2019版创新方案-高中数学人教版A版选修4-4教学课件7

合集下载

2019版数学人教A版选修4-4课件:第二讲 参数方程 本讲整合 .pdf

2019版数学人教A版选修4-4课件:第二讲 参数方程 本讲整合 .pdf

(������为参数).
-5-
本讲整合
专题一
专题二
知识建构
综合应用
真题放送
(2)设 M(x,y)是曲线 4x2+y2=16 上异于点 A 的任一点,

������-4 ������
=
������(������≠0),
将 y=kx+4 代入方程,得 x[(4+k2)x+8k]=0.
当 x≠0 时,则
线的两种不同表达形式.
-4-
本讲整合
知识建构
综合应用
真题放送
专题一
专题二
应用1 求方程4x2+y2=16的参数方程.
(1)设y=4sin θ,以θ为参数;
(2)以过点A(0,4)的直线的斜率k为参数.
提示:对于(1),可直接把y=4sin θ代入已知方程,解方程求出x即可;
对于(2),可寻找斜率k与此方程任一点的坐标之间的关系来求解.
所以根据三角函数的值域便于解决一些求值问题.
-10-
本讲整合
知识建构
综合应用
真题放送
专题一
专题二
解:(1)设 P(4cos θ1,2sin θ1)
������1

������ 1 π 2
,������1∈Z
,
������(4cos θ2,2sin θ2)
������2

������ 2 π 2
,������2
数,变数的个数比方程的个数多 1;曲线的参数方程中有三个变数和
两个方程,变数的个数比方程的个数多 1,从这个意义上讲,曲线的普
通方程和参数方程是“一致”的.
-3-
本讲整合

高中数学人教A版选修4-4课件:2本讲整合

高中数学人教A版选修4-4课件:2本讲整合

知识建构 专题一 专题二
综合应用
真题放送
3.参数方程与普通方程是同一曲线的两种不同形式. 参数方程 普通方程,可见普通方程和参数方程是同一曲 线的两种不同表达形式.
知识建构 专题一 专题二
综合应用
真题放送
应用1 求方程4x2+y2=16的参数方程. (1)设y=4sin θ,以θ为参数; (2)以过点A(0,4)的直线的斜率k为参数. 提示:对于(1),可直接把y=4sin θ代入已知方程,解方程求出x即可; 对于(2),可寻找斜率k与此方程任一点的坐标之间的关系来求解. 解:(1)把y=4sin θ代入方程,得4x2+16sin2θ=16, 于是4x2=16-16sin2θ=16cos2θ. 所以x=±2cos θ. 由于参数θ的任意性,可取x=2cos θ, ������ = 2cos������, 2 2 因此 4x +y =16 的参数方程是 (������为参数). ������ = 4sin������
本讲整合
-1-
知识建构
综合应用
真题放送
知识建构 专题一 专题二
综合应用
真题放送
专题一 曲线的参数方程与普通方程的互化 1.将曲线的参数方程转化为普通方程,需要消去参数t,其一般步 骤为: (1)将参数t用变量x表示; (2)将t代入y的代数式; (3)整理得到x,y的关系,即为普通方程. 2.参数方程与普通方程的区别与联系. 曲线的普通方程 F(x,y)=0 是相对参数方程而言,它反映了坐标变 ������ = ������(������), 量 x 与 y 之间的直接联系;而参数方程 (������∈D)是通过参数 ������ = ������(������) t 反映坐标变量 x 与 y 之间的间接联系.曲线的普通方程中有两个变 数,变数的个数比方程的个数多 1; 曲线的参数方程中有三个变数和 两个方程,变数的个数比方程的个数多 1,从这个意义上讲,曲线的普 通方程和参数方程是“一致”的.

人教版A版高中数人教版A版高中数学选修4-4全套PPT课件

人教版A版高中数人教版A版高中数学选修4-4全套PPT课件
[思维启迪] 解答本题首先要根据平面直角坐标系中的伸缩变换公式的意
义与作用,明确原来的点与变换后的点的坐标,利用方程的思想求解.
解 (1)设 A′(x′,y′), 由伸缩变换 φ:x2′ y′==y3x得到xy′′==123yx,由于 A13,-2,于是 x′ =3×13=1,y′=12×(-2)=-1, ∴A′(1,-1)为所求. (2)设 B(x,y),由伸缩变换 φ:2xy′′==y3x得到xy==213yx′′,由于
[思维启迪] 求满足图形变换的伸缩变换,实际上是求出
其变换公式,将新旧坐标分清,代入对应的曲线方程,然
后比较系数就可得了,椭圆伸缩变换之后可得圆或椭圆.
解 设变换为xy′′==μyλ,x,μ>λ0>,0,可将其代入第二个方程, 得 λ2x2+μ2y2=1.与 4x2+9y2=36 比较,
将其变为346x2+396y2=1,即19x2+14y2=1,比较系数得
证明 法一 以A为坐标原点O,AB所在 直线为x轴,建立平面直角坐标系xOy, 则A(0,0),设B(a,0),C(b,c),
则 Da+2 b,2c, 所以|AD|2+|BD|2
=(a+b)2+c2+(a-b)2+c2
4
4
4
4
=12(a2+b2+c2), |AB|2+|AC|2=a2+b2+c2
【思维导图】
题型一 运用坐标法解决解析几何问题
【例1】 如图所示,圆 O1 与圆 O2 的半径都是
1,|O1O2|=4,过动点 P 分别作圆 O1、圆 O2 的切线 PM、PN(M、N 分别为切点),
使得|PM|= 2|PN|,试建立适当的坐标系, 并求动点 P 的轨迹方程.
[思维启迪] 本题是解析几何中求轨迹方程问题,由题意建立

