第二章 线性规划问题的对偶理论与灵敏度分析总结

合集下载

《运筹学》胡运权 第4版 第二章 线性规划的对偶理论及灵敏度分析

《运筹学》胡运权 第4版 第二章  线性规划的对偶理论及灵敏度分析

b2 bm
x1, x2 , , xn 0
对 称 形 式 的
的 定 义
m W ib 1 n y 1 b 2 y 2 b m y m 对
s.t.
a11 a12 a1n
a21 a22 a2n
am1 y1 c1
am2 y2 amn ym
c2 cn
偶 问 题
y1, y2 , , ym 0
a23 x3 a33 x3
b2 b3
x1 0, x2 0, x3无 约 束
(2.4a) (2.4b) (2.4c) (2.4d)
先转换成对称形式,如下:
的 的一个变量,其每个变量对应于对偶问题 的一个约束。


m Z a c 1 x 1 x c 2 x 2 c n x n 一
对 偶
a11x1 a12x2 a1n xn (,)b1
a2
1x1
a22x2
a2n xn
(, )b2
般 线 性
问 题 的 定 义
am1x1 am2 x2 amnxn (,)bm xj 0( 0,或符号不限) j 1 ~ n
问题。

对偶问题是对原问题从另一角度进

行的描述,其最优解与原问题的最 优解有着密切的联系,在求得一个

线性规划最优解的同时也就得到对 偶线性规划的最优解,反之亦然。

对偶理论就是研究线性规划及其对 偶问题的理论,是线性规划理论的
重要内容之一。
问 题 的 导 出
例2-1
我们引用第一章中美佳公司的例子,如表1

x1, x2, , xn 0

m W ib 1 n y 1 b 2 y 2 b m y m

运筹学第2章对偶理论和灵敏度分析-第4节

运筹学第2章对偶理论和灵敏度分析-第4节

1 y1 2 y2 3 y3
x1 0, x2,x3 0, x4无约束
则由表2-4中原问题和对偶问题的对应关系, 可以直接写出上述问题的对偶问题,
max z ' 5 y 1 4 y 2 6 y 3
y1 2 y2
2



y1 3 y1
2 y2
综合上述,线性规划的原问题与对偶问题 的关系,
其变换形式归纳为表2-4中所示的对应关系。
原问题
目标函数 max z
n个
变 0


0
无约束
约 m 个



0



0

约束条件右端项
目标函数变量的系数
对偶问题
目标函数 min
n个 约


证:由性质(2)可知,
YbCX ,是不可能成立。
例:
LP:
DP:
maxzx1 x2
mi n4y1 2y2
2xx11xx22
4 2

2yy11yy22
1 1
x1,x2 0
y1,y2 0
从两图对比可明显看到原问题无界, 其对偶问题无可行解
j1

x
j

0,
j

1 ,2 ,
,n
第一步:先将等式约束条件分解 为两个不等式约束条件。
n
maxz cj xj j1


n
aijxj bi j 1,2,,m 213
j1


n
ai j x j
bi ,
i

线性规划的对偶问题

线性规划的对偶问题
第9页
(二)非对称型对偶问题
max z c1x1 c2x2 c3x3 c3x3 s.t. a11x1 a12 x2 a13x3 a13x3 b1
a21x1 a22 x2 a23x3 a23x3 b2 a2a1x21x1 a2a2 x222x2 a2a3x233x3 a2a3x233x3 b2b2 a31x1 a32x2 a33x3 a33x3 b3
min w b1y1 b2 y2 b3 y3 s.t. a11 y1 a21 y2 a31 y3 c1
a12 y1 a22 y2 a32 y3 c2
a13 y1 a23 y2 a33 y3 c3 y1 0,y2无约束,y3 0
第11页
(二)非对称型对偶问题
对偶问题(原问题)
目标函数 min
约束条件右端常数
目标函数的系数
3个
≥0

≤0

无符号限制
23个




条 件
=
第13页
二、原问题与对偶问题的对应关系
原问题(对偶问题)
目标函数 max
目标函数的系数
约束条件右端常数
约 m个
束≤
条 件

=
n个

≥0

≤0
无符号限制
对偶问题(原问题)
目标函数 min
约束条件右端常数
第8页
(二)非对称型对偶问题
max z = c1x1 + c2x2 + c3x3 s.t. a11x1 + a12x2 + a13x3 ≤ b1
a21x1 + a22x2 + a23x3 = b2 a31x1 + a32x2 + a33x3 ≥ b3 x1≥0, x2≤0, x3无约束 分析:化为对称形式。令 x2 x2,x3 x3 x3 (x3 0, x3 0)

