高考数学概率与统计知识点总结
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。
2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。
本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。
一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。
尤其是古典概率和条件概率的计算,需要学生熟练掌握。
对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。
2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。
对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。
3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。
对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。
对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。
4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。
二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。
2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。
3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。
4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。
三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。
专题九 概率与统计——高考数学公式定律速记清单
专题九 概率与统计——高考数学公式定律速记清单(一)排列组合与二项式定理 1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法. 2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法. 3.两个计数原理的比较4.排列、组合的应用 (1)排列数公式:)!(1)(2)(1)(,,,.()!m n n A n n n n m m n m n n m *=--⋯-+=∈-N 这里且 (2)组合数公式:)(1)(2)(1)!C (,,N ,!!()!m n n n n n m n m n m n m m n m *---+==∈-这里且5.二项式定理:①定理内容:()n a b +=()0111C C C C n n k n n n n n n b n a ab a k k b n --*+++++∈N②通项公式:1k n k k k n T C a b -+=. 6.组合数的性质:①C m n =C n mn-; ②11C m m n nm n C C -++=;③01C +C ++C =2n nn n n ⋅⋅⋅;④111++C m m m n n m m n C C C +-+⋅⋅⋅=+.7.二项式系数的有关性质:①二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即13502412n n n n n n n C C C C C C -+++=+++=.②若2012()n n f x a a x a x a x =++++,则f (x )展开式中的各项系数和为f (1), 奇数项系数和为024(1)(1)2f f a a a +-+++=, 偶数项系数之和为135(1)(1)2f f a a a --+++=. (二)概率,随机变量及分布列 1.随机事件的概率(1)随机事件的概率范围:()01P A ≤≤; 必然事件的概率为1;不可能事件的概率为0.2.古典概型的概率 P (A )=A 中所含的基本事件数基本事件总数3.条件概率在事件A 发生的条件下事件B 发生的概率:()()|)(P AB P B A P A = . 4..互斥事件与对立事件(1)对立事件是互斥事件,互斥事件未必是对立事件.(2)如果事件A ,B 互斥,那么事件A B ⋃发生(即A ,B 中有一个发生)的概率,等于事件A ,B 分别发生的概率的和,即()()()P A B P A P B ⋃=+.这个公式称为互斥事件的概率加法公式.(3)在一次试验中,对立事件A 和A 不会同时发生,但一定有一个发生,因此有P()=A 1-P (A ).5..相互独立事件同时发生的概率若A ,B 为相互独立事件,则()()()P AB P A P B =. 6..独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为()C (1),0,1,2,,k k n kn nP k p p k n --==.7.超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=k n k M N MnNC C C --,0,1,2k m ⋯=,,,其中{}m min M n =,,且*n N M N n M N ≤≤∈N ,,,,.此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M ,N ,n . (三)离散型随机变量的分布列 1. 离散型随机变量的分布列(1)设离散型随机变量X 可能取的值为12i n x x x x X ⋯⋯,,,,,,取每一个值x i 的概率为()i i P X x p ==,则称表:(2)1122i i n n E X x p x p x p x p ⋯⋯()=+++++为X 的均值或数学期望(简称期望),反应X 的平均水平.(3)D (X )()12()i i i n x E X p ==∑-⋅为随机变量X 的方差.X 的离散程度.2.正态分布正态曲线的定义:函数()22()2x x μσμϕσ--,,()x ∈∞∞-,+,其中实数μ和σ(σ>0)为参数,我们称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线. 3.重要公式与性质(一)离散型随机变量X 的分布列具有两个性质12011,)2,(3i i n p p p p p i n ≥⋯⋯⋯①,②+++++==,,.