2019-2020学年高中数学人教A版选修4-4创新应用教学案: 第二讲 章末小结与测评 Word版含答案

2019-2020学年高中数学人教A版选修4-4创新应用教学案: 第二讲 章末小结与测评 Word版含答案

(1)建立直角坐标系,设曲线上任一点P 坐标为(x ,y ); (2)选取适当的参数;(3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式; (4)证明这个参数方程就是所要求的曲线的方程.过点P (-2,0)作直线l 与圆x 2+y 2=1交于A 、B 两点,设A 、B 的中点为M ,求M 的轨迹的参数方程.[解] 设M (x ,y ),A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =ty -2.由⎩⎪⎨⎪⎧x =ty -2,x2+y2=1消去x 得(1+t 2)y 2-4ty +3=0. ∴y 1+y 2=4t 1+t2,则y =2t 1+t2.x =ty -2=2t21+t2-2=-21+t2,由Δ=(4t )2-12(1+t 2)>0得t 2>3.∴M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =-21+t2,y =2t1+t2(t 为参数且t 2>3).在求出曲线的参数方程后,通常利用消参法得出普通方程.一般地,消参数经常采用的是代入法和三角公式法.但将曲线的参数方程化为普通方程,不只是把其中的参数消去,还要注意x ,y 的取值范围在消参前后应该是一致的,也就是说,要使得参数方程与普通方程等价,即它们二者要表示同一曲线.已知曲线的参数方程为⎩⎨⎧x =1+2cos t ,y =-2+2sin t(0≤t ≤π),把它化为普通方程,并判断该曲线表示什么图形?[解] 由曲线的参数方程⎩⎪⎨⎪⎧x =1+2cos t ,y =-2+2sin t ,得⎩⎪⎨⎪⎧x -1=2cos t ,y +2=2sin t. ∵cos 2t +sin 2t =1, ∴(x -1)2+(y +2)2=4. 由于0≤t ≤π, ∴0≤sin t ≤1.从而0≤y +2≤2,即-2≤y ≤0.∴所求的曲线的参数方程为(x -1)2+(y +2)2=4(-2≤y ≤0). 这是一个半圆,其圆心为(1,-2),半径为2.已知参数方程⎩⎨⎧x =⎝⎛⎭⎫t +1t sin θ, ①y =⎝⎛⎭⎫t -1t cos θ, ②(t ≠0).(1)若t 为常数,θ为参数,方程所表示的曲线是什么? (2)若θ为常数,t 为参数,方程所表示的曲线是什么? [解] (1)当t ≠±1时,由①得sin θ=xt +1t ,由②得cos θ=yt -1t .∴x2⎝⎛⎭⎫t +1t 2+y2⎝⎛⎭⎫t -1t 2=1.它表示中心在原点,长轴长为2⎪⎪⎪⎪t +1t ,短轴长为2⎪⎪⎪⎪t -1t ,焦点在x 轴上的椭圆. 当t =±1时,y =0,x =±2sin θ,x ∈[-2,2], 它表示在x 轴上[-2,2]的一段线段. (2)当θ≠kπ2(k ∈Z )时,由①得x sin θ=t +1t .由②得y cos θ=t -1t.平方相减得x2sin 2θ-y2cos2θ=4,即x24sin2θ-y24cos2θ=1,它表示中心在原点,实轴长为4|sin θ|,虚轴长为4|cos θ|,焦点在x 轴上的双曲线. 当θ=k π(k ∈Z )时,x =0,它表示y 轴; 当θ=k π+π2(k ∈Z )时,y =0,x =±⎝⎛⎭⎫t +1t . ∵t +1t ≥2(t >0时)或t +1t≤-2(t <0时),∴|x |≥2.∴方程为y =0(|x |≥2),它表示x 轴上以(-2,0)和(2,0)为端点的向左、向右的两条射线.求直线的参数方程,根据参数方程参数的几何意义,求直线上两点间的距离,求直线的倾斜角,判断两直线的位置关系;根据已知条件求圆的参数方程,根据圆的参数方程解决与圆有关的最值、位置关系等问题.设曲线C 的参数方程为⎩⎨⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4 [解析] 曲线C 的标准方程为:(x -2)2+(y +1)2=9, 它表示以(2,-1)为圆心,半径为3的圆,因为圆心(2,-1)到直线x -3y +2=0的距离d =|2+3+2|10=71010,且3-71010<71010,故过圆心且与l平行的直线与圆相交的两点为满足题意的点.[答案] B(北京高考)直线⎩⎨⎧x =2+t ,y =-1-t ,(t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α,(α为参数)的交点个数为________.[解析] 直线的普通方程为x +y -1=0,圆的普通方程为x 2+y 2=32,圆心到直线的距离d =22<3,故直线与圆的交点个数是2.[答案] 2求直线⎩⎨⎧x =-1+2t ,y =-2t 被曲线⎩⎨⎧x =1+4cos θ,y =-1+4sin θ截得的弦长.[解] 直线⎩⎪⎨⎪⎧x =-1+2t ,y =-2t ,的普通方程为x +y +1=0曲线⎩⎪⎨⎪⎧x =1+4cos θ,y =-1+4sin θ,即圆心为(1,-1),半径为4的圆则圆心(1,-1)到直线x +y +1=0的距离 d =|1-1+1|12+12=22.设直线被曲线截得的弦长为t ,则t =242-⎝⎛⎭⎫222=62,∴直线被曲线截得的弦长为62.直线⎩⎨⎧x =-1+t2,y =32t(t 为参数)与圆x 2+y 2=a (a >0)相交于A 、B 两点,设P (-1,0),且|P A |∶|PB |=1∶2,求实数a 的值.[解] 法一:直线参数方程可化为:y =3(x +1)联立方程⎩⎨⎧y =3(x +1),x2+y2=a ,消去y ,得:4x 2+6x +3-a =0.设A (x 1,y 1)、B (x 2,y 2)(不妨设x 1<x 2),则Δ=36-16(3-a )>0,①x 1+x 2=-32,②x 1·x 2=3-a4,③|P A||PB|=-1-x1x2+1=12,④ 由①②③④解得a =3.