几何法证明不等式(精选多篇)

合集下载

均值不等式的证明精选多的篇

均值不等式的证明精选多的篇

均值不等式的证明篇一:均值不等式(AM-GM不等式)是数学中常用的一种不等式关系,它说明了算术平均数和几何平均数之间的关系。

具体表达式为:对于任意非负实数集合{a1,a2,an},有(a1+a2+.+an)/n ≥ (a1 a2 .*an)^(1/n)其中,等号成立当且仅当所有的非负数都相等。

下面,我们将给出AM-GM不等式的证明。

证明:首先,我们可以假设所有的a1,a2,an都是正实数。

因为AM-GM不等式对于非负实数也是成立的,所以我们可以通过限制条件来放缩实数集合。

考虑对数变换。

定义函数f(x) = ln(x),其中x>0。

因为ln(x)在整个定义域都是凸函数,所以根据对数函数的性质,我们有:f((a1+a2+.+an)/n) ≥ (1/n)(f(a1)+f(a2)+.+f(an))即,ln((a1+a2+.+an)/n) ≥ (1/n)(ln(a1)+ln(a2)+.+ln(an))这是因为凸函数的定义是在一条直线上任取两个点,它总是在两点的连线上方。

继续推导,根据ln的性质,我们有:ln(a1 a2 .*an) = ln(a1) + ln(a2) + . + ln(an)将上述不等式代入这个等式中,得到ln((a1+a2+.+an)/n) ≥ ln(a1 a2 .*an)^(1/n)移项化简得到(a1+a2+.+an)/n ≥ (a1 a2 .*an)^(1/n)即AM-GM不等式得证。

最后,我们来说明等号成立的条件。

根据对数函数的性质,等号成立当且仅当所有的非负数的对数都相等,即a1 = a2 = . = an。

至此,我们完成了AM-GM不等式的证明。

总结: AM-GM不等式是数学中常用的一种不等式关系。

它表明算术平均数大于等于几何平均数,并且等号成立的条件是所有的非负数相等。

该不等式的证明可以通过对数变换和凸函数的性质进行推导得到。

篇二:在数学中,均值不等式是一类用于比较多个数的重要不等式。

几何法证明不等式(精选多篇)

几何法证明不等式(精选多篇)
请继续阅读其他相关范文:4.1比较法证明不等式
赋值法证明不等式
构造法证明不等式
向量法证明不等式
构造法证明不等式例说
证明:构造函数f(x)=
∵f(-x)=
=f(x)
∴f(x)是偶函数,其图像关于y轴对称。
当x>0时,当x0,故f(x)=f(-x)∴三、构造一次函数,利用一次函数的单调性证明不等式
【例3】已知|a|∵|a|∴-10
∴f(c)的(-1,1)上是增函数
∵f(1)=1-ab+a+b-2=a+b–ab-1=a(1-b)-(1-b)=(1-b)(a-1)∴f(1)∴a+b+c。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
2、对x?r都成立的不等式是????????????????????? ()
(a)lg(x2?1)?lg2x (b) x2?1?2x(c)
3、0<a<1,f=2a,g=1?a,h=12(d)x?4?4x?12x?11,那么f、g、h中最小的是???()1?a
(a)f(b) g(c) h(d)不能确定
几何法证明不等式(精选多篇)
第一篇:几何法证明不等式几何法证明不等式用解析法证明不等式:

