i )与向量(x i ,x j ),则称X 具有性质P ,例如{1,2,4}具有性质P . (1)若{1,3,x}具有性质P ,则x 的取值为___(2)若数集{1,3,x 1,x 2}具有性质P ,则x 1+x 2的最大值与最小值之积为___ . 【正确答案】:[1] 13,√3,9 ; [2]1003【解析】:(1)由题意可得:(1,3)与(3,x );(1,x )与(x ,3);(3,1)与(1,x )中恰有一组共线,分别求出相应的x 的值即可;(2)由(1)知,可得x 1= 13 , √3 ,9,再利用新定义验证,得到{1,3, 13,x 2}具有性质P 时的x 2= 127 , 19 , √33 , √3 ,9,27,同理分别得到{1,3, √3 ,x 2}以及{1,3,9,x 2}具有性质P 时的x 2的值,即可得到x 1+x 2的最大值与最小值之积.【解答】:解:(1)由题意可得:(1,3)与(3,x );(1,x )与(x ,3);(3,1)与(1,x )中恰有一组共线,当(1,3)与(3,x )共线时,可得x=9,此时另外两组不共线,符合题意, 当(1,x )与(x ,3)共线时,可得x= √3 ,此时另外两组不共线,符合题意, 当(3,1)与(1,x )共线时,可得x= 13,此时另外两组不共线,符合题意, 故x 的取值为: 13, √3 ,9;(2)由(1)的求解方法可得x 1= 13 , √3 ,9, 当x 1= 13 时,由数集{1,3, 13 ,x 2}具有性质P ,① 若(1,3)与(3,x 2);(1,x 2)与(x 2,3);(3,1)与(1,x 2)中恰有一组共线,可得x 2=9, √3 ;② 若(1, 13 )与( 13 ,x 2);(1,x 2)与(x 2, 13 );( 13 ,1)与(1,x 2)中恰有一组共线,可得x 2= √33 , 19 ;③ 若(3, 13 )与( 13 ,x 2);(3,x 2)与(x 2, 13 );( 13 ,3)与(3,x 2)中恰有一组共线,可得x 2= 127 ,27;故{1,3, 13 ,x 2}具有性质P 可得x 2= 127 , 19 , √33 , √3 ,9,27;同理当x 1= √3 时,{1,3, √3 ,x 2}具有性质P 可得x 2= 13 , √33 , √34, √274,3 √3 ,9; 同理当x 1=9时,可得x 2= 19 , 13 , √33 , √3 ,3 √3 ,27,81; 则x 1+x 2的最大值为90,最小值为 13+127=1027 , 故x 1+x 2的最大值与最小值之积为90× 1027 = 1003. 故答案为:(1) 13 , √3 ,9;(2) 1003 .【点评】:本题考查新定义,考查平面向量共线的运用,考查学生分析解决问题的能力,难度较大.17.(问答题,10分)有一个问题,在半小时内,甲能解决它的概率是12,乙能解决它的概率是13,如果两人都试图独立地在半小时内解决它,计算:(1)两人都未解决的概率;(2)问题得到解决的概率.【正确答案】:【解析】:(1)两人都试图独立地在半小时内解决它,由此利用相互独立事件概率计算公式能求出两人都未解决的概率.(2)问题得到解决的对立事件是两人都未解决,由此利用对立事件概率计算公式能求出问题得到解决的概率.【解答】:解:(1)有一个问题,在半小时内,甲能解决它的概率是12,乙能解决它的概率是13,两人都试图独立地在半小时内解决它,则两人都未解决的概率P1=(1- 12)(1- 13)= 13.(2)问题得到解决的对立事件是两人都未解决,∴问题得到解决的概率P=1-P1=1-(1- 12)(1- 13)=1- 13= 23.【点评】:本题考查概率的求法,考查相互独立事件概率计算公式、对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.18.(问答题,12分)某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:B餐厅分数频数分布表分数区间频数[0,10) 2[10,20) 3[20,30) 5[30,40)15[40,50)40[50,60] 35(Ⅱ)从对B餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.【正确答案】:【解析】:(Ⅰ)由A餐厅分数的频率分布直方图求得频率与频数;(Ⅱ)用列举法求基本事件数,计算对应的概率值;(Ⅲ)从两个餐厅得分低于30分的人数所占的比例分析,即可得出结论.【解答】:解:(Ⅰ)由A餐厅分数的频率分布直方图,得:对A餐厅评分低于30分的频率为(0.003+0.005+0.012)×10=0.2,所以,对A餐厅评分低于30的人数为100×0.2=20;(Ⅱ)对B餐厅评分在[0,10)范围内的有2人,设为M1、M2;对B餐厅评分在[10,20)范围内的有3人,设为N1、N2、N3;从这5人中随机选出2人的选法为:(M 1,M 2),(M 1,N 1),(M 1,N 2),(M 1,N 3), (M 2,N 1),(M 2,N 2),(M 2,N 3), (N 1,N 2),(N 1,N 3),(N 2,N 3)共10种. 其中,恰有1人评分在[0,10)范围内的选法为: (M 1,N 1),(M 1,N 2),(M 1,N 3), (M 2,N 1),(M 2,N 2),(M 2,N 3)共6种;故2人中恰有1人评分在[0,10)范围内的概率为P= 610= 35; (Ⅲ)从两个餐厅得分低于30分的人数所占的比例来看: 由(Ⅰ)得,抽样的100人中,A 餐厅评分低于30的人数为20, 所以,A 餐厅得分低于30分的人数所占的比例为20%; B 餐厅评分低于30的人数为2+3+5=10,所以,B 餐厅得分低于30分的人数所占的比例为10%; 所以会选择B 餐厅用餐.【点评】:本题考查了频率分布表与直方图的应用问题,也考查了用列举法求古典概型的概率问题,是综合题.19.(问答题,12分)平面内给定三个向量 a =(3,2),b ⃗ =(−1,2),c =(4,1). (Ⅰ)求|3 a +b ⃗ −2c |;(Ⅱ)求满足 a =mb ⃗ +nc 的实数m 和n ; (Ⅲ)若 (a +kc )⊥(2b ⃗ −a ) ,求实数k .【正确答案】:【解析】:(Ⅰ)根据题意,求出3 a + b ⃗ -2 c 的坐标,由向量模的计算公式计算可得答案; (Ⅱ)根据题意,由向量的坐标计算公式可得若 a =mb ⃗ +nc ,必有 {3=−m +4n 2=2m +n ,求出m 、n 的值,即可得答案;(Ⅲ)根据题意,求出 a +k c 与2 b ⃗ - a 的坐标,由向量数量积的计算公式可得( a +k c )•(2 b ⃗ - a )=0,求出k 的值,即可得答案.【解答】:解:(Ⅰ)根据题意,向量 a =(3,2),b ⃗ =(−1,2),c =(4,1). 则3 a + b ⃗ -2 c =(0,6),故|3 a + b ⃗ -2 c |=6;(Ⅱ)若 a =mb ⃗ +nc ,即(3,2)=m (-1,2)+n (4,1), 则有 {3=−m +4n 2=2m +n ,解可得 {m =59n =89 , 故m= 59,n= 89;(Ⅲ)根据题意, a +k c =(3+4k ,2+k ),2 b ⃗ - a =(-5,2),若 (a +kc )⊥(2b ⃗ −a ) ,则( a +k c )•(2 b ⃗ - a )=(-5)(3+4k )+2(2+k )=0, 解可得k=- 1118 , 故k=- 1118 .【点评】:本题考查平面向量数量积的计算,涉及向量的坐标和向量模的计算,属于基础题. 20.(问答题,12分)已知函数f (x )= 2x −a2x +1 为奇函数. (1)求函数f (x )的解析式; (2)若f (x )<0.5,求x 的范围; (3)求函数f (x )的值域.【正确答案】:【解析】:(1)可看出f (x )的定义域为R ,即f (x )在原点有定义,并且f (x )是奇函数,从而得出f (0)=1−a 2=0 ,从而得出a=1;(2)由f (x )<0.5即可得出2x <3,从而求出x 的范围;(3)分离常数得出 f (x )=1−22x +1 ,根据2x >0即可求出 1−22x +1 的范围,即得出f (x )的值域.【解答】:解:(1)f (x )的定义域为R ; ∴f (x )在原点有定义,且f (x )是奇函数; ∴ f (0)=1−a 2=0 ;∴a=1; ∴ f (x )=2x −12x +1; (2)由 2x −12x +1<12 得:2x <3;∴x <log 23;(3) f (x )=2x −12x +1=1−22x +1 ; ∵2x >0; ∴2x +1>1, 0<12x +1<1 ; ∴ −1<1−22x +1<1 ; ∴f (x )的值域为(-1,1).【点评】:考查奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,指数函数的单调性,指数与对数的互化,指数函数的值域,分离常数法的运用.21.(问答题,12分)已知集合A 是满足下列条件的函数f (x )的全体:在定义域内存在实数x 0.使得f (x 0+1)+f (x 0)=f (1)成立.(Ⅰ)判断幂函数f (x )=x -1是否属于集合A ,并说明理由;(Ⅱ)设g (x )=lg (2x +a ),x∈(-∞,2),若g (x )∈A ,求a 的取值范围.【正确答案】:【解析】:(Ⅰ)令f (x+1)+f (x )=f (1),解得x ,判断是否属于集合A ,即可得出结论.(Ⅱ)根据题意可得 {x <2x +1<2,解得x <1,则g (x+1)+g (x )=g (1)在(-∞,0)上有解,即(2•2x +a )(2x +a )=2+a (a >-2),令t=2x ,则t∈(0,1),问题转化为2t 2+3at+a 2-a-2=0,在(0,1)上有解,进而可得a 的取值范围.【解答】:解:(Ⅰ)f (x )∈A ,理由如下: 令f (x+1)+f (x )=f (1), 则 1x+1 + 1x =1,即x 2-x-1=0,解得x 1= 1−√52 ,x 2= 1+√52,均满足定义域{x|x≠0}, 所以当f (x )=x -1时,f (x )∈A .(Ⅱ)因为g (x )∈A ,所以 {x <2x +1<2,解得x <1, 由题知,g (x+1)+g (x )=g (1)在(-∞,1)上有解,所以lg (2x+1+a )+lg (2x +a )=lg (2+a ),所以(2•2x +a )(2x +a )=2+a (a >-2),令t=2x ,则t∈(0,2),所以2t 2+3at+a 2-a-2=0,即(2t+a-2)(t+a+1)=0,所以t 1=1- a 2 ,t 2=-a-1,从而,原问题等价于0<1- a 2 <2或0<-a-1<2,所以-2<a <2或-3<a <-1,又2x +a >0在(-∞,0)上恒成立,所以a≥0,所以0≤a <2.所以a 的取值范围为[0,2).【点评】:本题考查函数的性质,恒成立问题,解题中注意转化思想的应用,属于中档题.22.(问答题,12分)已知M 是满足下列性质的所有函数f (x )组成的集合:对任何x 1,x 2∈D f (其中D f 为函数f (x )的定义域),均有|f (x 1)-f (x 2)|≤|x 1-x 2|成立.(Ⅰ)已知函数 f (x )=x 2+1,x ∈[−12,12] ,判断f (x )与集合M 的关系,并说明理由; (Ⅱ)是否存在实数a ,使得p (x )=a x+2 ,x∈[-1,+∞)属于集合M ?若存在,求a 的取值范围,若不存在,请说明理由;(Ⅲ)对于实数a ,b (a <b ),用M [a ,b]表示集合M 中定义域为区间[a ,b]的函数的集合,定义:已知h (x )是定义在[p ,q]上的函数,如果存在常数T >0,对区间[p ,q]的任意划分:p=x 0<x 1<…<x n-1<x n =q ,和式 ∑|ℎ(x i )−ℎ(x i−1)|n i=1 ≤T 恒成立,则称h (x )为[p ,q]上的“绝对差有界函数”,其中常数T 称为h (x )的“绝对差上界”,T 的最小值称为h (x )的“绝对差上确界”,符号 ∑t i n i=1=t 1+t 2+⋯+t n .求证:集合M [-1010,1010]中的函数h (x )是“绝对差有界函数”,并求h (x )的“绝对差上确界”.【正确答案】:【解析】:(Ⅰ)利用已知条件,通过任取x 1,x 2∈[- 12 , 12 ],证明|f (x 1)-f (x 2)|≤|x 1-x 2|成立,说明f (x )属于集合M .(Ⅱ)若p (x )∈M ,则有| a x 1+2 - a x 2+2 |≤|x 1-x 2|,然后可求出当a∈[-1,1]时,p (x )∈M . (Ⅲ)直接利用新定义加以证明,并求出h (x )的“绝对差上确界T”的值.【解答】:解:(Ⅰ)设x 1,x 2∈[- 12 , 12 ],则|f (x 1)-f (x 2)|=|x 12-x 22|=|x 1-x 2||x 1+x 2|,因为- 12 ≤x 1≤ 12 ,- 12 ≤x 2≤ 12 ,所以-1≤x 1+x 2≤1,所以|f (x 1)-f (x 2)|=|x 12-x 22|=|x 1+x 2||x 1-x 2|≤|x 1-x 2|,所以函数f (x )属于集合M .(Ⅱ)若函数P (x )= a x+2 ,x∈[-1,+∞)属于集合M ,则当x 1,x 2∈[-1,+∞)时,|P (x 1)-P (x 2)|≤|x 1-x 2|恒成立,即| a x 1+2 - a x 2+2 |≤|x 1-x 2|,对x 1,x 2∈[-1,+∞)恒成立,所以|a|≤|(x 1+2)(x 2+2)|,对x 1,x 2∈[-1,+∞)恒成立,因为x 1,x 2∈[-1,+∞),所以|(x 1+2)(x 2+2)|≥1,所以|a|≤1,即-1≤a≤1,所以a 的取值范围为[-1,1].(Ⅲ)取p=-1010,q=1010,则对区间[-1010,1010]的任意划分,和式 ∑n i=1 |h (x i )-h (x i-1)|=|h (x 1)-h (x 0)|+|h (x 2)-h (x 1)|+…+|h (x n )-h (x n-1)| ≤|x 1-x 0|+|x 2-x 1|+…+|x n -x n-1|=(x 1-x 0)+(x 2-x 1)+…+(x n -x n-1)=x n -x 0=1010-(-1010)=2020,所以集合M [-1010,1010]中的函数h (x )是“绝对差有界函数”,且h (x )的“绝对差上确界”T=2020.【点评】:本题考查函数的新定义,解题中需要一定的阅读理解能力,属于中档题.。
北京海淀区北京一零一中学2020-2021学年高一10月月考数学试卷(解析版)
【点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若 则 ”、“若 则 ” 真假.并注意和图示相结合,例如“ ⇒ ”为真,则 是 的充分条件.
2.等价法:利用 ⇒ 与非 ⇒非 , ⇒ 与非 ⇒非 , ⇔ 与非 ⇔非 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
对于B,因为 , ,所以 ,所以B错误,
对于C,因为 是数集, 是点集,所以 ,所以C错误,
对于D,因为 , ,所以 ,所以D正确,
故选:D
5.已知函数 为奇函数,且当 时, ,则 ().
A. 2B. 1C. 0D.
【答案】D
【分析】由奇函数的性质可得 ,再由已知的解析式求出 可得答案
【详解】因为当 时, ,所以 ,
【答案】A
【分析】先判断函数的单调性,再根据函数的单调性求函数的值域即可
【详解】任取 ,且 ,则
,
当 ,且 时, , ,所以 ,即 ,
当 ,且 时, , ,所以 ,即 ,
所以 在 上单调递减,在 上单调递增,
所以 ,
因为 ,所以 ,
所以 在 上的值域为
故选:A
9.已知 , , , 为实数,且 ,则“ ”是“ ”的()
【分析】(1)利用补集的定义直接求解即可,
(2)由 ,可得 ,从而可求得 的值
【详解】(1)因为 为全集,集合 ,
所以 或 ,
(2)因为集合 ,集合 , ,
所以 ,且 ,
解得
18.已知 , ,且 ,求 的取值范围.
【答案】
【分析】首先分别对集合A和集合 求解,然后利用交运算即可求解.