运筹学对偶理论与灵敏度分析

运筹学对偶理论与灵敏度分析
17
(6)(互补松驰性)
若X*、Y*分别是原问题和对偶问题的可行解,则X*、Y*是最优解的充要条件是: Y*XS=0,YSX*=0 (其中XS,YS分别是原问题和对偶问题的松驰变量向量)。
证明:设原问题和对偶问题的标准型是 原问题
对偶问题
max Z CX
s.t.
AX X, Xs
Xs 0
b
CX (0) Y (0)b CX
所以 X是(0最) 优解。
15
(5)(强对偶定理) 若互为对偶问 题之一有最优解,则另一问题必有最优解,且它们的 目标函数X值* 是相原等问题。的最优解,对应基阵B必存在
C CB B1A 0
即得到 Y *A, C其中
Y * CB B 1
若 Y * 是对偶问题的可行解,它使
3x5 2 x4 2x5
3
解:对偶问题为
maxW 2 y1 3y2
x2 3x5 2
x1
x2
2x5
3
化简为
x1 1 x5
x2
2
3x5
y2 3
(1)
y1 y2 4
( 2)
5
y1 y1
y2 2 y2 5
( 3) ( 4)
3y1 2 y2 9
( 5)
y1, y2 0
n
max z c j x j j 1
s.t.
n
aij x j bi ,
j1
i 1, 2,
,m
x
j
0,
j 1, 2, , n
特点:对偶变量符号不限
对偶问题:
m
minW bi yi i 1
s.t.
m
aij yi c j ,
i1

运筹(第二章对偶与灵敏度分析)(1)

运筹(第二章对偶与灵敏度分析)(1)

5x2 3x3 30
x1 0, x2无约束,x3 0
2023/2/22
17
解:将原问题模型变形, 令x1 x1
min z 7x1 4x2 3x3
4x1 2x2 6x3 24
3x1 6x2 4x3 15 5x2 3x3 30
y1 y2 y3
x1 0, x2无约束,x3 0
则对偶问题是
max w 24 y1 15y2 30 y3
4 y1 3y2
7
x1
2 y1 6 y2 5 y3 4
x2
6 y1 4 y2 3x3 3
x3
y1, y2 0, x3无约束
2023/2/22
18
小结:对偶问题与原问题的关系:
目标函数:MAX
原 约束条件:m个约束


y1 y2
ym
2023/2/22
12
类似于前面的资源定价问题,每一个约束条件对 应一个“ 对偶变量”,它就相当于给各资源的单 位定价。于是我们有如下的对偶规划:
min W b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1 a12y1 a22y2 am2ymc2 a1n y1 a2n y2 amn ym cn y1, y2 ,, ym 0
分别是原问题和对偶问题的可行解,则恒有
n
m
c j x j bi yi
j 1
i 1
m
n
考虑利用 c j aij yi 及
aij x j bi
i 1
j 1
代入。
2、无界性 如果原问题(对偶问题)有无界解,则
其对偶问题(原问题)无可行解。
2023/2/22

运筹学 第二章 灵敏度分析

运筹学 第二章 灵敏度分析
改进多少,才能得到该决策变量的正数解。0表示不需再改进。
目标式系数: 指目标函数中的系数 允许增量、允许减量:表示目标函数中的系数在允许的增
量与减量范围内变化时,原问题的最优解不变。
450和1E+30的含义是什么?
2.2.2 图解法
x2
8 7 6 5 4 3 2 1
0<=c1<=750
(2,6)是最优解
2.4.2 图解法——改变车间2的约束
x2 改变车间1的约束又会是如何的?
2x2=18
8 7 6 5 4 3 2 1
(2,6)是最优解
2x2=12
可行域
2x2=6
1 23 4 5 6 7 8
x1
2.5 多个约束右端值同时变化的灵敏度分析
分析1小时的工时从车间3移到车间2,对总利润所产生的 影响。 那么,根据影子价格,可知总利润变化量如下: 车间2: 12-->13,利润增加?元 车间3: 18-->17,利润减
课本P50,例2.3,回答五个问题
1. 产品甲的单位利润将会在3.8万元~5.2万元之间波动,公司该 如何应对这种情况,提前对生产格局做好调整预案?
2. 当资源A的限额(储备量)在42~46之间变化时,对线性规划 的影响? 3. 材料B在最优生产格局中出现了12.5单位的剩余,那么应如何 重新制定限额,做好节约工作? 4. 若公司停止生产,把各种原材料变卖。该如何决策?