(二)期望与方差的性质(1)()()2()()()E aX b aE X b D aX b a D X a b +=+;+=,为常数; (2)()()1()()X B n p E X np D X np p ~,,则=,=-;(3)X 服从两点分布,则()()(1)E X p D X p p =,=-. (三)正态曲线的性质(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x μ=对称; (3)曲线在x μ= (4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移,如图甲所示;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(四)正态分布的三个常用数据0.6826220.954()()()4330.9974P X P X P X μσμσμσμσμσμσ<≤<≤<≤-+=;-+=;-+=. (四)统计与统计案例 1.抽样方法三种抽样方法包括:简单随机抽样 、系统抽样、分层抽样 2.统计图表在频率分布直方图中:①各小矩形的面积表示相应各组的频率,各小矩形的高=频率组距; ②各小矩形面积之和等于1;③中位数左右两侧的直方图面积相等,因此可以估计其近似值. 3.样本的数字特征(1)众数:在样本数据中,出现次数最多的那个数据.中位数:样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数;(2)样本平均数=11211=()nn i i x x x x x n n ⋯∑+++=;(3)样本方差22222=11211[()()()]()n i n i x s x x x x x x x n n ⋯∑=-+-++-=-;(4)样本标准差s .(5)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(6)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定. 4. 变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量x 和y 具有线性相关关系. (2)用最小二乘法求回归直线的方程设线性回归方程为ˆˆˆy bx a =+,则()()()111112221ˆˆˆi i i i i n ni i i n n x x y y x y nxy b x x x nx a y bx--==⎧∑--∑-⎪==⎪⎨∑-∑-⎪⎪=-⎩.注意:回归直线一定经过样本的中心点(,)x y ,据此性质可以解决有关的计算问题. 5.回归分析()()1i i i x x y y r =∑--=叫做相关系数.相关系数用来衡量变量x 与y 之间的线性相关程度;|r |≤1,且|r |越接近于1,相关程度越高,|r |越接近于0,相关程度越低.6.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为则2()()()()()()a b c d ad bc a b c d a c b K d +++-++++=,若2 3.841K >,则有95%的把握说两个事件有关; 若2 6.635K >,则有99%的把握说两个事件有关; 若2 2.706K <,则没有充分理由认为两个事件有关.。
高考数学概率统计知识点总结(文理通用)
概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
高考数学中的概率统计关键知识点总结
高考数学中的概率统计关键知识点总结在高考数学中,概率统计是一个重要的考点之一。
学习概率统计并掌握其关键知识点,不仅有助于我们在考试中拿到好成绩,还可以在日常生活中帮助我们更好地理解和运用概率统计知识。
本文将总结高考数学中概率统计的关键知识点,希望能对广大考生有所帮助。
一、基本概率知识概率是指某个事件在所有可能事件中发生的可能性大小,通常用一个介于0和1之间的小数来表示。
在概率计算中,我们需要掌握以下知识点:1.样本空间和事件:在一个随机试验中,所有可能结果构成的集合称为样本空间。
样本空间中的个体称为样本点。
事件是样本空间的一个子集,是由若干个样本点组成的。
2.事件的概率:事件A发生的概率P(A)定义为A中样本点数与样本空间中样本点总数之比。
3.互斥事件:如果两个事件A、B没有共同的样本点,则称它们是互斥事件。
4.独立事件:如果两个事件A、B的发生互不影响,则称它们是独立事件。
二、离散型随机变量离散型随机变量是指只能取一些有限或者可数个值的变量。
在学习离散型随机变量时,需要注意以下知识点:1.随机变量:设X是一个随机变量,其所有可能取值构成一个集合,称为随机变量X的全体取值,简称X的取值集。
2.概率函数:对于离散型随机变量X,其取值集为{x1,x2,...,xn},其概率函数为f(x)=P(X=xi),i=1,2,...n。
其中,f(x)满足以下两个条件:非负性,即f(x)>=0;归一性,即sum[f(xi)]=1。
3.数学期望:对于离散型随机变量X,其数学期望定义为:E(X)=sum[xi*f(xi)], i=1,2,...,n。
三、连续型随机变量连续型随机变量是指可以取得任意一个实数的变量。
学习连续型随机变量时,有以下知识点需要注意:1.概率密度函数:对于连续型随机变量X,其概率密度函数f(x)满足以下两个条件:非负性,即f(x)>=0;积分为1,即integral(f(x))dx=1。
高中数学高考统计知识点总结
第二章:统计 1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本, 每个个体被抽到的机会(概率)均为Nn。
2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。
⑵茎叶图:①茎叶图适用于数据较少的情况, 从中便于看出数据的分布, 以及中位数、众位数等。
②个位数为叶, 十位数为茎, 右侧数据按照从小到大书写, 相同的数据重复写。
3、总体特征数的估计:⑴平均数:nx x x x x n++++=Λ321; 取值为n x x x ,,,21Λ的频率分别为n p p p ,,,21Λ, 则其平均数为n n p x p x p x +++Λ2211; 注意:频率分布表计算平均数要取组中值。
⑵方差与标准差:一组样本数据n x x x ,,,21Λ方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小, 说明样本数据越稳定。
平均数反映数据总体水平;方差与标准差反映数据的稳定水平。
⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图, 判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i ni i x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点),(y x 。
第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果, 用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点: ①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。