【详解】由题意, ,
北京市海淀区中国人民大学附属中学2020-2021学年高一(上)期中数学试题
人大附中2020-2021学年度第一学期高一年级数学期中练习一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置)1. 设全集{}2,3,4,5,6,7U =,集合{}2,4,5M =,{}3,5,7N =,则()UN M ⋂=( ).A. {}5B. {}3,7C. {}2,3,4,5,7D. {}2,3,4,6,7【答案】B2. 下列函数中,既是奇函数,又是在区间0,上单调递增的函数为( ). A. 1y x -= B. y x x =C.y x =-D. 21y x =-【答案】B3. 已知命题:0p x ∀≥,20x ->,则p ⌝是( ). A.0x ∃≥,20x -≤ B. 0x ∃<,20x -≤ C. 0x ∀≥,20x -≤ D. 0x ∀≥,20x -<【答案】A4. 不等式2560x x -->的解集为( ). A. {3x x >或}2x <- B. {2x x >或}3x <- C. {6x x >或}1x <- D. {}16x x -<<【答案】C 5. 函数3()5f x x =-的零点所在的区间是A. (1,2)B. (2,3)C. (3,4)D. (4,5)【答案】A6. 若a b >,则下列不等关系一定成立的是( ). A.1a b> B.11a b< C. a b >D. 33a b -<-【答案】D7. 函数2x y x=的图象大致是( ). A. B.C. D.【答案】A8. “2x <”是“2x <”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B9. 关于x 的方程2220x mx m m -+-=有两个正的实数根,则实数m 的取值范围是( ). A. 0m > B. 0m ≥ C. m 1≥ D. 1m【答案】D10. 若关于x 的不等式()()2121x x a x -+≥-对于一切()1,x ∈+∞恒成立,则实数a 的取值范围是( ). A. (],4-∞ B. [)4,+∞ C. (],6-∞ D. [)6,+∞【答案】C二、填空题(本大题共5小题,每小题5分,共25分,请把结果填在答题纸上的相应位置)11. 函数()13xf x x-=+的定义域为_______________. 【答案】(]3,1-12. 若函数()()()2f x x x a =+-是偶函数,则()3f =______. 【答案】513. 奇函数()f x 的定义域为()1,1-,()f x 在第一象限的图象为圆心在原点,半径为1的圆弧,如图所示,则不等式()f x x <的解集为______.【答案】22,022⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭14. 已知函数()2f x x =,如果对[]10,1x ∀∈,[]20,1x ∀∈,使得()()12f xg x =成立,请给出一个满足上述条件的函数()g x ,则()g x 的解析式为______. 【答案】()g x x =15. 设函数()2,2,x x a f x x x x a ≥⎧=⎨-+<⎩①若x R ∃∈,使得()()11f x f x +=-成立,则实数a 的取值范围是______. ②若函数()f x 为R 上的单调函数,则实数a 的取值范围是______. 【答案】 (1). 1a > (2). 0a ≤或1a =三、解答题(本大题共3小题,共35分,解答应写出文字说明程或演算步骤,请将答案写在答题纸上的相应位置)16. 已知集合{}13A x a x a =-≤≤+,{}22150B x x x =-->. (1)当3a =时,求AB ;(2)若A B B ⋃=,求实数a 的取值范围. 【答案】(1){}56x x <≤;(2)()(),66,-∞-+∞.17. 经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费T (元)关于每次订货x (单位)的函数关系()2Bx ACT x x=+,其中A 为年需求量,B 为每单位物资的年存储费,C 为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用多少?【答案】(1)15000000()60T x x x=+,(300)68000T =;(2)500x =,min 60000T = 18. 已知函数()12f x x x=- (Ⅰ)判断函数()f x 在()0,∞+上的单调性,并用函数单调性定义证明; (Ⅱ)关于x方程()()()0,f x b f x c b c R ++=∈有6个不同的实数根()1,2,3,4,5,6i x i =.则:(1)123456x x x x x x =______.(2)求b ,c 满足条件.(直接写出答案)【答案】(Ⅰ)减函数,证明见解析;(Ⅱ)(1)18-,(2)0b <,0c.一、选择题(共3小题,每小题6分,共18分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置)19. 使不等式101x<<成立的一个充分不必要条件是( ). A. 102x << B. 1x > C .2x >D. 0x <【答案】C20. 若指数函数()xf x a =的图象和函数()()351g x x x =+≥-图象相交,则( ).A. 10,2a ⎛⎤∈ ⎥⎝⎦B. 1,12a ⎡⎫∈⎪⎢⎣⎭C. ()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭D. ()10,1,2a ⎛⎤∈⋃+∞ ⎥⎝⎦【答案】D21. 已知函数()141,041341,44345,14x x f x x x x x ⎧-+≤≤⎪⎪⎪=-<<⎨⎪⎪-+≤≤⎪⎩对于给定的m (m R ∈且01m <<)存在[]00,1x m ∈-,使得()()00f f x x m =+,则m 的最大值为( ).A. 13B.23 C.12D. 34【答案】C二、填空题(共3小题,每小题6分,共18分,请把结果填在答题纸上的相应位置)22. 设1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,则2212x x +的最小值为______.【答案】8923. 自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae e x b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______.(2)如果()f x 的最小值为2,则+a b 的最小值为______.【答案】 (1). 1 (2). 1- (3). 224. 设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论: ①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i A B ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______. 【答案】①③三、解答题(本小题14分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置)25. 已知集合A 为非空数集,定义:{},,S x x a b a b A ==+∈,{},,T x x a b a b A ==-∈(1)若集合{}1,3A =,直接写出集合S ,T . (2)若集合{}1234,,A x x x x =,1234x x x x <<<,且TA =,求证:1423x x x x +=+(3)若集合{}02020,A x x x N ⊆≤≤∈,S ,S T ⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.【答案】(1){}2,4,6S =,{}0,2T =;(2)证明见解析;(3)1347.。
2023-2024学年北京市海淀区高三上学期期末练习数学试题+答案解析
2023-2024学年北京市海淀区高三上学期期末练习数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,,则()A. B. C. D.2.如图,在复平面内,复数,对应的点分别为,,则复数的虚部为()A. B. C. D.3.已知直线,直线,且,则()A.1B.C.4D.4.已知抛物线的焦点为F,点M在C上,,O为坐标原点,则()A. B.4 C.5 D.5.在正四棱锥中,,二面角的大小为,则该四棱锥的体积为()A.4B.2C.D.6.已知圆,直线与圆C交于A,B两点.若为直角三角形,则()A. B. C. D.7.若关于x的方程且有实数解,则a的值可以为()A.10B.eC.2D.8.已知直线,的斜率分别为,,倾斜角分别为,,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知是公比为的等比数列,为其前n项和.若对任意的,恒成立,则()A.是递增数列B.是递减数列C.是递增数列D.是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.如图是一个蜂房的立体模型,底面ABCDEF是正六边形,棱AG,BH,CI,DJ,EK,FL均垂直于底面ABCDEF,上顶由三个全等的菱形PGHI,PIJK,PKLG构成.设,,则上顶的面积为()参考数据:,A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.在的展开式中,x的系数为__________.12.已知双曲线的一条渐近线为,则该双曲线的离心率为__________.13.已知点A,B,C在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则__________;点C到直线AB的距离为__________.14.已知无穷等差数列的各项均为正数,公差为d,则能使得为某一个等差数列的前n项和的一组,d的值为__________,__________.15.已知函数给出下列四个结论:①任意,函数的最大值与最小值的差为2;②存在,使得对任意,;③当时,对任意非零实数x,;④当时,存在,,使得对任意,都有其中所有正确结论的序号是__________.三、解答题:本题共6小题,共72分。
北京市海淀区2020-2021学年上学期高一语文期末试题及答案
海淀区2020—2021学年第一学期期末练习高一语文2021.01 学校__________班级__________姓名__________成绩__________一、本大题共4小题,共13分。
阅读下面的材料,回答1-4题。
材料一①如果有一位西洋朋友写信给你说他将要“带了他的家庭”一起来看你,他很知道要和他一同来的是哪几个人。
在中国,这句话模糊得很,这个“家”字可以说最能伸缩自如了。
“家里的”可以指自己的太太一个人,“家门”可以指叔伯侄子一大批,“自家人”可以包罗任何要拉入自己的圈子,表示亲热的人物。
自家人的范围是因时因地可伸缩,大到数不清,真是天下可成一家。
②为什么我们对“家”这个最基本的社会单位的名词会这样不清不楚呢?在我看来却表示了我们的社会结构本身和西洋的格局是不相同的。
西洋的格局像是一捆一捆扎清楚的柴,我们的差序格局好像把一块石头丢在水面上所发生的一圈圈推出去的波纹。
每个人都是他社会影响所推出去的圈子的中心,被圈子的波纹所推及的就发生联系。
每个人在某一时间某一地点所动用的圈子是不一定相同的。
③我们社会中最重要的亲属关系就是这种丢石头形成同心圆波纹的性质。
亲属关系是根据生育和婚姻事实所发生的社会关系。
从生育和婚姻所结成的网络,可以一直推出去包括无穷的人,过去的、现在的和未来的人物。
我们俗语里有“一表三千里",就是这个意思,其实三千里者也不过指其广袤的意思而已。
这个网络像个蜘蛛的网,有一个中心,就是自己。
我们每个人都有这么一个以亲属关系布出去的网,但是没有一个网所罩住的人是相同的。
④在我们乡土社会里,不但亲属关系如此,地缘关系也是如此。
每一家以自己的地位作中心,周围划出一个圈子,这个圈子是“街坊”。
有喜事要请酒,生了孩子要送红蛋,有丧事要出来助殓。
可是这不是一个固定的团体,而是一个范围。
范围的大小也要依着中心的势力厚薄而定。
有势力的人家的街坊可以遍及全村,穷苦人家的街坊只是比邻的两三家。
北京市海淀区2022-2023学年高一上学期期末数学试题(含答案解析)
C.{x∣1 x 2}
D.{x∣1 x 2}
2.下列函数中,是奇函数且在区间 0, 上单调递增的是( )
1
A. f x x2
B. f x x2
C. f x 1
x
D. f x x3
3.某学校想了解高一学生社会实践项目的选择意向,采用分层抽样的方式抽取 100 人
进行问卷调查.已知高一年级有 270 名男生,从男生中抽取了 60 名,则该校高一年级共
5
5
(1)从中选择的两个条件的序号为_____,依所选择的条件求得 b ____, a ____;
(2)利用单调性定义证明函数
g
t
2 t
t
在
0,
上单调递减;
(3)在(1)的情况下,若方程 f x m 4x 在0,1 上有且只有一个实根,求实数 m 的取
值范围.
19.设函数 y f x 的定义域为 M ,且区间 I M ,对任意 x1, x2 I 且 x1 x2 ,记
【详解】因为函数 f x 在区间 1,2 上的图像是连续不断的, 由零点存在性定理,可知由 f 1 f 2 0 可得函数 f x 在区间 (1, 2) 上有零点, 即由函数 f x 在区间 (1, 2) 上没有零点,可得 f 1 f 2 0 ,
答案第 3页,共 12页
根据幂函数的性质,可得函数 f x x3 在区间 0, 上为单调递增函数,符合题意.
故选:D.
3.B
【分析】由题可得
100 n
60 270
,进而即得.
【详解】设该校高一年级共有学生 n 人,
由题可知 100 60 , n 270
解得 n 450 (人).
故选:B.
4.B
北京市2020-2021学年高一上学期期末数学试题汇编:函数选择题 (答案详解)
2021北京高一数学上学期期末汇编:函数选择题一.选择题(共23小题)1.(2020秋•昌平区期末)下列函数中,既是奇函数又在上是增函数的是 A .B .C .D .2.(2020秋•通州区期末)函数且在上单调递减,则实数的取值范围是 A .B .C .D .3.(2020秋•西城区校级期末)函数的图象是 A .B .C .D .4.(2020秋•通州区期末)如果是定义在上的函数,使得对任意的,均有,则称该函数是“函数”.若函数是“函数”,则实数的取值范围是 A .,,B .,,C .,D .,5.(2020秋•朝阳区期末)下列函数中,既是奇函数又在区间上单调递增的是 A .B .C .D .6.(2020秋•西城区期末)函数的定义域是 A .B .C .,,D .,,7.(2020秋•石景山区期末)下列函数中,在区间上为减函数的是 A .B .C .D .(0,)+∞()()2xf x -=3()f x x =()f x lgx=1()f x x=,0()(03,0x a x f x a a x x ⎧=>⎨->⎩…1)a ≠R a ()(1,)+∞(0,1)1[,1)31(0,]3|(1)|y lg x =-()()f x R x R ∈()()f x f x -≠-()y f x =X -sin cos y x x a =++X -a ()(-∞1)(1-⋃)+∞(-∞2)(2-⋃)+∞[1-1][2-2](0,1)()sin y x=y =3y x =-y lgx=11y lgx x =+-()(0,)+∞(1,)+∞(01)(1⋃)+∞[01)(1⋃)+∞(1,1)-()11y x=-2x y =(1)y ln x =+2xy -=8.(2020秋•朝阳区期末)已知函数可表示为 1234则下列结论正确的是 A .(4)B .的值域是,2,3,C .的值域是,D .在区间,上单调递增9.(2020秋•东城区期末)已知为奇函数,且当时,,则的值为 A .B .C .D .10.(2020秋•海淀区期末)下列函数中,是奇函数且在区间上单调递减的是 A .B .C .D .11.(2020秋•丰台区期末)下列函数是奇函数的是 A .B .C .D .12.(2020秋•西城区校级期末)以下函数既是偶函数又在上单调递减的是 A .B .C .D .13.(2020秋•石景山区期末)已知函数是奇函数,且当时,,则 A .B .0C .1D .214.某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后与的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是 ()y f x =()x02x <<24x < (46)x < (68)x ……y()(f f )3=()f x {14}()f x [14]()f x [48]()f x 0x >()2f x x =-1()2f -()52-32-3252(0,)+∞()2y x=-12y x=1y x -=3y x =()()2xf x =2()log f x x=2()f x x =3()f x x =(0,)+∞()4()f x x =()f x =1()(2xf x =12()log ||f x x =()f x 0x >21()f x x x=+(1)(f -=)2-y x y x ()A .①③B .①④C .②③D .②④15.(2020秋•石景山区期末)如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,是圆锥形漏斗中液面下落的高度,则与下落时间(分)的函数关系表示的图象只可能是 A .B .C .D .16.(2020秋•海淀区校级期末)如图是函数的图象,是图象上任意一点,过点作轴的平行线,交其图象于另一点,可重合).设线段的长为,则函数的图象是 A .B.H H t ()sin (0)y x x π=……(,)A x y A x (B A B AB ()f x ()f x ()C .D .17.(2020秋•昌平区期末)已知函数.若存在实数,,使得函数在区间上的值域为,则实数的取值范围为 A .,B .C .,D .18.(2020秋•西城区校级期末)已知函数的定义域是,满足(2)且对于定义域内任意,都有成立,那么(2)(4)的值为 A .1B .2C .3D .419.(2020秋•通州区期末)已知函数,则 A .是奇函数,且在上单调递增B .是奇函数,且在上单调递减C .是偶函数,且在上单调递增D .是偶函数,且在上单调递减20.(2020秋•大兴区期末)下列函数中,值域为区间,的是 A .B .C .D .21.(2020秋•大兴区期末)已知函数是上的减函数,则的范围是 A .B .,C .D .,22.(2020秋•海淀区校级期末)已知偶函数在上单调递减,若(1),(2),,则,,的大小关系为 A .B .C .D .23.(2020秋•东城区期末)若函数是上的减函数,,则下列不等式一定成立的是 A .(a )B .C .