法二:将直线参数方程代入圆方程得 t 2-t +1-a =0设方程两根为t 1、t 2,则Δ=1-4(1-a )>0⇒a >34.t 1+t 2=1,t 1·t 2=1-a .(*)由参数t 的几何意义知 |P A||PB|=-t1t2=12或|P A||PB|=-t2t1=12. 由t1t2=-12,解得a =3.能根据条件求椭圆、双曲线、抛物线的参数方程,并利用圆锥曲线的参数方程解最值、直线与圆锥曲线的位置关系等问题.已知点P (3,2)平分抛物线y 2=4x 的一条弦AB ,求弦AB 的长. [解] 设弦AB 所在的直线方程为⎩⎪⎨⎪⎧x =3+tcos α,y =2+tsin α(t 为参数), 代入方程y 2=4x 整理得t 2sin 2α+4(sin α-cos α)t -8=0.①∵点P (3,2)是弦AB 的中点,由参数t 的几何意义可知,方程①的两个实根t 1、t 2满足关系 t 1+t 2=0,sin α-cos α=0, ∴0≤α<π, ∴α=π4.∴|AB |=|t 1-t 2|=(t1+t2)2-4t1t2=4·8sin2π4=8.过点B (0,-a )作双曲线x 2-y 2=a 2右支的割线BCD ,又过右焦点F 作平行于BD 的直线,交双曲线于G 、H 两点.求证:|BC||GF|·|BD||FH|=2.[证明] 当a >0时,设割线的倾斜角为α,则它的参数方程为⎩⎪⎨⎪⎧x =tcos α,y =-a +tsin α(t 为参数).①则过焦点F 平行于BD 的直线GH 的参数方程为⎩⎨⎧x =2a +tcos α,y =tsin α(t 为参数).② 将①代入双曲线方程,得t 2cos 2α+2at sin α-2a 2=0. 设方程的解为t 1,t 2,则有|BC |·|BD |=|t 1t 2|=⎪⎪⎪⎪2a2cos 2α, 同理,|GF |·|FH |=⎪⎪⎪⎪a2cos 2α. ∴|BC||GF|·|BD||FH|=2, 当a <0时,同理可得上述结果.一、选择题1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+3t(t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线解析:选A 由ρ=cos θ,得x 2+y 2=x ,∴ρ=cos θ表示一个圆.由⎩⎪⎨⎪⎧x =-1-t y =2+3t 得到3x +y =-1,表示一条直线.2.设r >0,那么直线x cos θ+y sin θ=r (θ是常数)与圆⎩⎨⎧x =rcos φ,y =rsin φ(φ是参数)的位置关系是( )A .相交B .相切C .相离D .视r 的大小而定 解析:选B 圆心到直线的距离d =|0+0-r|cos 2θ+sin 2θ=|r |=r ,故相切.3.双曲线⎩⎪⎨⎪⎧x =3tan θ,y =sec θ(θ为参数),那么它的两条渐近线所成的锐角是( )A .30°B .45°C .60°D .75°解析:选C 由⎩⎨⎧x =3tan θy =sec θ⇒y 2-x23=1,两条渐近线的方程是y =±33x ,所以两条渐近线所夹的锐角是60°.4.若动点(x ,y )在曲线x24+y2b2=1(b >0)上变化,则x 2+2y 的最大值为( )A.⎩⎪⎨⎪⎧b24+4 (0<b<4),2b (b≥4)B.⎩⎪⎨⎪⎧b24+4(0<b<2),2b (b≥2)C.b24+4 D .2b解析:选A 设动点的坐标为(2cos θ,b sin θ),代入x 2+2y =4cos 2θ+2b sin θ= -(2sin θ-b 2)2+4+b24,当0<b <4时,(x 2+2y )max =b24+4, 当b ≥4时,(x 2+2y )max =-(2-b 2)2+4+b24=2b .二、填空题5.直线⎩⎨⎧x =1+tsin 70°,y =2+tcos 70°(t 为参数)的倾斜角的大小为________.解析:原参数方程变为⎩⎪⎨⎪⎧x =1+tcos 20°y =1+tsin 20°(t 为参数),故直线的倾斜角为20°.答案:20° 6.已知直线l 1:⎩⎨⎧x =1+3t ,y =2-4t(t 为参数)与直线l 2:2x -4y =5相交于点B ,又点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t代入2x -4y =5得t =12,则B (52,0),而A (1,2),得|AB |=52.答案:527.圆的渐开线参数方程为:⎩⎨⎧x =π4cos φ+π4φsin φ,y =π4sin φ-π4φcos φ(φ为参数).则基圆的面积为________.解析:易知,基圆半径为π4.∴面积为π·(π4)2=116π3.答案:116π38.(重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线⎩⎨⎧x =t2,y =t3(t 为参数)相交于A ,B 两点,则|AB |=________.解析:ρcos θ=4化为直角坐标方程为x =4 ①,⎩⎪⎨⎪⎧x =t2,y =t3,化为普通方程为y 2=x 3 ②, ①、②联立得A (4,8),B (4,-8),故|AB |=16. 答案:16三、解答题9.经过P (-2,3)作直线交抛物线y 2=-8x 于A 、B 两点. (1)若线AB 被P 平分,求AB 所在直线方程; (2)当直线的倾斜角为π4时,求|AB |.解:设AB 的参数方程是⎩⎪⎨⎪⎧x =-2+tcos α,y =3+tsin α(t 为参数)代入抛物线方程,整理得t 2sin 2α+(6sin α+8cos α)t -7=0. 于是t 1+t 2=-6sin α+8cos αsin 2α,t 1t 2=-7sin 2α.(1)若p 为AB 的中点,则t 1+t 2=0. 即6sin α+8cos α=0⇒tan α=-43.故AB 所在的直线方程为y -3=-43(x +2).即4x +3y -1=0.