周世勋量子力学习题及解答

合集下载

周世勋《量子力学》习题解答

周世勋《量子力学》习题解答

第二章2.1.证明在定态中,几率流与时间无关。

证明:对于定态,可令()()()()Et ier t f r t r -==ψψψ,)]()()()([2 ])()()()([2 )(2******r r r r mi e r e r e r e r mi mi J Et iEt i Et i Et iψψψψψψψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ=----)()(可见t J 与无关。

2.2 由下列定态波函数计算几率流密度:ikr ikr e re r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中ϕθθϕθ∂∂+∂∂+∂∂=∇sin 110r e r e r r r mrk r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr 30202201*1*111)]11(1)11(1[2)]1(1)1(1[2)(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψr J 1与同向。

表示向外传播的球面波。

rmrk r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰dx x ψ方式归一化。

其相对位置几率分布函数为12==ψω表示粒子在空间各处出现的几率相同。

周世勋量子力学习题答案(七章全)

周世勋量子力学习题答案(七章全)


h2 2μ
d2 ψ dx2
(x)
+ U (x)ψ
(x)
=

6.62559 ×10−34 × 2.997925 ×108 1.380546 ×10−23
= 2.898 ×10−3 m ⋅ k
[注]
ρν
根据
=
8πhν 3 c3
1

e kT − 1
可求能量密度最大值的频率:
x = hν

kT
ρν
=
Ax3
1 ex −1

A
=
8πk 3T c3h2
3

dρν dν
球面波。
2.3 一粒子在一维势场
⎧∞ U (x) = ⎪⎨0
⎪⎩∞
x<0 0≤ x≤a x>a
中运动,求粒子的能级和对应的波函数。
[解]:由于势函数U (x) 不随时间变化
体系的状态波函数满足定态 Schrödinger 方程
0
a
− h2 ∇2ψ (x) + U (x)ψ (x) = Eψ (x) 2m
vj = ih [ψ (rv)∇ψ *(rv) −ψ *(rv)∇ψ (rv)] 则有: 2μ 即 vj 仅是空间坐标 (x, y, z) 的函数,与时间无关。
2.2 由下列两定态波函数计算几率流密度。
(1)
ψ1
=
1 r
eikr
ψ
(2)
2
=
1 e−ikr r
从所得结果说明ψ1 表示向外传播的球面波,ψ 2 表示向内(即向原点)传播的球面波。
m
= 2.43 ×10−12 m = 2.43 ×10−2 A°

《量子力学教程》周世勋_课后问题详解

《量子力学教程》周世勋_课后问题详解

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程(第三版)周世勋课后答案详解

量子力学教程(第三版)周世勋课后答案详解

1量子力学课后习题详解第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。

解根据普朗克的黑体辐射公式dv ec hvd kThv vv 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hcv v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:201151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kThc kThce kT hc ehc λλλλλπρ⇒115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ3nmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

周世勋量子力学习题及解答

周世勋量子力学习题及解答

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋
2xe 2
2
1(x) 1(x) 2
4 2 2
x 2e 2x2
2 3 x e2 2x2
d1 (x) 2 3 [2x 2 2 x3 ]e 2x2
dx
令 d1(x) 0 ,得 dx
x 0
x1
x
由1(x) 的表达式可知, x 0,x 时,1(x) 0 。显然不是最大几率的位置。
2m
i
[
( r )
*
(
r
)
*
( r )
(r)]
2m
可见 J与t 无关。
9
2.2 由下列定态波函数计算几率流密度:
(1) 1
1 ei k r r
(2) 2
1 e i k r r
从所得结果说明 1 表示向外传播的球面波, 2 表示向内(即向原点) 传播的球面波。
解: J1和J 2只有r分量
而 d 21 (x) 2 3 [(2 6 2 x 2 ) 2 2 x(2x 2 2 x3 )]e2x2
dx 2
4 3 [(1 5 2 x 2 2 4 x 4 )]e 2x2
d 21(x) dx2
x 1
4 3 2
1 0, e
可见 x 1
是所求几率最大的位置。
2
#
17
2.6 在一维势场中运动的粒子,势能对原点对称:U (x) U (x) ,证明粒子的定态波函数具有确定的
在球坐标中
r0
r
e
1 r
e
1 r s i n
(1)
J1
i 2m
(
1
* 1
1* 1 )
i [1 2m r
eikr
r
(1 r