(a )D .2()f x x k =-m n ()fxk ()(1-0](1,)-+∞(2-0](2,)-+∞()f x (0,)+∞f 1=x y ()()()f xy f x f y =+f f +()()(1)(1)f x ln x ln x =++-()(f x )(0,1)(0,1)(0,1)(0,1)[2)+∞()2()2f x x =()21x f x =+()||2f x x =+1()f x x x=+5,1()1,1ax x f x x x+⎧⎪=⎨>⎪⎩…R a ()(,0)-∞[4-)+∞(,4)-∞-[4-0)()f x (,0)-∞a f =b f =1()2c f =-a b c ()a b c >>a c b >>b a c >>c a b>>()f x R 0a >()2()f a f <1()()f a f a<f (2)f a <2()(1)f a f a <-2021北京高一数学上学期期末汇编:函数选择题参考答案一.选择题(共23小题)1.【分析】由基本初等函数的性质逐一判断即可.【解答】解:对于,为非奇非偶函数,不符合题意;对于,为奇函数,且在上是增函数,符合题意;对于,为非奇非偶函数,不符合题意;对于,为奇函数,在上是减函数,不符合题意.故选:.【点评】本题主要考查函数奇偶性与单调性的判断,熟练掌握基本初等函数的性质是解题的关键,属于基础题.2.【分析】根据分段函数的单调性建立不等式关系进行求解即可.【解答】解:若函数在上为减函数,则满足,即,得,故选:.【点评】本题主要考查函数单调性的应用,结合分段函数的单调性的性质建立不等式关系是解决本题的关键,是基础题.3.【分析】求出函数的定义域,利用定义域进行排除即可.【解答】解:由得,即函数的定义域为,排除,,,故选:.【点评】本题主要考查函数图象的识别和判断,利用定义域是否满足,结合排除法是解决本题的关键,是基础题.4.【分析】根据题意,设,则有,结合“函数”的定义可得方程无解,结合余弦函数的性质分析可得答案.【解答】解:根据题意,设,则,则,若函数是“函数”,即无解,A ()2x f x -=B 3()f x x =RC ()f x lgx =D 1()f x x=(0,)+∞B R 00130a a a <<⎧⎨-⎩ (01)13a a <<⎧⎪⎨⎪⎩ (103)a <…D 10x ->1x >(1,)+∞A B D C ()sin cos f x x x a =++()()2cos 2f x f x x a +-=+X -()()2cos 20f x f x x a +-=+=()sin cos f x x x a =++()sin()cos()sin cos f x x x a x x a -=-+-+=-++()()2cos 2f x f x x a +-=+()y f x =X -()()2cos 20f x f x x a +-=+=又由,,必有或,即的取值范围为,,,故选:.【点评】本题考查函数的奇偶性的性质以及应用,关键是理解“函数”的含义,属于基础题.5.【分析】分别判断函数的奇偶性和单调性是否满足即可.【解答】解:.是奇函数,当时,函数为增函数,满足条件.函数的定义域为,,关于原点不对称,函数为非奇非偶函数,不满足条件..当时,函数为减函数,不满足条件..函数的定义域为,关于原点不对称,函数为非奇非偶函数,不满足条件.故选:.【点评】本题主要考查函数奇偶性和单调性的判断,结合函数奇偶性和单调性的性质是解决本题的关键,是基础题.6.【分析】根据函数成立的条件建立不等式关系进行求解即可.【解答】解:要使函数有意义,则,即,即函数的定义域为,,,故选:.【点评】本题主要考查函数定义域的求解,结合函数成立的条件建立不等式关系是解决本题的关键,是基础题.7.【分析】可看出前三个选项的函数在上都是增函数,从而只能选.【解答】解:,和在上都为增函数,在上是减函数.故选:.【点评】本题考查了反比例函数、指数函数和对数函数的单调性,考查了计算能力,属于基础题.8.【分析】根据表格,结合函数定义域和值域的性质分别进行判断即可.【解答】解:由题意知(4),得(4)(3),故错误,函数的值域为,2,3,,故正确,错误,在定义域上不单调,故错误,故选:.【点评】本题主要考查函数定义域和值域的判断,结合函数定义域和值域的关系是解决本题的关键,是基础题.cos [1x ∈-1]1a <-1a >a (-∞1)(1-⋃)+∞A X -A sin y x =01x <<B [0)+∞C 01x <<D (0,)+∞A 010x x >⎧⎨-≠⎩01x x >⎧⎨≠⎩(01)(1⋃)+∞C (1,1)-D 11y x=-2x y =(1)y ln x =+(1,1)-2x y -=(1,1)-D f 3=(f f )f =2=A {14}B C ()f x D B9.【分析】根据题意,由函数的解析式求出的值,结合函数的奇偶性计算可得答案.【解答】解:根据题意,当时,,则,又由为奇函数,则,故选:.【点评】本题考查函数奇偶性的性质以及应用,涉及函数值的计算,属于基础题.10.【分析】根据函数奇偶性和单调性的性质是否满足进行判断即可.【解答】解:.函数为偶函数,不满足条件..函数的定义域为,,为非奇非偶函数,不满足条件..函数为奇函数,且当时,为减函数,满足条件..函数为奇函数,当时为增函数,不满足条件.故选:.【点评】本题主要考查函数奇偶性和单调性的判断,结合函数的性质是解决本题的关键,是基础题.11.【分析】根据题意,依次分析选项函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于,,是指数函数,不是奇函数,不符合题意,对于,,是对数函数,不是奇函数,不符合题意,对于,,是二次函数,是偶函数,不是奇函数,不符合题意,对于,,是奇函数,符合题意,故选:.【点评】本题考查函数的奇偶性的判断,注意常见函数的奇偶性,属于基础题.12.【分析】根据常见函数的奇偶性和单调性判断即可.【解答】解:对于,函数在递增,不合题意;对于,函数不是偶函数,不合题意;对于,函数不是偶函数,不合题意;对于,函数既是偶函数又在上单调递减,符合题意;故选:.【点评】本题考查了函数的单调性和奇偶性问题,是一道基础题.1(2f 0x >()2f x x =-113(2222f =-=-()f x 113()()222f f -=-=C A B [0)+∞C 0x >1y x=D 0x >C A ()2x f x =B 2()log f x x =C 2()f x x =D 3()f x x =D A (0,)+∞B C D (0,)+∞D13.【分析】由奇函数定义得,(1),根据的解析式,求出(1),从而得到.【解答】解:是定义在上的奇函数,,(1),又当时,,(1),,故选:.【点评】本题考查函数的奇偶性及运用,主要是奇函数的定义及运用,解题时要注意自变量的范围,正确应用解析式求函数值,本题属于基础题.14.【分析】解题的关键是理解图象表示的实际意义,进而得解.【解答】解:由图可知,点纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对;故选:.【点评】本题考查读图识图能力,考查分析能力,属于基础题.15.【分析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下的体积相同,当时间取1.5分钟时,液面下降高度与漏斗高度的比较.【解答】解:由于所给的圆锥形漏斗上口大于下口,当时间取时,漏斗中液面下落的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:.【点评】本题考查函数图象,还可以正面分析得出结论:圆柱液面上升速度是常量,则(这里的是漏斗中剩下液体的体积)与成正比(一次项),根据圆锥体积公式兀,可以得出中,为正数,另外,与成反比,可以得出^中,为正数.所以选择第二个答案.16.【分析】根据线段的长和之间的关系,通过取特殊点及某一段上的的值,得出相应的函数值,从而判断出正确选项即可.【解答】解:当时,,两点重合,此时,故排除,;当时,是关于的一次函数,其图象是一条线段,故选:.【点评】考查导函数的图象与图象变化,以及识图能力,体现了数形结合的思想,属基础题.(1)f f -=-0x >f (1)f -()f x R ()()f x f x ∴-=-(1)f f -=-0x >21()f x x x=+f ∴2112=+=(1)2f ∴-=-A A C 1212t 12B V V t 13V =2r h 2H at bt =+a t r H at =2bt +b AB x x 2x π=A B ()0f x =C D (0,2x π∈()2f x x π=-x A17.【分析】求出函数在定义域上单调递增,由此建立方程的两个不相等的非负实数根,再由,求出的范围.【解答】解:由函数,可知函数在区间上单调递增,要使得函数在区间上的值域为,只需,即,的两个不相等的非负实数根,所以,解得,即实数的取值范围为,,故选:.【点评】本题考查了二次函数的性质,涉及到一元二次方程的实数根的问题,考查了学生的运算能力,属于中档题.18.【分析】由(4)(2)(2)(2),可得(4),从而得到所求.【解答】解:(4)(2)(2)(2),(4).(2)(4),故选:.【点评】本题考查抽象函数的应用,求出(4),是解题的关键,是基础题.19.【分析】由已知结合函数奇偶性定义及复合函数的单调性进行检验即可判断.【解答】解:,则,故为偶函数,当时,单调递减,故选:.【点评】本题主要考查了函数奇偶性及单调性的判断,属于基础题.()f x f f ⎧=⎪⎨=⎪⎩220x x k --=124400k x x k =+>⎧⎨=-⎩V …k 2()f x x k =-()f x ()f x f f ⎧=⎪⎨=⎪⎩m k n k ⎧-=⎪⎨-=⎪⎩220x x k --=124400k x x k =+>⎧⎨=-⎩V …10k -<…k (1-0]A f (22)f f =⨯=f +2f =f 2=f (22)f f =⨯=f +2f =f ∴2=f ∴f +123=+=C f 2=2()(1)(1)(1)f x ln x ln x ln x =++-=-()()f x f x -=()f x 01x <<2()(1)f x ln x =-D20.【分析】由题意,求出各个函数的值域,可得结论.【解答】解:由与,故它的值域为,,故错误;由于,故它的值域为,故错误;由于,故它的值域为,,故正确;由于,当时,,当 时,,故它的值域为,,,故错误,故选:.【点评】本题主要考查求函数的值域,属于基础题.21.【分析】根据题意,由函数的单调性的定义可得,解之即可得答案.【解答】解:因为函数是上的减函数,所以,解得,即的取值范围为,.故选:.【点评】本题考查分段函数的单调性,属于基础题.22.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:因为偶函数在上单调递减,所以在上单调递增,因为(1),(2),,又,则.故选:.【点评】本题主要考查函数奇偶性与单调性的综合,考查利用函数的性质比较函数值的大小,属于基础题.23.【分析】可取,从而可判断出选项,都错误;可得出,根据是上的减函数可得出(a ),从而判断错误,这样只能选.【解答】解:时,,,,都错误;2()20f x x =…[0)+∞A ()21011x f x =+>+=(1,)+∞B ()||22f x x =+…[2)+∞C 1()f x x x=+0x >()2f x …0x <()2f x -…[2)(+∞-∞⋃2]D C 051a a <⎧⎨+⎩…5,1()1,1ax x f x x x+⎧⎪=⎨>⎪⎩…R 051a a <⎧⎨+⎩…40a -<…a [4-0)D ()f x (,0)-∞()f x (0,)+∞a f =b f =11()(22c f f =-=12102>>>b a c >>C 1a =A B 2a a <()f x R f (2)f a >C D 1a =21,a a a a==∴21()(),()()f a f a f a f a==A ∴B,,是上的减函数,(a ),即错误;,,且是上的减函数,,即正确.故选:.【点评】本题考查了举反例说明不等式不成立的方法,减函数的定义,配方法的运用,考查了计算能力,属于基础题.0a > 2a a <()f x R f ∴(2)f a >C 22213(1)1()024a a a a a --=-+=-+>21a a ∴>-()f x R 2()(1)f a f a ∴<-D D。
2020-2021学年新教材高一数学上学期期末复习练习(四)
2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。
【数学】北京市海淀区2021-2022学年高一上学期期末考试试题(解析版)
北京市海淀区2021-2022学年高一上学期期末考试数学试题一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={0,1,2,3,4},B={x|﹣3<x<2},则A∩B=()A.{0,1}B.(0,1)C.(0,2)D.{0,1,2}2.命题“∀x∈R,都有x2﹣x+3>0”的否定为()A.∃x∈R,使得x2﹣x+3≤0B.∃x∈R,使得x2﹣x+3>0C.∀x∈R,都有x2﹣x+3≤0D.∃x∉R,使得x2﹣x+3≤03.已知a<b<0,则()A.a2<b2B.<C.2a>2b D.ln(1﹣a)>ln(1﹣b)4.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.4×100米接力赛是田径运动中的集体项目,一根小小的木棒,要四个人共同打造一个信念,一起拼搏,每次交接都是信任的传递.甲、乙、丙、丁四位同学将代表高一年级参加校运会4×100米接力赛,教练组根据训练情况,安排了四人的交接棒组合.已知该组合三次交接棒失误的概率分别是p1,p2,p3,假设三次交接棒相互独立,则此次比赛中该组合交接棒没有失误的概率是()A.p1p2p3B.1﹣p1p2p3C.(1﹣p1)(1﹣p2)(1﹣p3)D.1﹣(1﹣p1)(1﹣p2)(1﹣p3)6.下列函数中,在R上为增函数的是()A.y=2﹣x B.y=x2C.y=D.y=lg x7.已知某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=Q2+3000,设该产品年产量为Q时的平均成本为f(Q)(单位:元/件),则f(Q)的最小值是()A.30B.60C.900D.18008.逻辑斯蒂函数f(x)=二分类的特性在机器学习系统,可获得一个线性分类器,实现对数据的分类,下列关于函数f(x)的说法错误的是()A.函数f(x)的图象关于点(0,f(0))对称B.函数f(x)的值域为(0,1)C.不等式f(x)>的解集是(0,+∞)D.存在实数a,使得关于x的方程f(x)﹣a=0有两个不相等的实数根9.甲、乙二人参加某体育项目训练,近期的八次测试得分情况如图,则下列结论正确的是()A.甲得分的极差大于乙得分的极差B.甲得分的75%分位数大于乙得分的75%分位数C.甲得分的平均数小于乙得分的平均数D.甲得分的标准差小于乙得分的标准差10.已知函数f(x)=2x2+bx+c(b,c为实数),f(﹣10)=f(12).若方程f(x)=0有两个正实数根x1,x2,则+的最小值是()A.4B.2C.1D.二、填空题:共5小题,每小题4分,共20分.11.函数f(x)=log0.5(x﹣1)的定义域是.12.已知f(x)是定义域为R的奇函数,且当x>0时,f(x)=ln x,则f(﹣)的值是.13.定义域为R,值域为(﹣∞,1)的一个减函数是.14.已知函数f(x)=|log5x|,若f(x)<f(2﹣x),则x的取值范围是.15.已知函数f(x)=(a>0且a≠1),给出下列四个结论:①存在实数a,使得f(x)有最小值;②对任意实数a(a>0且a≠1),f(x)都不是R上的减函数;③存在实数a,使得f(x)的值域为R;④若a>3,则存在x0∈(0,+∞),使得f(x0)=f(﹣x0).其中所有正确结论的序号是.三、解答题:共4小题,共40分.解答应写出文字说明、演算步骤或证明过程.16.(9分)已知集合A={x|x2﹣2x﹣3>0},B={x|x﹣4a≤0}.(Ⅰ)当a=1时,求A∩B;(Ⅱ)若A∪B=R,求实数a的取值范围.17.(10分)已知函数f(x)=a x+b•a﹣x(a>0且a≠1),再从条件①、条件②这两个条件中选择一个作为已知.(Ⅰ)判断函数f(x)的奇偶性,说明理由;(Ⅱ)判断函数f(x)在(0,+∞)上的单调性,并用单调性定义证明;(Ⅲ)若f(|m|﹣3)不大于b•f(2),直接写出实数m的取值范围.条件①:a>1,b=1;条件②:0<a<1,b=﹣1.18.(10分)某工厂有甲、乙两条相互独立的产品生产线,单位时间内甲、乙两条生产线的产量之比为4:1,现采用分层抽样的方法从甲、乙两条生产线得到一个容量为100的样本,其部分统计数据如下表所示(单位:件).一等品二等品甲生产线76b乙生产线a2(Ⅰ)写出a,b的值;(Ⅱ)从上述样本的所有二等品中任取2件,求至少有1件为甲生产线产品的概率;(Ⅲ)以抽样结果的频率估计概率,现分别从甲、乙两条产品生产线随机抽取10件产品,记P1表示从甲生产线随机抽取的10件产品中恰好有5件一等品的概率,P2表示从乙生产线随机抽取的10件产品中恰好有5件一等品的概率,试比较P1和P2的大小.(只需写出结论)19.(11分)已知定义域为D的函数f(x),若存在实数a,使得∀x1∈D,都存在x2∈D满足=a,则称函数f(x)具有性质P(a).(Ⅰ)判断下列函数是否具有性质P(0),说明理由;①f(x)=2x;②f(x)=log2x,x∈(0,1).(Ⅱ)若函数f(x)的定义域为D,且具有性质P(l),则“f(x)存在零点”是“2∈D”的条件,说明理由;(横线上填“充分而不必要”“必要而不充分”、“充分必要”、“既不充分也不必要”)(Ⅲ)若存在唯一的实数a,使得函数f(x)=tx2+x+4,x∈[0,2]具有性质P(a),求实数t的值.选做题:20.2015年10月5日,我国女药学家屠呦呦获得2015年诺贝尔医学奖.屠呦呦和她的团队研制的抗疟药青蒿素,是科学技术领域的重大突破,开创了疟疾治疗新方法,挽救了全球特别是发展中国家数百万人的生命,对促进人类健康、减少病痛发挥了难以估量的作用.当年青蒿素研制的过程中,有一个小插曲:虽然青蒿素化学成分本身是有效的,但是由于实验初期制成的青蒿素药片在胃液中的溶解速度过慢,导致药片没有被人体完全吸收,血液中青蒿素的浓度(以下简称为“血药浓度”)的峰值(最大值)太低,导致药物无效.后来经过改进药片制备工艺,使得青蒿素药片的溶解速度加快,血药浓度能够达到要求,青蒿素才得以发挥作用.已知青蒿素药片在体内发挥作用的过程可分为两个阶段,第一个阶段为药片溶解和进入血液,即药品进入人体后会逐渐溶解,然后进入血液使得血药浓度上升到一个峰值;第二个阶段为吸收和代谢,即进入血液的药物被人体逐渐吸收从而发挥作用或者排出体外,这使得血药浓度从峰值不断下降,最后下降到一个不会影响人体机能的非负浓度值.人体内的血药浓度是一个连续变化的过程,不会发生骤变,现用t表示时间(单位:h),在t=0时人体服用青蒿素药片;用C表示青蒿素的血药浓度(单位:μg/ml),根据青蒿素在人体发挥作用的过程可知,C是t的函数.已知青蒿素一般会在1.5小时达到需要血药浓度的峰值.请根据以上描述完成下列问题:(Ⅰ)下列几个函数中,能够描述青蒿素血药浓度变化过程的函数的序号是;①C(t)=②C(t)=③C(t)=④C(t)=(Ⅱ)对于青蒿素药片而言,若血药浓度的峰值大于等于0.1μg/mL,则称青蒿素药片是合格的.基于(Ⅰ)中你选择的函数(若选择多个,则任选其中一个),可判断此青蒿素药片;(填“合格”、“不合格”)(Ⅲ)记血药浓度的峰值为C max,当C≥C max时,我们称青蒿素在血液中达到“有效浓度”,基于(Ⅰ)中你选择的函数(若选择多个,则任选其中一个),计算青蒿素在血液中达到“有效浓度”的持续时间是.【参考答案】一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.A【解析】集合A={0,1,2,3,4},B={x|﹣3<x<2},∴A∩B={0,1}.