高考数学中的概率与统计
高考数学中的概率与统计在高考数学中,概率与统计是两个非常重要的概念。
概率是指某件事情发生的可能性,而统计则是通过数据分析找出事情的规律。
本文将介绍高考中的概率和统计内容,以及对于考生应该如何应对这些考点。
一、概率概率是高考数学中的重点之一,它涉及到很多基本概念和计算方法。
我们先来看看常见的概率问题:1. 定义概率:概率是指某事件发生的可能性,通常用一个介于0 到 1 之间的数字表示。
比如说,掷一枚骰子,出现 1 的概率是1/6,出现偶数的概率是 3/6=1/2。
2. 事件的互斥:如果两个事件不能同时发生,就称它们互斥。
比如说,掷一枚骰子,出现 1 和出现 2 是互斥的事件。
此时它们的概率可以简单地相加。
3. 事件的独立:如果两个事件的发生不会互相影响,就称它们独立。
比如说,掷两枚骰子,第一枚出现 1 的概率是 1/6,第二枚出现 2 的概率也是 1/6。
此时出现 1 和 2 的概率就是它们的乘积。
4. 条件概率:条件概率是指在已知一个事件发生的情况下,另一个事件发生的可能性。
比如说,从一副扑克牌中取出一张牌,它是红桃的概率是 1/4,如果告诉你它是一张面值为 A 的牌,那么这张牌是红桃的概率就变成了 1/2。
考生在备考概率时,需要将这些基本概念掌握清楚,并能够结合具体问题来进行计算。
此外,还需要注意一些细节问题,比如说事件是否独立、概率的范围等等。
二、统计统计是高考数学中的另一个重要考点,它用来描述数据的分布规律和相关性。
常见的统计问题有:1. 统计指标:统计学有很多指标,比如说平均数、中位数、众数、标准差等等。
这些指标用来描述数据的各种特征,可以通过计算得出。
2. 直方图:直方图是一种常用的数据可视化工具。
它将一段数据区间划分为若干个子区间,并计算每个子区间的数据量,然后将它们用矩形图形表示出来。
通过直方图可以看出数据的分布规律,比如说是否呈正态分布等等。
3. 散点图:散点图可以用来表示两个变量之间的关系。
概率与统计高考知识点
概率与统计高考知识点在高考数学中,概率与统计是一个重要的考点。
概率与统计不仅涉及到数学方面的知识,也与现实生活密切相关。
本文将通过几个具体的例子,深入探讨概率与统计相关的知识点,帮助考生更好地理解这一部分内容。
一、概率与事件概率与事件是概率与统计中的基础概念。
概率是描述事件发生可能性大小的数值,通常用P(A)表示。
事件是指随机试验中的一种结果,可以是一个单一结果或若干个结果的组合。
例如,投掷一枚骰子,出现点数小于等于3的事件记为A,则P(A)为1/2。
二、基本事件与对立事件基本事件是指随机试验中的最简单、最基础的事件,它不可再分解成其他事件。
对立事件是指两个事件发生的可能性互相排斥,即当一个事件发生时,另一个事件不发生。
例如,投掷一枚硬币,出现正面和出现反面就是对立事件。
三、概率的性质概率具有以下几个性质:1.非负性:对于任何事件A,有P(A)≥0;2.必然性:对于必然事件S(整个样本空间),有P(S)=1;3.可加性:对于任意两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。
四、条件概率条件概率是指在已经发生一个事件的条件下,另一个事件发生的概率。
条件概率表示为P(A|B),其中A是已知发生的事件,B是条件事件。
例如,某班级男生占总人数的1/4,女生占总人数的3/4,已知某学生是女生,求其也是该班级的概率。
我们可以使用条件概率计算得出P(女生|学生) = P(女生∩学生) / P(学生) = 3/4。
五、独立事件独立事件是指两个事件的发生与否互相不影响。
如果事件A和事件B是独立事件,则有P(A∩B) = P(A) × P(B)。
例如,抛掷一枚硬币和掷一枚骰子,两个事件是独立的。
六、随机变量与概率分布随机变量是表示随机试验结果的变量。
离散型随机变量只能取有限个或可列个数值,连续型随机变量可以取任意实数值。
概率分布是随机变量取各个值的概率。
例如,抛掷一枚骰子,骰子的点数就是一个随机变量,其概率分布为离散型。
高考数学概率统计知识点梳理
高考数学概率统计知识点梳理概率统计作为高中数学的重要组成部分,是高考中常见的考点之一。
掌握好概率统计的知识,对于考生来说至关重要。
下面将对高考数学概率统计知识点进行梳理,帮助考生更好地复习和备考。
一、随机事件及其概率在概率统计中,随机事件是指在相同条件下可以重复出现的试验结果。
概率是描述随机事件发生的可能性大小的数值。
常见的概率计算方法包括:基本概率公式、加法原理、乘法原理等。
在高考中,常见的随机事件概率计算题型有:求事件发生的可能性,计算联合概率、条件概率等。
二、样本空间与事件样本空间是指试验所有可能结果的集合,事件是样本空间的一个子集。
在概率统计中,常用样本空间和事件的关系来求解概率。
考生需要掌握样本空间的求法,以及事件与样本空间的关系。
三、频率与概率频率是指某个事件在重复试验中发生的次数与试验总次数的比值。
概率是指某个事件在理论上发生的可能性大小。
频率与概率之间存在着紧密的联系,频率可以用来近似估算概率。
在高考中,考生需要理解频率与概率的关系,并能够进行频率与概率之间的转换。
四、排列组合与概率排列组合是概率统计中常用的计算方法。
排列是指从n个不同元素中取出m个元素进行顺序安排的方法数,组合是指从n个不同元素中取出m个元素进行不顺序的安排方法数。
在排列组合的基础上,结合概率的计算,考生需要能够解决排列组合与概率相结合的题型。
五、随机变量及其分布随机变量是指随机试验结果的数值化描述,可以是离散的也可以是连续的。
随机变量的分布描述了随机变量每个可能值出现的概率。
常见的离散随机变量分布有:二项分布、泊松分布等;常见的连续随机变量分布有:正态分布、指数分布等。
在高考中,随机变量的概率计算题型经常出现,考生需要熟练掌握各种分布的特点和计算方法。
六、统计与抽样统计是指对大量数据进行收集、整理和分析的过程。
抽样是统计的基本方法之一,是指从总体中选取一部分样本进行研究。
在高考中,常见的统计与抽样的题型有:调查设计、样本估计等。
高考数学概率与统计知识点总结
高考数学概率与统计知识点总结概率和统计的相关题目需要记忆相关的公式和大量的计算,所以也是最能考察学生们计算能力的题了。
果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密,布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发,威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿,出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的,景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳,绚丽多彩五彩缤纷草绿草如,标准答案一、填空题。
2024高考数学大纲——知识点总结
2024高考数学大纲——知识点总结2024年高考数学考试的大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。