6几何不等式

6几何不等式

§6几何不等式几何中表示量的不等关系的式子叫做几何不等式.几何不等式就其形式来说分为线段不等式、角不等式以及面积不等式三类.下面给出一些基本的几何不等式性质. (1) 在三角形中,两边之和大于第三边,两边之差小于第三边. (2) 在同一个三角形中,大边对大角,小边对小角;反之也成立.(3) 两组对边对应相等的两个三角形中,夹角大的第三边也大;反之也成立.(4) 三角形内任一点到两顶点的距离之和小于另一顶点到这两个顶点的距离之和. (5) 三角形一边上的中线小于另外两边之和的一半. (6) 在△ABC 中,点P 是边BC 上任意一点,则有 PA ≤max{AB ,AC }, 当点P 与点B 或C 重合时,等号成立.在解决几何不等式问题时,经常要用到一些已经学过的基本定理和已经证明过的结论,运用不等式的基本性质,通过几何、三角、代数等解题方法进行计算和证明.同时,还需考虑几何图形的特点和性质. 1、与线段有关的不等式问题 例1、已知BC 是△ABC 的最长边,O 是△ABC 内部任意一点,直线OA 、OB 、OC 分别交对边于点1A 、1B 、1C .证明:(1)1OA +1OB +1OC <BC ;(2)1OA +1OB +1OC ≤max{1AA ,1BB ,1CC }.证明:(1)如图1,过点O 作OX ∥AB ,OY ∥AC ,分别交BC 点X 、Y . 再过点X 、Y 分别作XS ∥1CC ,YT ∥1BB ,分别交AB 、AC 于点S 、T .因为△OXY ∽△ABC ,则XY 是△OXY 的最大边.由性质6知 1OA <max{OX ,OY }≤XY .又△BXS ∽△BC 1C ,△YCT ∽△BC 1B ,所以,由1CC <max{CA ,BC }=BC ,可得BX >XS =1OC .同理,CY >YT =1OB . 故BC =XY +BX +YC >1OA +1OB +1OC .(2)设11OA AA =x , 11OB BB =y , 11OC CC =z . 则 x +y +z =OBC ABC S S +OCA ABC S S +OABABCS S =1.故1OA +1OB +1OC =x 1AA +y 1BB +z 1CC ≤(x +y +z )max{1AA ,1BB ,1CC } =max{AA 1 ,BB 1 , CC 1 }.说明:其实,(2)比(1)更强,由(2)可以推得(1). 例2、如图2,在△ABC 中,∠B =2∠C .求证:AC <2AB.证明:延长CB 至D ,使得DB =AB .则有∠D =∠BAD ,∠ABC =2∠D . 由题设知∠ABC =2∠C .所以,∠D =∠C .故AD = AC .在△ABC 中,因为DB +AB >AD ,即2AB >AD ,所以,AC <2AB .说明:(1)把问题中的不等量尽量集中到一个三角形(或者 两个具有紧密关系的三角形) 中,利用三角形中的线段不 等关系(或角的不等关系)解决问题.这是一种常用的解题 思路.(2)若将题中的“∠B =2∠C ”改为“∠B =n ∠C ”,可以得到相似的结论:在△ABC 中, 若∠B =n ∠C (n 是不小于2的正整数),则AC ≤nAB .例3、已知P 是△ABC 内任一点.(1)求证: 12(AB +BC +CA )<PA +PB +PC <AB +BC +CA ; (2)若△ABC 是正三角形,且边长为1,求证: 32<PA +PB +PC <2. 分析:不等式12(AB +BC +CA )<PA +PB +PC 可化为AB +BC +CA <2(PA +PB +PC )=(PA +PB )+(PB +PC )+ (PC +PA ),由“三角形两边之和大于第三边”即可得证.由不等式PA +PB +PC <AB +BC +CA 的轮换对 称性,只要证明PA +PB <CA +CB 即可.证明:(1)在△PAB 中,PA +PB >AB .同理,PB +PC >BC ,PC +PA >CA .三式相加得 2(PA +PB +PC )>AB +BC +CA ,即12(AB +BC +CA )<PA +PB +PC .又由性质4知PA +PB <CA +CB .同理,PB +PC <AB +AC ,PC +PA <BC +BA .三式相加得 PA +PB +PC <AB +BC +CA . 综上可知12(AB +BC +CA )<PA +PB +PC <AB +BC +CA .(2)如图3,若△ABC 是正三角形,过P 作MN ∥BC ,交AB 于M 、交AC 于N , 则△AMN 也是正三角形.由(1)的结论知PA +PB +PC >12(AB +BC +CA )=32.又由性质6有AP ≤max{AM ,AN }=AM ,且BP <BM +MP ,CP <NC +NP . 三式相加得AP +BP +CP <AB +MN +NC =AB +AN +NC =AB +AC =2.所以,32<PA +PB +PC <2.例4、已知凸六边形ABCDEF 的边长都为1.证明:对角线AD 、BE 、CF 中至少有一条不超过2. 证明:如图4,由于∠A +∠B +∠C +∠D +∠E +∠F =720,故不妨设∠A +∠F ≤7203=240°.作菱形ABGF ,则∠GFE ≤60°,FG =FE =1.于是,GE 是△FGE 的最小边. 故GE ≤1.又BG =1,则BE ≤BG +GE ≤2.例5、有A 、B 、C 三个村庄成三角形(如图5),A 、B 、C 三个村 庄上小学人数的比为1∶2∶3.现需要办一所小学.问小学应设在什么地方,才能使得上学儿童所走的路程的总和S 最小?解:设小学办在点P ,A 、B 、C 三个村庄的上学人数分别为a 、2a 、3a .则 S =aPA +2aPB +3aPC =a (PA +PC )+2a (PB +PC )≥aAC +2aBC . 当且仅当P =C 时,上式等号成立. 所以,小学设在C 村庄,可以使得上学 儿童所走的路程的总和S 最小.2、与角有关的不等式问题例6、在△ABC 中,已知12AC >AB .求证:12∠ABC >∠ACB . 证明:因为AC >2AB >AB ,所以,∠ABC >∠ACB . 如图6,作∠ABD =∠ACB ,交AC 于D . 下面只要证明∠CBD >∠ACB .因为△BAD ∽△CAB ,所以,BC BD =ACAB>2,即BC >2BD . 又CD >BC -BD ,两式相加得BC +CD >2BD +BC -BD =BD +BC ,即CD >BD .所以,∠CBD >∠ACB .故∠ABC =∠ABD +∠DBC >∠ACB +∠ACB =2∠ACB . 从而,12∠ABC >∠ACB .说明:与角有关的不等式常常转化为边的不等式进行证明. 例7、已知平面内的任意四点,其中任意三点不共线.试问:是否一定能从这样的四个点中选出三点构成一个三角形,使得这个三角形至少有一个内角不大于45°?试证明你的结论.证明:根据内角的大小分情况讨论.(1)如图7,若四边形ABCD 是凸四边形,那么,必有一个内 角不大于90°,不妨设为∠A .于是,∠A =∠BAC +∠CAD ≤90. 所以,∠BAC 与∠CAD 中必有一个不大于45°.(2)如图8,若四边形ABCD 是凹四边形,联结AC ,则△ABC 中必有一个内角小于或等于60,不妨设为∠A .于是,∠A =∠BAD +∠CAD .所以,∠BAD 与∠CAD 中必有一个不大于12×60=30≤45.综上可知,一定可以从中选出三点符合题意.说明:由不等式的性质“若1a +2a +⋯+n a =m (1a ,2a ,⋯,n a 为正数),则必存在i a (i =1,2,⋯,n ),满足i a ≤mn”,得出“凸四边形必有角不大于90°,三角形中必有角不大于60°”的结论,由此找出不大于90°的∠A .再将∠A 分成两个角,得到含有不大于45°内角的三角形. 3、与面积有关的不等式问题例8、在△ABC 中,点D 、E 、F 分别在边BC 、CA 、AB 上.求证:min{AEF S ,BFD S , CDE S }≤14ABC S .证明:设min{AEF S ,BFD S , CDE S }=S .如图9,注意到又由均值不等式知同理,则故min{AEF S ,BFD S , CDE S }≤14ABC S说明:在处理几何不等式最大值与最小值问题时,常常会用到一些代数不等式.本题用到了不等式2()x y +≥4xy .例9、正△ABC 的边长为1,点M 、N 、P 分别在边BC 、CA 、AB 上,且MB +CN +AP =1.求△MNP 面积的最大值.解:如图10,设BM =x ,CN =y ,AP =z .则0≤x 、y 、z ≤1,x +y +z =1.故ANP S +BPM S +CMN S =12[x (1-z )+y (1-x )+z (1-y )]sin60°=34[x (1-z )+y (1-x )+z (1-y )]. 由2()x y z ++≥3(xy +yz +zx ),易得xy +yz +zx ≤13.从而,x (1-z )+y (1-x )+z (1-y )=x +y +z -(xy +yz +zx )≥1-13=23.故NMP S =ABC S -(ANP S +BPM S +CMN S当x =y =z =13时,上式等号成立.因此,△MNP 例10、△ABC 是边长为8的正三角形,M 是边AB 上一点,MP ⊥AC 于点P ,MQ ⊥BC 于点Q ,联结PQ . (1)求PQ 的长的最小值;(2)求△CPQ 面积的最大值.解:(1)设△ABC 的高为h ,则h =由ACM S +BCM S =ABC S ,得MP +MQ =h =如图11,过点P 、Q 分别作边AB 的垂线,垂足分别为1P 、1Q . 因为∠PMA =∠QMB =30°,所以,1PM =PM ,1Q M =QM QM ,PQ ≥11PQ =1PM +1MQ PM +QM )=6. 当M 为AB 的中点时,上式等号成立. 因此,PQ 的最小值为6.(2)因为∠PMA =∠QMB =30°,所以,AP +BQ =12AM +12BM =12AB =4,CP +CQ =16-(AP +BQ )=12.故CPQ S =12CP ·CQ sin C ·CQ 2()4CP CQ =.当M 为AB 的中点时,上式等号成立.因此,△CPQ 面积的最大值为4、费马点问题例11、在已知平面内找一点P ,使得它到△ABC 三个顶点的距离之和最小(此点称为费马(Fermat)点).解:(1)证明点P 不会在△ABC 外.如图12,将△ABC 外部分为6个区域. 若点P 在区域Ⅰ中(如图13),则有 AB +AC ≤PB +PC <PA +PB +PC ,即点A 到三顶点的距离之和比点P 到三顶点的距离之和小. 若点P 在区域Ⅲ和Ⅴ,也有同样的结论.若点P 在区域Ⅵ中(如图14),设BP 交AC 于点Q .则有 QA +QB +QC =QB +AC <BP +AC <PA +PB +PC ,即点Q 到A 、B 、C 三点的距离之和比点P 到A 、B 、C 三点 的距离之和小.若点P 在区域Ⅱ和Ⅳ,也有同样的结论. 因此,点P 一定在△ABC 的内部或边上.(2)当△ABC 的三个内角均小于120时,以BC 、CA 、AB 为边分别向△ABC 外作等边△BCD 、等边△CAE 、等边△ABF ,再分别作 三个等边三角形的外接圆.三个外接圆的圆周在△ABC 内的交点,即对△ABC 三边张角均 为120°的点记为点P (如图15).下面证明:对于△ABC 内任意一点Q ,都有PA +PB +PC ≤QA +QB +QC .过A 、B 、C 三点分别作PA 、PB 、PC 的垂线,三条垂线相交所成 的三角形记为△111A B C .因为P 对△ABC 三边张角均为120°,则 ∠111B AC =∠111C B A =∠111ACB =60°. 所以,△111A BC 是正三角形,设其边长为a .任取不同于P 的一点Q ,向△111A B C 的三边作垂线,得到距离1h 、2h 、3h . 由“正三角形内任一点到三边距离之和等于正三角形的高”得 2111A B C S =a (PA +PB +PC )=a (1h +2h +3h )≤a (QA +QB +QC ). 因此,PA +PB +PC ≤QA +QB +QC .当且仅当Q =P 时,上式等号成立.如图16,将△BAQ 绕点A 旋转,使B 成为CA 延长线上一点B ′,Q 为Q ′. 因为旋转角小于或等于60°,所以,QQ ′≤AQ . 则QA +QB +QC ≥QQ ′+Q ′B ′+QC ≥CB ′=CA +AB . 当且仅当Q =A 时,上式等号成立.综上所述,当△ABC 各个内角均小于120°时,费马点为△ABC 内部对三角形的三边张角均为120°的点. 若△ABC 中有一 内角不小于120°,则此内角的顶点即为费马点. 练习题1.在△ABC 中,若∠B =n ∠C (n 是不小于2的正整数),则AC ≤nAB .(提示:如图18,在△ABC 的外接圆上,将∠B所对的AC n 等分,联结相邻分点得n 条彼此相等的弦,且这些弦都与AB 相等. 因为折线A 12A A ⋯1n A -C 的长大于AC ,所以,AC ≤nAB .)2.在△ABC 中,AB >AC ,AM 为中线,P 为△AMC 内一点.证明:PB >PC .(提示: 易知 ∠AMB >∠AMC .于是,∠AMC <90°.过P 作PH ⊥BC 于点H ,则垂足H 必在MC 的内部 或其延长线上.从而,BH >CH .因此,PB >PC .)3.在Rt △ABC 中,P 是斜边BC 的中点,Q 、R 分别是AB 、AC 上的点.求证:△PQR的周长大于BC 的长.(提示:如图19,分别作点P 关于AB 、AC 的对称点M 、N ,联结 MQ 、NR .由对称性知PQ =MQ ,PR =NR .联结AP ,由对称性知M 、A 、N 三点共线,且 ∠MPN =90°.所以,MN =2AP =BC .故PQ +QR +RP =MQ +QR +RN >MN =BC .)4.如图20,将任意△ABC 的三边四等分,边BC 、CA 、AB 上的分点分别为1A 、2A 、3A ,1B 、2B 、3B ,1C 、2C 、3C . 记△ABC 、△111A B C 的周长分别为p 、1p .求证:12p <1p <34p .(提示:易知13C B =14BC . 在△131B B C 中,有 13C B +31B B >11B C ,即14BC +12CA >11B C .同理,14CA +12AB >11C A ,14AB +12BC >11A B . 三式相加即得1p <34p .在△11AB C 中, 11B C >1AB -1AC =34CA -14AB .同理,11C A > 34AB -14BC ,11A B > 34BC -14AC .三式相加即得12p <1p .)5.凸四边形ABCD 中,AB +AC +CD =16.问:当对角线AC 、BD 为何值时,四边形ABCD 面积最大?面积最大值是多少?(提示:设AB =x ,AC =y ,则CD =16-x -y .而ABCD S =ABC S +ACD S ≤12xy +12y (16-x -y )=- 122(8)y -+32.所以,当∠BAC =∠ACD =90°,AC =8,BD =,四边形ABCD 的最大面积为32.)6.如图21,在△ABC 中,AB =AC ,D 为BC 的中点,E 为△ABD 中任意一点,联结AE 、BE 、CE . 求证:∠AEB >∠AEC . (提示:如图21,作点E 关于AD 的对称点E ′,联结AE ′、CE ′、 EE ′,并延长EE ′交AC 于点F .根据对称性得△ABE ≌△ACE ′.所以,∠AEB =∠AE ′C .易知∠AE ′C =∠AE ′F +∠CE ′F >∠AEF +∠CEF =∠AEC ,即∠AEB >∠AEC .)7.已知凸六边形ABCDEF 的边长至多为1.证明:对角线AD 、BE 、CF 中至少有一条不超过2. (提示:如图22,联结AC 、CE 、EA .在△AEC 中,不妨设边CE 最大,即CE ≥AC ,CE ≥AE .对A 、C 、D 、E 四点用托勒密不等式,有AD ·CE ≤AC ·ED +CD ·AE ,故AD ≤AC CE ·DE +CD ·ACCE≤1×1+1×1=2.)8.如图23,在凸四边形ABCD 中,M 、P 分别是BC 、CD 的中点,已知AM +AP =a .求证:ABCD S <212a .(提示:如图23,联结AC 、MP .则AMP S +14BDC S =AMCP S =12ABCD S .又BDC S <ABCD S ,AMP S ≤12AM ·AP ≤12·2()4AM AP =218a ,从而,ABCD S <212a .)。