《量子力学教程》周世勋 课后答案

《量子力学教程》周世勋 课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教学教程》周世勋课后答案解析

《量子力学教学教程》周世勋课后答案解析

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》_课后答案

《量子力学教程》_课后答案

(n 1, 2, 3,)
∴ 2 ( x) A sin
n x a
由归一化条件



( x) dx 1
2
A2

a
2 sin
0
n xdx 1 a


a
b
sin
m n a x sin xdx mn a a 2
14
A
2 a 2 n sin x a a
2 ( x)
23
2
23
T 100 K 时, E 1.381021 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h ec 2 ,其中 e 为电子的静止质量,而
c h ,所以 ,即有 ec
A2 2 T A2 2T pdq A 0 cos t dt 2 0 (1 cost )dt 2 nh , n 0,1,2,
2 2 T 2
A2 2 nh E nh , n 0,1,2, 2 T
6
v 2 v (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。由 evB ,得 R eB R
其解为
2 ( x) A sin kx B coskx

13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥

B0 A sin ka 0
A0 s i n ka 0 ka n
max
0 h 6.626 1034 c 0.024A (电子的康普顿波长)。 31 8 e c 9.1 10 3 10

《量子力学教程》周世勋_课后答案

《量子力学教程》周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》周世勋_课后答案

《量子力学教程》周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学习题解答-周世勋

量子力学习题解答-周世勋

周世勋《量子力学教程》习题解答第一章 习题解答1.由黑体辐射公式导出维恩位移律:能量密度极大值所对应的波长m λ与温度T 成反比,即b T m =λ(常数)。

并近似计算b 的数值,准确到两位有效数字。

解:由能量密度的公式:185-⋅=λλλλπλρkT hc ed hcd则由0=λρλd d 解得m λ: 2256181185⎪⎪⎭⎫ ⎝⎛-⋅-⋅--⋅⋅-=λλλλλλπλπλρkT hc kT hckT hc e e kT hc hce hc d d 0511186=⎪⎪⎪⎪⎭⎫ ⎝⎛---⋅=λλλλλπkT hc kT hckT hc e ekT hc e hc 即 051=--λλλkT hckT hce e kT hc 令x kT hcm=λ,则 051=--x xe xe 解得 97.4=x所以 )(29.097.41038.110999.210626.6161027K cm kx hc T m ⋅=⨯⨯⨯⨯⨯==--λ 2.在K 0附近,钠的价电子能量约为eV 3,求其德布罗意波长。

解:01019303409.7)(1009.7106.131091.0210626.62A m mE h P h K=⨯=⨯⨯⨯⨯⨯⨯===----λ3.氦原子的动能是kT E 23=(k 为玻尔兹曼常数),求K T 1=时,氦原子的德布罗意波长。

解:氦原子的动能)(1007.211038.1232323J E --⨯=⨯⨯⨯=,氦原子的质量kg kg M 27271068.61067.14--⨯=⨯⨯=,所以102327346.12)(106.121007.21068.6210626.62A m mEh =⨯=⨯⨯⨯⨯⨯==----λ4.利用玻尔——索末菲量子化条件,求 (1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场T H 10=,玻尔磁子T J M B /10924-⨯=,试计算动能的量子化间隔E ∆,并与K T 4=及K T 100=的热运动能量相比较。