下面将对每个部分的知识点进行总结,以方便复习。
一、数与式1.实数实数的概念、实数的四则运算、有理数与无理数的关系、开方运算2.立方根立方根的概念、立方根的计算、立方根的性质3.代数式与多项式代数式的概念、等价代数式的判定、多项式的概念、多项式的加减乘除、单项式与多项式的乘法、多项式的因式分解、特殊的多项式4.分式分式的概念、分式的四则运算、分式的化简、分式方程二、函数1.一次函数一次函数的概念、一次函数的图像、一次函数的性质、一次函数的应用2.二次函数二次函数的概念、二次函数的图像、二次函数的性质、二次函数的应用、二次函数的最值3.绝对值函数绝对值函数的概念、绝对值函数的图像、绝对值函数的性质、绝对值函数的应用4.反比例函数反比例函数的概念、反比例函数的图像、反比例函数的性质、反比例函数的应用5.复合函数复合函数的概念、复合函数的性质、复合函数的应用三、几何与变换1.空间坐标系空间直角坐标系、点的坐标、点到平面的距离、点到直线的距离2.向量向量的概念、向量的线性运算、向量的模、向量的夹角、向量的共线与垂直、向量的投影、向量的应用3.三角函数弧度与角度的关系、三角函数的概念、三角函数的性质、三角函数的图像、三角函数的应用4.几何相似相似三角形的判定、相似三角形的性质、相似三角形的应用、相似三角形的面积比5.平面向量与平面几何平面向量的几何意义、平面向量的坐标表示、平面向量的线性运算、向量共线的判定、平行四边形的面积、三角形的面积、平面图形的位置关系四、统计与概率1.统计图与统计量频数分布表与频率分布表、频率直方图、频率多边形、统计图的应用、统计量的计算与性质2.概率的概念随机事件与样本空间、事件的概率、几何概型与排列、分子概型与组合、概率的加法定理、概率的乘法定理、条件概率、独立事件、概率的应用以上是2024年高考数学大纲的知识点总结。
第十章 高考数学 概率知识总结
第十章概率知识点一:有限样本空间与随机事件1.随机试验的特点(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.有限样本空间:随机试验E的每个可能的基本结果称为样本点,用ω表示,全体样本点的集合称为试验E的样本空间,用Ω表示,称样本空间Ω={ω1,ω2,ω3,…,ωn}为有限样本空间.3.样本空间Ω的子集称为随机事件,称Ω为必然事件,称∅为不可能事件.知识点二.事件的关系与运算知识点三.概率的基本性质性质1 对任意事件A,都有P(A)≥0;性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1;P(∅)=0;性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B);性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B);性质5 如果A⊆B,那么P(A)≤P(B);性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).知识点四:古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等;我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式()mP An计算概率.4.古典概型的概率公式:P(A)=kn=n AnΩ,其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.要点四:随机数的产生知识点五.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作用.2.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.3.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.类型一随机事件的概率例1.某射手在相同条件下进行射击,结果如下:(1)问该射手射击一次,击中靶心的概率约是多少?(2)假设该射手射击了300次,估计击中靶心的次数是多少?【思路点拨】弄清频率和概率的含义及它们之间的关系是解题的关键.【解析】(1)由表可知概率约为0.9;(2)估计击中靶心的次数为300×0.9=270(次).【总结升华】本题中利用概率知识估计击中靶心的次数是一种非常科学的决策方法.类型二互斥事件与对立事件例2.某人在如图所示的直角边长为4m的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X之间的关系如下表所示:(1)完成下表,并求所种作物的平均年收获量:分析:根据题意找出产量Y对应的“相近”作物株数的频数,并利用加权平均数公式计算平均年收获量;至少为48 kg的概率是指 51Y=与48Y=两种概率的和,利用互斥事件的概率公式求解.解:(1)所种作物的总株数为1234515++++=.其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,.‘相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:所种作物的平均年收获量为461515==(2)由(1),知24(51),(48)1515P Y P Y====.故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为242 (48)(51)(48)15155 P Y P Y P Y≥==+==+=解后反思:求至少为48 kg的概率时,可利用互斤事件的概率公式求解,也可先求出年收获量少于48 kg的概率,再利用对立事件的概率公式求解.例3黄种人群中各种血型的人所占的比例如下:不能互相输血.小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少?解:(1)记“血型为A 型、B 型、AB 型、O 型”分别为事件,,,A B C D ''''. 由已知,得()()()()0. 28,0. 29,0.08,0. 35P A P B P C P D ''''====. 因为B 型、O 型血可以输给B 型血的人, 所以“可以输给B 型血的人”为事件B D ''.根据互斥事件的概率加法公式,有()()()0. 290.350. 64P B D P B P D ''''=+=+=.故任找一个人,其血可以输给小明的概率是0.64. (2)方法1:由于A 型、AB 型血不能输给B 型血的人,故 “不能输给B 型血的人”为事件 A C ''.根据互斥事件的概率加法公式,有 ( )()( )0. 280.080. 36P A C P A P C ''''=+=+=.故任找一个人,其血不能输给小明的概率是0.64. 方法2:由(1),知不能输血给B 型血的人的概率为()110. 640. 36B P D -=-'='.故任找一个人,其血不能输给小明的概率是0. 36.