max z 300 x1 500 x2 x1 4 2 x 12 2 s.t. 3 x1 2 x2 18 x1 , x2 0
现从另一角度提出问题。假定某A公司想把该工厂的资源收购过 来,它至少应付出多大代价,才能使该工厂愿意放弃生产活动, 出让自己的资源?显然该工厂愿意出让自己资源的条件是:出让 代价应不低于用同等数量资源由自己组织生产活动时获取的赢利。 设分别用y1、y2、y3代表单位时间车间1、车间2、车间3的出让代 价,因该工厂用1小时车间1和3小时车间3可生产1扇门,赢利300 元;分别用2小时车间2和车间3可生产1扇窗,赢利500元,由此, y1、y2、y3的取值应满足: y1 + 3y3 ≥ 300 2y2 + 2y3 ≥ 500

第二章 线性规划问题的对偶理论与灵敏度分析总结

第二章 线性规划问题的对偶理论与灵敏度分析总结

第二章 线性规划问题的对偶理论与灵敏度分析总结一.对偶问题统一归纳表注意:对偶问题允许i b 小于0,也正是对于原问题i b 小于0,才引入了后面的对偶单纯形法解决问题。

二.对偶问题的基本性质⎩⎨⎧≥≤=0X ..max 设原问题为b AX t s CXz⎩⎨⎧≥≥=是列向量,0A .. min 对偶问题为TY Y C Y t s Yb TTω1.对称定理:对偶问题的对偶是原问题2.弱对偶性定理:若Y X 和分别是原问题和对偶问题的可行解,则有b TY X C ≤推论(1)max 问题的任一可行解的目标是对偶问题最优目标值的一个下界。

min 问题的任一可行解的目标函数 值是原问题最优目标值的一个上界。

(2)若原问题可行且其目标函数值无界,则对偶问题无可行解。

反之对偶问题可行且其目标函数值无界,则原问题无可行解。

(3)若原问题有可行解而对偶问题无可行解,则原问题目标函数值无界;反之对偶问题有可行解而原问题无可行解,则对偶问题目标函数值无界。

3. 最优性定理:若Y X 和分别是原问题和对偶问题的可行解,并且b TY X C =,则X 是原问题最优解,Y 是其对偶问题的最优解4. 强对偶性:若原问题及其对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。

5.互不松弛性:若Y X 和分别是原问题和对偶问题的可行解,则它们分别是最优解的充要条件是:0ˆ,ˆˆ0ˆ1j 1=<=>∑∑==i i nj ij i nj j ij i y b xa b x a y则如果,则如果练习:判断下列说法是否正确:(1) 任何线性规划问题存在并具有惟一的对偶问题;(✓)(2) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;(✗)(3) 设j ˆx ,i ˆy 分别为标准形式的原问题与对偶问题的可行解,*j x ,*i y 分别为其最优解,则恒有n n m m**j j j j i i i i j 1j 1i 1i 1ˆˆc x c x b y b y ====≤=≤∑∑∑∑;(✓) (5) 已知*i y 为线性规划的对偶问题的最优解,若*i y 0>,说明在最优生产计划中第i 种资源已完全耗尽;(✓) (6) 已知*i y 为线性规划的对偶问题的最优解,若*i y 0=,说明在最优生产计划中第i 种资源一定有剩余;(✗)简析:对(5)、(6),由互补松弛性质判断,具体详见课本P59三.对偶单纯形法(1). 对偶单纯形法应用前提: 1.检验数行全部非正2.变量取值有负数(2). 对偶单纯形法计算步骤:1.确定换出基变量 取{}i rb min b =,其对应变量r x 为换出基的变量。

运筹学第2章-线性规划的对偶理论

运筹学第2章-线性规划的对偶理论
❖ 影子价格不是市场价格,而是在现有技术和管理条件下, 新增单位资源所能够创造的价值,是特定企业的一种边 际价格;不同企业或同一企业不同时期,同种资源的影 子价格可能不同;当市场价格高于影子价格,可以卖出; 相反,则应买进,以获取更大收益
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0

(运筹学第二章)线性规划的对偶理论

(运筹学第二章)线性规划的对偶理论

第二章线性规划的对偶理论1.对偶问题的提出2.原问题与对偶问题3.对偶问题的基本性质4.影子价格5对偶单纯形法5.对偶单纯形法6.灵敏度分析7.参数线性规划1§1.对偶问题的提出原问题设某企业有m种资源用于生产n种不同产品,各种(i=1m)又生产单位第j种资源的拥有量分别为b i (i=1,…,m),又生产单位第j种产品(j=1,…,n)消费第i种资源a ij 单位,产值为c j 元。