《量子力学教程》周世勋_课后答案

《量子力学教程》周世勋_课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答

0 k 2 cosk 2aC k 2 sin k 2aD k1ek1a F 0
21
解此方程即可得出 B、C、D、F,进而得出波函数的具体形式,要方程组有非零解,必须
e k1a k1e k1a
《量子力学教程》 习题解答
1
《量子力学教程》
习题解答说明
为了满足量子力学教学和学生自学的需要,完善精品 课程建设,我们编写了周世勋先生编写的《量子力学 教程》的课后习题解答。本解答共分七章,其中第六 章为选学内容。
第一章 第二章 第三章 第四章 第五章 第六章 第七章
2
目录
第一章 绪论 第二章 波函数和薛定谔方程 第三章 力学量的算符表示 第四章 态和力学量的表象 第五章 微扰理论 第六章 弹性散射 第七章 自旋和全同粒子
(2)
J2
i 2m
(
2
* 2
2*
)
i 2m
[1 r
eikr
r
(1 r
eikr )
1 r
eikr
r
(1 r
e
ikr
)]r0
i 1 1 1 1 1 1
2m
[ r
(
r2
ik
r
)
r
(
r2
ik
r
)]r0
k m r2
r0
k m r3
r
可见, J2与r 反向。表示向内(即向原点) 传播的球面波。
补充:设 (x) eikx,粒子的位置几率分布如何?这个波函数能否归一化?
x 0
x1
x
由1(x) 的表达式可知, x 0,x 时,1(x) 0 。显然不是最大几率的位置。
而 d 21 (x) 2 3 [(2 6 2 x2 ) 2 2 x(2x 2 2 x3 )]e2x2

周世勋量子力学习题答案(七章全)

周世勋量子力学习题答案(七章全)

ν max = b′T
其中
k 1.380546 × 10−23 ′ b = 2.821 = 2.821 h 6.62559 × 10− 34
= 5.878 × 10 9 k ° ⋅ s −1
这里求得
ν max 与前面求得的 λmax 换算成的ν m 的表示不一致。
1.2 在 0k 附近,钠的价电子能量约为 3 电子伏,求其德布罗意波长。
传播的球面波。
v
(2)
与(1)类似,求得
v v kh r j =− μ r3
v 此结果表明 j 的方向沿矢经 r 的负方向,即几率流流向原点,所以ψ 2 表示向内传播的
球面波。
v
2.3
一粒子在一维势场
⎧∞ ⎪ U ( x) = ⎨0 ⎪∞ ⎩
x<0 0≤ x≤a x>a
0
a
中运动,求粒子的能级和对应的波函数。 [解]:由于势函数 U ( x ) 不随时间变化 体系的状态波函数满足定态 Schrödinger 方程
0≤ x≥a

α2 =
2mE h2
β=
2m(U 0 − E ) >0 h2
( x < 0, x > a )
(1)
d2 ψ ( x) − β 2ψ ( x) = 0 dx 2 d2 ψ ( x) + α 2ψ ( x) = 0 2 dx
(2)
(0 ≤ x ≤ a )
(3) (4)
ψ ( x) = e βx
υ2 e Hυ = μ c R

R=
μcυ
eH
这时因为没有考虑量子化,因此 R 是连续的。 应用玻耳—索末菲量子化条件
∫ pdq = nh

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

周世勋量子力学教程习题解答

周世勋量子力学教程习题解答
解: J1和J 2只有r分量
在球坐标中

=
r r0
∂ ∂r
+
r eθ
1 r
∂ ∂θ
+
r eϕ
1 r sinθ
∂ ∂ϕ
(1)
r J1
=
ih 2m
(ψ1∇ψ1*
−ψ 1*∇ψ 1 )
=
ih [1 eikr 2m r
∂ ∂r
(1 e−ikr ) − r
1 r
e−ikr
∂ ∂r
(1 r
eikr
r )]r0
=
广义动量,所以相积分为
∫ ∫ pϕdϕ=
2π 0
pϕdϕ=2πµRv=2πeBR2 =nh,
n=1,2,L,由此得半径为
R=
nh , n=1,2,L。 eB
电子的动能为
E=
1 µv2 2
=12µeµBR2
=
1 e2B2 2µ
enhB=nµBB
动能间隔为 ∆E=µBB=9×10−23J
热运动能量(因是平面运动,两个自由度)为 E=kT,所以当 T=4K时, E=4.52×10−23J ;当
q = Asin(ωt +ϕ) 速度为 q′ = Aωcos(ωt +ϕ),动量为 p = µq′ = Aµωcos(ωt +ϕ),则相积分为
∫ ∫ ∫ pdq= A2µω2 T cos2(ωt +ϕ)dt= A2µω2 T (1+cos(ωt +ϕ))dt = A2µω2T = nh, n = 0,1,2,L
−ψ
*
(rr )e

i h
Et∇(ψ
(
rr)e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5:x=0,取:x=4.97, xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =e p E μ22= E=pcph =λ nmm m Ec hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=1.3 氦原子的动能是kT E 23=(k 为玻耳兹曼常数),求T=1K 时,氦原子的德布罗意波长。