解后反思:带有“不”“不大于”“至少”等字眼的问题通常可以用对立事件的概率公式计算概率.类型三 古典概型及其应用例4甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为______解析:甲、乙两名运动员选择运动服颜色有(红,红),(红, 白),(红,蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种.因为同色的有(红,红),(白,白),(蓝,蓝),共3种,所以所求概率3193P == 答案: 13解后反思:列举时要按照一定的顺序,做到不重不漏.例5海关对同时从A B C ,,三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是615015010050=++ 所以样本中包含三个地区的个体数量分别是111501,1503,1002505050⨯=⨯=⨯= 所以A B C ,,三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A B C ,,三个地区的样品分别为A ;123,,B B B ;12,C C . 则从这6件样品中抽取的2件商品构成的所有基本事件为 12312{A,},{A,},{A,},{A,},{A,},B B B C C12131112232122{,},{,},{,},{,},{,},{,},{,},B B B B BC B C B B B C B C313212{,},{,},{,}B C B C C C 共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的. 记事件D:“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有: 12132312{,},{,},{,},{,}B B B B B B C C ,共4个,所以4P(D)15=即这2件商品来自相同地区的概率为415. 解后反思:在()mP A n=中,关键是确定,n m 的值,现阶段主要是通过列举法来解决,这种方法常采用两种途径,一是将事件的所有情况一一列举出来;二是利用“树状图”或“图表”将所有情况一一标出.例6 甲、乙、丙3个盒中分别装有大小相等、形状相同的卡片若干张.甲盒中装有2张卡片,分别写有字母A 和B ;乙盒中装有3张卡片,分别写有字母,C D 和E ;丙盒中装有2张卡片,分别写有字母H 和I .现要从3个盒中各随机取出1张卡片,求: (1)取出的3张卡片中恰好有1张、2张、3张写有元音字母的概率各是多少? (2)取出的3张卡片上全是辅音字母的概率. 解:根据题意可以画出如图所示的树状图.由树状图可以得到,所有可能出现的基本事件有12个,它们出现的可能性相等.(1)只有1个元音字母的结果有5个,所以511)2(P =个元音字母; 有2个元音字母的结果有4个,所以()411123P ==个元音字母; 有3个元音字母的结果有1个,所以111)2(P =个元音字母; (2)全是辅音字母的结果有2个,所以21(3)12(6P ==个辅音字母 解后反思:画树状图求概率的基本步骤: (1)明确一次试验的步骤及顺序;(2)画树状图,列举一次试验的所有可能结果;(3)明确随机事件,数出其所包含的结果的个数m ,基本事件的总数n ; (4)计算随机事件A 的概率()m P A n=。
数学高考复习概率与统计重点梳理
数学高考复习概率与统计重点梳理高考复习概率与统计重点梳理概率与统计是数学高考中的重要内容,也是考生们备考过程中需要重点关注的部分。
在高考中,概率与统计经常出现在选择题、计算题和应用题中,因此,熟练掌握概率与统计的基本概念、定理和解题方法,对于取得高分至关重要。
本文将针对高考中概率与统计的重点内容进行梳理,帮助考生们更好地复习和应对考试。
一、基本概念与术语1.1 概率的基本定义概率是表示事件发生可能性大小的数值,通常用0到1之间的实数表示。
在概率中,事件发生的可能性越大,其概率值越接近于1;反之,事件发生的可能性越小,其概率值越接近于0。
1.2 随机事件与样本空间随机事件是在一定条件下,有可能发生的事件。
样本空间是一个包含了所有可能结果的集合,每个结果称为样本点。
随机事件可以由样本空间中的样本点组成。
1.3 事件的概率计算公式事件的概率计算公式根据事件的性质和样本空间的大小来确定。
对于等可能的随机试验,事件A发生的概率可以表示为:P(A) = 事件A的样本点数 / 样本空间的样本点数。
二、概率的计算方法2.1 乘法原理与加法原理乘法原理是指若事件A是由两个或多个独立事件的发生所组成,则事件A的概率可以用每个独立事件概率的乘积表示。
加法原理是指若事件A可以由事件B或事件C等多个互不相容的事件所组成,则事件A的概率可以用各个事件概率之和表示。
2.2 条件概率与独立性条件概率是指在已知事件A发生的情况下,事件B发生的概率。
如果事件A与事件B的发生是独立的,那么事件A发生的概率与事件B 发生的概率的乘积等于事件A与B同时发生的概率。
2.3 贝叶斯定理贝叶斯定理是利用已知的条件概率,求解与之相反的条件概率的方法。
它的基本思想是通过已知条件概率和全概率公式,得到所需的条件概率。
三、离散型与连续型随机变量3.1 随机变量的定义与性质随机变量是数学中的一种函数关系,用来描述随机试验的结果与实数之间的对应关系。
随机变量可以是离散型的,也可以是连续型的。
高考统计概率知识点归纳总结大全
高考统计概率知识点归纳总结大全统计概率是高考数学中的重要知识点,也是考查学生逻辑思维和数据分析能力的一种方式。
掌握统计概率的基本概念和计算方法对于解题至关重要。
本文将对高考统计概率的相关知识点进行归纳总结,以帮助同学们更好地复习和应对考试。
一、基本概念1. 实验与事件:实验是指进行一次观察或测量的过程,事件是实验的结果。
2. 样本空间:样本空间是指实验中所有可能的结果的集合。
3. 事件的概率:事件的概率是指事件在随机试验中发生的可能性大小,用P(A)表示。
4. 必然事件和不可能事件:必然事件是指在每次实验中都会发生的事件,概率为1;不可能事件是指在每次实验中都不会发生的事件,概率为0。
二、概率的计算方法1. 频率与概率:频率指某个事件在实验中发生的次数与实验总次数之比,频率接近一个值时,该值即为事件的概率。
2. 古典概型:对于样本空间中的每一个结果,概率是相等的,可以用总事件数与有利事件数之比来计算概率。
3. 几何概率:对于几何概型,可以根据几何图形的面积或长度比例来计算概率。
4. 概率的运算:并、交、差、余等运算。
三、条件概率1. 条件概率的定义:在事件B发生的条件下,事件A发生的概率记作P(A|B),表示已知事件B发生的前提下,事件A发生的概率。
2. 乘法定理:P(AB) = P(A|B) × P(B),即事件A和事件B同时发生的概率等于事件B发生的概率乘以事件A在事件B发生的条件下发生的概率。
3. 全概率公式:设B1,B2,...,Bn为一组互不相容的事件且构成对空间Ω的一个分割,即它们的并为Ω,且Bi ∩ Bj = ∅ (i ≠ j),则对于任意事件A,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... +P(A|Bn)P(Bn)。