故选:A.2.A【解析】根据题意,命题“∀x∈R,都有x2﹣x+3>0”是全称命题,其否定为:∃x∈R,使得x2﹣x+3≤0.故选:A.3.D【解析】∵a<b<0,∴,ln(1﹣a)>ln(1﹣b).故选:D.4.C【解析】函数f(x)=﹣log2x,是减函数,又f(2)=﹣log22=>0,f(3)=1﹣log23<0,可得f(2)f(3)<0,由零点判定定理可知:函数f(x)=﹣log2x,包含零点的区间是:(2,3).故选:C.5.C【解析】∵该组合三次交接棒失误的概率分别是p1,p2,p3,∴三次交接棒不失误的概率分别为1﹣p1,1﹣p2,1﹣p3,∴假设三次交接棒相互独立,则此次比赛中该组合交接棒没有失误的概率是(1﹣p1)(1﹣p2)(1﹣p3).故选:C.6.C【解析】根据题意,依次分析选项:对于A,y=2﹣x是指数函数,在R上为减函数,不符合题意,对于B,y=x2,是二次函数,在(﹣∞,0)上为减函数,不符合题意,对于C,y=,在R上为增函数,符合题意,对于D,y=lg x,是对数函数,定义域为(0,+∞),不符合题意,故选:C.7.B【解析】由题意可得该产品年产量为Q时的平均成本为f(Q)=,则f(Q)==60,当且仅当,即Q=100时取等号,此时f(Q)的最小值为60,故选:B.8.D【解析】对于A:f(x)==,f(﹣x)=,f(x)+f(﹣x)=1,所以函数f(x)的图象关于点(0,)对称,又f(0)=,所以函数f(x)的图象关于点(0,f(0))对称,故A正确;对于B:f(x)=,易知e﹣x>0,所以1+e﹣x>1,则(0,1),即函数f(x)的值域为(0,1),故B正确;对于C:由f(x)=容易判断,函数f(x)在R上单调递增,且f(0)=,所以不等式f(x)>的解集是(0,+∞),故C正确;对于D:因为函数f(x)在R上单调递增,所以方程f(x)﹣a=0不可能有两个不相等的实数根,故D错误.故选:D.9.B【解析】对于A,乙组数据最大值为29,最小值为5,极差为24,甲组数据最大值小于29,最小值大于5,故A错误;对于B,甲得分的75%分位数是=22.5,乙得分的75%分位数是17,故B正确;对于C,甲组具体数据不易看出,不能判断甲得分的平均数与乙得分的平均数的大小关系,故C错误;对于D,乙组数据更集中,标准差更小,故D错误.故选:B.10.B【解析】根据题意,函数f(x)=2x2+bx+c为二次函数,若f(﹣10)=f(12),则f(x)的对称轴为x=1,若方程f(x)=0有两个正实数根x1,x2,则有x1+x2=2,则+=(+)(x1+x2)=(2++)≥(2+2)=2,当且仅当x1=x2=1时等号成立,即+的最小值是2,故选:B.二、填空题:共5小题,每小题4分,共20分.11.(1,+∞)【解析】要使函数有意义,则x﹣1>0,即x>1,即函数的定义域为(1,+∞),故答案为:(1,+∞).12.1【解析】∵当x>0时,f(x)=ln x,且f(x)是奇函数,∴f(﹣)=﹣f()=﹣ln=1,故答案为:1.13.y=1﹣2x(答案不唯一)【解析】根据题意,要求函数可以为指数函数变换形式,如y=1﹣2x;故答案为:y=1﹣2x(答案不唯一).14.(1,2)【解析】∵函数f(x)=|log5x|的定义域为(0,+∞),∴,∴0<x<2,①当x=1时,f(x)=f(2﹣x),不符合题意,②当0<x<1时,2﹣x>1,则f(x)<f(2﹣x)等价于|log5x|<|log5(2﹣x)|,∴﹣log5x<log5(2﹣x),∴log5(2﹣x)+log5x>0,即log5[x(2﹣x)]>0,∴x(2﹣x)>1,∴x2﹣2x+1<0,此方程无解,③当1<x<2时,0<2﹣x<1,则f(x)<f(2﹣x)等价于|log5x|<|log5(2﹣x)|,∴log5x<﹣log5(2﹣x),∴log5(2﹣x)+log5x<0,即log5[x(2﹣x)]<0,∴x(2﹣x)<1,∴x2﹣2x+1>0,即x≠1,则1<x<2符合题意,综上所述,x的取值范围是(1,2).15.①②④【解析】对于①,当a=3时,函数f(x)=,函数有最小值﹣1,故①正确;对于②,若f(x)是R上的减函数,则,解得a∈∅,∴对任意实数a(a>0且a≠1),f(x)都不是R上的减函数,故②正确;对于③,若f(x)的值域为R,需,得a∈∅,故③错误;对于④,若a>3,函数f(x)=的图象如图所示:直线y=(a﹣2)x与曲线y=a x﹣1一定有交点,即存在x0∈(0,+∞),使得f(x0)=f(﹣x0),故④正确.∴正确结论的序号是①②④.故答案为:①②④.三、解答题:共4小题,共40分.解答应写出文字说明、演算步骤或证明过程. 16.解:(Ⅰ)集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},B={x|x﹣4a≤0}.当a=1时,B={x|x≤4},∴A∩B={x|x<﹣1或3<x≤4};(Ⅱ)∵集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},B={x|x﹣4a≤0},A∪B=R,∴4a>3,解得a>,∴实数a的取值范围是(,+∞).17.解:选择条件①:(Ⅰ)a>1,b=1,函数f(x)是偶函数,理由如下:f(x)的定义域为R,对任意x∈R,则﹣x∈R,∵f(﹣x)=a﹣x+a x=f(x),∴函数f(x)是偶函数.(Ⅱ)f(x)在(0,+∞)上是增函数.证明如下:任取x1,x2∈(0,+∞),且x1<x2,则x1+x2>0,∵a>1,∴,,∴f(x1)﹣f(x2)=﹣()=()(1﹣)=()•<0,∴f(x1)<f(x2),∴函数f(x)在(0,+∞)上是单调增函数.(Ⅲ)实数m的取值范围是[﹣5,﹣1]∪[1,5].选择条件②:0<a<1,b=﹣1,(Ⅰ)函数f(x)是奇函数,理由如下:f(x)的定义域为R,对任意x∈R,则﹣x∈R,∴f(﹣x)=a﹣x﹣a x=﹣f(x),∴函数f(x)是奇函数.(Ⅱ)f(x)在(0,+∞)上是减函数.证明如下:任取x1,x2∈(0,+∞),且x1<x2,∵0<a<1,∴>0,,∴f(x1)﹣f(x2)=﹣()=()(1+)=()•>0,∴f(x1)>f(x2),∴函数f(x)在(0,+∞)上是单调减函数.(Ⅲ)实数m的取值范围是(﹣∞,﹣1]∪[1,+∞).18.解:(Ⅰ)由题意知,解得a=4,b=18.(Ⅱ)记样本中甲生产线的4件二等品为A1,A2,A3,A4,乙生产线的2件二等品为B1,B2,从6件二等品中任取2件,所有可能的结果有15个,分别为:(A1,A2),(A1,A3),(A1,A4),(A2,A3),(A2,A4),(A3,A4)(A1,B1),(A2,B1),(A3,B1),(A4,B1),(A1,B2),(A2,B2),(A3,B2),(A4,B2),(B1,B2),记C为“至少有1件为甲生产线产品”这一事件,则中的结果只有一个,是(B1,B2),∴至少有1件为甲生产线产品的概率为P=1﹣P()=1﹣=.(Ⅲ)p1<p2.19.解:(Ⅰ)①函数f(x)=2x不具有性质P(0).理由如下:对于a=0,x1=1,∵,x2∈R,∴不存在x2∈R满足=0,∴函数f(x)=2x不具有性质P(0).②函数f(x)=log2x,x∈(0,1)具有性质P(0).理由如下:对于∀x1∈(0,1),取x2=,则x2∈(0,1),∵==0,∴函数f(x)=log2x,x∈(0,1)具有性质P(0).(Ⅱ)“f(x)存在零点”是“2∈D”的充分而不必要条件.理由如下:(i)若f(x)存在零点,令f(x)=3x﹣1,x∈[0,1],则f()=0,∵∀x1∈[0,1],取x2=1﹣,则x2∈[],且==1,∴f(x)具有性质P(1),但2∉[0,1].(ii)若2∈D,∵f(x)具有性质P(1),取x1=2,则存在x2∈D,使得==1,∴f(x2)=0,∴f(x)存在零点x2,综上,“f(x)存在零点”是“2∈D”的充分而不必要条件.故答案为:充分而不必要.(Ⅲ)记函数f(x)=tx2+x+4,x∈[0,2]的值域为F,函数g(x)=2a﹣x,x∈[0,2]的值域为A=[2a﹣2,2a],∵存在唯一的实数a,使得函数f(x2)=2a﹣x1成立,∴F=A.(i)当t=0时,f9x)=x+4,x∈[0,2],其值域F=[4,6],由F=A,得a=3.(ii)当﹣≤t,且t≠0时,f(x)=tx2+x+4,x∈[0,2]是增函数,∴其值域F=[4,4t+6],由F=A,得t=0,舍去.(iii)当﹣时,f(x)=tx2+x+4,x∈[0,2]的最大值为f(﹣)=4﹣,最小值为4,∴f(x)的值域为F=[4,4﹣].由F=A,得t=﹣,舍去.当t<﹣时,f(x)=tx2+x+4,x∈[0,2]的最大值为f(﹣)=4﹣,最小值为f(2)=4t+6,∴f(x)的值域为F=[4t+6,4﹣],由F=A,得t=(舍去t=).选做题:20.解:(Ⅰ)根据题意,得函数C(t)同时满足以下条件:A.函数C(t)在[0,1.5)上单调递增,在(1.5,+∞)上单调递减;B.当t=1.5时,函数C(t)取得最大值;函数C(t)的最小值非负;C.函数C(t)是一个连续变化的函数,不会发生骤变.选择①:,因为C(3)=0.75﹣0.3×3=﹣0.15不满足条件B,所以①不能描述青蒿素血药浓度变化过程;选择②:C(t)=当0≤t<15时,,当t=1时,函数C(t)取得最大值,不满足条件B,所以②不能描述青蒿素血药浓度变化过程;选择③:因为,,所以不满足条件C,所以③不能描述青蒿素血药浓度变化过程;选择④:因为,且当t≥1.5时,C(t)>0,所以C(t)同时满足三个条件,即④能描述青蒿素血药浓度变化过程;综上所述,能够描述青蒿素血药浓度变化过程的函数的序号是④.(Ⅱ)由(Ⅰ)得:函数④:,因为,即血药浓度的峰值大于0.1μg/ml,所以此青蒿素药片合格,即答案为:合格;(Ⅲ)当0≤t<1.5时,令0.2ln(t+1)≥0.ln2.5,所以ln(t+1)2≥ln2.5,即,即2t2+4t﹣3≥0,解得或,即当t≥1.5时,令,则,解得t≤3,即1.5≤t≤3;综上所述,青蒿素在血液中达到“有效浓度”的持续时间为.。
北京市2020-2021学年高三上学期期末数学试题汇编:平面解析几何
2021北京高三数学上学期期末汇编:平面解析几何一.选择题(共18小题)1.(2020秋•倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A .22144x y -=B .22144y x -=C .2214y x -=D .2214x y -=2.(2020秋•朝阳区期末)已知双曲线2222:1(0,0)x y C a b a b -=>>的左焦点为F ,右顶点为A ,过F 作C 的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D3.(2020秋•丰台区期末)若关于x ,y 的方程组4210()210x y a R x ay ++=⎧∈⎨++=⎩无解,则(a = )A .2BC .1D .24.(2020秋•昌平区期末)已知抛物线24y x =上一点P 到焦点F 的距离为5,那么点P 到y 轴的距离是( ) A .2B .3C .4D .55.(2020秋•东城区期末)与圆22(1)5x y +-=相切于点(2,2)的直线的斜率为( ) A .2-B .12-C .12D .26.(2020秋•石景山区期末)若抛物线24y x =上的点A 到焦点的距离为10,则点A 到y 轴的距离是( ) A .6B .7C .8D .97.(2020秋•海淀区期末)抛物线2y x =的准线方程是( ) A .12x =-B .14x =-C .12y =-D .14y =-8.(2020秋•通州区期末)抛物线24y x =的准线方程是( ) A .2x =-B .1x =-C .1x =D .2x =9.(2020秋•通州区期末)如图是等轴双曲线形拱桥,现拱顶离水面5m ,水面宽30AB m =.若水面下降5m ,则水面宽是( )(结果精确到0.1)m 1.41≈ 2.24 2.65)A .43.8mB .44.8mC .52.3mD .53.0m10.(2020秋•西城区期末)已知半径为2的圆经过点(1,0),其圆心到直线34120x y -+=的距离的最小值为( )A .0B .1C .2D .311.(2020秋•西城区期末)已知双曲线22221x y a b -=的焦距等于实轴长的2倍,则其渐近线的方程为( )A .y =B .2y x =±C .y =D .12y x =±12.(2020秋•朝阳区期末)设抛物线2:4C y x =的焦点为F ,准线l 与x 轴的交点为M ,P 是C 上一点.若||4PF =,则||(PM = )A B .5C .D .13.(2020秋•石景山区期末)直线:1l y kx =+与圆22:(1)4C x y +-=的位置关系是( ) A .相切B .相交C .相离D .不确定14.(2020秋•东城区期末)已知抛物线22(0)y px p =>的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且||3||AF FB =,则点A 到y 轴的距离为( )A .5B .4C .3D .215.(2020秋•海淀区期末)已知直线:20l x ay ++=,点(1,1)A --和点(2,2)B ,若//l AB ,则实数a 的值为( ) A .1B .1-C .2D .2-16.(2020秋•昌平区期末)已知直线1y kx =+与圆2240x x y -+=相交于M ,N 两点,且||23MN ,那么实数k 的取值范围是( ) A .143k --B .403kC .0k 或43k -D .403k -17.(2020秋•朝阳区期末)在平面直角坐标系xOy 中,已知直线(0)y mx m =>与曲线3y x =从左至右依次交于A ,B ,C 三点.若直线:30()l kx y k R -+=∈上存在点P 满足||2PA PC +=,则实数k 的取值范围是( )A .(2,2)-B .[-C .(-∞,2)(2-⋃,)+∞D .(,[22,)-∞-+∞18.(2020秋•海淀区期末)如图所示,在圆锥内放入两个球1O ,2O ,它们都与圆锥相切(即与圆锥的每条母线相切),切点圆(图中粗线所示)分别为1C ,2.C 这两个球都与平面α相切,切点分别为1F ,2F ,丹德林()G Dandelin ⋅利用这个模型证明了平面α与圆锥侧面的交线为椭圆,1F ,2F 为此椭圆的两个焦点,这两个球也称为Dandelin 双球.若圆锥的母线与它的轴的夹角为30︒,1C ,2C 的半径分别为1,4,点M 为2C 上的一个定点,点P 为椭圆上的一个动点,则从点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和的最小值是( )A .6B .8C .D .二.填空题(共10小题)19.(2020秋•东城区期末)已知双曲线2222:1(0,0)x y M a b a b-=>>,ABC ∆为等边三角形.若点A 在y 轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC ∆的中位线,则双曲线M 的离心率为 .20.(2020秋•海淀区校级期末)已知F 是双曲线22:18y C x -=的右焦点,P 是双曲线C 上的点,A .①若点P 在双曲线右支上,则||||AP PF +的最小值为 ; ②若点P 在双曲线左支上,则||||AP PF +的最小值为 .21.(2020秋•通州区期末)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(4,0),若以线段OA 为直径的圆与直线2y x =在第一象限交于点B ,则直线AB 的方程是 .22.(2020秋•顺义区期末)设抛物线2y mx =的焦点为(1,0)F ,则m = ;若点A 在抛物线上,且||3AF =,则点A 的坐标为 .23.(2020秋•房山区期末)在平面直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B 两点.若直线l 的倾斜角为45︒,则OAB ∆的面积为 .24.(2020秋•石景山区期末)已知双曲线的两个焦点为(3,0)-,(3,0),一个顶点是,则C 的标准方程为 ;C 的焦点到其渐近线的距离是 .25.(2020秋•海淀区期末)已知双曲线2212y x -=的左、右焦点分别为1F ,2F ,点(3,4)M -,则双曲线的渐近线方程为 ;12||||MF MF -= .26.(2020秋•昌平区期末)已知双曲线2221(0)9x y a a -=>的离心率是54,则双曲线的右焦点坐标为 .27.(2020秋•顺义区期末)已知椭圆22:1168x y C +=的左、右焦点分别为1F ,2F ,直线(44)x m m =-<<与椭圆C 相交于点A ,B .给出下列三个命题:①存在唯一一个m ,使得△12AF F 为等腰直角三角形; ②存在唯一一个m ,使得1ABF ∆为等腰直角三角形; ③存在m ,使1ABF ∆的周长最大. 其中,所有真命题的序号为 .28.(2020秋•丰台区期末)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为12y x =,那么该双曲线的离心率为 .三.解答题(共9小题)29.(2020秋•海淀区校级期末)已知椭圆2222:1(0)x y C a b a b +=>>,且经过点.(Ⅰ)求椭圆C 的方程;(Ⅰ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若0OA AB ⋅=,且||3||2AB OA =,求OAB ∆的面积. 30.(2020秋•通州区期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为点A ,B ,且||4AB =,椭圆C 离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.31.(2020秋•顺义区期末)已知椭圆2222:1(0)x y C a b a b +=>>经过点(0,1)M 和1)2N .(Ⅰ)求椭圆C 的方程;(Ⅰ)若直线:l y kx m =+与椭圆C 交于A ,B 两点,且坐标原点O 到直线l .求证:以AB 为直径的圆经过点O .32.(2020秋•丰台区期末)已知椭圆2222:1(0)x y W a b a b +=>>过(0,2)A ,(3,1)B --两点.(Ⅰ)求椭圆W 的方程;(Ⅰ)直线AB 与x 轴交于点(,0)M m ,过点M 作不垂直于坐标轴且与AB 不重合的直线l ,l 与椭圆W 交于C ,D 两点,直线AC ,BD 分别交直线x m =于P ,Q 两点,求证:||||PM MQ 为定值.33.(2020秋•石景山区期末)已知椭圆2222:1(0)x y C a b a b+=>>的离心率e ,且经过点(0,1)D .(Ⅰ)求椭圆C 的方程;(Ⅰ)已知点(1,0)A -和点(4,0)B -,过点B 的动直线l 交椭圆C 于M ,N 两点(M 在N 左侧),试讨论BAM ∠与OAN ∠的大小关系,并说明理由.34.(2020秋•东城区期末)已知椭圆2222:1(0)x y C a b a b +=>>过点(2,0)A -,(2,0)B ,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)设直线l 与椭圆C 有且仅有一个公共点E ,且与x 轴交于点(G E ,G 不重合),ET x ⊥轴,垂足为T .求证:||||||||TA GA TB GB =.35.(2020秋•海淀区期末)已知椭圆2222:1(0)x y W a b a b +=>>,且经过点C .