最新高中数学不等式证明的常用方法经典例题优秀名师资料

最新高中数学不等式证明的常用方法经典例题优秀名师资料

关于不等式证明的常用方法重难点归纳(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证(2)综合法是由因导果,而分析法是执果索因 2 不等式证明还有一些常用的方法换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法典型题例例1证明不等式n n 2131211<++++ (n ∈N *) 知识依托本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等例2求使y x+≤a y x +(x >0,y >0)恒成立的a 的最小值知识依托该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a >0,b >0,且a +b =1 求证(a +a 1)(b +b 1)≥425 证法一 (分析综合法) 证法二 (均值代换法) 证法三 (比较法) 证法四 (综合法) 证法五 (三角代换法) 巩固练习 1 已知x 、y 是正变数,a 、b 是正常数,且y b x a +=1,x +y 的最小值为 _ 2 设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是_________ 3 若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________ 4 已知a ,b ,c 为正实数,a +b +c =1 求证(1)a 2+b 2+c 2≥31 (2)232323+++++c b a ≤6 5 已知x ,y ,z ∈R ,且x +y +z =1,x 2+y2+z 2=21,证明x ,y ,z ∈[0,32] 6 证明下列不等式 (1)若x ,y ,z∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(z y x 111++) 7 已知i ,m 、n 是正整数,且1<i ≤m <n(1)证明 n i A im <m i A in (2)证明 (1+m )n >(1+n )m8 若a >0,b >0,a 3+b 3=2,求证 a +b ≤2,ab ≤1不等式知识的综合应用典型题例例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)知识依托本题求得体积V 的关系式后,应用均值定理可求得最值例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明|c |≤1;(2)证明当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )知识依托二次函数的有关性质、函数的单调性,绝对值不等式例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2<a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f(a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A ①③B ②④C ①④D ②③2 下列四个命题中①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =?,求a 的取值范围7 已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论;(3)若t ∈R ,求证 lg57≤F (|t -61|-|t +61|)≤lg 513 数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D ,则当x ∈D 时,有f(x)≥M 恒成立?f(x)min ≥M ;f(x)≤M 恒成立?f(x)max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例1】等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1a 1+1a 2+…+1a n 恒成立的正整数n 的取值范围.【例2】(08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,an+1=S n +3n ,n ∈N*.(Ⅰ)设b n =S n -3n ,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n∈N*,求a 的取值范围.【点评】一般地,如果求条件与前nABCDS项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解题型二数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【点评】利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】(08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n ∈N*成立的充分必要条件是c ∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n ∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c,n ∈N*.题型三求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】(08·四川)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S5≤15,则a 4的最大值为______.【例6】等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n取何值时,f(n)有最大值.题型四求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立. 【点评】在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】(08·湖北)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) …,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设{}n a 是由正数构成的等比数列, 12n n n b a a++=+,3n n n c a a +=+,则( )A. nn b c > B. n n b c < C. n n b c ≥ D. n n b c ≤点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对(,1]x ∈-∞-,不等式21()2()12x x mm --<恒成立,则实数m 的取值范围( )A. (2,3)-B. (3,3)-C. (2,2)-D. (3,4)-例4四棱锥S-ABCD 的所有棱长均为1米,一只小虫从S 点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n 米后恰好回到S 点的概率为n P (1)求2P 、3P 的值; (2)求证: 131(2,)n nP P n n N ++=≥∈(3)求证: 2365>(2,)24n n P P P n n N -+++≥∈…例5 已知函数()2f x x x =+.(1)数列{}n a 满足: 10a >,()1n n a f a +'=,若11112ni ia =<+∑对任意的n N ∈恒成立,试求1a 的取值范围; (2)数列{}n b 满足: 11b =,()1n n b f b +=()n N ∈,记11n nc b =+,k S 为数列{}n c 的前k 项和, k T 为数列{}n c 的前k 项积,求证1710nk k k kT S T =<+∑. 例6 (1)证明: ()ln1(0)x x x +<> (2)数列{}n a 中. 11a =,且()11211122n n n a a n n --??=++≥ ???; ①证明: ()724n a n ≥≥ ②()21n a e n <≥ 【专题训练】1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 6 4.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n ∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( )A .y 有最大值1,无最小值B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值1 8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1]B.(-∞,-1)∪(1,+∞)C.[3,+∞)D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( )A .1B .2C .3D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n ∈N*都有a n+1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分比要条件D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n ∈N*),则数列{a n }的前n 项和S n 的取值范围是 ( ) A .[12,2)B .[12,2]C .[12,1)D .[12,1]13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd的最小值是________.A.0B.1C.2D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A .若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k ∈N*(k <n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k ∈N*,使a k -a k+1和a k -a k -1同号其中真命题的序号是____________.17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项na ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n}满足b 1=1,b n +1=b n+2a n ,求证:b n·b n +2<b 2n +1.19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,…. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数. 20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n+2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,… 21.已知二次函数y=f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N*都成立的最小正整数m22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n = ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.利用导数处理与不等式有关的问题一、利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式。

不等式证明(共8篇)

不等式证明(共8篇)

不等式证明(共8篇)第1篇:不等式证明,均值不等式1、设a,b∈R,求证:ab≥(ab)+aba+b2≥abba2、已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc3、(a+b+c)(1119++)≥ a+bb+cc+a24、设a,b∈R+,且a+b=1,求证:(a+)+(b+)≥5、若a+b=1,求证:asinx+bcosx≤16、已知a+b=1,求证:a+b≥7、a,b,c,d∈R求证:1<+441a21b225 2221 8abcd+++<2 a+b+db+c+ac+d+bd+a+c18、求证2+2+2+Λ+2<2 123n1111++Λ+<19、求证:≤2n+1n+22n10、求下列函数的最值(1)已知x>0,求y=2-x-(2)已知x>2,求y=x+4的最大值(-2)x1的最小值(4)x-2111(3)已知0<x<,求y=x(1-2x)的最大值()221611、若正数a,b满足ab-(a+b)=1则a+b的最小值是()(2+2333)12、已知正数a,b求使不等式(a+b)≤k(a+b)成立的最小k值为()(4)3、求函数y=14、二次函数f(x)=x+ax-x+a的两根x1,x2满足0<x1<x2< 1,求a的取值范围()(0,15、关于x的方程x+2m(x+3)+2m+14=0有两个实数根,且一个大于1,一个小于1,则m的取值范围是()(m <-22221)416、关于x的方程mx+2x+1=0至少有一个负根,则m的取值范围是(m≤1)17、关于x的方程2kx-2x-3k-2=0有两个实数根,一个小于1,另一个大于1,求实数k的取值范围(k>0或k<-4)218、为使方程x2-2px-1=0的两根在(-2,2)内,求p的取值范围(-<p<19、函数f(x)=ax2+x+1有零点,则a的取值范围是(a≤20、判断函数f(x)=x-21、已知方程x-22343)41)41+1的零点的个数(一个)x3⎡95⎤x=k在[-1,1]上有实数根,求实数k的取值范围(⎢-,⎥)2⎣162⎦22、已知方程7x2+(m+13)x+m2-m-2=0有两个实数根,且一根在(0,1),一根在(1,2)上,求m的取值范围((-2,-1)⋃(3,4))23、关于的方程2ax-x-1=0在(0,1)内恰有一解,求实数a的取值范围(1,+∞)24、若关于的方程lg(xx2x2+20x)-lg(8x-6a-3)=0有唯一实根,求a的取值范围第2篇:不等式证明不等式证明不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。

切比雪夫不等式证明(精选多篇)