(2)|AB |=|t 1-t 2|=(t1+t2)2-4t1t2 = (6sin α+8cos αsin 2α)2-4(-7sin 2α)=2sin 2α16+12sin 2α,又α=π4,∴|AB |=2sin 2π416+12sin (2×π4)=87.10.已知对于圆x 2+(y -1)2=1上任意一点P (x ,y ),不等式x +y +m ≥0恒成立,求实数m 的取值范围. 解:圆x 2+(y -1)2=1的参数方程可写为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ. ∵x +y +m ≥0恒成立,∴cos θ+1+sin θ+m ≥0恒成立.∵sin θ+1+cos θ=2sin (θ+π4)+1≥1-2,∴m ≥-(1-2).即m 的取值范围为[2-1,+∞). 11.设P 为椭圆弧x225+y29=1(x ≥0,y≥0)上的一动点,又已知定点A (10,6),以P 、A 为矩形对角线的两端点,矩形的边平行于坐标轴,求此矩形的面积的最值.解:设P (5cos θ,3sin θ)(0≤θ≤π2),则矩形面积为S =(10-5cos θ)(6-3sin θ)=15[4+sin θcos θ-2(sin θ+cos θ)], 令t =sin θ+cos θ,则sin θcos θ=t2-12,∴S =152(t -2)2+452.∵t ∈[1,2], ∴当t =1,即P (5,0)或P (0,3)处有最大值,最大值为30; 当t =2,即P (522,322)处有最小值,最小值为1352-302.(时间:90分钟 满分:120分)一、选择题(本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程⎩⎨⎧x =sin θ,y =cos 2θ(θ为参数)表示的曲线上的一个点的坐标是( )A .(2,-7)B .(1,0) C.⎝⎛⎭⎫12,12 D.⎝⎛⎭⎫13,23 解析:选C 由y =cos 2θ得y =1-2sin 2θ, ∴参数方程化为普通方程是y =1-2x 2(-1≤x ≤1), 当x =12时,y =1-2×(12)2=12,故选C.2.直线⎩⎨⎧x =1+2t ,y =2+t(t 为参数)被圆x 2+y 2=9截得的弦长为( )A.125B.1255C.955D.9510 解析:选B ⎩⎪⎨⎪⎧x =1+2t ,y =2+t⇒⎩⎨⎧x =1+5t×25,y =1+5t×15,把直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t 代入x 2+y 2=9得(1+2t )2+(2+t )2=9,5t 2+8t -4=0.|t 1-t 2|=(t1+t2)2-4t1t2=(-85)2+165=125,弦长为5|t 1-t 2|=1255.3.直线⎩⎨⎧x =1-15t ,y =-1+25t(t 为参数)的斜率是( )A .2 B.12C .-2D .-12解析:选C 由⎩⎨⎧x =1-15t , ①y =-1+25t , ②①×2+②得2x +y -1=0, ∴k =-2.4.若圆的参数方程为⎩⎨⎧x =-1+2cos θ,y =3+2sin θ(θ为参数),直线的参数方程为⎩⎨⎧x =2t -1,y =6t -1(t 为参数),则直线与圆的位置关系是( )A .过圆心B .相交而不过圆心C .相切D .相离解析:选B 直线与圆的普通方程分别为3x -y +2=0与(x +1)2+(y -3)2=4, 圆心(-1,3)到直线的距离 d =|-3-3+2|10=410=2105,而d <2且d ≠0,故直线与圆相交而不过圆心.5.参数方程⎩⎨⎧x =cos2θ,y =sin θ(θ为参数)所表示的曲线为( )A .抛物线的一部分B .一条抛物线C .双曲线的一部分D .一条双曲线解析:选A x +y 2=cos 2θ+sin 2θ=1,即y 2=-x +1. 又x =cos 2θ∈[0,1],y =sin θ∈[-1,1], ∴为抛物线的一部分. 6.点P (x ,y )在椭圆(x -2)24+(y -1)2=1上,则x +y 的最大值为( )A .3+5B .5+5C .5D .6解析:选A 椭圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ(θ为参数), x +y =2+2cos θ+1+sin θ=3+5sin (θ+φ), ∴(x +y )max =3+5.7.过点(3,-2)且与曲线⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数)有相同焦点的椭圆方程是( )A.x215+y210=1B.x2152+y2102=1 C.x210+y215=1 D.x2102+y2152=1 解析:选A 化为普通方程是x29+y24=1.∴焦点坐标为(-5,0),(5,0),排除B 、C 、D.8.已知过曲线⎩⎨⎧x =3cos θ,y =5sin θ⎝⎛⎭⎫θ为参数且0≤θ≤π2上一点P 与原点O 的距离为13,则P 点坐标为( ) A.⎝⎛⎭⎫332,52 B.⎝⎛⎭⎫322,522C.⎝⎛⎭⎫32,532D.⎝⎛⎭⎫125,125解析:选A 设P (3cos θ,5sin θ),则|OP |2=9cos 2θ+25sin 2θ=9+16sin 2θ=13, 得sin 2θ=14.又0≤θ≤π2,∴sin θ=12,cos θ=32.∴x =3cos θ=332.y =5sin θ=52.∴P 坐标为(332,52).9.设曲线⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ与x 轴交点为M 、N ,点P 在曲线上,则PM 与PN 所在直线的斜率之积为( )A .-34B .-43C.34D.43解析:选A 令y =0得sin θ=0,∴cos θ=±1. ∴M (-2,0),N (2,0).设P (2cos θ,3sin θ). ∴k PM ·k PN =3sin θ2cos θ+2·3sin θ2cos θ-2=3sin 2θ4(cos 2θ-1)=-34.10.