(Ⅰ)求椭圆W 的方程及其长轴长;(Ⅰ)A ,B 分别为椭圆W 的左、右顶点,点D 在椭圆W 上,且位于x 轴下方,直线CD 交x 轴于点Q .若ACQ ∆的面积比BDQ ∆的面积大D 的坐标.36.(2020秋•房山区期末)已知椭圆2222:1(0)x y G a b a b +=>>,且过(0,1)点.(Ⅰ)求椭圆G 的方程;(Ⅰ)设不过原点O 且斜率为13的直线l 与椭圆G 交于不同的两点C ,D ,线段CD 的中点为M ,直线OM 与椭圆G 交于E ,F ,证明:||||||||MC MD ME MF ⋅=⋅.37.(2020秋•昌平区期末)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为4,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)设过点(1,0)F 且斜率为k 的直线l 与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点D ,判断||||AB DF 是否为定值?如果是定值,请求出此定值;如果不是定值,请说明理由.2021北京高三数学上学期期末汇编:平面解析几何参考答案一.选择题(共18小题)1.【分析】由顶点坐标可知双曲线的焦点在y 轴上,再根据双曲线的几何性质,列得关于a 、b 、c 的方程组,解之即可.【解答】解:由题意知,双曲线的焦点在y轴上,且222222a b a a b c ⎧+=⎪=⎨⎪+=⎩,解得2a =,2b =,c =所以双曲线的标准方程为22144y x -=.故选:B .【点评】本题考查双曲线标准方程的求法,熟练掌握a 、b 、c 的含义与关系是解题的关键,考查学生的运算求解能力,属于基础题.2.【分析】过点D 作DC AF ⊥于点C ,易知C 为AF 的中点,从而有||2a cCF +=,由点到直线的距离公式可知||DF b =,再由||||cos ||||DF CF AFD OF DF ∠==,代入相关数据,进行运算即可. 【解答】解:过点D 作DC AF ⊥于点C ,||||DF DA =,∴点C 为AF 的中点,1||||22a cCF AF +∴==, 而点(,0)F c -到渐近线b y x a =-的距离为||||bc DF b ==, ||||cos ||||DF CF AFD OF DF ∴∠==,即2a cbc b +=,222()22()c a c b c a ∴+==-,即2220c ac a --=,2c a ∴=或c a =-(舍),∴离心率2ce a==. 故选:B .【点评】本题考查双曲线的几何性质,主要包含渐近线、离心率,考查学生的数形结合思想、逻辑推理能力和运算能力,属于基础题.3.【分析】由方程组无解得到直线4210x y ++=与直线210x ay ++=平行,再由直线与直线平行的性质能求出a . 【解答】解:关于x ,y 的方程组4210()210x y a R x ay ++=⎧∈⎨++=⎩无解, ∴直线4210x y ++=与直线210x ay ++=平行, ∴21421a =≠, 解得1a =. 故选:C .【点评】本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题. 4.【分析】由抛物线的方程即可求出p 的值,再由抛物线的定义即可求解. 【解答】解:由抛物线的方程可得:2p =,又由抛物线的定义可知点P 到F 的距离等于点P 到抛物线的准线的距离, 则点P 到y 轴的距离为||5142pPF -=-=, 故选:C .【点评】本题考查了抛物线的方程以及定义,属于基础题.5.【分析】根据题意,求出圆的圆心坐标,设圆心为C ,切点(2,2)为P ,求出PC 的斜率,由切线的性质分析可得答案.【解答】解:根据题意,圆22(1)5x y +-=,其圆心为(0,1),设圆心为C ,切点(2,2)为P , 则211202PC K -==-, 则切线的斜率2k =-, 故选:A .【点评】本题考查直线与圆的位置关系,涉及切线的性质,属于基础题. 6.【分析】求出抛物线的准线方程,利用抛物线的定义转化求解即可.【解答】解:抛物线24y x =的准线方程为:1x =-,抛物线24y x =上的点A 到焦点的距离为10,可得9A x =,则A 到y 轴的距离是:9. 故选:D .【点评】本题考查抛物线的简单性质的应用,考查计算能力.7.【分析】抛物线2y x =的焦点在x 轴上,且开口向右,21p =,由此可得抛物线2y x =的准线方程. 【解答】解:抛物线2y x =的焦点在x 轴上,且开口向右,21p =,∴124p =, ∴抛物线2y x =的准线方程为14x =-. 故选:B .【点评】本题考查抛物线的标准方程,考查抛物线的几何性质,定型与定位是关键. 8.【分析】直接利用抛物线方程,求解准线方程即可. 【解答】解:抛物线24y x =的准线方程是1x =-, 故选:B .【点评】本题考查抛物线的简单性质的应用,准线方程的求法,是基础题.9.【分析】建立平面直角坐标系,设等轴双曲线的方程为22(0)y x t t -=>,写出点A 的坐标,并将其代入方程,求得t 的值,再令30y =-,解出x 的值即可. 【解答】解:建立如图所示的平面直角坐标系,设等轴双曲线的方程为22(0)y x t t -=>, 拱顶离水面5m ,水面宽30AB m =,∴点A 为(15,5)-,将其代入22y x t -=得,22(5)(15)t --=, 解得400t =, 22400y x ∴-=,设水面下降5m 后,水面宽为CD ,此时点C 和D 的纵坐标均为30-,把30y =-代入22400y x -=,有2900400x -=,解得x =±44.8CD m ∴=≈.故选:B .【点评】本题考查等轴双曲线的概念,双曲线方程的应用,考查学生将所学知识运用于实际的能力,属于基础题.10.【分析】求出(1,0)到直线的距离,结合圆的半径,判断求解即可. 【解答】解:点(1,0)到直线34120x y -+=3=,因为半径为2的圆经过点(1,0),所以圆心到直线34120x y -+=的距离的最小值为:321-=. 故选:B .【点评】本题考查直线与圆的位置关系的应用,点到直线的距离的应用,是基础题. 11.【分析】利用双曲线方程列出方程,推出a ,b 的关系,即可得到渐近线方程.【解答】解:双曲线22221x y a b -=的焦距等于实轴长的2倍,b =,其渐近线的方程为:y =. 故选:A .【点评】本题考查双曲线的简单性质的应用,渐近线方程的求法,是基础题. 12.【分析】根据条件求出P 的纵坐标,进而求解结论.【解答】解:P 是C 上一点.且||4PF =,413P PD x x ∴==+⇒=代入24y x =得212Py =,PM ∴===故选:C .【点评】本题考查抛物线的性质以及计算能力,属于基础题.13.【分析】由直线l 过定点圆C 的圆心,可知直线与圆相交. 【解答】解:直线:1l y kx =+过点(0,1)P , 而(0,1)P 是圆22:(1)4C x y +-=的圆心,∴直线:1l y kx =+与圆22:(1)4C x y +-=的位置关系是相交.故选:B .【点评】本题考查直线与圆位置关系的应用,是基础题.14.【分析】根据题意得到p 的值,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C ,再利用三角形相似得到BC 和AC 的关系,从而得到BF ,AF ,CF 的关系,求出4AD =,即可得到答案.【解答】解:焦点F 到准线的距离为2p =,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C , 则BCE ACD ∆∆∽, 所以13BC BE BF AC AD AF ===, 记BC x =,则3AC x =, 因为||3||AF FB =, 所以1142BF AB x ==,332AF BF x ==, 因为32CF BC BF x =+=,F 为AC 的中点, 所以24AD FG ==, 即点A 到y 轴的距离为432p-=. 故选:C .【点评】本题考查了抛物线性质的应用,涉及了抛物线定义的理解和应用,在涉及抛物线上的点到焦点距离的问题时,一般会转化为到准线的距离开解决.15.【分析】由题意利用斜率公式,两直线平行的性质,求得a 的值. 【解答】解:直线:20l x ay ++=,点(1,1)A --和点(2,2)B ,∴直线AB 的斜率为21121+=+, 若//l AB ,则11a-=,求得1a =-, 故选:B .【点评】本题主要考查斜率公式,两直线平行的性质,属于基础题.16.【分析】当弦长||MN =利用弦长公式求得弦心距1d =,故当||23MN ,则1d ,由此求得k 的范围.【解答】解:当弦长||MN =1d = 若||23MN ,则1d ,即圆心(2,0)到直线20kx y -+=的距离1d =,求得4[3k ∈-,0],故选:D .【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式、弦长公式的应用,属于基础题.17.【分析】根据奇函数对称性得出A ,C 关于原点对称,于是||1PB =,从而直线l 与单位圆有交点,根据点到直线的距离公式列出不等式求出k 的范围. 【解答】解:3()f x x =和y mx =都是奇函数,B ∴为原点,且A ,C 两点关于原点对称.∴原点O 为线段AC 的中点, ∴2PA PC PB +=,直线:30()l kx y k R -+=∈上存在点P 满足||2PA PC +=, |||2|2||2PA PC PB PB ∴+===,||1PB ∴=.即P 为单位圆221x y +=上的点.∴直线:3l y kx =+与单位圆有交点, ∴1,解得22k 或22k -.故选:D .【点评】本题考查了函数图象与方程的关系,考查直线与圆的位置关系,属于中档题.18.【分析】在椭圆上任取一点P ,连接VP 交1C 于Q ,交2C 于点R ,连接1O Q ,11O F ,1PO ,1PF ,2O R ,利用△1O PF ≅△1O PQ 全等,得到1PF PQ =,当点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和最小时,即当P 为直线VM 与椭圆的交点时,求解即可得到答案.【解答】解:如图所示,在椭圆上任取一点P ,连接VP 交1C 于Q ,交2C 于点R , 连接1O Q ,11O F ,1PO ,1PF ,2O R ,在△1O PF 与△1O PQ 中,111O Q O F r ==,其中1r 为球1O 半径, 1190O QP O FP ∠=∠=︒,1O P 为公共边,所以△11O PF ≅△1O PQ ,所以1PF PQ =, 设P 沿圆锥表面到达M 的路径长为d , 则1PF d PQ d PQ PR QR +=++=,当且仅当P 为直线VM 与椭圆的交点时取等号,21416tan 30tan 30O R O Q QR VR VQ -=-=-===︒︒,故从点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和的最小值是6. 故选:A .【点评】本题以Dandelin 双球作为几何背景考查了椭圆知识的综合应用,涉及了两条线段距离之和最小的求解,解题的关键是确定当P 为直线VM 与椭圆的交点时取得最值. 二.填空题(共10小题)19.【分析】易知,等边ABC ∆的边长为4a ,不妨取点B 为(2)a ,将其代入双曲线的方程可得a b =,再由e =【解答】解:双曲线M 的实轴为ABC ∆的中位线,∴等边ABC ∆的边长为4a ,假设点B 在第一象限,则点B 的坐标为(2)a ,将其代入双曲线M 的方程有,2222431a a a b-=,∴1ab =,离心率e ==.【点评】本题考查双曲线的几何性质,包含a 、b 、c 的含义与关系,离心率,考查学生的逻辑推理能力和运算求解能力,属于基础题.20.【分析】由题意知,(3,0)F ,①当A ,P ,F 按此顺序三点共线时,||||AP PF +取得最小值;②设双曲线的左焦点为F ',由双曲线的定义可知,||||2PF PF '=+,当A ,P ,F '按此顺序三点共线时,||||AP PF +取得最小值.【解答】解:由题意知,(3,0)F ,①||||||9AP PF AF +=,当且仅当A ,P ,F 按此顺序三点共线时,等号成立,所以||||AP PF +的最小值为9;②设双曲线的左焦点为(3,0)F '-,由双曲线的定义知,||||22PF PF a'-==,所以||||||||2||2211AP PF AP PF AF ''+=+++==,当且仅当A ,P ,F '按此顺序三点共线时,等号成立,所以||||AP PF +的最小值为11. 故答案为:9;11.【点评】本题考查双曲线的定义与几何性质,考查数形结合思想、逻辑推理能力和运算能力,属于基础题. 21.【分析】求出OA 的中点即为圆心,求出||OA 即为圆的半径,得到圆的方程与直线2y x =联立,求出点B 的坐标,即可得到直线AB 的方程.【解答】解:因为O 为坐标原点,点A 的坐标为(4,0), 所以OA 的中点坐标为(2,0),且||4OA =,所以以线段OA 为直径的圆的圆心为(2,0),半径2r =, 所以圆的方程为22(2)4x y -+=,联立方程22(2)42x y y x ⎧-+=⎨=⎩,解得00x y =⎧⎨=⎩或4585x y ⎧=⎪⎪⎨⎪=⎪⎩,因为点B 在第一象限,所以48(,)55B ,又(4,0)A ,所以直线AB 的方程为8050(4)445y x --=--,即240x y +-=. 故答案为:240x y +-=.【点评】本题考查了直线方程的求解,涉及了圆的标准方程的求解、直线与圆交点的求解,属于中档题. 22.【分析】利用抛物线的焦点坐标,求解m 即可;利用抛物线的定义,转化求解A 的坐标. 【解答】解:抛物线2y mx =的焦点为(1,0)F , 可得14m=,解得4m =; 点A 在抛物线24y x =上,且||3AF =,设点A 的横坐标为x ,则13x +=,2x =, 把2x =代入抛物线方程,可得A的纵坐标为:±所以(2,A ±. 故答案为:4;(2,±.【点评】本题考查抛物线的简单性质的应用,抛物线的定义的应用,是基础题.23.【分析】由抛物线的方程可得焦点的坐标及准线方程,由题意设直线l 的方程与抛物线联立求出两根之和,由抛物线的性质可得到焦点的距离等于到准线的距离可得弦长||AB 的值,求出原点到直线的距离,代入面积公式可得面积的值.【解答】解:抛物线24y x =的焦点(1,0)F ,准线方程为1x =- 由题意设直线l 的斜率1y x =-,设1(A x ,1)y ,2(B x ,2)y , 联立214y x y x=-⎧⎨=⎩,整理可得:2610x x -+=,可得126x x +=,所以弦长12||628AB x x p =++=+=, 原点O 到直线l的距离d =,所以11||822AOB S AB d ∆=⋅==故答案为:【点评】本题考查求抛物线的性质及点到直线的距离公式和三角形的面积公式,属于中档题.24.【分析】设双曲线方程为22221(0,0)x y a b a b-=>>,则2a =,3c =,由此能求出C 的方程,再求焦点到其渐近线的距离即可.【解答】解:双曲线C 的两个焦点为(3,0)-,(3,0),一个顶点是0),∴设双曲线方程为22221(0,0)x y a b a b-=>>,且a ,3c =,2963b ∴=-=,C ∴的方程为:22163x y -=.故其渐近线为y =,即0x ±=,C ∴的焦点到其渐近线的距离为:d ==故答案为:22163x y -=【点评】本题考查双曲线的方程的求法,是基础题,解题时要认真审题,注意双曲线性质的合理运用.25.【分析】利用双曲线方程直接求解渐近线方程;求出焦点坐标,然后利用双曲线的定义求解即可得到12||||MF MF -.【解答】解:双曲线2212y x -=的渐近线方程为:y =,双曲线的焦点坐标(,0),M 在双曲线上,所以12||||22MF MF a -=-=-,故答案为:y =;2-.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线方程的求法,定义的应用,是基础题. 26.【分析】利用离心率求出a ,然后求解双曲线的焦点坐标.【解答】解:双曲线2221(0)9x y a a -=>的离心率是54,54=,解得4a =,则5c =, 所以双曲线的右焦点坐标为(5,0). 故答案为:(5,0).【点评】本题考查双曲线的简单性质的应用,焦点坐标的求法,是基础题.27.【分析】当0m =时,12F AF ∠最大,求出△12AF F 为等腰直角三角形即可判断①;求出1ABF ∆为等腰直角三角形时,m 的值,即可判断②;利用椭圆定义可得1ABF 的周长最大值,结合m 的取值范围即可判断③.【解答】解:由方程知4a =,b =c ,当0m =时,12F AF ∠最大,此时122145AF F AF F ∠=∠=︒,所以12F AF ∠的最大值为90︒, 又12AF AF =,所以△12AF F 为等腰直角三角形,即存在唯一一个0m =,使得△12AF F 为等腰直角三角形,故①正确;当0m =时,1245AF F ∠=︒,由椭圆的对称性可得121245BF F AF F ∠=∠=︒,11AF BF =, 所以190AF B ∠=︒,此时1ABF ∆为等腰直角三角形,当0m ≠时,若1ABF ∆为等腰直角三角形,则4m -<<-,此时点A 的坐标为(,m m --,代椭圆方程,解得(4,m =--,故当0m =或1ABF ∆为等腰直角三角形,故②错误; 由椭圆的定义得,1ABF ∆的周长11||||||AB AF BF =++ 2222||(2||)(2|)4||||||AB a AF a BEF a AB AF BF =+-+-=+--,因为22||||||AF BF AB +,所以22||||||0AB AF BF --,当AB 过点2F 时取等号,所以1122||||||4||||||4AB AF BF a AB AF BF a ++=+--,即直线x m =过椭圆的右焦点2F 时,1ABF ∆的周长最大,此时直线AB 的方程为x m c ===44m -<<, 所以存在m ,使1ABF ∆的周长最大,故③正确. 故答案为:①③.【点评】本题主要考查椭圆的性质,考查数形结合的解题思想,考查分析问题与求解问题的能力,是中档题.28.【分析】由题意可得12b a =,即224a b =,结合222a b c +=,可得2254c a =,开方可得c e a=的值.【解答】解:由题意可得双曲线的渐近线方程为by x a =±,故可得12b a =,即224a b =,又222a bc +=,故2224a a c +=,2254c a =,解得c e a ==【点评】本题考查双曲线的简单性质,涉及离心率的求解,属中档题. 三.解答题(共9小题) 29.【分析】(Ⅰ,且经过点,列方程组,解得a ,b ,c ,进而可得答案. (Ⅰ)设直线AB 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y ,联立直线AB 与椭圆的方程,得224()4x kx m ++=,由△0>,得2241k m +>,结合韦达定理可得12x x +,12x x ,由0OA AB ⋅=,推出OA AB ⊥,进而设直线OA 的方程为1y x k=-,联立直线AB 的方程得1y ,1x ,代入椭圆的方程可得22224(1)4k m k +=+,再计算222222144(1)||(41)(4)k k AB k k +=++,2224(1)||4k OA k +=+,进而可得22222||369||(41)4AB k OA k ==+,解得214k =,进而可得OAB ∆的面积213||||||24S OA AB OA ==,即可得出答案. 