4. 贝叶斯定理:设B1,B2,...,Bn为一组互不相容的事件且构成对空间Ω的一个分割,即它们的并为Ω,且Bi ∩ Bj = ∅ (i ≠ j),则对于任意事件A,有P(Bi|A) = P(A|Bi)P(Bi) / [P(A|B1)P(B1) +P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)]。
高考数学概率知识点整理总结
高考数学概率知识点整理总结高考数学概率知识点整理一、事件1.在条件SS的必然事件.2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.3.在条件SS的随机事件.二、概率和频率1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nAnA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).三、事件的关系与运算四、概率的几个基本性质1.概率的取值范围:2.必然事件的概率P(E)=3.不可能事件的概率P(F)=4.概率的加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B).5.对立事件的概率:若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B).高中数学概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n. 当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.高中数学古典概率公式P(A)=A所含样本点数/总体所含样本点数实用中经常采用“排列组合”的方法计算附:由概率定义得出的几个性质:1、02、P(Ω)=1,P(φ) =0[1]概率的加法法则定理:设A、B是互不相容事件(AB=φ),则:P(A∪B)=P(A)+P(B)推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1 推论3: P(A)=1-P(A)推论4:若B包含A,则P(B-A)= P(B)-P(A)推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)[1]条件概率条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)条件概率计算公式:当P(A)0,P(B|A)=P(AB)/P(A)当P(B)0,P(A|B)=P(AB)/P(B)[1]乘法公式P(AB)=P(A)×P(B|A)=P(B)×P(A|B)推广:P(ABC)=P(A)P(B|A)P(C|AB)[1]全概率公式设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组。
统计概率高考知识点总结
统计概率高考知识点总结统计概率是高考数学中的重要知识点之一,它涉及到概率的计算、问题的解决以及对数据的分析等等。
本文将以总结的方式,从概率基本概念到常见题型,全面介绍统计概率的考点。
一、基本概念与定义1. 概率的定义:概率是指某个事件发生的可能性的大小,通常用一个介于0和1之间的值来表示。
若事件A发生的概率为P(A),则0≤P(A)≤1。
2. 事件与样本空间:样本空间是指一个随机试验中所有可能结果的集合,通常用S表示。
而事件是指样本空间S的一个子集,表示了试验中所关心的结果。
3. 事件的互斥与独立:两个事件互斥是指它们不能同时发生,而独立是指一个事件的发生不影响另一个事件发生的可能性。
二、概率计算方法1. 古典概率:对于一个有限样本空间,每个样本发生的概率相等时,可以用古典概率计算。
公式为P(A)=事件A包含的样本数/样本空间的样本总数。
2. 几何概率:对于连续的样本空间,可以使用几何概率计算。
首先确定事件的范围,然后计算其在总样本空间中的比例。
3. 频率概率:通过实验证明一个事件发生的频率逼近其概率。
4. 条件概率:事件A在事件B已经发生的条件下发生的概率,记作P(A|B)。
计算公式为P(A|B)=P(AB)/P(B)。
5. 乘法定理与加法定理:乘法定理是指两个事件同时发生的概率等于各自概率的乘积。
加法定理是指两个互斥事件同时发生的概率等于各自概率之和。
三、常见题型1. 排列组合与概率:通过排列组合的方法来计算某个事件发生的概率。
如计算从n个元素中取出r个的组合数C(n,r),再除以总的可能数。
2. 生日悖论:假设有23个人在同一天生日的概率有多大?通过利用概率计算方法可以推断出令人惊讶的结果。
3. 事件的独立性:判断两个或多个事件是否独立,可以通过计算它们的条件概率或使用乘法定理验证。
4. 贝叶斯定理:用于计算在已知某一次试验前提下,另一次试验发生某个事件的概率。
四、概率统计与数据分析1. 频率分布表:通过统计数据的频率分布表,可以了解到数据的集中趋势、离散程度等信息。
高考数学概率统计知识点(大全)
高考数学概率统计知识点(大全)高考数学概率统计知识点一、随机事件(1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B 的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。
它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。
它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,...,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。
(5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。
当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。
高考数学概率与统计部分知识点梳理
高考复习专题之:概率与统计一、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.P (A )=O ;注:求随机概率的三种方法: (-)枚举法例1如图1所示,有一电路A3是由图示的开关控制,闭合a ,b, c,d, e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是 ________ .分析:要计算使电路形成通路的概率,列举出闭合五个开关中的任意两个可能出现的结果总数,从中找出能使电路形成通路的结果数,根据概率的意义计算即可。