曲线⎩⎨⎧x =asin θ+acos θ,y =acos θ+asin θ(θ为参数)的图形是( )A .第一、三象限的平分线B .以(-a ,-a )、(a ,a )为端点的线段C .以(-2a ,-2a )、(-a ,-a )为端点的线段和以(a ,a )、(2a ,2a )为端点的线段D .以(-2a ,-2a )、(2a ,2a )为端点的线段解析:选D 显然y =x ,而x =a sin θ+a cos θ=2a sin(θ+π4),-2|a |≤x ≤2|a |.故图形是以(-2a ,-2a )、(2a ,2a )为端点的线段. 二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.(广东高考)已知曲线C 的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析:极坐标方程化为直角坐标方程为(x -1)2+y 2=1,令⎩⎪⎨⎪⎧cos θ=x -1,sin θ=y ,即⎩⎪⎨⎪⎧x =cos θ+1,y =sin θ(θ为参数). 答案:⎩⎨⎧x =cos θ+1,y =sin θ(θ为参数)12.设直线l 1的参数方程为⎩⎨⎧x =1+t ,y =a +3t(t 为参数),直线l 2的方程为y =3x -4,若直线l 1与l 2间的距离为10,则实数a 的值为________.解析:将直线l 1的方程化为普通方程得3x -y +a -3=0,直线l 2方程即3x -y -4=0,由两平行线的距离公式得|a -3+4|10=10⇒|a +1|=10⇒a =9或a =-11.答案:9或-1113.直线y =2x -12与曲线⎩⎨⎧x =sin φ,y =cos 2φ(φ为参数)的交点坐标为________.解析:⎩⎪⎨⎪⎧x =sin φ,y =cos 2φ⇒⎩⎪⎨⎪⎧x =sin φ, ①y =1-2sin 2φ, ②将①代入②中,得y =1-2x 2(-1≤x ≤1), ∴2x 2+y =1.由⎩⎪⎨⎪⎧y =2x -12,2x2+y =1,解之得⎩⎨⎧x =12,y =12或⎩⎨⎧x =-32,y =-72(舍去).答案:(12,12)14.(陕西高考)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析:由题意得圆的方程为⎝⎛⎭⎫x -122+y 2=14,圆心⎝⎛⎭⎫12,0在x 轴上,半径为12,则其圆的参数方程为⎩⎨⎧x =12+12cos α,y =12 sin α(α为参数),注意α为圆心角,θ为同弧所对的圆周角,则有α=2θ,有⎩⎨⎧x =12+12cos 2θ,y =12sin 2θ,即⎩⎪⎨⎪⎧x =cos2θ,y =sin θcos θ(θ为参数). 答案:⎩⎨⎧x =cos2θ,y =sin θcos θ(θ为参数)三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)求直线⎩⎨⎧x =1+45t ,y =-1-35t (t 为参数)被曲线ρ=2cos(θ+π4)所截的弦长.解:将方程⎩⎨⎧x =1+45t ,y =-1-35t ,ρ=2cos (θ+π4)分别化为普通方程3x +4y +1=0,x 2+y 2-x +y =0,圆心C (12,-12),半径为22,圆心到直线的距离d =110,弦长=2r2-d2=212-1100=75. 16.(12分)(辽宁高考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos φ,y =sin φ(φ为参数),曲线C 2的参数方程为⎩⎨⎧x =acos φ,y =bsin φ(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(1)分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (2)设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-π4时,l 与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2B 1的面积.解:(1)C 1,C 2的普通方程分别为x 2+y 2=1和x29+y 2=1.因此C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当α=π2时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(2)C 1,C 2的普通方程分别为x 2+y 2=1和x29+y 2=1.当α=π4时,射线l 与C 1交点A 1的横坐标为x =22,与C 2交点B 1的横坐标为x ′=31010.当α=-π4时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此四边形A 1A 2B 2B 1为梯形,故四边形A 1A 2B 2B 1的面积为(2x′+2x )(x′-x )2=25. 17.(12分)已知经过A (5,-3)且倾斜角的余弦值是-35的直线,直线与圆x 2+y 2=25交于B 、C 两点.(1)求BC 中点坐标;(2)求过点A 与圆相切的切线方程及切点坐标.解:(1)直线参数方程为⎩⎨⎧x =5-35t ,y =-3+45t (t 为参数),代入圆的方程得t 2-545t +9=0.∴t M =t1+t22=275,则x M =4425,y M =3325,中点坐标为M (4425,3325).(2)设切线方程为⎩⎪⎨⎪⎧x =5+tcos α,y =-3+tsin α(t 为参数),代入圆的方程得t 2+(10cos α-6sin α)t +9=0.Δ=(10cos α-6sin α)2-36=0,cos α=0或tan α=815.∴过A 点切线方程为x =5,8x -15y -85=0. 又t 切=-b2a=3sin α-5cos α,t 1=3,t 2=-3.将t 1,t 2代入切线的参数方程知,相应的切点为(5,0),(4017,-7517).18.