【解答】解:(Ⅰ)由题意可得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2a =,1b =,c =,∴椭圆方程为2214x y +=.(Ⅰ)设直线AB 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y , 联立y kx m =+与2244x y +=,得224()4x kx m ++=, 222(41)8440k x kmx m ∴+++-=,∴△22222(8)4(41)(44)16(41)0km k m k m =-+-=+->,即2241k m +>,则122841kmx x k -+=+,21224441m x x k -=+,因为0OA AB ⋅=,所以OA AB ⊥,设直线OA 的方程为1y x k =-,联立直线AB 的方程得121m y k =+,1121kmx ky k -=-=+, 代入221144x y +=,所以222()4()411km m k k -+=++,化简得22224(1)4k m k +=+,所以2222222222224(1)(41)(4)4(1)94141444k k k k k k m k k k k +++-++-=+-==+++,所以||AB =, 所以2222222222216(1)(41)144(1)||(41)(41)(4)k k m k k AB k k k ++-+==+++, 所以2222222112224(1)||()(1)()114m m k OA ky y k k k k +=-+=+==+++, 所以22222||369||(41)4AB k OA k ==+, 得22216(41)k k =+,解得214k =, 此时222224(1)2541417k m k k +==<++,满足△0>, 由22214(1)4(1)204||141744k OA k ++===++, 所以OAB ∆的面积2113315||||||||||222417S OA AB OA OA OA ==⨯==. 【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题. 30.【分析】(Ⅰ)根据题意列方程组,得a ,b ,进而可得椭圆的方程.(Ⅰ)分两种情况①若直线l 的斜率不存在时,②若直线l 的斜率存在时,直线AM ,BN 的交于点Q ,是否早定直线4x =上.【解答】解:(Ⅰ)因为||4AB =,椭圆C 离心率为12, 所以22224,1,2.a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(Ⅰ)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为(1,0),所以直线l 的方程是1x =.所以点M 的坐标是3(1,)2,点N 的坐标是3(1,)2-.所以直线AM 的方程是1(2)2y x =+,直线BN 的方程是3(2)2y x =-.所以直线AM ,BN 的交点Q 的坐标是(4,3).所以点(4,3)在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k . 所以直线l 的方程为(1)y k x =-.联立方程组22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩消去y ,整理得2222(34)84120k x k x k +-+-=, 显然△0>.不妨设1(M x ,1)y ,2(N x ,2)y ,所以2122834k x x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是11(2)2y y x x =++.令4x =,得1162y y x =+.直线BN 的方程是22(2)2y y x x =--.令4x =,得2222y y x =-. 所以12121212121212626(1)2(1)6(1)(2)2(2)(1)2222(2)(2)y y k x k x k x x k x x x x x x x x -----+--=-=+-+-+- 1212122112126(1)(2)2(2)(1)2[3(22)(22)]k x x k x x k x x x x x x x x ---+-=--+--+- 12122[25()8]k x x x x =-++22222(412)582[8]3434k k k k k -⨯=-+++22228244024322()034k k k k k --++==+.所以点Q 在直线4x =上.【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题. 31.【分析】(Ⅰ)根据题意可得所以1b =,22311a b +=,解得2a =,进而可得椭圆的方程. (Ⅰ)联立直线l 与椭圆的方程可得关于x 的一元二次方程,设1(A x ,1)y ,2(B x ,2)y ,由韦达定理得12x x +,12x x ,由点到直线的距离公式可得原点O 到直线l的距离d ==,解得2254(1)m k =+,计算1212OA OB x x y y ⋅=+为0,即可得出结论.【解答】解:(Ⅰ)因为椭圆经过点(0,1),所以1b =,又因为椭圆经过点1)2,所以23114a +=,解得2a =,所以椭圆的方程为2214x y +=,(Ⅰ)证明:由2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得222(14)8440k x kmx m +++-=, 由题意,△22222(8)4(14)(44)1616640km k m k m =-+-=-++>,即22140k m +->, 设1(A x ,1)y ,2(B x ,2)y ,所以122841kmx x k +=-+,21224441m x x k -=+,因为原点O 到直线l,所以d ==即2254(1)m k =+,因为12121212()()OA OB x x y y x x kx m kx m ⋅=+=+++22222121222448(1)()(1)4141m kmk x x km x x m k km m k k -=++++=+-+++222544041m k k --==+,所以OA OB ⊥.因此以AB 为直径的圆过原点O .【点评】本题考查椭圆的方程,直线与椭圆的相交问题,定点问题,解题中需要一定的计算能力,属于中档题. 32.【分析】(Ⅰ)把点A ,B 的坐标代入椭圆方程,求出a ,b 的值,即可得到椭圆W 的方程;(Ⅰ)先求出m 的值,设直线l 的方程为(2)(0y k x k =+≠,1)k ≠,与椭圆方程联立,设1(C x ,1)y ,2(D x ,2)y ,利用韦达定理得到22121222121212,1313k k x x x x k k -+=-=++,再求出点P ,Q 的纵坐标,得到||||PM MQ 的表达式,把上式代入化简,即可得到||||PM MQ 为定值1. 【解答】解:(Ⅰ)由椭圆2222:1(0)x y W a b a b +=>>过(0,2)A ,(3,1)B --两点,得2b =,29114a +=,所以212a =.所以椭圆W 的方程为221124x y +=.(Ⅰ)(0,2)A ,(3,1)B --,∴直线AB 的方程为:2y x =+,令0y =得:2m =-,设直线l 的方程为(2)(0y k x k =+≠,1)k ≠,由22(2),1124y k x x y =+⎧⎪⎨+=⎪⎩得2222(13)1212120k x k x k +++-=,且△0>,设1(C x ,1)y ,2(D x ,2)y ,则22121222121212,1313k k x x x x k k -+=-=++, 记直线AC 的方程为1122y y x x --=,令2x =-,得P 点的纵坐标11(22)(2)P k x y x -+=,记直线BD 的方程为2211(3)3y y x x ++=++, 令2x =-,得Q 点的纵坐标22(1)(2)3Q k x y x -+=+,112122122212212121212112221221(22)(2)2(3)(2)||||||||(1)(2)||(2)31212122412224()1221313||||1212221312122(13)|| 1.12122(13)PQ k x y x x x PM k x MQ y x x x k k x x x x x x k k k x x x x k k k x k k x -+++===-+++--⨯+⨯++++++++==-+++-++==-++ 所以||||PM MQ 为定值1. 【点评】本题主要考查了椭圆的标准方程,考查了直线与椭圆的定义,考查了学生的计算能力,是中档题. 33.【分析】(Ⅰ)利用已知条件求出b ,结合离心率求解a ,即可得到椭圆方程.(Ⅰ)依题意设直线l 的方程为(4)y k x =+,设1(M x ,1)y ,2(N x ,2)y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,求出M ,N 的坐标,然后求解AM AN k k +.的表达式,推出结果即可.【解答】解:(Ⅰ)由已知1b =,c e a = 又222a b c =+,解得2a =,1b =.所以椭圆C 的方程为2214x y +=.(Ⅰ)依题意设直线l 的方程为(4)y k x =+,设1(M x ,1)y ,2(N x ,2)y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,则△216(112)0k =->,解得k <.(*) 则21223241k x x k -+=+,212264441k x x k -=+.若11x =-,则1y =,k =(*)式矛盾,所以11x ≠-. 同理21x ≠-.所以直线AM 和AN 的斜率存在,分别设为AM k 和AN k . 因为121211AM AN y yk k x x +=+++ 121212(4)(4)3321111k x k x k kk x x x x ++=+=++++++ 12121212123(2)3(2)22(1)(1)1k x x k x x k k x x x x x x ++++=+=++++++ 222222323(2)1426443211414k k k k k k k k -++=+--++++ 223(242)20363k k k k -+=+=-, 所以AM AN k k =-. 所以BAM OAN ∠=∠.【点评】本题考查椭圆的简单性质,以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.34.【分析】(Ⅰ)由题意及a ,b ,c 之间的关系求出a ,b 的值,进而求出椭圆的方程;(Ⅰ)由题意开始直线l 的方程,与椭圆联立,由判别式为0求出参数之间的关系,设G ,E 的坐标,由题意可得G ,E 用直线的参数表示的坐标,进而求出||||TA TB 与||||GA GB 的表示,可证得||||||||TA GA TB GB =.【解答】解:(Ⅰ)由题意可得222212a c e a a b c=⎧⎪⎪==⎨⎪=+⎪⎩,解得:24a =,23b =,所以椭圆的方程为:22143x y +=;(Ⅰ)由题意可得直线l 的斜率存在且不为0,设直线l 的方程为:(0)y kx m m =+≠,22143y kx m x y =+⎧⎪⎨+=⎪⎩,整理可得:222(34)84120k x kmx m +++-=, 由题意可得△0=,即22226416(34)(3)0k m k m -+-=,解得:2234m k =+ 设1(G x ,0),0(E x ,0)y 则1m x k =-,024434km kx k m-==-+, 因为ET x ⊥轴,所以4(kT m-,0), 4|2||||42||2|4|||24||2||2()|k TA k m m k m k TB m k m k m -+-+-===++--, 又因为|2||||2||||2||2|m GA m k k m GB m k k-+-==++, 所以可证:||||||||TA GA TB GB =. 【点评】本题考查求椭圆的方程及直线与椭圆相切的性质,及证明的方法,属于中档题. 35.【分析】(Ⅰ)由已知点,椭圆的离心率以及a ,b ,c 的关系式即可求解;(Ⅰ)根据已知条件推出OD 与BC 平行,设出点D 的坐标,利用平行关系以及点D 在椭圆上联立方程即可求解. 【解答】解:(Ⅰ)由已知可得:22222431c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得4a =,2b =,c =故椭圆的方程为:221164x y +=,且长轴长为28a =;(Ⅰ)因为点D 在x 轴下方,所以点Q 在线段AB (不包括端点)上, 由(Ⅰ)可知(4,0)A -,(4,0)B ,所以AOC ∆的面积为142⨯=因为ACQ ∆的面积比BDQ ∆的面积大所以点Q 在线段OB (不包括端点)上,且OCQ ∆的面积等于BDQ ∆的面积, 所以OCB ∆的面积等于BCD ∆的面积, 所以//OD BC , 设(,)D m n ,0n <,则n m ==, 因为点D 在椭圆W 上,所以221164m n +=,解得2m =,n = 所以点D的坐标为(2,.【点评】本题考查了椭圆的方程以及直线与椭圆的位置关系的应用,涉及到三角形面积问题,考查了学生的运算能力,属于中档题. 36.【分析】()I利用离心率为3,且过(0,1)点,列出方程组求解a ,b ,得到椭圆方程. ()II 设直线l 的方程为:1(0)3y x m m =+≠,由221913x y y x m⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得:2219()903x x m ++-=,通过△0>,推出m 的范围,设1(C x ,1)y ,2(D x ,2)y ,利用韦达定理,求直线OM 的方程,与椭圆联立,求解E 、F ,利用弦长公式,计算证明即可.【解答】()I解:根据题意:2222311c a a b a c b b c ⎧=⎪⎧=⎪⎪⎪=-⇒=⋯⋯⋯⋯⋯⋯⋯⋯⋯⎨⎨⎪⎪==⎩⎪⎪⎩(4分)所以椭圆G 的方程为2219x y +=.⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)()II 证明:设直线l 的方程为:1(0)3y x m m =+≠⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)由221913x y y x m⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得:2219()903x x m ++-=⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)即2226990x mx m ++-=,需△22368(99)0m m =-->即202m <<⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分) 设1(C x ,1)y ,2(D x ,2)y ,CD 中点0(M x ,0)y ,则123x x m +=-,2129(1)2x x m =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分)12000311,2232x x x m y x m m +==-=+=⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分) 那么直线OM 的方程为:00y y x x =即13y x =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分)由22191232x x y y x y ⎧⎧=+=⎪⎪⎪⎪⇒⎨⎨⎪⎪=-=⎪⎪⎩⎩, 不妨令(E F ⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分) 那么221212111||||||(1)[()4]449MC MD CD x x x x ⋅==++-2259[(3)4(1)]182m m =--⋅-25(2)2m =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(13分)||||ME MF ⋅=25(2)2m -⋯⋯⋯⋯⋯⋯⋯⋯⋯(14分)所以||||||||MC MD ME MF ⋅=⋅.【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题. 37.【分析】(Ⅰ)依题意长轴长为4,且离心率为12.求出a ,c ,然后求解b ,得到椭圆方程. ()II 直线:(1)l y k x =-,代入椭圆方程,利用韦达定理以及弦长公式求出||AB ,求出AB 中点坐标,通过(1)当0k =时,所以||4||AB DF =.(2)当0k ≠时,线段AB 的垂直平分线方程求出D ,得到||DF ,然后转化求解即可、【解答】解:(Ⅰ)依题意24a =,2a =,离心率为12,1c =,则23b =,(4分) 故椭圆C 的方程为22143x y +=.(5分) ||()||AB II DF 是定值.(6分) 理由如下:由已知得直线:(1)l y k x =-,(7分)代入椭圆方程22143x y +=,消去y 得2222(43)84120k x k x k +-+-=,(8分) 所以△22222(8)4(43)(412)1441440k k k k =--+-=+>,(9分)设1(A x ,1)y ,2(B x ,2)y 则2122843k x x k +=+,212241243k x x k -=+,(10分)所以2222221211212||()()(1)[()4]AB x x y y k x x x x =-+-=++-。
北京市2020-2021学年高一数学上学期期末考试试题(含解析)