切比雪夫不等式证明(精选多篇)
切比雪夫不等式证明(精选多篇)
切比雪夫不等式证明 一、 试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。 分析:将一枚均匀硬币连续抛1000次可看成是1000重贝努利试验,因此1000次试验中出现正面h的次数服从二项分布.解:设x表示1000次试验中出现正面h的次数,则x是一个随机变量,且~xb.因此500211000=×==npex,250)2答题完毕,祝你开心!111不等式 对于任一随机变量x,若ex与dx均存在,则对任意ε>0,恒有p{|x-ex|>=ε}=1-dx/ε_切比雪夫不等式说明,dx越小,则p{|x-ex|>=ε}越小,p{|x-ex|同时当ex和dx已知时,切比雪夫不等式给出了概率p{|x-ex|>=ε}的一个上界,该上界并不涉及随机变量x的具体概率分布,而只与其方差dx和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。 切比雪夫不等式是指在任何数据集中,与平均数超过k倍标准差的数据占的比例至多是1/k_。 在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近: 与平均相差2个标准差的值,数目不多于1/4与平均相差3个标准差的值,数目不多于1/9与平均相差4个标准差的值,数目不多于1/16……与平均相差k个标准差的值,数目不多于1/k_举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分,我们便可得出结论:少于50分的人,数目不多于4个。 设为一测度空间,f为定义在x上的广义实值可测函数。对於任意实数t>0, 一般而言,若g是非负广义实值可测函数,在f的定义域非降,则有 上面的陈述,可透过以|f|取代f,再取如下定义而得: 概率论说法 设x为随机变数,期望值为μ,方差为σ2。对于任何实数k>0, 改进 一般而言,切比雪夫不等式给出的上界已无法改进。考虑下面例子: 这个分布的标准差σ=1/k,μ=0。 当只求其中一边的值的时候,有cantelli不等式: 证明 定义,设为集的指标函数,有 又可从马尔可夫不等式直接证明:马氏不等式说明对任意随机变数y和正数a有pr/a。取y=2及a=2。 亦可从概率论的原理和定义开始证明。 设随机变量x有数学期望?及方差?,则对任何正数?,下列不等式成立2?2p?x?e????2 ?证明:设x是离散型随机变量,则事件x?e??表示随机变量x取得一切满足不等式xi?e??的可能值xi。设pi表示事件x?xi的概率,按概率加法定理得p?x?e????xi?e???pi这里和式是对一切满足不等式xi?e??的xi求和。由于xi?e??,即?xi?e?2??2xi?e??,所以有2?2?1。2?xi?e?又因为上面和式中的每一项都是正数,如果分别乘以?2,则和式的值将增大。 于是得到p?x?e????xi?e???pi?xi?e????xi?e??22pi?1?2xi?e????xi?e?2pi因为和式中的每一项都是非负数,所以如果扩大求和范围至随机变量x的一切可能值xi求和,则只能增大和式的值。因此p?x?e????1?2??x?e?ii2pi上式和式是对x的一切可能值xi求和,也就是方差的表达式。所以,?2p?x?e????2 ?mathwang几个经典不等式的关系 一几个经典不等式 均值不等式 设a1,a2,?an?0是实数a?a???a12n ???111n?+??a1a2an其中ai?0,i?1,2,?n.当且仅当a1?a2???an时,等号成立.n柯西不等式 设a1,a2,?an,b1,b2,?bn是实数,则?a2122?a2???an??b12?b22???bn2???a1b1?a2b2???anbn?2当且仅当bi?0或存在实数k,使得ai?kbi时,等号成立.排序不等式 设a1?a2???an,b1?b2???bn为两个数组,c1,c2,?,cn是b1,b2,?,bn的任一排列,则a1b1?a2b2???anbn?a1c1?a2c2???ancn?a1bn?a2bn?1???anb1当且仅当a1?a2???an或b1?b2???bn时,等号成立.切比晓夫不等式 对于两个数组:a1?a2???an,b1?b2???bn,有a1b1?a2b2???anbn?a1?a2???an??b1?b2???bn?a1bn?a2bn?1???anb1??????nnnn????当且仅当a1?a2???an或b1?b2???bn时,等号成立.二相关证明 用排序不等式证明切比晓夫不等式证明:由a1b1?a2b2???anbn?a1?a2???an??b1?b2???bn??????nnn?????n?a1b1?a2b2???anbn???a1?a2???an??b1?b2???bn?而?a1?a2???an??b1?b2???bn??a1b1?a2b2???anbn?a1b2?a2b3???anb1?a1b3?a2b4???anb2?a1b4?a2b5???anb3???a1bn?1?a2bn???anbn?2?a1bn?a2b1???anbn?1根据“顺序和?乱序和”,可得n?a1b1?a2b2???anbn???a1?a2???an??b1?b2???bn?即得a1b1?a2b2???anbn?a1?a2???an??b1?b2???bn??????nnn????同理,根据“乱序和?反序和”,可得?a1?a2???an??b1?b2???bn?a1bn?a2bn?1???anb1?????nnn????综合即证 用排序不等式证明“几何—算数平均不等式”?证明:构造两个数列:a1?a2???annaa?aa1aa,x2?122,?xn?12nn?1 ccc1c1c21cny1??,y2??,?yn???1x1a1x2a1a2xna1a2?anx1?其中c?.因为两个数列中相应项互为倒数,故无论大小如何,乘积的和:............................x1y1?x2y2??xnyn总是两数组的反序和.于是由“乱序和?反序和”,总有.........x1yn?x2y1??xnyn?1?x1y1?x2y2??xnyn于是aa1a2????n?1?1???1 ccc即a1?a2???an?nc即证a1?a2???an?c?na1?a2???an用切比晓夫不等式证明“算数—开方平均不等式”:?n证明:不妨设a1?a2???an,222a1?a2???an?a1?a2???an??a1?a2???an?a1?a2???an. ???????nnnn????由切比晓夫不等式,右边不等式显然成立.即证.用切比晓夫不等式证明“调和—算数平均不等式”n?+??a1a2an?a1?a2???ann证明:n111?+??a1a2an?a1?a2???ann1?11?+??a1a2an?a1?a2???an??????nn?????111?a??a????a?12n?a1a2an??1?.n???不妨设a1?a2???an,则111????,由切比晓夫不等式,上式成立.即证. anan?1a1用均值不等式和切比晓夫不等式证明柯西不等式 证明:不妨设a1?a2???an,b1?b2???bn由切比晓夫不等式,有a1b1?a2b2???anbn?a1?a2???an??b1?b2???bn??????.nnn????由均值不等式,有a1?a2???an?nb1?b2???bn?n所以a1b1?a2b2???anbn?n两边平方,即得?a1b1?a2b2???anbn??a1?a2???anb22?b2???bn.即证.补充“调和—几何平均不等式”的证明111????a?a2???ananaa21证n天津理工大学2014届本科毕业论文 切比雪夫不等式及其应用 摘要 切比雪夫不等式是概率论中重要的不等式之一。尤其在分布未知时,估计某些事件的概率的上下界时,常用到切比雪夫不等式。另外,大数定律是概率论极限理论的基础,而切比雪夫不等式又是证明大数定律的重要途径。如今,在切比雪夫不等式的基础上发展起来的一系列不等式都是研究中心极限定理的有力工具。作为一个理论工具,切比雪夫不等式的地位是很高的。 本文首先介绍了切比雪夫不等式的一些基本理论,引出其概率形式,用现代概率方法证明了切比雪夫不等式并给出了其等号成立的充要条件。其次,从三大方面阐述了其在概率论中的应用,并且给出了切比雪夫大数定律和伯努利大数定律的证明。在充分了解切比雪夫不等式后,最后探索了其在生活中的应用,并且用切比雪夫不等式评价了irr的概率风险分析。 关键词:切比雪夫不等式大数定律irrthe chebyster’

不等式证明方法大全

不等式证明方法大全

不等式证明方法大全
在数学研究中,证明不等式是一项重要的内容。

目前,关于证明不等式的方法可以分
为几类,下面将详细展开讨论:
一、绝对值的技巧:将不等式中的变量都化为绝对值,这样可以有效地转换原不等式。

二、代数变换法:通过恰当的代数变换,将不等式中变量交换,从而转化为更简单的
不等式。

三、数量不等式法:将相同的不等式进行变形,将其变换为数量不等式,然后继续解决,从而获得结论。

四、角度不等式法:如果不等式涉及到测量角度的变量,我们可以将其转换为角度不
等式,然后判断两个角度的大小关系,从而获得结论。

五、条件不等式法:将不等式的左右两侧都加上某个条件,将其变换为条件不等式,
然后根据条件判断两个式子大小关系。

六、单值不等式变形法:将不等式变为单值不等式,然后将单值不等式中的变量通过
某种方式改变,从而继续解决不等式本身,用这种方法可以得出不等式的正确性。

七、多元不等式的考虑:由于某些不等式涉及多个变量,因此需要考虑这些变量的关系,包括不等式的变换形式,和多个变量的联系在内的其他因素,这样才能正确地证明不
等式的正确性。

以上就是证明不等式的各种方法,正确运用上述方法,可以帮助我们轻松地证明定理,有助于提高科学研究的水平。

不等式证明方法大全

不等式证明方法大全

不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。

常用的推导法有数学归纳法、递推法、代入法等。

其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。

(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。

(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。

通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。

2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。

常用的数学运算包括加法、减法、乘法、除法等。

在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。

3.几何法:几何法是指通过将不等式转化为几何问题进行证明。

几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。

通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。

4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。

这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。

5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。

通过逐个讨论每种情况,可以得出要证明的不等式的证明。

6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。

反证法常用于证明不等式的唯一性和存在性。

7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。

通过不断进行递推,可以逐步证明不等式的成立。

以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。

在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇)常常利用均值不等式及证明证明这四种平均数知足hn?gn?an?qn?、ana一、a二、?r?,当且仅当a1?a2???an时取“=”号仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常常利用均值不等式的变形:(1)对实数a,b,有a222?b2?2ab (当且仅当a=b时取“=”号), a,b?0?2ab(4)对实数a,b,有a?a-b??b?a-b?a2?b2?2ab?0(5)对非负实数a,b,有(8)对实数a,b,c,有a2?b2?c2?ab?bc?aca?b?c?abc(10)对实数a,b,c,有均值不等式的证明:方式很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等用数学归纳法证明,需要一个辅助结论。

引理:设a≥0,b≥0,则?a?b??an?na?n-1?bn注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0,a+b≥0 (用数学归纳法)。

当n=2时易证;假设当n=k时命题成立,即那么当n=k+1时,不妨设ak?1是则设a1,a2,?,ak?1中最大者,kak?1?a1?a2???ak?1 s?a1?a2???ak用归纳假设下面介绍个好理解的方式琴生不等式法琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点,设f?x??lnx,f?x?为上凸增函数所以,在圆顶用射影定理证明(半径不小于半弦)第二篇:均值不等式证明均值不等式证明一、已知x,y为正实数,且x+y=1求证xy+1/xy≥17/41=x+y≥2√(xy)得xy≤1/4而xy+1/xy≥2当且仅当xy=1/xy时取等也就是xy=1时画出xy+1/xy图像得01时,单调增而xy≤1/4∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4得证继续追问:拜托,用单调性谁不会,让你用均值定理来证补充回答:我真不明白我上面的方式为何不是用均值不等式证的法二:证xy+1/xy≥17/4即证4(xy)²-17xy+4≥0即证(4xy-1)(xy-4)≥0即证xy≥4,xy≤1/4而x,y∈r+,x+y=1显然xy≥4不可能成立∵1=x+y≥2√(xy)∴xy≤1/4,得证法三:∵同理0xy+1/xy-17/4=(4x²y²-4-17xy)/4xy=(1-4xy)(4-xy)/4xy≥0∴xy+1/xy≥17/4试问如何叫“利用均值不等式证明”,是说只能用均值不等式不能穿插别的途径?!二、已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)于是c-a≤-2√(a-b)*(b-c)<0即:1/(c-a)≥-1/【2√(a-b)*(b-c)】那么1/(a-b)+1/(b-c)+1/(c-a)≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=(3/2)/【2√(a-b)*(b-c)】>0三、一、调和平均数:hn=n/(1/a1+1/a2+...+1/an)二、几何平均数:gn=(a1a2...an)^(1/n)3、算术平均数:an=(a1+a2+...+an)/n4、平方平均数:qn=√(a1^2+a2^2+...+an^2)/n这四种平均数知足hn≤gn≤an≤qn的式子即为均值不等式。