解 根据eV K k 3101-=⋅,,105.123233eV K k kT E -⨯=⋅==有Ec hc 22核μλ=nmm m37.01037.0105.1107.321024.19396=⨯=⨯⨯⨯⨯⨯=---这里,利用了eV eV c 962107.3109314⨯=⨯⨯=核μTkc hc Ec hc 2222μμλ==2.1证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。

2.2 由下列定态波函数计算几率流密度:i k ri k re re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇s i n r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。

表示向外传播的球面波。

rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

2.5 求一维谐振子处在激发态时几率最大的位置。

解:222122)(xxe x ααπαψ-⋅=222223222112 24)()(x xex e x x x ααπαπααψω--⋅=⋅⋅==22]22[2 )(3231x e x x dx x d ααπαω--= 令0 )(1=dxx d ω,得 ±∞=±==x x x 10α由)(1x ω的表达式可知,±∞==x x 0,时,0)(1=x ω。

显然不是最大几率的位置。

2222)]251[(4)]22(2)62[(2 )( 44223322223212xx e x x ex x x x dx x d ααααπααααπαω----=---=而 0142 )(321212<-=±=e dx x d x παω可见μωα±=±=1x 是所求几率最大的位置。

#2.7 一粒子在一维势阱中⎪⎩⎪⎨⎧≤>>=ax ax U x U ,0 ,0)(0运动,求束缚态(00U E <<)的能级所满足的方程。

解法一:粒子所满足的S-方程为)()()()(2222x E x x U x dxd ψψψμ=+- 按势能)(x U 的形式分区域的具体形式为Ⅰ:)x (E )x (U )x (dx d 21101222ψψψμ=+-a x <<∞- ①Ⅱ:)()(222222x E x dxd ψψμ=- a x a ≤≤- ②Ⅲ:)x (E )x (U )x (dx d 23303222ψψψμ=+-∞<<x a ③整理后,得Ⅰ: 0)(21201=--''ψμψE U ④ Ⅱ:. 0E2222=+''ψμψ⑤ Ⅲ:0)(23203=--''ψμψE U ⑥ 令 22220212 )(2 E k E U k μμ=-= 则Ⅰ: 01211=-''ψψk ⑦ Ⅱ:. 02222=-''ψψk ⑧ Ⅲ:01213=-''ψψk ⑨ 各方程的解为xk x k 3222xk x k 11111Fe Ee x k cos D x k sin C Be Ae -+-+=+=+=ψψψ由波函数的有限性,有)(0)(31=⇒∞=⇒-∞E A 有限有限ψψ因此xk 3xk 111FeBe -==ψψ由波函数的连续性,有)13( Fe k a k sin D k a k cos C k ),a ()a ()12( Fea k cos D a k sin C ),a ()a ()11( a k sin D k a k cos C k Be k ),a ()a ()10( a k cos D a k sin C Be ),a ()a (a k 1222232ak 22322222a k 12122a k 211111-----=-⇒'='=+⇒=+=⇒-'=-'+-=⇒-=-ψψψψψψψψ整理(10)、(11)、(12)、(13)式,并合并成方程组,得F e k aD k sin k aC k cos k 00F eaD k cos aC k sin 000D a k sin k aC k cos k B e k 00aD k cos aC k sin B e a k 12222ak 222222a k 122a k 1111=+-+=-++=+--=+-+----解此方程即可得出B 、C 、D 、F ,进而得出波函数的具体形式,要方程组有非零解,必须0Be k a k sin k ak cos k 0e a k cos a k sin 00a k sin k a k cos k e k 0a k cos a k sin e ak 12222ak 222222ak 122a k 1111=--------]a k 2c o s k k 2a k 2s i n)k k [(e ]a k 2sin k a k 2sin k a k 2cos k k 2[e ]a k sin e k a k cos a k sin e k a k cos e k a k cos a k sin e k [e k ]a k cos a k sin ek a k sin e k k a k cos a k sin e k a k cos e k k [e e k a k sin k a k cos k e a k cos a k sin 0a k cos a k sin e k e k a k sin k ak cos k e a k cos a k sin 0a k sin k a k cos k e 022122122a k 2221222221a k 222a k 222a k 122a k 222a k 1a k 122a k 2222a k 2122ak 2222a k 21a k ak 12222a k 2222a k 1ak 12222a k 222222ak 111111111111111111--=-+-=-+++--++++-==---------=------------------∵ 012≠-a k e∴02cos 22sin )(22122122=--a k k k a k k k 即 022)(2122122=--k k a k tg k k 为所求束缚态能级所满足的方程。