北京市东城区2020-2021学年高一数学上学期期末考试试题(含解析)一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x33.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.6.(5分)下列各式正确的是()A.B.C.D.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是.12.(5分)sin的值为.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为.(写出符合条件的一个函数即可)14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有.(注:请写出所有正确结论的序号)四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).2020-2021学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M【分析】利用集合与集合的关系直接求解.【解答】解:∵集合M={0},N={﹣1,0,1},∴M⫋N.故选:C.【点评】本题考查集合的关系的判断,考查交集、并集、子集定义等基础知识,考查运算求解能力,是基础题.2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x3【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=|x|,是偶函数,符合题意;对于B,y=lnx,是对数函数,不是偶函数,不符合题意;对于C,y=e x,是指数函数,不是偶函数,不符合题意;对于D,y=x3,是幂函数,不是偶函数,不符合题意;故选:A.【点评】本题考查函数的奇偶性的判断,关键是掌握常见函数的奇偶性,属于基础题.3.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.【分析】直接利用函数的单调性和子区间之间的关系求出结果.【解答】解:根据函数y=sin x的单调递增区间:[](k∈Z),当k=0时,单调增区间为[],由于为[]的子区间,故选:D.【点评】本题考查的知识要点:函数的单调性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 【分析】根据含有量词的命题的否定即可得到结论.【解答】解:命题为全称命题,则命题”∀x∈A,2x∈B”的否定为∃x∈A,2x∉B,故选:A.【点评】本题主要考查含有量词的命题的否定,比较基础.5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.【分析】直接利用不等式的应用和函数的单调性的应用求出结果.【解答】解:由于a>b,且a和b的正负号不确定,所以选项ACD都不正确.对于选项:B由于函数y=2x为单调递增函数,且a>b,故正确故选:B.【点评】本题考查的知识要点:函数的单调性的应用,不等式的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.(5分)下列各式正确的是()A.B.C.D.【分析】利用正弦函数、余弦函数、正切函数的单调性和诱导公式直接求解.【解答】解:在A中,sin>0>sin=﹣sin,故A错误;在B中,<cos,故B正确;在C中,>,故C错误;在D中,>cos=sin,故D错误.故选:B.【点评】本题考查命题真假的判断,考查正弦函数、余弦函数、正切函数的单调性和诱导公式等基础知识,考查运算求解能力,是基础题.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】可以取特殊值讨论充要性.【解答】解:若a,b为正实数,取a=1,b=1,则a+b=2,则“a,b为正实数”是“a+b>2”的不充分条件;若a+b>2,取a=1,b=0,则b不是正实数,则“a+b>2”是“a,b为正实数''的不必要条件;则“a,b为正实数”是“a+b>2”的既不充分也不必要条件,故选:D.【点评】本题考查命题充要性,以及不等式,属于基础题.8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9【分析】由题意令V=2m/s,0m/s,则可求出耗氧量,求出之比.【解答】解:鲑鱼游速为2m/s时的耗氧量为:令v=2=,即,即,即o=8100,鲑鱼静止时耗氧量为:令v=0=,即,即o'=100,故鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为,故选:C.【点评】本题考查对数求值,属于中档题.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点【分析】直接利用函数的图象和函数的性质及参数的范围求出函数的交点的情况,进一步确定结果.【解答】解:根据函数的解析式画出函数的图象:①对于选项A:当t<0或t≥2时,有0个交点,故正确.②对于选项B:当t=0或时,有1个交点,故正确.③对于选项C:当t=时,只有一个交点,故错误.④对于选项D:当,只有一个交点,故错误.故选:AB.【点评】本题考查的知识要点:函数的图象的应用,利用函数的图象求参数的取值范围,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)【分析】直接利用函数的对称性和函数的单调性的应用求出结果.【解答】解:函数f(x)=4|x|+x2+a,①对于选项A:由于x∈R,且f(﹣x)=f(x),故函数f(x)为偶函数.故选项A正确.②对于选项B:由于x2≥0,所以,故4|x|+x2≥1所以当x=0时a=﹣2时,f(x)<0,故选项B错误.③对于选项C:由于函数f(x)的图象关于y轴对称,在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故f(x)在(﹣∞,﹣1)上单调递减,故选项C正确.④对于选项D:由于函数的图象关于y轴对称,且在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故存在实数a=0时,当x∈(﹣∞,﹣1]∪[1,+∞)时,不等式成立,故选项D正确.故选:ACD.【点评】本题考查的知识要点:函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是(﹣1,1).【分析】解不等式1﹣x2>0即可.【解答】解:令1﹣x2>0,解得﹣1<x<1,即函数的定义域为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查函数定义域的求法及不等式的求解,属于基础题.12.(5分)sin的值为﹣.【分析】原式中的角度变形后,利用诱导公式化简,计算即可得到结果.【解答】解:sin=sin(2π﹣)=﹣sin=﹣.故答案为:﹣【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为f(x)=.(写出符合条件的一个函数即可)【分析】由函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,即是符合要求的一个函数.【解答】解:∵函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,∴函数f(x)=()x即是符合要求的一个函数,故答案为:f(x)=()x.【点评】本题主要考查了指数函数的单调性和值域,是基础题.14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.【分析】①利用交集定义直接求解.②利用并集定义直接求解.【解答】解:①设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B.故答案为:A∩B.②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.故答案为:A∪C.【点评】本题考查并集、交集的求法,考查并集、交集定义等基础知识,考查运算求解能力,是基础题.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=0或1 .【分析】结合已知函数解析式,把x=﹣2代入即可求解f(﹣2),结合已知函数解析式及f(t)=1,对t进行分类讨论分别求解.【解答】解:f(x)=则f(﹣2)=2﹣2=,∵f(t)=1,①当t≥1时,可得=1,即t=1,②当t<1时,可得2t=1,即t=0,综上可得t=0或t=1.故答案为:;0或1【点评】本题考查了求分段函数的函数值的问题,解题时应对自变量进行分析,是基础题.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有①②④.(注:请写出所有正确结论的序号)【分析】直接利用函数的图象求出函数的解析式,进一步利用函数的额关系式再利用函数的性质的应用求出结果.【解答】解:浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t ﹣1(a>0且a≠1),函数的图象经过(2,2)所以2=a2﹣1,解得a=2.①当x=0时y=,故选项A正确.②当第8个月时,y=28﹣1=27=128>60,故②正确.③当t=1时,y=1,增加0.5,当t=2时,y=2,增加1,故每月的增加不相等,故③错误.④根据函数的解析式,解得t1=log210+1,同理t2=log220+1,t3=log230+1,所以2t2=2log220+2=log2400+2>t1+t2=log2300+2,所以则2t2>t1+t3.故④正确.故答案为:①②④.【点评】本题考查的知识要点:函数的性质的应用,定义性函数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.【分析】(1)根据题意,求出集合A,进而由补集的性质分析可得答案;(2)根据题意,结合集合间的关系分析可得答案.【解答】解:(1)根据题意,因为A={x|x2+3x+2<0}={x|﹣2<x<﹣1}.因为全集U=R,所以∁U A={x|x≤﹣2或x≥﹣1},(2)根据题意,∁U A={x|x≤﹣2或x≥﹣1},若B⊆∁U A,当m﹣1≥﹣1或m≤﹣2,即m≥0或m≤﹣2,所以m的取值范围为(﹣∞,﹣2]∪[0,+∞).【点评】本题考查集合的补集运算,涉及集合的子集关系,属于基础题.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.【分析】(1)利用函数值,转化求解函数的解析式,推出函数的周期;(2)利用函数的自变量的范围,求出相位的范围,然后求解正弦函数的最值.【解答】解:(1)因为,所以.又因为φ∈,所以φ=.所以.所以f(x)最的小正周期.(2)因为x∈[0,2π],所以.当,即时,f(x)有最大值2,当,即x=2π时,f(x)有最小值.【点评】本题考查函数的周期以及函数的最值的求法,考查转化思想以及计算能力,是中档题.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.【分析】(1)由题意利用任意角的三角函数的定义,同角三角函数的基本关系,求得tanβ的值.(2)由题意利用诱导公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:(1)因为β的终边与单位圆交于点B,B点的纵坐标为,所以.因为,所以.所以.(2)因为α的终边与单位圆交于点A,A点的纵坐标为,所以.因为,所以,故===.【点评】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式,属于基础题.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.【分析】(1)定义域为R,然后求出f(﹣x),得f(﹣x)=﹣f(x),所以为奇函数;(2)直接由指数函数的单调性可判断函数f(x)的单调性;(3)不等式变形,由奇函数的性质得出ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立,令关于a的函数g(a)=xa+1﹣x>0在(﹣∞,2]上恒成立,g(a)一定单调递减,所以满足则只需解出x的范围.【解答】解:(1)f(x)为奇函数.因为f(x)定义域为R,,所以f(﹣x)=﹣f(x).所以f(x)为奇函数;(2)在(﹣∞,+∞)是增函数.因为y=3x在(﹣∞,+∞)是增函数,且y=3﹣x在(﹣∞,+∞)是减函数,所以在(﹣∞,+∞)是增函数,(3)由(1)(2)知f(x)为奇函数且f(x)(﹣∞,+∞)是增函数.又因为f(ax﹣1)+f(2﹣x)>0,所以f(ax﹣1)>﹣f(2﹣x)=f(x﹣2).所以ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立.令g(a)=xa+(1﹣x),a∈(﹣∞,2].则只需,解得所以﹣1<x≤0.所以x的取值范围为(﹣1,0].【点评】考查函数的奇函数的判断即函数的单调性,使用中档题.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).【分析】(1)由新定义的元素即可求出f A(1)与f B(1)的值,再分情况求出A*B;(2)对x是否属于集合A,B分情况讨论,即可证明出f A*B(x)=f A(x)•f B(x);(3)利用(2)的结论即可证明出*运算具有交换律和结合律.【解答】解:(1)∵A={1,2,3},B={2,3,4,5},∴f A(1)=﹣1,f B(1)=1,∴A*B={1,4,5};(2)①当x∈A且x∈B时,f A(x)=f B(x)=﹣1,所以x∉A*B.所以f A*B(x)=1,所以f A*B(x)=f A(x)•f B(x),②当x∈A且x∉B时,f A(x)=﹣1,f B(x)=1,所以x∈A*B.所以f A*B(x)=﹣1,所以f A*B(x)=f A(x)•f B(x),③当x∉A且x∈B时,f A(x)=1,f B(x)=﹣1.所以x∈A*B.所以f A*B(x)=﹣1.所以f A*B(x)=f A(x)•f B(x).④当x∉A且x∉B时,f A(x)=f B(x)=1.所以x∉A*B.所以f A*B(x)=1.所以f A*B(x)=f A(x)•f B(x).综上,f A*B(x)=f A(x)•f B(x);(3)因为A*B={x|f A(x)•f B(x)=﹣1},B*A={x|f B(x)•f A(x)=﹣1}={x|f A(x)•f B(x)=﹣1},所以A*B=B*A.因为(A*B)*C={x|f A*B(x)•f C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},A*(B*C)={x|f A(x)•f B*C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},所以(A*B)*C=A*(B*C).【点评】本题主要考查了集合的基本运算,考查了新定义问题,是中档题.。
2023-2024学年北京市海淀区高一上学期期末考试数学试题+答案解析
2023-2024学年北京市海淀区高一上学期期末考试数学试题一、单选题:本题共14小题,每小题5分,共70分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集,集合,则()A. B. C. D.2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查.已知在初中学生中随机抽取了100人,则在高中学生中抽取了()A.150人B.200人C.250人D.300人3.命题“”的否定是()A. B.C. D.4.方程组的解集是()A. B.C. D.5.某部门调查了200名学生每周的课外活动时间单位:,制成了如图所示的频率分布直方图,其中课外活动时间的范围是,并分成五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h的人数是()A.56B.80C.144D.1846.若实数a,b满足,则下列不等式成立的是()A. B. C. D.7.函数的零点所在的区间为()A. B. C. D.8.在同一个坐标系中,函数的部分图象可能是()A. B.C. D.9.下列函数中,既是奇函数,又在上单调递减的是()A. B. C. D.10.已知,则实数a,b,c的大小关系是()A. B. C. D.11.已知函数,则“”是“为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知函数,则不等式的解集为()A. B. C. D.13.科赫曲线是几何中最简单的分形.科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N个与它的上一级图形相似,且相似比为r的部分组成.若,则称D为该图形的分形维数.那么科赫曲线的分形维数是()A. B. C.1 D.14.已知函数,若存在非零实数,使得成立,则实数a的取值范围是()A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。
2021北京高一数学上学期期末汇编:不等式(教师版)
一.选择题(共2小题)1.(2020秋•顺义区期末)已知实数a ,b 在数轴上对应的点如图所示,则下列式子中正确的是( )A .11b a >B .22a b >C .0b a ->D .||||b a a b <2.(2020秋•海淀区期末)对任意的正实数x ,y ,不等式4x y m xy +恒成立,则实数m 的取值范围是( )A .(0,4]B .(0,2]C .(-∞,4]D .(-∞,2]二.填空题(共3小题)3.(2020秋•朝阳区期末)已知0x >,0y >,且2x y +=,则xy 的最大值为 .4.(2020秋•昌平区期末)已知1x >,则11y x x =+-的最小值为 ,当y 取得最小值时x 的值为 . 5.(2020秋•海淀区期末)不等式230x x -<的解集为 .三.解答题(共2小题)6.(2020秋•大兴区期末)已知关于x 的不等式221()x x a a R -->∈.(Ⅰ)若1a =,求不等式的解集;(Ⅰ)若不等式的解集为R ,求实数a 的范围.7.(2020秋•顺义区期末)已知不等式2520ax x -+<的解集是M .(1)若1M ∈,求实数a 的取值范围; (2)若1|22M x x ⎧⎫=<<⎨⎬⎩⎭,求不等式2(23)60ax a x -++-<的解集.参考答案一.选择题(共2小题)1.【分析】根据不等式的性质进行判断即可.【解答】解:由实数a ,b 在数轴上对应的点可知,0b a <<,对于A ,由0b a <<,可得11b a>,故A 正确, 对于B ,由0b a <<,可得22a b <,故B 错误,对于C ,由b a <,可得0b a -<,故C 错误,对于D ,由0b a <<,可得||||b a a b =,故D 错误.故选:A .【点评】本题考查了不等式的基本性质,属于基础题.2.【分析】先由题设得到:4x m y +【解答】解:由题设可得:4x ym xy +=244y x=,当且仅当4x y =时取“= “, 4m ∴,故选:C .【点评】本题主要考查式子的变形及基本不等式的应用,属于中档题.二.填空题(共3小题) 3.【分析】根据基本不等式可知,2()2x y xy +,进而根据x y +的值求得xy 的最大值. 【解答】解:因为0x >,0y >,且2x y +=, 所以由基本不等式可得,2()12x y xy +=, 当且仅当1x y ==时,等号成立,故xy 最大值为1.故答案为:1.【点评】本题主要考查了基本不等式在最值问题中的应用.考查了考生综合运用基础知识的能力,属于基础题.4.【分析】可知10x ->,然后将原函数变成1(1)11y x x =-++-,从而根据基本不等式即可求出原函数的最小值,并得出对应的x 的值.【解答】解:1x >,10x ∴->, ∴11(1)12(1)1311y x x x x x =+=-++-=--,当且仅当111x x -=-,即2x =时取等号, ∴11y x x =+-的最小值为3,当y 取最小值时2x =. 故答案为:3,2.【点评】本题考查了利用基本不等式求函数的最值的方法,注意说明等号成立的条件,考查了计算能力,属于基础题.5.【分析】把不等式化为(3)0x x -<,求出解集即可.【解答】解:不等式230x x -<化为(3)0x x -<,解得03x <<,∴不等式的解集为(0,3).故答案为:(0,3).【点评】本题考查了不等式的解法与应用问题,是基础题.三.解答题(共2小题)6.【分析】(Ⅰ)1a =时不等式化为2220x x -->,求不等式的解集即可.(Ⅰ)利用判别式△0<,即可求出实数a 的取值范围.