中学数学不等式证明的常用方法5篇

中学数学不等式证明的常用方法5篇

中学数学不等式证明的常用方法5篇第一篇:中学数学不等式证明的常用方法中学数学不等式证明的常用方法不等式证明是中学数学的一项基本内容,证明不等式的方法多种多样,但常见的几种方法有:放缩法、判别式、换元法、函数法、数学归纳法等[4].在这里通过学习,总结前人巧妙的证明方法,使中学生可以轻松地理解并掌握进而灵活运用常用的不等式证明方法解决有关不等式的证明问题.下面试图通过一些例子来说明.一、一般思路不等式证明的总体思路是比较不等式两边式子的大小,一般用比较法证明不等式.比较法证明不等式可分为差比法和商比法,它是不等式证明中最基本思路.明确作差、作商比较法证明不等式的依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握作差、作商后对差式、商式变形以及判断符号的重要方法,并在今后学习中继续积累方法.但比较法证明不等式主要运用了综合法和分析法.利用题设和某些证明过的不等式作为基础,再利用不等式的性质推出欲证的不等式,称为综合法.思路是“由果索因”,即从题设条件或已知证明的结论﹑公式出发,逐步推理,得到欲证的不等式,这种方法条理清楚,易表述.分析法是从求证的不等式出发,分析使这个不等式成立的条件,只要使不等式成立的条件已经具备,就断定不等式成立.思路是“执果索因”, 即从要证明的不等式出发,寻找使这个不等式成立的某一“充分”的条件,为此逐步往前追溯,一直追溯到已知便于探求解题思路.二、典型方法分析(1)放缩法不等式的传递性,若A>B,B>C则A>C告诉我们要证明A>C 时就可以先把A缩小B,再把B缩小为C,从而证明A>C;同样A放大为B,再把B放大为C,可以证明A<C.例1求证:1+12+13+Λ+1n<2n(n∈N+).分析:注意观察不等式左边的形式,显然左边要比右边复杂,所以我们应选择从左到右来证明.先取有限项进行观察,从它们的规律分析进而得证.一般地,如果是分式就考虑放大(缩小)分子(分母).如本题就是利用放大分母1n=22n<2n+n-1=2(n-n-1),每一项都可由此规律放大分母,从而易得证.但值得注意的是放大或缩小要适当.证明:Θ1n=22n<2n+n-1=2(n-n-1),∴1312<2(2-1),<2(3-2),……1n-11n<2(n-1-n-2),<2(n-n-1).121n以上各式相加,得1+所以原不等式成立.+…<2n-1<2n.【评注】利用分数的性质,可适当地增项﹑减项,运用放缩法证明[4],但要注意放缩法要适度,否则不能同向传递.例2 已知数列{an},an=1⋅2+2⋅3+3⋅4+L+n(n+1)n(n+1)(n+1)2<an<.求证:22n(n+1)是前n个自然数的和,与an 比较只须缩小为12﹑2﹑3……n即可.仿此把各项放大2﹑3﹑……(n+1)所得结论过弱,只能放n(n+1)弃,于是转而联想到关系式n(n+1)<,右边的不等式证明,由此可证2得.证明由于分析: 注意到左边的式子an=1⋅2+2⋅3+3⋅4+Λ+n(n+1)>12+22+33+Λ+n2 =1+2+3+…+n =n(n+1)22n+1n(n+1)<22又由n(n+1)<3572n+1有an=1⋅2+2⋅3+3⋅4+Λ+n(n+1)<+++Λ+ 22221(n+1)2<[1+3+5+7+Λ+(2n+1)]=22n(n+1)(n+1)2<an<综上所述. 22【评注】放缩法的基本思路: a>b,b>c,⇒a>c.[3]技巧与方法:(1)适当添上131或舍去某些项,例:(a+)2+>(a+)2;(2)如果是分式则需放大或缩小分子242或分母,如:11111 <2<=-放大缩小切记适度.k(k+1)kk(k-1)k-1k(2)判别式法有些要证明的不等式,它的已知条件是一些等式,如果这些条件可以转化为一个含参数的一元二次方程式;或者要证明的不等式可以化为一个一元二次不等式,这时往往可以用判别式求证[2].2⎧⎪x-yz-8x+7=0例已知x,y,z是实数,且满足条件⎨22⎪⎩y+z+yz-6x+6=0求证:1≤x≤9.证明由已知等式得:yz=x2-8x+7(y+z)2=yz+6x-6= x2-8x+7+6x-6=x2-2x+1=(x-1)2 于是y,z是方程t2±(x-1)t+(x2-8x+7)=0的两个实根△=(x-1)2-4(x2-8x+7)>0解得1≤x≤9.【评注】本题可以将原方程组变形得到yz和y+z的表达式,再把x看作常数写成关于t的一元二次方程,最后用判别式来求解.用判别式证明不等式,常常把要证明的内容通过韦达定理以及其他代数变形手段,放到某个一元二次方程的系数中去.(3)换元法有些不等式可以把其中一些元素换成另一种元素,从而使条件之间的数量关系明朗化,便于解决问题[2].1125例1 设a,b∈R+且a+b=1.求证:(a+)2+(b+)2≥.ab2 证明:Θ a+b=1可设:a=sin2θ,b=cos2θx2+y2⎛x+y⎫又≥⎪则2⎝2⎭11(a+)2+(b+)2ab111≥(a+b++)2 2ab1112)=(sin2θ+cos2θ+2+2sinθcos2θ142125)≥(1+4)2==(1+.2sin2θ222例2 设a,b>0,求证:3a+3b+3a-3b<23a.证明:设3a+3b=m,3a-3b=n,则m3+n3=2a 于是要证的不等式等价于(m+n)3<4(m3+n3)只要证:4(m3+n3)-m3-3m2n-3mn2-n3>0 而3m3+3n3-3m2n-3mn2 =3m2(m-n)+3n2(n-m)=3(m-n)(m2-n2)=3(m-n)2(m+n)>0 ∴(m-n)3<4(m2-n2)成立.【评注】本题巧用三角代换,使不等式的证明变得简捷明了.当所给的条件复杂,一个变量不易由另一变量表示时,可考虑三角代换,将两个变量都用一个参数表示.换元法中最常用的是三角代换,三角代换法多用于条件不等式的证明[3].具体代换方法有:(1)若a2+b2=1,可设a=cosθ,b=sinθ(θ为参数);(2)若a2+b2≤1,可设a=rcosθ,b=rsinθ(θ为参数);(3)对于1-x2,Θx≤1,由cosθ≤1或sinθ≤1知,可设x=cosθ或x=sinθ;(4)若x+y+z=xyz,由tanA+tanB+tanC=tanAtanbtanC 知,x=tanA,y=tanB,z=tanC.(A+B+C=π)(4)函数法有些不等式的证明可以借助于函数的一些性质,如单调性,函数的值域等进行证明.例:求证:|x1+x2+Λ+xn||xn||x1||x2| ++Λ+≤1+|x1+x2+Λxn|1+|x1|1+|x2|1+|xn|xx的形式,于是可以构造函数f(x)= 1+x1+x分析:要证不等式的每一项结构都是证明: 构造函数f(x)= x 1+xf(x1)-f(x2)=x1xx1-x2 -2=1+x11+x2(1+x1)(1+x2)当x1≥x2>0时,显然f(x1)<f(x2)所以函数f(x)当x≥0时是增函数Q|x1+x2+L+xn|≤|x1|+|x2|+L+|xn|∴x1+x2+Λ+xn|xn|1+Λ+≤1+|x1+x2+Λ+xn|1+|x1+|x2|+Λ+|xn|1+|x1|+|x2|+Λ+|xn|≤|xn||x1||x2|++Λ+1+|x1|1+|x2|1+|xn|【评注】本题根据不等式的特点,构造辅助函数,将不等式的证明,转化为利用函数增减性与极值来研究,是一种极好的方法.在构造函数证明不等式时,可用函数的单调性、微积分中值定理、函数的极值和最值等,将不等式问题转化为函数问题,利用函数性质来研究、解决不等式问题,使学生掌握不等式证明的函数思想方法,从而提高学生的分析问题与解决问题的能力.不等式的证明,方法多种多样,它可以和很多内容相结合,证明时不仅用到不等式的性质,不等式的证明技能、技巧,有时还用到其它数学知识,是高中数学的一个难点.不等式证明综合题是每年高考的必备题,只要我们遵循《考试说明》的要求,以不等式的性质、定理为理论依据,借助变量代换、化归转化、分析综合等数学思想方法,就能很好的“把脉”不等式的证明.但这些方法不是孤立的,而是相互渗透的.因此,在证明不等式时要灵活运用这些方法,以使题目更容易解决.解题时只要充分展开想象,打开思路,选择恰当的的证明方法,问题便可迎刃而解.第二篇:证明不等式方法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。