用x 代表第j种产品的生产数量,为使该企业产值最大,可将上述问题建立线性规划模型j 将上述问题建立线性规划模型:max z =c 1x 1+c 2x 2+…+c n x n a 11x 1+a 12x 2+…+a 1n x n ≤b 1a 21x 1+a 22x 2+…+a 2n x n ≤b 2………………2a m 1x 1+a m 2x 2+…+a m n x n ≤b m x 1,x 2,…,x n ≥0§1.对偶问题的提出现在从另一角度提出问题:假定有另一企业欲将上述企业拥有的资源收买过来,至少应付出多少代价,才能使前一拥有的资源收买过来,至少应付出多少代价,才能使前企业愿意放弃生产活动,出让资源。

设用y i 代表收买该企业一单位i种资源时付给的代价,则总收买价为:ωb ω = b1y 1+…+b m y m 前一企业生产一单位第j种产品时,消耗各种资源的数量分别为a 1j ,a 2j ,…,a mj ,如果出让这些资源,价值应不低于单位j种产品的价值c j 元,因此:a 1 j y 1+ a 2 j y 2 + …+ a m j y m ≥ c j 3j j j j (j =1,…,n)§1.对偶问题的提出对后一企业来说,希望用最小代价把前一企业所有资源收过来此有有资源收买过来,因此有:min ω=b1y 1+b 2y 2+…+b m y m a11y 1+a 21y 2+…+a m 1y m ≥c 1a 12y 1+a 22y 2+…+a m 2y m ≥c 2………………a 1n y 1+a 2n y 2+…+a mn y m ≥c ny 1,y 2,…,y m ≥04§1对偶问题的提出§1.对偶问题的提出max z = c 1x 1+ c 2x 2+ … + c n x na x +a x ++a xb a 1 1x 1+ a 1 2x 2 + … + a 1 n x n ≤b 1a 2 1x 1+ a 2 2x 2 + … + a 2 n x n ≤b 2………………a m 1x 1+ a m 2x 2 + … + a m n x n ≤b mmin ω = b 1y 1+b 2y 2+…+b m y mx 1 ,x 2 ,… ,x n ≥0a 1 1y 1+ a 21 y 2 + … + a m 1y m ≥c 1a 1 2y 1+ a 22y 2 + … + a m 2y m ≥c 2………………a 1n y + a 2n y 2+ … + a y ≥c 51 n 12 n 2 mn m ny 1,y 2,… ,y m ≥0§2.原问题与对偶问题后一个线性规划问题是前一个问题从不同角度作的阐述如前者称为线性规划问的话的阐述。

对偶问题与灵敏分析

对偶问题与灵敏分析

y1,y2,… ,ym ≥0
y1,y2,… ,ym ≥0
原问题为:
Max Z= c1x1+c2x2+…+cnxn Min (-Z)= -c1x1-c2x2-…-cnxn
a11x1 + a12x2+…+a1n xn ≤ b1 a21x1 + a22x2+…+a2n xn ≤ b2
MaxZ(X)= 2x2-5x3
y1 -x1
-x3 ≤- 2
y2 2x1 + x2+6x3 ≤ 6
y3/
x1 - x2+3x3 ≤ 0
y3// -x1 + x2-3x3 ≤ 0
x1,x2,x3≥0
其对偶问题为:
Min W(y)= -2y1+6y2
x1
-y1 +2y2 +y3/ -y3//
≥x02
y2 -y3/ +y3// ≥2
4
4 x4
6
x1 0, x2 , x3 0, x4无限制
s.t约无2变y束符1y量4方号y1≤1y≥程约01003≤束7,≥=2yyy13y22y22约40y束y3无,332变y方y符3y3量程号无31≥≥≤≤约=00限53束2制
2.1.4对偶问题的基本性质
以对称型为例
设原问题(P)为 其对偶问题(D)为
无符号约束
约束方程≥ ≤
=
原问题( P)为
对偶规划问题(D)为:
max z c1x1 c2 x2 c3 x3 c4 x4
s.t aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
a14 x4 a24 x4