【解答】解:(Ⅰ)1a =时,不等式为2211x x -->,可化为2220x x -->,计算△4812=+=,且不等式对应方程的两个根为1-1所以该不等式的解集为(-∞,1(1-⋃)+∞.(Ⅰ)不等式化为2210x x a --->,因为不等式的解集为R ,所以△0<,即44(1)0a -⨯--<,解得2a <-,所以实数a 的取值范围是(,2)-∞-.【点评】本题考查了一元二次不等式的解法与应用问题,也考查了运算求解能力,是基础题.7.【分析】(1)根据不等式2520ax x -+<的解集是M ,把1x =代入求出a 的取值范围.(2)由题意知12和2是方程2520ax x -+=的两个根,由根与系数的关系求出a 的值,再求不等式2(23)60ax a x -++-<的解集.【解答】解:(1)不等式2520ax x -+<的解集是M ,由1M ∈,所以215120a ⋅-⋅+<,解得3a <;所以a 的取值范围是(,3)-∞.(2)若1{|2}2M x x =<<,则12和2是方程2520ax x -+=的两个根,由根与系数的关系知15221222a a ⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得2a =, 所以不等式2(23)60ax a x -++-<,即为:22760x x -+-<,所以22760x x -+>, 解得32x <或2x >, 所以不等式的解集为3{|2x x <或2}x >. 【点评】本题考查了一元二次不等式的解法与应用问题,也考查了运算求解能力,是基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区2020-2021学年第一学期期末练习高一数学一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}1,2,3,4,5,61,2,3U A ==,,集合A 与B 的关系如图所示,则集合B 可能是( )A. {}2,4,5B. {}1,2,5C. {}1,6D. {}1,3D 由图可得B A ⊆,由选项即可判断.解:由图可知:B A ⊆,{}1,2,3A =,由选项可知:{}1,3A ⊆,故选:D.2. 若1:(0,),2p x x x ∀∈+∞+≥,则p ⌝为( ) A. 1(0,),2x x x∃∈+∞+< B. 1(0,),2x x x ∃∈+∞+ C. 1(0,),2x x x ∃∈+∞+D. 1(0,),2x x x∀∈+∞+< A 利用全称命题的否定变换形式即可得出结果.1:(0,),2p x x x∀∈+∞+≥, 则p ⌝为1(0,),2x x x∃∈+∞+<.故选:A 3. 下列函数中,是奇函数且在区间(0,)+∞上单调递减的是( )A. 2y x =-B. 12y x =C. 1y x -=D. 3y x =C根据函数的单调性和奇偶性对各个选项逐一分析即可.对A ,函数2y x =-的图象关于y 轴对称,故2y x =-是偶函数,故A 错误;对B ,函数12y x =的定义域为[)0,+∞不关于原点对称, 故12y x =是非奇非偶函数,故B 错误;对C ,函数1y x -=的图象关于原点对称,故1y x -=是奇函数,且在(0,)+∞上单调递减,故C 正确;对D ,函数3y x =的图象关于原点对称,故3y x =是奇函数,但在(0,)+∞上单调递增,故D 错误.故选:C.4. 某校高一年级有180名男生,150名女生,学校想了解高一学生对文史类课程的看法,用分层抽样的方式,从高一年级学生中抽取若干人进行访谈.已知在女生中抽取了30人,则在男生中抽取了( )A. 18人B. 36人C. 45人D. 60人B先计算出抽样比,即可计算出男生中抽取了多少人. 解:女生一共有150名女生抽取了30人, 故抽样比为:301=1505, ∴抽取的男生人数为:1180365⨯=.故选:B . 5. 已知,,R a b c ∈,且a b >,则下列不等式一定成立的是( )A. 22a b >B. 11a b <C. ||||a c b c >D. c a c b -<- D对A ,B ,C ,利用特殊值即可判断,对D ,利用不等式的性质即可判断.解:对A ,令1a =,2b =-,此时满足a b >,但22a b <,故A 错;对B ,令1a =,2b =-,此时满足a b >,但11a b>,故B 错; 对C ,若0c ,a b >,则||||a c b c =,故C 错;对D ,a b >a b ∴-<-,则c a c b -<-,故D 正确.故选:D.6. 从数字2,3,4,6中随机取两个不同的数,分别记为x 和y ,则x y 为整数的概率是( ) A.16 B. 14 C. 12 D. 712 B先计算出从数字2,3,4,6中随机取两个不同的数,共有12种情况,再求出满足x y 为整数的情况,即可求出x y 为整数的概率. 解:从数字2,3,4,6中随机取两个不同的数,则x 有4种选法,y 有3种选法,共有4312⨯=种情况; 则满足x y为整数的情况如下: 当2y =时,4x =或6x =有2种情况;当3y =时,6x =有1种情况;当4y =或6y =时,则x y不可能为整数, 故共有213+=种情况, 故x y 为整数的概率是:31=124.故选:B . 7. 已知函数()52x f x x =-,则下列区间中含有()f x 的零点的是( ) A. ()1,0-B. ()0,1C. ()1,2D. ()2,3 C分析函数()f x 单调性,利用零点存在定理可得出结论.由于函数2x y =为增函数,函数5y x=-在(),0-∞和()0,∞+上均为增函数, 所以,函数()52x f x x=-在(),0-∞和()0,∞+上均为增函数. 对于A 选项,当()1,0x ∈-时,20x >,50x->,此时,()0f x >,所以,函数()f x 在()1,0-上无零点;对于BCD 选项,当0x >时,()130f =-<,()5324022f =-=>, 由零点存在定理可知,函数()f x 的零点在区间()1,2内.故选:C.8. 已知函数2()2f x x ax =-,则“0a <”是“函数()f x 在区间(0,)+∞上单调递增”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 A先由()f x 在区间(0,)+∞上单调递增,求出a 的取值范围,再根据充分条件,必要条件的定义即可判断.解:2()2f x x ax =-的对称轴为:22a x a -=-=, 若()f x 在(0,)+∞上单调递增,则0a ≤,即0a <,()f x 在区间(0,)+∞上单调递增,反之,()f x 在区间(0,)+∞上单调递增,0a ≤,故 “0a <”是“函数()f x 在区间(0,)+∞上单调递增”的充分不必要条件.故选:A.9. 对任意的正实数,x y,不等式4x y +≥m 的取值范围是( )A. (0,4]B. (0,2]C. (,4]-∞D. (,2]-∞C 先根据不等式4x y +≥恒成立等价于minm ⎛⎫≤,再根据基本不等式求出min⎛⎫,即可求解.解:4x y +≥即m ≤,即min m xy ⎛⎫≤ ⎪ ⎪⎝⎭ 又4424y y x x xy y x y x=+≥⋅= 当且仅当“4y x y x=”,即“2x y =”时等号成立, 即4m ≤,故(,4]m ∈-∞.故选:C.10. 植物研究者在研究某种植物1-5年内的植株高度时,将得到的数据用下图直观表示.现要根据这些数据用一个函数模型来描述这种植物在1-5年内的生长规律,下列函数模型中符合要求的是( )A. x y ka b =+(0,0k a >>且1a ≠)B. log x y k x b =+(0,0k a >>,且1a ≠)C. (0)k y b k x=+> D. 2(0)y ax bx c a =++>B由散点图直接选择即可.解:由散点图可知,植物高度增长越来越缓慢,故选择对数模型,即B 符合.故选:B.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中横线上.11. 不等式230x x -<的解集为__________.()0,3由不等式230x x -<,即(3)0x x -<,所以不等式的解集为{|03}x x <<.12. 某超市对6个时间段内使用,A B 两种移动支付方式的次数用茎叶图作了统计,如图所示,使用支付方式A 的次数的极差为______;若使用支付方式B 的次数的中位数为17,则m =_______.(1). 23; (2). 8m =根据极差,中位数的定义即可计算.解:由茎叶图可知:使用支付方式A 的次数的极差为:25223-=;使用支付方式B 的次数的中位数为17,易知:9m ≤,1610172m ++∴= 解得:8m =.故答案为:23;8m =.13. 已知213211log ,2,33a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是___________________.(用“<”连结) a c b <<利用特殊值即可比较大小.解:221log log 103a =<<, 103221b =>=,21139c ⎛⎫== ⎪⎝⎭, 故a c b <<.故答案为:a c b <<.14. 函数()f x 的定义域为D ,给出下列两个条件:①对于任意12,x x D ∈,当12x x ≠时,总有()()12f x f x ≠;②()f x 在定义域内不是单调函数.请写出一个同时满足条件①②的函数()f x ,则()f x =______________.()1f x x= 根据题意写出一个同时满足①②的函数()f x 即可.解:易知:()1f x x=,在(),0-∞上单调递减,()0,∞+上单调递减, 故对于任意12,x x D ∈,当12x x ≠时,总有()()12f x f x ≠;且()1f x x=在其定义域()(),00,-∞⋃+∞上不单调. 故答案为:()1f x x =. 15. 已知函数222,()2,.x x x a f x x x x a ⎧-≥=⎨--<⎩,给出下列四个结论: ①存在实数a ,使函数()f x 为奇函数;②对任意实数a ,函数()f x 既无最大值也无最小值;③对任意实数a 和k ,函数()y f x k =+总存在零点; ④对于任意给定正实数m ,总存在实数a ,使函数()f x 在区间(1,)m -上单调递减.其中所有正确结论的序号是______________. ① ② ③ ④ 分别作出0a =,0a >和0a <的函数()f x 的图象,由图象即可判断① ② ③ ④的正确性,即可得正确答案.如上图分别为0a =,0a >和0a <时函数()f x 的图象,对于① :当0a =时,222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩, ()f x 图象如图1关于原点对称,所以存在0a =使得函数()f x 为奇函数,故①正确;对于② :由三个图知当x →-∞时,y →-∞,当x →+∞时,y →+∞,所以函数()f x 既无最大值也无最小值;故② 正确;对于③ :如图2和图3中存在实数k 使得函数()y f x =图象与y k =-没有交点,此时函数()y f x k =+没有零点,所以对任意实数a 和k ,函数()y f x k =+总存在零点不成立;故③ 不正确对于④ :如图2,对于任意给定的正实数m ,取1a m =+即可使函数()f x 在区间(1,)m -上单调递减,故④正确;故答案为:① ② ④关键点点睛:本题解题的关键点是分段函数图象,涉及二次函数的图象,要讨论0a =,0a >和0a <即明确分段区间,作出函数图象,数形结合可研究分段函数的性质.三、解答题:本大题共4小题,共40分.解答应写出文字说明,证明过程或满算步骤.16. 已知全集{}{},||1|2,|05U R A x x B x x ==-<=<<,求:(1)A B ;(2)()U A B ⋃.(1){}03A B x x ⋂=<<;(2){()1U A B x x ⋃=≤-或}0x >.(1)求出集合A ,再根据集合间的基本运算即可求解;(2)求出U A ,再根据集合间的基本运算即可求解.解:(1)由12x -<,解得:13x , 故{}13A x x =-<<,又 {}|05B x x =<<,{}03A B x x ∴⋂=<<;(2)由(1)知:{}13A x x =-<<,{1U A x x ∴=≤-或}3x ≥,{()1U A B x x ∴⋃=≤-或}0x >.17. 已知函数1()f x x x=-. (1)用函数单调性的定义证明()f x 在区间(0,)+∞上是增函数;(2)解不等式()()124x x f f +>. (1)见解析;(2){}1x x <(1)利用函数单调性的定义证明即可;(2)根据()f x 在区间(0,)+∞上单调递增,得到124x x +>,即可解出x 的集合.解:(1)设任意的()12,0,x x ∈+∞且12x x <,则()()12f x f x - 121211x x x x ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭ 121211x x x x =--+()()121212x x x x x x -=-+()121211x x x x ⎛⎫=-⋅+ ⎪⎝⎭, ()12,0,x x ∈+∞且12x x <,120x x ∴-<,12110x x +>, 即()1212110x x x x ⎛⎫-⋅+< ⎪⎝⎭, 即()()12f x f x <,即对任意的()12,0,x x ∈+∞,当12x x <时,都有()()12f x f x <,()f x ∴在区间(0,)+∞上是增函数;(2)由(1)知:()f x 在区间(0,)+∞上是增函数;又120,40x x +>>,∴()()124x x f f +>, 即12242x x x +>=,即12x x +>,解得:1x <,即()()124x x f f +>的解集为:{}1x x <.方法点睛:定义法判定函数()f x 在区间D 上的单调性的一般步骤:1.取值:任取1x ,2x D ∈,规定12x x <,2.作差:计算()()12f x f x -,3.定号:确定()()12f x f x -的正负,4.得出结论:根据同增异减得出结论.18. 某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:1 2 1 2 3假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即23x <≤)的概率.(1)110;(2)1191250(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.解:(1)在图表中,甲品牌的50个样本中,首次出现故障发生在保修期内的概率为:21215010++=, 设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内为事件A ,利用频率估计概率,得()110P A =, 即从该商城销售的甲品牌固态硬盘中随机抽取一个, 其首次出现故障发生在保修期内的概率为:110; (2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件B ,从该商城销售的乙品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件C ,利用频率估计概率,得:()()213,502550P B P C ===, 则()P BC BC +()()()()P B P C P B P C =+()()()()11P B P C P B P C =-+-⎡⎤⎡⎤⎣⎦⎣⎦13131125502550⎛⎫⎛⎫=⨯-+-⨯ ⎪ ⎪⎝⎭⎝⎭ 1191250= , ∴某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,恰有一个首次出现故障发生在保修期的第3年的概率为:1191250. 关键点点睛:本题解题的关键是利用频率表示概率.19. 函数()f x 的定义域为D ,若存在正实数k ,对任意的x D ∈,总有|()()|f x f x k --≤,则称函数()f x 具有性质()P k .(1)判断下列函数是否具有性质(1)P ,并说明理由.①()2021f x =;②()g x x =;(2)已知()f x 为二次函数,若存在正实数k ,使得函数()f x 具有性质()P k .求证:()f x 是偶函数;(3)已知0a k >,为给定的正实数,若函数()2()log 4x f x a x =+-具有性质()P k ,求a 的取值范围.(1)()f x 具有性质(1)P ;()g x 不具有性质(1)P ;(2)见解析;(3)2,2k k -⎡⎤⎣⎦(1)根据定义即可求得()f x 具有性质(1)P ;根据特殊值即可判断()g x 不具有性质(1)P ; (2)利用反证法,假设二次函数()f x 不是偶函数,根据题意推出与题设矛盾即可证明;(3)根据题意得到24()(l g 41)o x x f x f x a a ⎛⎫+= ⎪⋅+⎝-⎭-,再根据()2()log 4x f x a x =+-具有性质()P k ,得到24log 41x x a k a ⎛⎫+≤ ⎪⋅+⎝⎭,解不等式即可. 解:(1)()2021f x =,定义域为R ,则有|()()|0f x f x --=,显然存在正实数1k =,对任意的x ∈R ,总有|()()|1f x f x --≤,故()2021f x =具有性质(1)P ;()g x x =,定义域为R ,则()|()()|2g x g x x x x --=--=,当2x =时,|(2)(2)|2241g g k --=⨯=>=,故不具有性质(1)P ;(2)假设二次函数()f x 不是偶函数,设()()20f x ax bx c a =++≠,其定义域为R ,即0b ≠,则()()()22|()()|2f x f x ax bx c a x b x c bx --=++--+-+=, 易知,|()()|2f x f x bx --=是无界函数,故不存在正实数k ,使得函数()f x 具有性质()P k ,与题设矛盾,故()f x 是偶函数;(3)()2()log 4x f x a x =+-的定义域为R ,()()f x f x --()()()22log 4log 4x x a x a x -=+--++()()22log 4log 42x x a a x -=+-+-224log log 4241x x x a x a ⎛⎫+=+- ⎪⋅+⎝⎭2224log log 2241x x x a x a ⎛⎫+=+- ⎪⋅+⎝⎭ 24log 2241x x a x x a ⎛⎫+=+- ⎪⋅+⎝⎭ 24log 41x x a a ⎛⎫+= ⎪⋅+⎝⎭,()2()log 4x f x a x =+-具有性质()P k ,即存在正实数k ,对任意的x ∈R ,总有|()()|f x f x k --≤, 即24log 41x x a k a ⎛⎫+≤ ⎪⋅+⎝⎭, 即24log 41x x a k k a ⎛⎫+-≤≤ ⎪⋅+⎝⎭, 即42241x k k x a a -+≤≤⋅+, 即4222412x x k k x xa a -+≤≤⋅+, 即222222x xkk x x a a ---+⋅≤≤⋅+, 即222222k x x k x x k x k x a a a -----++⋅≤+⋅≤+⋅,通过对比解得:22k k a -≤≤,即2,2k k a -⎡⎤∈⎣⎦.方法点睛:应用反证法时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.。