算术_几何平均值不等式的证明

算术_几何平均值不等式的证明

平均值不等式是数学分析中解决许多极限问题以及其他应用问题的一个重要依据,特别是算术平均值-几何平均值不等式(以下简称算几不等式)的应用更是尤为广泛,许多极限问题的证明都要应用到这一不等式,而关于这一不等式的证明方法,常见的有利用数学归纳法及詹生不等式的证明,下面介绍几种另外的证明方法。

1利用二项式定理证明:首先,对于a,b>0由二项式定理,得(a+b)n>an+nan-1b由数学归纳法,若n-1时为真,对于n,假设an≥an-1≥…≥a2≥a1≥0.又设a=1n-1n-1i=1"xi,b=1n(xn-a),故有a,b≥0及1nn-1i=1"xi#$n=(a+b)n>an+nan-1b=xn1n-1n-1i=1"xi%&n-1≥xn(x1x2…xn-1)即x1+x2+…+xnn≥x1x2…xnn’(xi≥0,i=1,2,…,n).2利用不等式ex≥1+x(x≥-1)证明:设An=x1+x2+…+xnn,Gn=x1x2…xnn’(xi>0,i=1,2,…,n)由不等式ex≥1+x(x≥-1)可知,对于每一i,有expxiAn-%&1≥xiAn求乘积,得1=ni=1(expxiAn-%$1=expni=1"xiAn-%$1%$≥ni=1(xiAn=GnAn%$n算术-几何平均值不等式的证明故An≥Gn,即x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).3利用泰勒公式证明:设f(x)=logax(0<a<1,x>0),则f″(x)=1x21na>0,将f(x)在点x0处展开,有f(x)=f(x0)+f′(x0)(x-x0)+f″(x)2(x-x0)2,!=x0+"(x-x0)(0<"<1)因此有f(x)≥f(x0)+f′(x0)(x-x0),取x0=1nni=1#xi(xi∈(a,b),(i=1,2,…,n),则有f(xi)≥f1nni=1%xi&’+f′1nni=1%xi&(xi-ni=1%xi&((i=1,2,…,n)故ni=1%f(xi)≥nf1nni=1%xi&(+f′1nni=1%xi&(+ni=1%xi-ni=1%xi&(=nf1nni=1%xi&(即f1nni=1%xi&(≤1nni=1%f(xi).因此有loga1n(x1+x2+…+xn)≤1n(logax1+logax2+…logaxn)即1nloga(x1x2…xn)≥loga1n(x1+x2+…+xn)亦即loga(x1x2…xn)1n≥1nloga(x1+x2+…+xn)(0<a<1)故有x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).4利用函数凹凸性证明:设f(x)=logax(a>1,x>0),则f″(x)=-1x21na<0,故f(x)是上凸函数,因此有ni=1%aif(xi)≤fni=1%aixi&(,取ak=1n(k=1,2,…,n),有1n(logax1+logax2+…logaxn)≤loga1n(x1+x2+…+xn)即1nloga(x1x2…xn)≤loga1n(x1+x2+…+xn)亦即loga(x1x2…xn)1n≤loga1n(x1+x2+…+xn)故有x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).。

几何法证明不等式(精选多篇)

几何法证明不等式(精选多篇)

几何法证明不等式(精选多篇)几何法证明不等式用解析法证明不等式:^2(a,b∈r,且a≠b)设一个正方形的边为c,有4个直角三角形拼成这个正方形,设三角形的一条直角边为a,另一条直角边为b,(b>a)a=b,刚好构成,若a不等于b时,侧中间会出现一个小正方形,所以小正方形的面积为(b-a)^2,经化简有(b+a)^2=4ab,所以有((a+b)/2)^2=ab,又因为(a^2+b^2)/2>=ab,所以有((a+b)/2)^2可以在直角三角形内解决该问题=^2-(a^2+b^2)/2=/4=-(a-b)^2/4能不能用几何方法证明不等式,举例一下。

比如证明sinx不大于x(x范围是0到兀/2,闭区间)做出一个单位圆,以o为顶点,x轴为角的一条边任取第一象限一个角x,它所对应的弧长就是1*x=x那个角另一条边与圆有一个交点交点到x轴的距离就是sinx因为点到直线,垂线段长度最小,所以sinx小于等于x,当且尽当x=0时,取等已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k 过渡到n);重复递归利用结论法;凸函数性质法;能给出其他方法的就给分(a1+a2+...+an)/n≥(a1a2...an)^(1/n)一个是算术,一个是几何。

人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^搞笑归搞笑,我觉得可以这样做,题目结论相当于证(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n 看做固定的。

我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)我们考虑各元偏导都等于0,得到方程组,然后解出a1=a2=……=an再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。

证明基本不等式的方法(5篇范文)

证明基本不等式的方法(5篇范文)

证明基本不等式的方法(5篇范文)第一篇:证明基本不等式的方法2.2 证明不等式的基本方法——分析法与综合法●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点.2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤.●教学重点:综合法与分析法证明不等式的方法与步骤●教学难点:综合法与分析法证明不等式基本原理的理●教学过程:一、复习引入:1、复习比较法证明不等式的依据和步骤?2、今天学习证明不等式的基本方法——分析法与综合法二、讲授新课:1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。

用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证:.分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明)解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号.由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。

基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。

数学论文【关于平面几何不等式】(汉)

数学论文【关于平面几何不等式】(汉)

关于平面几何不等式的证明方法麦盖提县库尔玛乡中学教师买合木提·买买提2012年12月30日1关于平面几何不等式的证明方法我们在实际生活中,常常遇到关于利用几何不等式来解决的一些问题。

几何不等式涉及的内容丰富,处理问题的方法与技巧灵活多变。

本文中主要介绍应用基本几何不等式,代数和三角法来解决常遇到的一些几何不等式。

关键词:基本几何不等式,代数法,三角法。

一.几何不等式的概念和基本几何不等式含有几何元素(线段,角,面积)的不等式称为几何不等式。

几何中的最大值和最小值与几何不等式有密切联系,凡是属于几何不等式,就抓住几何图形的特征,挖掘其中所蕴含的基本几何不等式,是解决几何不等式的重要方法。

常用的基本几何不等式1)三角形中两边之和大于第三边,两边之差小于第三边; 2)三角形中,大边的对角较大,大角的对边较大; 3)垂线小于斜线;4)两个三角形中,若有两组边对应相等而夹角不等,则夹角大的第三边也大;反之,第三边大的夹角边也大;5)三角形中,大边上的中线较小; 6)三角形中,大边上的高较大;7)同圆或等圆中大弦到圆心的距离小于小弦到圆心的距离; 8)直角三角形中,斜边与其上的高之和大于两条直角边之和; 例1:已知ABC 中,AB AC =,P 是ABC 内一点,且PB PC <, 求证:APB APC ∠>∠;证明:在APB 和APC 中AB AC =,AP AP =, PB PC <故有12∠<∠ (1);又在BPC 中,由PB PC <, 得PBC PCB ∠>∠,而ABC ACB ∠=∠,p4123CA B图(1)2故有34∠<∠ (2);将(1),(2)相加,即得1324∠+∠<∠+∠()18013APB ∠=︒-∠+∠,()18024APC ∠=︒-∠+∠APB APC ∴∠>;例2:在锐角ABC 中,已知最长的高线AH 等于中线BM (图(2)), 求证:60B ∠≤︒证明:作MN BC ⊥于N ,则1122MN AH BM ==,故30MBC ∠=︒作B 关于M 的对称点D ,则AD BC =,30D MBC ∠=∠=︒,因为AH 是最长的高线。

几何不等式

几何不等式

几何不等式知识定位不等式是初中数学竞赛比较重要的一个知识点,在历年竞赛中占据非常大比例,几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式。