(14分)在双曲线x 2-2y 2=2上求一点P ,使它到直线x +y =0的距离最短,并求这个最短距离. 解:设双曲线x22-y 2=1上一点P (2sec α,tan α)(0≤α<2π,且α≠π2,α≠32π),则它到直线x +y=0的距离为d =|2sec α+tan α|2=|2+sin α|2|cos α|.于是d 2=2+22sin α+sin2α2cos2α,化简得,(1+2d 2)sin 2α+22sin α+2(1-d 2)=0.∵sin α是实数,∴Δ=(22)2-8(1+2d 2)(1-d 2)≥0, ∴d ≥22. 当d =22时,sin α=-22, ∴α=54π或74π,这时x 0=-2,y 0=1.或x 0=2sec 74π=2,y 0=tan 74π=-1.故当双曲线上的点P 为(-2,1)或(2,-1)时, 它到直线x +y =0的距离最小,这个最小值为22. 模块综合检测(时间:90分钟 满分:120分)一、选择题(本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线l 的参数方程为⎩⎨⎧x =1+3t ,y =2-4t(t 为参数),则直线l 的倾斜角的余弦值为( )A .-45B .-35C.35D.45解析:选B 由l 的参数方程可得l 的普通方程为4x +3y -10=0,设l 的倾斜角为θ,则tan θ=-43,由1cos 2θ=sin 2θ+cos 2θcos 2θ=tan 2θ+1,得cos 2θ=925,又π2<θ<π, ∴cos θ=-35.2.柱坐标⎝⎛⎭⎫2,π3,1对应的点的直角坐标是( ) A .(3,-1,1) B .(3,1,1) C .(1,3,1) D .(-1,3,1)解析:选C 由直角坐标与柱坐标之间的变换公式 ⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,可得⎩⎪⎨⎪⎧x =1,y =3,z =1.3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|P A |的最小值是( )A .0 B.2 C.2+1 D.2-1解析:选D A 的直角坐标为(-1,0),曲线C 的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1,|AC |=2,则|P A |min =2-1.4.直线⎩⎨⎧x =sin θ+tsin 15°,y =cos θ-tsin 75°(t 为参数,θ是常数)的倾斜角是( )A .105°B .75°C .15°D .165° 解析:选A 参数方程⎩⎪⎨⎪⎧x =sin θ+tsin 15°,y =cos θ-tsin 75°⇒⎩⎪⎨⎪⎧x =sin θ+tcos 75°,y =cos θ-tsin 75°, 消去参数t 得,y -cos θ=-tan 75°(x -sin θ), ∴k =-tan 75°=tan (180°-75°)=tan 105°. 故直线的倾斜角是105°.5.双曲线⎩⎪⎨⎪⎧x =tan θ,y =21cos θ(θ为参数)的渐近线方程为( )A .y =±22xB .y =±12xC .y =±2xD .y =±2x解析:选D 把参数方程化为普通方程得y24-x 2=1,渐近线方程为y =±2x .6.已知直线⎩⎨⎧x =2-tsin 30°,y =-1+tsin 30°(t 为参数)与圆x 2+y 2=8相交于B 、C 两点,O 为原点,则△BOC 的面积为( )A .27 B.30 C.152 D.302解析:选C ⎩⎪⎨⎪⎧x =2-tsin 30°,y =-1+tsin 30⇒⎩⎨⎧x =2-12t =2-22t′,y =-1+12t =-1+22t′(t ′为参数).代入x 2+y 2=8,得t ′2-32t ′-3=0, ∴|BC |=|t ′1-t ′2|=(t′1+t′2)2-4t′1t′2 =(32)2+4×3=30,弦心距d =8-304=22,S △BCO =12|BC |·d =152.7.已知点P 的极坐标为(π,π),则过点P 且垂直于极轴的直线的极坐标方程为( ) A .ρ=π B .ρ=cos θ C .ρ=πcos θ D .ρ=-πcos θ解析:选D 设M (ρ,θ)为所求直线上任意一点,由图形知OM cos ∠POM =π, ∴ρcos (π-θ)=π.∴ρ=-πcos θ.8.直线l :y +kx +2=0与曲线C :ρ=2cos θ相交,则k 满足的条件是( ) A .k ≤-34 B .k ≥-34C .k ∈RD .k ∈R 且k ≠0解析:选A 由题意可知直线l 过定点(0,-2),曲线C 的普通方程为x 2+y 2=2x ,即(x -1)2+y 2=1.由图可知,直线l 与圆相切时,有一个交点,此时|k +2|k2+1=1,得-k =34.若满足题意,只需-k ≥34.即k ≤-34即可.9.参数方程⎩⎪⎨⎪⎧x =1+sin θ,y =cos 2⎝⎛⎭⎫π4-θ2(θ为参数,0≤θ<2π)所表示的曲线是( ) A .椭圆的一部分 B .双曲线的一部分C .抛物线的一部分,且过点⎝⎛⎭⎫-1,12 D .抛物线的一部分,且过点⎝⎛⎭⎫1,12 解析:选D 由y =cos 2(π4-θ2)=1+cos (π2-θ)2=1+sin θ2,可得sin θ=2y -1,由x =1+sin θ得x 2-1=sin θ,∴参数方程可化为普通方程x 2=2y , 又x =1+sin θ∈[0,2].10.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.13解析:选B 三条直线的直角坐标方程依次为y =0,y =3x ,x +y =1,如图.围成的图形为△OPQ ,可得 S △OPQ =12|OQ |·|y P |=12×1×33+1=3-34. 二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.