# 解法二:接(13)式a k sin D k ka k cos C k k a k cos D a k sin C 21221222+=+- a k sin D k ka k cos C k k a k cos D a k sin C 21221222+-=+2cos k 2 2sin )( 02cos 2 2sin ) 1( 0cos sin cos sin cos sin 0)cos sin )(sin cos (0)cos sin )(sin cos ()cos sin )(sin cos (0)cos sin (sin cos cos sin sin cos 221221222122212222221222122221222212221222122212221222122212221222122212=--=-+-=--+=-+=-+--+-=--+-+a k k a k k k a k k ka k k k a k a k a k k ka k k k a k a k k k a k a k k ka k a k k k a k a k k ka k a k k k a k a k k ka k a k k k a k a k k k a k a k k k a k a k k k a k a k k k#解法三:(11)-(13))(sin 21122F B e k a k D k a k +=⇒- (10)+(12))F B (e a k cos D 2a k 21+=⇒-)a ( k a tgk k )12()10()13()11(122=⇒+-(11)+(13)a ik e B F k a k C k 1)(cos 2122---=⇒ (12)-(10)a ik 21e )B F (a k sin C 2--=⇒令 ,,a k a k 22==ηξ 则)d ( ctg )c ( tg ηξξηξξ-==或)f ( a U 2)k k (220222122μηξ=+=+ 合并)b ()a (、:k a ctgk k ) 10 ( ) 12 ( )13 ( ) 11 ( 1 2 2 - = ⇒ - +212221222k k k k a k tg -=利用ak tg 1atgk 2a k 2tg 2222-= #解法四:(最简方法-平移坐标轴法)Ⅰ:110122ψψψμE U =+''- (χ≤0) Ⅱ:2222ψψμE =''- (0<χ<2a ) Ⅲ:330322ψψψμE U =+''- (χ≥2a ) ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--''=+''=--''⇒0)(2020)(232032221201ψμψψμψψμψ E U E E U⎪⎩⎪⎨⎧=-''==+''-==-''(3) 0k E 2k (2) 0k )E U (2k (1) 0k 3213222222220211211ψψμψψμψψ 束缚态0<E <0U xk x k xk x k Fe Ee x k D x k C Be Ae 111132221cos sin -+-++=+=+=ψψψ)(0)(31=⇒∞=⇒-∞E B 有限有限ψψ因此xk x k FeAe 1131 -==∴ψψ由波函数的连续性,有)7(Fe a k 2cos D a k 2sin C ),a 2()a 2()6( Fe k a k 2sin D k a k 2cos C k ),a 2()a 2()5( C k A k ),0()0()4( D A ),0()0(a k 22232ak 2122223221212111--=+⇒=-=-⇒'='=⇒'='=⇒=ψψψψψψψψ(7)代入(6)a k D k ka k C k k a k D a k C 212212222sin 2cos 2cos 2sin +-=+ 利用(4)、(5),得a k 2cos k k 2a k 2sin )k k ()k k (0a k 2cos 2a k 2sin )k kk k (0A 0]a k 2cos 2a k 2sin )k k k k [(A a k 2sin D k ka k 2cos A a k 2cos A a k 2sin A k k 221221222122122122122121222221=---=+-∴≠=+-+-=+即得两边乘上3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。

相关文档
最新文档