本文归纳总结了几何不等式的若干性质及定理,将通过例题来说明这些方法的运用。

知识梳理1、几何不等式定理:几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式。

下面先给出几个基本定理:定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明:如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知:PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A 或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}例题精讲【试题来源】【题目】在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC 【答案】如下解析【解析】证:在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.【知识点】几何不等式【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知P是△ABC内任意一点(1)求证:1/2(a+b+c)<PA+PB+PC<a+b+c(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2【答案】如下解析【解析】证明:(1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b 把这三个不等式相加,再两边除以2,便得PA+PB+PC>1/2(a+b+c)又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以1/2(a+b+c)<PA+PB+PC<a+b+c(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.【知识点】几何不等式【适用场合】当堂练习【难度系数】3【试题来源】【题目】如图,在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB +DC.若AC与BD相交于E,求证:AE>DE【答案】如下解析【解析】证:在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE【知识点】几何不等式【适用场合】当堂例题【难度系数】3【试题来源】【题目】设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:1/2(AG+AK)>AC【答案】如下解析【解析】证如图,在GK上取一点M,使GM=MK,则1/2(AG+AK)=AM在Rt △GCK 中,CM 是GK 边上的中线, 所以∠GCM=∠MGC .而∠ACG=45°,∠MGC >∠ACG , 于是∠MGC >45°,所以∠ACM=∠ACG +∠GCM >90°.【知识点】几何不等式 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】设h a 、h b 、h c 是ΔABC 三边上的高,求证:12<h a +h b +h ca +b +c <1【答案】如下解析【解析】 证明:在Rt ΔADC 中,∵AC >AD ,∴b >h a .同理可证:c >h b ,a >h c ,∴h a +h b +h c <a +b +c ,h a +h b +h ca +b +c <1.(1)设ΔABC 的垂心为H 点,∵HA +HF >AF ,HF +HB >FB ,HB +HD >BD , HD +HC >CD ,HC +HE >CE ,HE +HA >EA ,上述六个式子相加得,2(h a +h b +h c )>a +b +c , 则得,h a +h b +h c a +b +c >12 (2)由(1)、(2)∴12<h a +h b +h c a +b +c<1. 【知识点】几何不等式 【适用场合】当堂例题 【难度系数】4【试题来源】【题目】ΔABC 中,∠A >90°,AD ⊥BC 于D .求证:AB +AC <AD +BC【答案】如下解析【解析】 证明:(法一)在BC 上取点E ,使BE =AB ,在AC 上取点F ,使AF =AD ,连结AE 、EF 、DF .则∠BEA =∠BAE =90°-12∠B . ∠1=90°-∠BEA , ∴∠1=12∠B ,又∠A >90°, ∴∠DAC >∠B ∴∠2>∠1, ∵AD =AF ,AE =AE∴DE <EF ,且∠ADF =∠AFD , ∴∠EDF >∠EFD ,∵∠ADE =∠ADF +∠EDF =90°, ∴∠AFE =∠AFD +∠EFD <90°, ∴∠EFC >90°.∴在ΔEFC 中,EF >FC .即BC -AB >AC -AD ∴AB +AC <AD +BC(法二)以A 为顶点,AB 为一边,作∠GAB =90°.∵∠A >90°,∴AG 在∠BAC 内部,ABCD21FA B C DE∵AD ⊥BC ,AB ⊥AG ,∴BG 2=AB 2+AG 2 (1),BG ·AD =AB ·AG (2) (1)+(2)×2得BG 2+2BG ·AD =(AB +AG )2.∴(BG +AD )2>(AB +AG )2,即BG +AD >AB +AG , 在ΔAGC 中,GC >AC -AG .∴BG +AD +GC >AB +AG +AC -AG , 即AB +AC <AD +BC .【知识点】几何不等式 【适用场合】当堂练习题 【难度系数】4【试题来源】【题目】在锐角三角形ABC 中,AH 是其最大的高,BM 是AC 边上的中线,且AH =BM ,证明:∠B ≤60°【答案】如下解析【解析】 证明:延长BM 至D ,使DM =BM ,连结AD ,则ΔADM ≌ΔCBM .∴AD =BC , ∠D =∠CBM .∵AH 是ΔABC 最大的高,又三角形的一边与这条边上的高的乘积是定值, ∴BC 是ΔABC 最小的边. ∴BC≤AB ,AD≤AB .∴∠CBM =∠D≥∠ABM ,过点M 作MN ⊥BC 于N ,则MN ∥AH . ∵AH =BM , ∴MN =12BM . ∴∠CBM =30°.∵∠B =∠ABM +∠CBM≤30°+30°=60°.即∠B≤60°(当三角形为等腰三角形时,等号成立)ABCDG【知识点】几何不等式【适用场合】当堂例题 【难度系数】4【试题来源】【题目】在ΔABC 中,∠A =90°,AD ⊥BC 于D ,ΔPQR 是它的任一内接三角形.求证:PQ +QR +RP >2AD .【答案】如下解析【解析】 证明:作点Q 关于AB 、AC 的对称点Q '、Q ",连PQ ',RQ ",AQ ,AQ ',AQ ".显然,PQ '=PQ ,RQ "=RQ ,AQ '=AQ =AQ ".∠Q 'AB =∠QAB ,∠Q "AC =∠QAC , 而∠BAC =∠BAQ +∠CAQ =90°, ∴∠Q 'AQ "=2∠BAC =180°.即Q '、A 、Q "三点在一条直线上.∴PQ +QR +RP =Q 'P +PR +RQ "≥Q 'Q "=2AQ . ∵AD ⊥BC , ∴AQ ≥AD .故PQ +QR +RP >2AD .BA BCDPRQ【知识点】几何不等式 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】2×3的矩形内放入两个与此矩形相似的互不重叠的小矩形.且每个矩形的边与大矩形的边平行,求两个矩形周长之和的最大值. 【答案】403【解析】 解:这两个小矩形可以都竖放,或都横放,或一横一竖放.(1)都竖放:宽=2×23=43,两个矩形周长=8+163=403.(图1) (2)都横放,一个在另一个上面:设一个矩形的宽为x ,另一个为2-x ,则周长=2(x +2-x )+2×32×2=10.(图2) 都横放,并排放置:周长=3×2+2×2=10,(图3) (3)一横放一竖放,左边一个宽x ,右边一个长y ,则x +y ≤3,32x ≤2,23y ≤2.周长=2(52x +53y )=2×53(x +y )+2×56x ≤12+29.(图4) 即最大值为403.【知识点】几何不等式【适用场合】当堂例题 【难度系数】5"图2图3图4图1【试题来源】【题目】试证:锐角三角形的内接三角形中,以垂足三角形的周长最小 【答案】如下解析【解析】 证明:1︒ 先在BC 上任取一点D ,固定D ,求出以D 为一个顶点⊿ABC 的内接三角形中周长最小者.作D 关于AB 、AC 的对称点D ’、D”,连D’D”交AB 、AC 于点F 、E ,连DF 、D’F ,DE 、D”E ,对于任一以DD 一个顶点的⊿ABC 的内接三角形XPQ ,连QD’、QD ,PD ”、PD , 于是可证DE +EF +FD =D’D”≤D’Q +QP +PD”=DQ +QP +PD . 即⊿DEF 为固定点D 后周长最小的内接三角形.2︒ 当点D 的BC 上运动时,对每一点D ,都作出1︒中得出的周长最小三角形,再求这些三角形的周长最小值.连AD 、AD’、AD ”,则AD =AD’=AD ”,且∠D’AB =∠DAB ,∠D”AC =∠DAC , 于是∠D’AD”=2∠A . 所以D’D”=2AD sin A .当点D 在BC 上运动时,以点D 为BC 边上高的垂足时AD 最小.3︒ 说明此时的最小三角形就是⊿ABC 的垂足三角形.由于D 为BC 边上的垂足. 对于垂足三角形DEF ,由∠DEC =∠AEF ,而∠DEC =∠CED", 故点E 在D’D”上,同理,F 在D’D”上,即⊿DEF 为所求得的周长最小三角形.【知识点】几何不等式 【适用场合】当堂练习题 【难度系数】5习题演练ABCDD'D"E FABCDD'D"EFA BCDD'D"E F P Q【题目】如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.求证:EF≥BC.【答案】如下解析【解析】证明:过E作ED平行且等于BC,连接DF,DC(如图),∴BCDE是平行四边形,∴DC平行且等于BE,∴∴1=∴A,∴AB=AC,AE=FC,∴BE=AF=DC,∴∴AEF∴∴CFD,∴EF=DF,在∴EFD中,EF+DF>DE,∴2EF>BC,即EF>BC,当E、F为AB、AC中点时,EF=BC,∴EF≥BC.【知识点】几何不等式【适用场合】随堂课后练习【难度系数】3【题目】如图,在∴ABC中,a、b、c分别为∴A、∴B、∴C的对边,且2b<a+c,求证:2∴B<∴A+∴C.【答案】如下解析【解析】证明:延长BA到D,使AD=BC=a,延长BC到E,使CE=AB=c,连接DE,这就把图形补成一个等腰三角形,即有BD=BE=a+c,∴∴BDE=∴BED,作DF∴AC,CF∴AD,相交于F,连接EF,则ADFC是平行四边形.∴CF=AD=BC,又∴FCE=∴CBA,∴∴FCE∴∴CBA∴EF=AC,于是DE≤DF+EF=2b<a+c=BD=BE.这样,在∴BDE中,便有∴B<∴BDE=∴BED∴∴2B<∴BDE+∴BED=180°一∴B=∴A+∴C,即2∴B<∴A+∴C.【知识点】几何不等式【适用场合】随堂课后练习【难度系数】4【题目】过三角形的重心任作一直线,把这个三角形分成两部分,求证:这两部分面积之差不大于整个三角形面积的.【答案】如下解析【解析】证明:设△ABC重心为G,过点G分别作各边的平行线与各边交点依次为A1、B1、B2、C1、C2、A2连接A1A2;B1B2、C1C2,∴三角形重心到一个顶点的距离等于它到对边中点距离的二倍,∴A1A=A1B l=B1B,BB2=B2C l=C1C,CC2=C2A2=A2A,∴A1A2∴BC,B1B2∴AC,C1C2∴AB,∴图中的9个三角形全等.即∴AA1A2∴∴A1B1G∴∴B2GB1∴∴C2C l C、所以上述9个小三角形的面积均等于∴ABC面积的.若过点C作的直线恰好与直线A1C1、B1C2、B2A2重合,则∴ABC被分成的两部分的面积之差等于一个小三角形的面积,即等于∴ABC面积的.若过点C作的直线不与直线A1C1、B1C2、B2A2重合,不失一般性,设此直线交AC于F,交AB于E,交C1C2于D,∴GB l=GC2,∴EB1G=∴DC2C,∴B1GE=∴C2GD,∴∴B1GE∴∴C2GD、∴EF分∴ABC成两部分的面积之差等于,而这个差的绝对值不会超过S∴C1C2C的面积.从而EF分∴ABC成两部分的面积之差不大于∴ABC面积的.综上所述:过三角形重心的任一直线分三角形成两部分的面积之差不大于整个三角形面积的.【知识点】几何不等式【适用场合】随堂课后练习【难度系数】4【题目】如图,在△ABC中,P、Q、R将其周长三等分,且P、Q在AB上,求证:.【答案】如下解析【解析】证明:作CL⊥AB于L,RH⊥PQ于H,∴RH∴CL,∴,则==,不妨设∴ABC的周长为1,则PQ=,AB<,∴.∴AP≤AP+BQ=AB﹣PQ<,∴AR=﹣AP>﹣,又AC<,从而,∴,∴>.【知识点】几何不等式【适用场合】随堂课后练习【难度系数】4。