(江西高考)设曲线C 的参数方程为⎩⎨⎧x =t ,y =t2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析:消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.答案:ρcos 2θ-sin θ=012.(安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.解析:将ρ=4sin θ化成直角坐标方程为x 2+y 2=4y ,即x 2+(y -2)2=4,圆心为(0,2).将θ=π6(ρ∈R )化成直角坐标方程为x -3y =0,由点到直线的距离公式可知圆心到直线的距离d =|0-23|2=3.答案:3 13.(广东高考)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x = 2 cos t ,y =2sin t(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.解析:曲线C 的普通方程为:x 2+y 2= (2 cos t )2+(2 sin t )2=(cos 2t +sin 2t )=2,由圆的知识可知,圆心(0,0)与切点(1,1)的连线垂直于切线l ,从而l 的斜率为-1,由点斜式可得直线l 的方程为y -1=-(x -1),即x +y -2=0.由ρcos θ=x ,ρsin θ=y ,可得l 的极坐标方程为ρcos θ+ρsin θ-2=0.答案:ρcos θ+ρsin θ-2=0或ρ(cos θ+sin θ)=2 14.(湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎨⎧x =acos φ,y =bsin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin⎝⎛⎭⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为________.解析:由题意知,椭圆C 的普通方程为x2a2+y2b2=1,直线l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,设椭圆C 的半焦距为c ,则根据题意可知,|m |=c ,|m|2=b ,所以有c =2b ,所以椭圆C的离心率e =c a =c b2+c2=63.答案:63三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(12分)(新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP ―→=2OM ―→,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.解:(1)设P (x ,y ),则由条件知M (x 2,y2).由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y 2=2+2sin α.即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ1=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=23. 16.(12分)(福建高考)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解:(1)由题意知,M ,N 的平面直角坐标分别为(2,0),(0,233),又P 为线段MN 的中点, 从而点P 的平面直角坐标为(1,33), 故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),(0,233),所以直线l 的平面直角坐标方程为3x +3y -23=0. 又圆C 的圆心坐标为(2,-3),半径r =2,圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.17.(12分)已知某圆的极坐标方程为ρ2-42ρcos(θ-π4)+6=0,求:(1)圆的普通方程和参数方程;(2)在圆上所有的点(x ,y )中x ·y 的最大值和最小值.解:(1)原方程可化为ρ2-42ρ(cos θcos π4+sin θsin π4)+6=0,即ρ2-4ρcos θ-4ρsin θ+6=0.①因为ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,所以①可化为x 2+y 2-4x -4y +6=0,即(x -2)2+(y -2)2=2,此方程即为所求圆的普通方程.设cos θ=2(x -2)2,sin θ=2(y -2)2,所以参数方程为⎩⎨⎧x =2+2c os θ,y =2+2sin θ(θ为参数). (2)由(1)可知xy =(2+2cos θ)·(2+2sin θ) =4+22(cos θ+sin θ)+2cos θ·sin θ =3+22(cos θ+sin θ)+(cos θ+sin θ)2.②设t =cos θ+sin θ,则t =2sin (θ+π4),t ∈[-2,2].所以xy =3+22t +t 2=(t +2)2+1.当t =-2时xy 有最小值为1; 当t =2时,xy 有最大值为9. 18.(14分)曲线的极坐标方程为ρ=21-cos θ,过原点作互相垂直的两条直线分别交此曲线于A 、B 和C 、D 四点,当两条直线的倾斜角为何值时,|AB |+|CD |有最小值?并求出这个最小值.解:由题意,设A (ρ1,θ),B (ρ2,π+θ),C (ρ3,θ+π2), D (ρ4,θ+32π). 则|AB |+|CD |=(ρ1+ρ2)+(ρ3+ρ4)=21-cos θ+21+cos θ+21+sin θ+21-sin θ=16sin 22θ. ∴当sin 22θ=1即θ=π4或θ=34π时,两条直线的倾斜角分别为π4,3π4时,|AB |+|CD |有最小值16.。