解:闭合五个开关中的两个,可能出现的结果数有10种,分别是ab. ac 、ad 、ae 、be. bd. be. cd 、ce 、de, 英中能形成通路的有6种,所以p (通路)=—=-10 5评注:枚举法是求概率的一种重要方法,这种方法一般应用于可能出现 的结果比较少的事件的概率计算. (-)树形图法例2小刚和小明两位同学玩一种游戏•游戏规则为:两人各执“象、虎、鼠”三张牌,同时0出一张牌龙胜负, 英中象胜虎.虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚岀象牌,小明出虎牌,则小刚胜:又 如,两人同时出象牌,则两人平局.如果用A 、B 、C 分别表示小刚的象、虎、鼠三张牌,用B,、G 分别表示小明 的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?分析:为了淸楚地看出小亮胜小刚的概率,可用树状图列出所有可能出现的结 果,并从中找出小刚胜小明可能出现的结果数。
解:画树状图如图树状图。
由树状图(树形图)或列表可知,可能出现的结果 有9种,而且每种结果岀现的可能性相同,苴中小刚胜小明的结果有3种.所 以P (—次出牌小刚胜小明)二13点评:当一事件要涉及两个或更多的因素时,为了不重不漏地列出所有可能的结 果,通过画树形图的方法来计算概率 (三)列表法例3将图中的三张扑克牌背面朝上放在桌而上,从中随机摸岀两张,并用这两张扑克牌上的数字组成一个两位 数.请你用画树形(状)图或列表的方法求:(1)组成的两位数是偶数的概率;(2)组成的两位数是6的倍数 的槪率. 分析:本题可通过列表的方法,列出所有可能组成的两位数的可能情况,然后再找岀组成的两位数是偶数的可能 情况和组成两位数小刚 小明小刚 小明开始图1ABC虫 1 5i Ci是6的倍数的可能情况。
高考数学概率知识点总结及解题思路方法
高考数学概率知识点总结及解题思路方法测试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.测试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的根本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生6次的概率.§11.概率知识要点1.概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.2.等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等, 那么,每一个根本领件的概率都是工,如果某个事件A包含的结果有m个,那么事件A的概率P(A)=m. n n 3.①互斥事件:不可能同时发生的两个事件叫互斥事件.如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广:P(A i A2*-F A n) =P(A i) P(A2)+-F P(A n).②对立事件:两个事件必有一个发生的互斥事件叫对立事件.例如:从1〜52张扑克牌中任取一张抽到红桃〞与抽到黑璘:耳为互斥事旦不件,由于其中一个不可能同时发生,但又不能保证其中一个必仁故不是对立事件.而抽到红色牌〞与抽到黑色牌互为对立事件,由于其中一个必发生.注意:i.对立事件的概率和等于1:P(A)+P(A)=P(A+M=1.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件.如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A B)=P(A) P(B).由此,当两个事件同时发生的概率P (AB)等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A:抽到老K" ;B:抽到红牌〞那么A应与B互为独立事件[看上去A与B有关系很有可能不是独立事件,但P(A)=&=」P(B)=26 J,P(A) P(B)=」.又事件AB表示既52 13 52 2 26抽到老K对抽到红牌〞即抽到红桃老K或方块老K〞有P(A B)=Z=」, 52 26因止匕有P(A) P(B) =P(A B).推广:假设事件A I,A2,…,A n相互独立,那么P(A i A2…A n)=P(A i) P(A2)…P(A n). 注意:i. 一般地,如果事件A与B相互独立,那么A与B,A与B, A 与B也都相互独立.ii.必然事件与任何事件都是相互独立的iii.独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.④独立重复试验:假设n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,那么称这n次试验是独立的.如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率:P n(k) Cp k(1—P)n£4.对任何两个事件都有P(A +B) =P(A) +P(B) -P(A B)第十二章-概率与统计测试内容:抽样方法.总体分布的估计.总体期望值和方差的估计.测试要求:(1) 了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布.(3)会用样本估计总体期望值和方差.国2.概率与统计知识要点一、随机变量.1.随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个, 但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2.离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 .假设E是一个随机变量,a, b是常数.那么n=a2+b也是一个随机变量.一般地,假设已是随机变量,f(x)是连续函数或单调函数,那么f©也是随机变量也就是说, 随机变量的某些函数也是随机变量.设离散型随机变量已可能取的值为:X1,X2,…,X i,…E取每一个值X i(i=l,2,…)的概率P( j)=P i,那么表称为随机变量E的概率分布,简称E 的分布列.有性质①PiM=1,2,…;②P1+P2什+Pi l =1 .注意:假设随机变量可以取某一区间内的一切值, 这样的变量叫做连续型随机变量.例如:3[0,5]即E可以取0〜5之间的一切数,包括整数、小数、无理数.3.⑴二项分布:如果在一次试验中某事件发生的概率是巳那么在n 次独立重复试验中这个事件恰好发生k次的概率是:P(E =k) =c n P k q n〞[其中k =0,1,…,n, q =1 — P]于是得到随机变量2的概率分布如下:我们称这样的随机变量已服从二项分布,记作七~B (np),其中n, P为参数,并记Ckp k q n*=b(k;n P). ⑵二项分布的判断与应用.①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件, 随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比拟小,而每次抽取时又只有两种试验结果, 此时可以把它看作独立重复试验,利用二项分布求其分布列.4.