几何不等式证明思路分析

几何不等式证明思路分析

第 1 页 共 3 页几何不等式证明思路分析几何不等式的证明是初中数学一个难点,所用知识不外乎有:三角形两边之和大于第三边,两边之差小于第三边;同一三角形中,大角对打边,大边对大角以及三角形内角和定理等知识,下面就其证明思路进行分析。

一.中线加倍法例1.如图,AD 是△ABC 中BC 边上的中线,求证:A D<2ACAB +证明:延长AD 至E ,使DE=DA ,连接CE∵DA=DE,DC=DB,∠1=∠2,∴△AB D ≌△EC D ,∴AB=EC 在△ACE 中AE<CE+AC,即2AD<AB+AC ,∴A D<2ACAB +评注:注意到结论可变形为2AD<AB+AC ,考虑将2AD 、AB 、AC 转化到一个三角形中,从而想到用中线加倍法作辅助线解决。

二.三角形中位线搭桥例2.在四边形ABCD 中,E 、F 分别为AD 、BC 的中点,求证:EF<2BDAC +证明:取AB 中点G ,连接GE 、GF∵E 、G 分别是AD 、AB 的中点,∴GE 是△ABD 的中位线,即GE=21BD ,同理GF=21AC 。

在△GEF 中,EF<GE+GF ∴EF<21BD+21AC, ∴EF<2BD AC +评注:观察结论右边2BD AC +可变形为21AC+21BD ,已知又有某些边的中点,根据谚语“遇到中点找中点”,进而构造三角形的中位线即可达到目的。

三.运用直角三角形斜边上的中线性质例3.在梯形ABCD 中,A D ∥BC ,A C ⊥BD 于O ,求证AB+CD>AD+BC 证明:分别取AB 、CD 的中点E 、F ,连接OE 、OF 、EF∵A C ⊥BD ,点E 、F 分别是AB 、CD 的中点∴OE 、OF 分别是Rt △ABO 、Rt △CDO 斜边上的中线,即OE=21AB,OF=21CD,又EF 是梯形ABCD 的中位线,可得EF=2BCAD +在△OEF 中,OE+OF>EF ,即21AB+21CD>2BCAD +∴AB+CD>AD+BC评注:由结论的右边AD+BC 可联想到梯形的中位线,确定取AB 、CD 的中点E 、F,再由A C ⊥BD 可得一些直角三角形,根据“直角三角形斜边上的中线等于斜边的一半”这个性质,便迎刃而解了。

谈谈用几何方法证明不等式

谈谈用几何方法证明不等式

谈谈用几何方法证明不等式摘要:在我们现阶段的数学学习中,不等式常常是大家头疼的问题,很多人认为证明不等式是空中楼阁,没有踪迹可寻。

其实不然,证明不等式有很多方法,常见的放缩法,反证法等。

然而有些不等式有着几何意义,这就意味着我们可以将几何思想代入到不等式中,用几何方法来证明不等式。

关键词:几何;数学;不等式;证明引言:将几何思想代入不等式其实是解不等式的一个重要思想。

一般具有几何意义的不等式都比较简单,大可归为几大类。

接下来,我们将用几个实例来谈谈如何利用几何方法证明不等式。

1 构建平面几何图形将不等式与几何结合起来就只有几个关键点,一是构建平面几何图形,这里我们常常借助的是三角形,这得益于三角形有一个很好的性质;两边之和大于第三边[1]。

利用这个性质我们可以引申出多个不等式:a+b>c,a-b<c(a,b,c分别为▲abc的三条边)。

我们用一个实例在说明。

例1:已知函数f(x)=√(x2+1),当a,b∈R时,求证|f(a)-f(b)|<|a+b|。

看到f(x)=√(x2+1),我们首先就想到了勾股定理,因此构造▲ACD,作AB⊥CD交CD于点B,AB=1,BC=a,BD=b。

则AC=√(a2+1),AD=√(b2+1),CD=a+b。

在▲ACD中,|AC-AD|<|CD|,因此,|f(a)-f(b)|<|a+b|。

2 构建平面解析几何图形还有一种就是构建平面解析几何图形。

这里我们常用的是距离公式:点到点的距离|AB|=√{(a1-b1)2+(a2-b2)2},其中A(a1,a2)、B(b1,b2);点到直线的距离d=|a1m+a2n+c|/√(m2+n2),其中点(a1,a2),直线mx+ny+c=0。

我们还是用实例来说明。

例2:设x,y∈(0,1),求证√(x2+y2)+√[(x-1)2+y2]+√[x2+(y-1)2]+√[(x-1)2+(y-1)2] ≥2√2。

观察这个不等式我们不难发现它与两点间的距离公式很相似,因此,我们就利用该点,在坐标系中构建一个正方形OABC,使其边长为1,即OABC四个顶点在坐标系中的坐标分别为(0,0)、(1,0)、(0,1)、(1,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何法证明不等式(精选多篇)
2&lt;=(a_+b_)/2,又因为a不等与b,所以不取等号
可以在直角三角形内解决该问题
=_-(a_+b_)/2
=&lt;2ab-(a_+b_)&gt;/4
=-(a-b)_/4
&lt;0
能不能用几何方法证明不等式,举例一下。
比如证明sinx不大于x(x范围是0到兀/2,闭区间)
(a)0(b)1(c) 2(d) 3
2、1>a>b>0,那么???????????????????()
a?ba?b(a)a>>ab>b(b) b>>ab>a22
a?ba?b(c) a>>b>ab(d)>ab>a>b 22
??3、如果-<b<a<,则b-a的取值范围是?????????()22
???(a)-?<b-a<0(b)-?<b-a<?(c)-<b-a<0(d)-<b-a<222
构造二次函数f(x)=ax_+2bx+c,展开得:
f(x)=∑(ai_·x_+2ai·bi·x+bi_)=∑(ai·x+bi)_≥0
故f(x)的判别式△=4b_-4ac≤0,
移项得ac≥b,欲证不等式已得证。
第二篇:不等式的导数法证明龙源期刊网http://.cn
不等式的导数法证明作者:王锁平
来源:《新高考·高二数学》20XX年第02期
综合法是从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法。
第四篇:g3.1038不等式的证明—比较法g3.1038不等式的证明—比较法
一、基本知识
1、求差法:a>b? a-b>0
a2、求商法:a>b>0??1并且b?0 b
3、用到的一些特殊结论:同向不等式可以相加(正数可以相乘);异向不等式可以相减;
第三篇:比较法证明不等式比较法证明不等式1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
这种比较法是普遍适用的,是无条件的。
根据a-b&gt;0a&gt;b,欲证a&gt;b只需证a-b&gt;0;
②作商比较,要点是:作商——变形——判断。
这种比较法是有条件的,这个条件就是“除式”的符号一定。
当b&gt;0时,a&gt;b&gt;1。
比较法是证明不等式的基本方法,也是最重要的方法,有时根据题设可转化为等价问题的比较(如幂、方根等)
做出一个单位圆,
以o为顶点,x轴为角的一条边
任取第一象限一个角x,
它所对应的弧长就是1*x=x
那个角另一条边与圆有一个交点
交点到x轴的距离..有没有哪位狠人帮我解决下
【柯西不等式的证明】二维形式的证明
(a_+b_)(c_+d_)(a,b,c,d∈r)
=a_·c_+b_·d_+a_·d_+b_·c_
=a_·c_+2abcd+b_·d_+a_·d_-2abcd+b_·c_
例2、已知:a、b
?
例3、a、b、c、d、m、n全是正数,比较p=ab?cdq=ma?nc?
4、分析法——执果索因;模式:“欲证?,只需证?”;
5、综合法——由因导果;模式:根据不等式性质等,演绎推理
6、分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.
二、基本训练
1பைடு நூலகம்已知下列不等式:
(1)x2?3?2x(x?r) (2)a5?b5?a3b2?a2b3(a,b?r)(3)a2?b2?2(a?b?1)其中正确的个数为???????????????????()
4a4、已知a?2,那么(填“&gt;”或者“&lt;”)4?a2
a5、若a?1,0?b?1,则logb
a?logb的范围是_____________
6、若a?b?c?1,则a2?b2?c2的最小值为_____________
三、例题分析:
例1、求证:若a、b&gt;0,n&gt;1,则an?bn?an?1b?abn?1
x&sup2;+4y&sup2;+2≥2x+4x
除了比较法还有:
求出中间函数的值域:
y=(x_-1)/(x_+1)
=1-2/(x_+1)
x为r,
y=2/(x_+1)在x=0有最小值是2,没有最大值,趋于无穷校
所以有:
-1&lt;=y=1-2/(x_+1)&lt;1
原题得到证明
比较法:
①作差比较,要点是:作差——变形——判断。
(2)商值比较法的理论依据是:“若a,b∈r+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1om坐标系内,其图象是直线,
而f(-2)=-2(a+b)+ab+4=(a-2)(b-2)&gt;0(因为a&lt;2,b&lt;2)
f(2)=2(a+b)+ab+4=(a+2)(b+2)&gt;0(因为a&gt;-2,b&gt;-2)
=(ac+bd)_+(ad-bc)_
≥(ac+bd)_,等号在且仅在ad-bc=0即ad=bc时成立。
一般形式的证明
求证:(∑ai_)(∑bi_)≥(∑ai·bi)_
证明:
当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立
令a=∑ai_b=∑ai·bic=∑bi_
当a1,a2,…,an中至少有一个不为零时,可知a&gt;0
所以函数f(c)在c∈(-2,2)上总有f(c)&gt;0
即m&gt;0
即ab+bc+ca+4&gt;0
所以ab+bc+ca&gt;-4
设x,y∈r,求证x_+4y_+2≥2x+4y
(x-1)&sup2;≥0
(2y-1)&sup2;≥0
x&sup2;-2x+1≥0
4y&sup2;-4x+1≥0
x&sup2;-2x+1+4y&sup2;-4x+1≥0
相关文档
最新文档