第2章线性规划讲义的对偶问题

第2章线性规划讲义的对偶问题

称CBB-1为单纯形乘子
19
二、对偶问题的基本性质
1. 对称性
2. 弱对偶性
推论:
(1)原问题任一可行解的目标函数值是其对偶问题目标函数 值的下界;反之对偶问题任一可行解的目标函数值是其 原问题目标函数值的上界。
(2)如原问题有可行解且目标函数值无界,则其对偶问题无 可行解;反之对偶问题有可行解且目标函数值无界,则 其原问题无可行解。
35
三、分析cj的变化 线性规划目标函数中变量系数cj的变化仅仅影响到检验 数,所以将cj的变化直接反映到最终单纯形表中,只可 能出现表2-9中的第一、二两种情况。
例5:在美佳公司例子中, (1) 若家电Ⅰ的利润降至1.5元/件, 而家电Ⅱ的利润增 至2元/件, 美佳公司最优生产计划有何变化? (2) 若家电Ⅰ的利润不变, 而家电Ⅱ的利润在什么范围 内变化时, 该公司的最优生产计划不发生变化。
28
练习: 用对偶单纯形法求解下述LP问题:
min w x1 4x2 3x4 x1 2x2 x3 x4 3
st. 2x1 x2 4x3 x4 2 xi 0(i 1,2,3,4)
29
min z cx
注: 若LP问题的标准形式为:
Ax b
st
.
x
0
其对偶单纯形法的求解步骤确定换入基变量的原则如下:
目标函数求极小值时,约束方程均为≥
2
二、对称形式下对偶问题的一般形式
对称形式的LP问题(LP1):
M Z c 1 x a 1 c 2 x x 2 c n x n
a 1 x 1 1 a 1 x 2 2 a 1 n x n b 1 a 2 x 1 1 a 2 x 2 2 a 2 n x n b 2

运筹学第二章灵敏度分析

运筹学第二章灵敏度分析

CB
-3 -5 -Z’
xB x1 X2
2.4 对偶解的经济解释
一、对偶线性规划 的解: P55
Cj xB x3 x1 x2 z b 7/2 7/2 3/2 x1 1 0 0 y4 Cj yB b y1 15/2 0 原问题变量 x2 0 0 1 0 y5 对偶问题变量 y2 y3 x3 1 0 0 0 y1 原问题变量 x4 5/4 1/4 -1/4 1/4 y2 x5 -15/2 -1/2 3/2 1/2 y3
T.G.Koopman(库普曼)和 L.V.Kamtorovich(康脱罗维奇)
二人因此而共同分享了1975年的第7届诺贝尔经 济学奖。
2.5 灵敏度分析
一、灵敏度分析的含义 是指系统或事物因周围条件变化显示出来的敏感性程度的分析。 对于线性规划问题的灵敏度分析是指参数A,b,C变化引起的 对原问题解的变化的分析。 其中:A为技术参数矩阵,b为资源向量,C为价值向量 可以用参数变化后的问题重新用单纯形法求解? 没必要,意义不大,有些问题看不出来。 把相应的变化反映到最终单纯形表中,再根据情况用相应的方 法求解。
Z 50 x1 30 x2
2.1 线性规划的对偶问题与对偶理论
假设现有乙公司准备租借用(购买)该木器厂的木工和 油漆工两种劳力的劳务,需要考虑这两种劳务以什么 样的价格租入最合算?而同时甲公司要以什么条件才 会租让?甲公司肯定会以自己利用两种劳力的劳务组 织生产所获得的利润最大为条件,设每个木工的租用 价格为y1,每个油漆工的租用价格为y2,则乙公司愿 意租用的出资为:
0 变量 0 无限制
型 约束 型 型
0 变量 0 无限制
型 约束 型 型

运筹学2对偶理论与灵敏度分析

运筹学2对偶理论与灵敏度分析

三、增加新变量的灵敏度分析
在管理中经常遇到的问题:已知一 种新产品的技术经济指标,在原有最优 生产计划的基础上,怎样最方便地决定 该产品是否值得投入生产,可在原线性 规划中引入新的变量 ; 无论增加什么样的新变量,新问题 的目标函数只能向好的方向变化。
例2.16 (续例2.14)
设企业研制了一种新产品,对三种资源的消耗系数 列向量以P6表示。试问它的价值系数c6符合什么条件, 才必须安排它的生产?设c6=3,新的最优生产计划是 什么?
1. 强制生产30件A x1 必须等于30 目 标值下降; 下降程度可用 x1 的检验数进行 计算:
cj CB 0 5 4 0 XB x3 x1 x2 x6 σ
j
5 b 25 35 10 150 x1 0 1 0 4 0
4 x2 0 0 1 2 0
0 x3 1 0 0 0 0
0 x4 2 1 -1 0 -1
0 x5 -5 -1 2 0 -3
0 x6 0 0 0 1 0
0 5 4 0
0 5 4 0
90 1 = 80 0 b 0 3
250 - 5b3 - 5 90 80 = 80 b 3 ≥0 1 1 80 2b b3 -1 2 3
2
解得40≤b3≤50,即当3∈[40,50]时,最优基B不变, 最优解为: * x3 250- 5b3 * x1 80 b 3 * = x2 80 2b 3
x4*=x5*=0, z*=5×(80-b3)+4×(-80+2b3)=80+3b3
例2.14 某企业利用三种资源生产两种产品 的最优计划问题归结为下列线性规划