几何分布:2=k 〞表示在第k次独立重复试验时,事件第一次发生, 如果把k 次试验时事件A发生记为A k ,事A不发生记为A k,P(A k)=q , 那么P(\k) =P(8?…A;1AJ .根据相互独立事件的概率乘法分式:P(甘)=P(A I)P(A2)…P(A k^P(A k)才与(k =1,2,3,…)于是得到随机变量已的概率分布列.5.⑴超几何分布:一批产品共有N件,其中有M (M<N)件次品,今抽取n(1 WnEN)件,那么其中的次品数已是一离散型随机变量,分布列k n -k为P k) =£里1 (04MM,0 Mn _k MN _M).〔分子是从M件次品中取k件, C N从N-M件正品中取n-k件的取法数,如果规定m<r时C m r=0,那么k的范围可以写为k=0, 1,…,n.〕⑵超几何分布的另一种形式:一批产品由a件次品、b件正品组成,k n _k今抽取n件(1WnWa+b那么次品数E的分布列为P&=k)=c a c b k=0,1,…,n.. C a b⑶超几何分布与二项分布的关系.设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数.艮从超几何分布.假设放回式抽取,那么其中次品数〞的分布列可如下求得:把a 他个产品编号,那么抽取n次共有(a+b)n个可能结果,等可能:W=k) 含c n a k b n」个结果, 故k k. n k i -PS =k 〕 =Cna b n- Hk 〔W 〕k 〔1—W 〕n ,k =0,12 …,n,即〞~ B 〔n,a 〕.[我们先为 k 〔a,b 〕a b a- b a b个次品选定位置,共c k 种选法;然后每个次品位置有a 种选法,每个 正品位置有b 种选法]可以证实:当产品总数很大而抽取个数不多时, p 〔、k 〕5t pW=k 〕,因此二项分布可作为超几何分布的近似,无放回抽样 可近似看作放回抽样. 二、数学期望与方差.1.期望的含义:一般地,假设离散型随机变量E 的概率分布为那么称MWP 1%2P 2+…以n P nA 为的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平 2 .⑴随机变量〞=a U+b 的数学期望:E 〞 =E 〔a :+b 〕 =aE 巴+b ①当a=0时,E 〔b 〕 =b ,即常数的数学期望就是这个常数本身. ②当a=1时,E ^+b 〕=E C+b ,即随机变量已与常数之和的期望等于已的期望与这个常数的和.③当b=0时,E 〔a 与=aEj 即常数与随机变量乘积的期望等于这个常数 与随机变量期望的乘积为:(p + q = 1)⑷二项分布:E F.就/飞〞二印其分布列为'~B 〔n ,P 〕.〔P 为发⑵单点分布:P 〔 =1〕 =c .⑶两点分布: Et=c M1 =c其分布列为:E £=0M q +1M p =p ,其分布列生之的概率)⑸几何分布:E』1其分布列为一q(k,p). (P为发生E的概率) P3.方差、标准差的定义:当随机变量E的分布列为P(£=X k) =P k(k =1,2,…)时,那么称2小1上自、1十X2-EE)2P2平-十X n_E〞Pn +•为E的方差. 显然D U之0,故也=乒.v为E的根方差或标准差.随机变量E的方差与标准差都反映了随机变量E取值的稳定与波动,集中与离散的程度.D?越小,稳定性越高,波动越小.4.方差的性质.⑴随机变量〞=a£+b的方差D(n)=D(aE+b) =a2Dj (a、b均为常数) ⑵单点分布:D^=0其分布列为Array P( =1)=P⑶两点分布:D t = Pq其分布列为:(P+ q = 1)⑷二项分布:D ?';=nPq⑸几何分布:D = q2 P5.期望与方差的关系.⑴如果E U和E"者B存在,贝u E(t±n)=E t±E n⑵设已和“是互相独立的两个随机变量, 那么E(5)=E J E B D代+") = D t + D"⑶期望与方差的转化:D U E&(4)E(t-E it)=E(t)-E(E^)(由于E^为一常数)=E -E =0.三、正态分布.(根本不列入测试范围)1.密度曲线与密度函数:对于连续型随机变量总位于X轴上方,S落在任一区间[a,b)内的概率等于它与X轴.直线x=a与直线x=b所围成的曲边梯形的面积图像的函数f(x)叫做E 的密度函数,由于X"芭q ,+a c )b是必然事件,故密度曲线与x 轴所夹局部面积等于1. 2 .⑴正态分布与正态曲线:如果随机变量 S 的概率密度为:(X十)2f(x) = ^― e 24.(x w R, R ,o ■为常数,且仃为0),称E 服从参数为R ,o '的■. 2 二二正态分布,用0〜N(%r 2)表示.f(x)的表达式可简记为N(R Q 2),它的密度 曲线简称为正态曲线.⑵正态分布的期望与方差:假设七〜N(N/),那么已的期望与方差分别为: E -」,D -:,-2. ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线x "对称.③当x =N 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降 低,呈现出 中间高、两边低〞的钟形曲线.④当x <N 时,曲线上升;当x>N 时,曲线下降,并且当曲线向左、 向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当N 一定时,曲线的形状由.确定,.越大,曲线越 矮胖〞表示总 体的分布越分散;灯越小,曲线越 瘦高〞,表示总体的分布越集中. 3 .⑴标准正态分布:如果随机变量 s 的概率函数为x 2平(x)Jr Y x y 妁,那么称 已服从标准正态分布.即.〜N(0,i)有2 二y=f(x)(如图阴影局部)的曲线叫E 的密度曲线,力么其僦 xy邛(x)=p(£wx),中(x)=i_%»)求出,而 P (a< ^Wb)的计算那么是P(a Mb) =④(b) _^(a).注意:当标准正态分布的6(x)的X 取0时,有①(x)=0.5当①(x)的X 取大 于 0 的数时,有二(x) A0.5.比方曲0.5-N ) =0.0793Y0.5 贝U 0.5-. 如图.⑵正态分布与标准正态分布间的关系:假设 之〜用乩仃2)那么E 的分布通ISgg =0.5 Sa=0.5+S常用 F(x)表示,且有 p(?x) =F(x)=5(x -〃).(T4.⑴“金〞原那么.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布 N(N Q 2).②确定一次试 验中的取值a 是否落入范围串-3G T , N+3m .③做出判断:如果 a W (N —3仃,N+3⑴,接受统计假设.如果a a (2—3仃,r+刘,由于这是小概率 事件,就拒绝统计假设.⑵“女〞原那么的应用:假设随机变量 已服从正态分布N (依2)那么已落在 (N-3Q ,N+3⑴内的概率为 99.7% 亦即落在(良-3G出+即之外的概率为 0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合 格(即E 不服从正态分布).▲必然小于0妗x线。