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)

的轨迹方程.
解:取 B、C 所在直线为 x 轴,线段 BC 的中垂线为 y 轴,建立直角坐标系,则 D(0,0),B(-2,0),C(2,0). 设 A(x,y)为所求轨迹上任意一点, 则|AD|= x2+y2, 又|AD|=3, ∴ x2+y2=3,即 x2+y2=9(y≠0). ∴A 点的轨迹方程为 x2+y2=9(y≠0)
返回
因为 m∈(0,1)∪(1,+∞),所以 当 0<m<1 时,曲线 C 是焦点在 x 轴上的椭圆, 两焦点坐标分别为(- 1-m2,0),( 1-m2,0); 当 m>1 时,曲线 C 是焦点在 y 轴上的椭圆, 两焦点坐标分别为(0,- m2-1),(0, m2-1).
返回
求轨迹的常用方法 (1)直接法:如果题目中的条件有明显的等量关系或者
可以推出某个等量关系,即可用求曲线方程的五个步骤直
接求解. (2)定义法:如果动点的轨迹满足某种已知曲线的定义, 则可依定义写出轨迹方程.
返回
(3)代入法:如果动点P(x,y)依赖于另一动点Q(x1, y1),而Q(x1,y1)又在某已知曲线上,则可先列出关于x,y,
y1,x1的方程组,利用x、y表示x1、y1,把x1、y1代入已知
返回
2.平面直角坐标系中的伸缩变换 (1)平面直角坐标系中方程表示图形,那么平面图形的 伸缩变换就可归纳为 坐标 伸缩变换,这就是用 代数方法 研 究 几何 变换.
(2)平面直角坐标系中的坐标伸缩变换:设点 P(x,y)是 平面直角坐标系中任意一点, 在变换
x′=λxλ>0 φ: y′=μyμ>0
返回
[例2]
已知△ABC中,AB=AC,BD、CE分别为两腰
上的高.求证:BD=CE.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档