线性规划中的对偶问题与灵敏度分析

线性规划中的对偶问题与灵敏度分析

线性规划中的对偶问题与灵敏度分析线性规划是一种优化方法,广泛应用于各个领域的决策问题。

在线性规划中,对偶问题与灵敏度分析是两个重要的概念和工具,可以帮助我们更好地理解和解决实际问题。

1. 对偶问题在线性规划中,对偶问题是指与原始问题相对应的一个问题。

它通过转换原始问题并构造一个新的问题,以便从不同的角度来解释和解决原始问题。

对偶问题能够提供原始问题的一些有用信息,并且在某些情况下,对偶问题的解与原始问题的解是相等的。

对偶问题的构造可以通过拉格朗日对偶性理论来完成。

该理论通过构造一个拉格朗日函数,将原始问题中的约束条件转化为拉格朗日乘子,从而得到对偶问题。

对偶问题的目标函数是原始问题的约束条件的线性组合。

解决对偶问题可以通过求解拉格朗日函数的最优化问题来实现。

对于线性规划问题,对偶问题的解可以通过求解一组线性方程或线性不等式来获得。

对偶问题的解不仅可以提供原始问题的一些信息,还可以用于检验原始问题的解的可行性和最优性。

2. 灵敏度分析灵敏度分析是在线性规划中评估解决方案对问题参数变化的响应程度的方法。

它可以帮助我们了解如果问题的参数发生变化,对解决方案的影响有多大,并做出相应的调整和决策。

灵敏度分析可以通过改变单个参数或多个参数来进行。

其中,常见的灵敏度分析包括目标函数系数的变化、约束条件右侧常量的变化和新增或取消约束条件。

这些变化可以用来模拟实际情况中可能发生的条件变化,以及评估解决方案的稳定性和可行性。

在进行灵敏度分析时,我们可以通过计算变动参数对解决方案的影响程度来得到一些关键指标。

例如,参数的变化导致目标函数值的变化量称为“影子价格”,而约束条件右侧常量的变化导致解决方案中相应决策变量的变化量,则称为“机会成本”。

灵敏度分析的结果可以帮助我们确定参数的重要性,判断解决方案的可行性和稳定性,以及找到最佳的决策方案。

在实际应用中,灵敏度分析可以帮助我们应对不确定性和风险,做出更加准确和可靠的决策。

运筹学第2章线性规划的对偶问题

运筹学第2章线性规划的对偶问题
第2章 线性规划的对偶理论 与灵敏度分析
§2.1 线性规划的对偶问题
随着线性规划应用的逐步加深,人们发现每一个线性规 划问题都存在一个与之对应的、具有密切关联的线性规 划问题,其中一个称为原问题,另一个称为对偶问题 (Dual linear programming,DLP)。对偶问题不仅具有 优良的数理性质,而且还有着重要的实际意义,尤其在 生产运营管理中有明显的经济含义。对偶理论充分显示 出线性规划理论逻辑上的严谨性和结构上的对称性,使 线性规划理论更加丰富,应用领域更为广泛。
yi 0 (i 1,2,3)
则得如下的线性规划模型:
min w 48 y1 20 y2 8 y3 8 y1 4 y2 2 y3 600 6 y 2 y2 1.5 y3 300 s.t. 1 y1 1.5 y2 0.5 y3 200 y , y , y 0 1 2 3
max z 2 y1 5 y2 9 y3 y1 3 y2 2 y3 3 2 y y 2 y 1 1 2 3 5 y1 y2 3 y3 1 y1无约束,y2 0, y3 0,
max z 600 x1 300 x2 200 x3 8 x1 6 x2 x3 48 4 x1 2 x2 1.5 x3 20 s.t 2 x1 1.5 x2 0.5 x3 8 x , x , x 0 1 2 3
x1 2, x2 0, x3 8
(2.1.6)
设 yi (i 1,2,, m) 表示第i种资源的定价,则其对偶问 题的形式为:
min w b1 y1 b2 y2 ... bm ym a11 y1 a21 y2 ... am1 ym c1 a y a y ... a y c 12 1 22 2 m2 m 2 s.t. a y a y ... a y c mn m n 1n 1 2 n 2 y1 , y2 , , ym 0

线性规划问题的对偶与灵敏度分析

线性规划问题的对偶与灵敏度分析
线性规划问题的对偶与灵敏 度分析
最大化的线性规划问题
某企业有A B C 三种资源,用来生产甲 乙两种 产品,产品的生产成本与利润如下表:

A B C 单位产品利


1 2 0
50
资源限制 (公斤)
1
300
1
400
1
250
100
• 问题:如何安排生产可使企业获得最大利润?
分析:目标函数最大化的问题
( y3 , y4 , y5 )(x1 , x2 , x3 )T 0
( y1 , y2 )(x4 , x5 )T 0
A=(B,N),X=(XB,XN)T,C=(CB,CN)
• AX + IXs =(B, N, I)(XB, XN, Xs)T=BXB +NXN +IXs
因为AX + IXs =b,所以BXB +NXN +IXs=b 即 XB=B-1b - B-1NXN - B-1Xs(用松弛变量与非
基变量表示基变量)
意义:如果原问题是极大化问题,那么它的可行解对应的目 标函数值不大于其对偶问题的任意可行解对应的目标函数 值。
证明:∵ X(0)、 Y(0)分别是原问题和对偶问题的可行解,∴ AX(0) ≤b, X(0) ≥0; Y(0) A≥C, Y(0) ≥0
∴ Y(0) A X(0) ≤ Y(0) b, Y(0) A X(0) ≥C X(0) 有C X(0) ≤ Y(0) b 证毕。
第二节 对偶理论
• 对于线性规划问题:max z =CX AX ≤b X≥0,插 入松弛变量Xs=(xn+1,xn+2,…,xn+m)T,将其标准 化为:
Max z =CX+0Xs AX+IXs =b X ≥0, Xs ≥0 其中I为m×m阶的单位阵。

灵敏度分析

灵敏度分析

-1 - 1 T ,, 1i mi
1

T
B b B
-1
- 1 T -1 1i ,, mi
B
Δ bi
பைடு நூலகம்
B
是原最优基逆阵B-1的第i列。如果变化后仍有
XB ≥0,则原最优基不变。由此可知,当△bi满足 1 1 B bk 1 ≤△b ≤ min B bk B1 0 i max 1 Bki 0 1 ki k Bki k Bki 时,原最优基不变。 结果说明 ,△bi的变化范围是由原基变量的相反数与B-1的 第i列元素的比值所确定的。 如果△bi不在上述范围变动,则变化后的基变量所取值 XB 肯定会出现负分量,但由于△bi不影响检验数的变化,因 此可以用 XB 取代原最优解XB=B-1b ,以该解为初始解,用对偶 单纯形法继续求解。
2.增加一个新约束条件的分析
设am+1,1x1+am+1,2x2+‥‥+am+1,nxn≤bm+1是新增加的约 束条件,试分析原问题最优解有无变化? 将原最优解代入新约束中,如果满足新约束条件,则原 最优解不变,反之,则需进一步求出新的最优解。 考虑到单纯形算法中,每步迭代得到的单纯形表对应的 约束方程组都与原约束方程组等价,因此,可以将新约束方 程 am+1,1x1+am+1,2x2+‥‥+am+1,nxn+xn+1=bm+1 增填到原最优表的下面,变化后的单纯形表增加一个行、一 个列,新约束对应的基变量是xn+1 ,在单纯形表中,由于增 加了新约束,原基变量对应的列向量可能不再是单位列向量, 所以需用初等行变换将表中基变量对应的列向量变为单位列 向量。变换后,原最优表的检验数不变,但基变量xn+1所取 的值一般要变了。若xn+1=B-1b m+1≥0,则已得最优解;反之, 若xn+1=B-1b m+1 <0,则用对偶单纯形法继续求解。

《运筹学》第二章 对偶问题和灵敏度分析jssk1

《运筹学》第二章 对偶问题和灵敏度分析jssk1

2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 线性规划问题的对偶理论与灵敏度分析总结
一.对偶问题统一归纳表
注意:对偶问题允许i b 小于0,也正是对于原问题i b 小于0,才引入了后面的对偶单纯形法解决问题。

二.对偶问题的基本性质
⎩⎨
⎧≥≤=0
X ..max 设原问题为b AX t s CX
z
⎩⎨
⎧≥≥=是列向量
,0A .. min 对偶问题为
T
Y Y C Y t s Yb T
T
ω
1.对称定理:对偶问题的对偶是原问题
2.弱对偶性定理:若Y X 和分别是原问题和对偶问题的可行解,则有b T
Y X C ≤
推论(1)max 问题的任一可行解的目标是对偶问题最优目标值的一个下界。

min 问题的任一可行
解的目标函数 值是原问题最优目标值的一个上界。

(2)若原问题可行且其目标函数值无界,则对偶问题无可行解。

反之对偶问题可行且其目标函数值无界,则原问题无可行解。

(3)若原问题有可行解而对偶问题无可行解,则原问题目标函数值无界;反之对偶问题有可行解而原问题无可行解,则对偶问题目标函数值无界。

3. 最优性定理:若Y X 和分别是原问题和对偶问题的可行解,并且b T
Y X C =,则X 是原问题最优解,Y 是其对偶问题的最优解
4. 强对偶性:若原问题及其对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。

5.互不松弛性:若Y X 和分别是原问题和对偶问题的可行解,则它们分别是最优解的充要条件是:
0ˆ,ˆˆ0ˆ1
j 1
=<=>∑∑==i i n
j ij i n
j j ij i y b x
a b x a y
则如果,则如果
练习:判断下列说法是否正确:
(1) 任何线性规划问题存在并具有惟一的对偶问题;(✓)
(2) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;(✗)
(3) 设j ˆ
x ,i ˆy 分别为标准形式的原问题与对偶问题的可行解,*j x ,*i y 分别为其最优解,则恒有n n m m
**j j j j i i i i j 1
j 1
i 1
i 1
ˆ
ˆc x c x b y b y ====≤=≤∑∑∑∑;(✓) (5) 已知*
i y 为线性规划的对偶问题的最优解,若*i y 0>,说明在最优生产计划中第i 种资源已完全耗尽;(✓) (6) 已知*
i y 为线性规划的对偶问题的最优解,若*i y 0=,说明在最优生产计划中第i 种资源一定有剩余;(✗)
简析:对(5)、(6),由互补松弛性质判断,具体详见课本P59
三.对偶单纯形法
(1). 对偶单纯形法应用前提: 1.检验数行全部非正
2.变量取值有负数
(2). 对偶单纯形法计算步骤:
1.确定换出基变量 取{}
i r
b min b =,其对应变量r x 为换出基的变量。

2.确定换入基的变量
rs a 为主元素,s x 为进基变量,若所有0≥rj a ,则原问题无可行解
3.用换入变量替换换出变量,得到一个新的基。

对新的基再检查是否所有0b ≥i ,如是,找到
两者的最优解,如为否,回到第1步继续迭代。

练习:用对偶单纯形法解下列线性规划问题
解:
进基2y ∴
rs s s rj rj j j j a z c a a z c -=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=0m in θ0
,,,y 1
25-26..5215321432⎪⎩⎪⎨⎧≥-=+---=+--y y y y y y y y y t s 32152415m ax y
y y w ---=32152415m in y y y w ++= 0,,y 12526..3
2132132⎪⎩⎪
⎨⎧≥≥++≥+y y y y y y y t s 4/14
/10
14/54/12404
1015
13/13/2053/103/1252----------y y 46-24-m in 0m in =⎭⎫⎩⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=rj rj j j j a a z c θ011602045
4
321---y y
y y y y b Y C B B
四.灵敏度分析
2.分析j c 的变化
当N c (非基变量的目标函数系数)中某个j c 发生变化时,只影响到非基变量j x 的检验数 带入变化后的j
c 到单纯形表中,求解检验数,j σ
⎩⎨
⎧≥≤形法继续迭代,不是最优解,用单纯
值可能发生变化,仍为最优解,但最优

00j σ
3.分析i b 的变化
带入变化量b ∆求出)(b
1b b B ∆+=-,

⎨⎧≤≥单纯形法继续迭代是对偶可行解,用对偶、最优值可能改变仍为最优解,但最优解

0 0b
4.增加一个变量j x 的分析
(1)计算j B
j P B c c 1
-j -=,σ (2)计算j 1,
j
P P B -=
(3)若⎩
⎨⎧≥≤代找出最优,则按单纯形法继续迭,原最优解不变
,00j
σ
5.分析参数ij a 变化
(1)若ij a 的变化发生在非基变量,按4中办法求解
(2)若ij a 的变化发生在基变量,将使B 和-1
B 发生改变,需引入人工变量求解,将原问题转为
可行解再用单纯形表发求解
6.增加一个约束条件的分析
(1)将当前的最优解带入新增的约束,若满足约束条件,可暂不考虑新增约束的影响,否则转下
一步;
(2)把新增约束添加到原问题的最终表中,并做初等行变换,构成对偶可行的单纯形表,并用对偶单纯形表迭代,求出新的最优解。

相关文档
最新文档