2对偶及灵敏度分析
对偶理论和灵敏度分析

A ( B, N ), X ( X B , X N )T , C (CB , CN ) 这样 XB X ( A, I ) ( B, N , I ) X N BX B NX N IX S XS X S
min w 300 y1 400 y2 250 y3 y1 2 y2 50 y1 y2 y3 100 y1 , y2 , y3 0
对称形式下对偶问题的一般形式
对称形式:
其变量均具有非负约束 其约束条件当目标函数要求极大时取“≤”,当目 标函数求极小时均取“≥”
min w b1 y1 b2 y2 b3 y3
a11 y1 a21 y2 a31 y3 c1 a y a y a y c 12 1 22 2 32 3 2 st. a13 y1 a23 y2 a33 y3=c3 y1 0, y2无约束, y3 0
非对称形式的原-对偶问题
, 有x2 0 令x2 x2 x3 ,其中x3 0,x3 0。 令x3 x3
c3 x3 c3 x3 max z c1 x1 c2 x2 a13 x3 a13 x3 b1 a11 x1 a12 x2 a x a x a x a x b 21 1 22 2 23 3 23 3 2 a23 x3 a23 x3 b2 st. a21 x1 a22 x2 a x a x a x a x b 3 31 1 32 2 33 3 33 3 0, x3 0, x3 0 x1 0, x2
运筹学对偶理论与灵敏度分析

(6)(互补松驰性)
若X*、Y*分别是原问题和对偶问题的可行解,则X*、Y*是最优解的充要条件是: Y*XS=0,YSX*=0 (其中XS,YS分别是原问题和对偶问题的松驰变量向量)。
证明:设原问题和对偶问题的标准型是 原问题
对偶问题
max Z CX
s.t.
AX X, Xs
Xs 0
b
CX (0) Y (0)b CX
所以 X是(0最) 优解。
15
(5)(强对偶定理) 若互为对偶问 题之一有最优解,则另一问题必有最优解,且它们的 目标函数X值* 是相原等问题。的最优解,对应基阵B必存在
C CB B1A 0
即得到 Y *A, C其中
Y * CB B 1
若 Y * 是对偶问题的可行解,它使
3x5 2 x4 2x5
3
解:对偶问题为
maxW 2 y1 3y2
x2 3x5 2
x1
x2
2x5
3
化简为
x1 1 x5
x2
2
3x5
y2 3
(1)
y1 y2 4
( 2)
5
y1 y1
y2 2 y2 5
( 3) ( 4)
3y1 2 y2 9
( 5)
y1, y2 0
n
max z c j x j j 1
s.t.
n
aij x j bi ,
j1
i 1, 2,
,m
x
j
0,
j 1, 2, , n
特点:对偶变量符号不限
对偶问题:
m
minW bi yi i 1
s.t.
m
aij yi c j ,
i1
运筹(第二章对偶与灵敏度分析)(1)

5x2 3x3 30
x1 0, x2无约束,x3 0
2023/2/22
17
解:将原问题模型变形, 令x1 x1
min z 7x1 4x2 3x3
4x1 2x2 6x3 24
3x1 6x2 4x3 15 5x2 3x3 30
y1 y2 y3
x1 0, x2无约束,x3 0
则对偶问题是
max w 24 y1 15y2 30 y3
4 y1 3y2
7
x1
2 y1 6 y2 5 y3 4
x2
6 y1 4 y2 3x3 3
x3
y1, y2 0, x3无约束
2023/2/22
18
小结:对偶问题与原问题的关系:
目标函数:MAX
原 约束条件:m个约束
对
问
y1 y2
ym
2023/2/22
12
类似于前面的资源定价问题,每一个约束条件对 应一个“ 对偶变量”,它就相当于给各资源的单 位定价。于是我们有如下的对偶规划:
min W b1 y1 b2 y2 bm ym
a11 y1 a21 y2 am1 ym c1 a12y1 a22y2 am2ymc2 a1n y1 a2n y2 amn ym cn y1, y2 ,, ym 0
分别是原问题和对偶问题的可行解,则恒有
n
m
c j x j bi yi
j 1
i 1
m
n
考虑利用 c j aij yi 及
aij x j bi
i 1
j 1
代入。
2、无界性 如果原问题(对偶问题)有无界解,则
其对偶问题(原问题)无可行解。
2023/2/22
第二章线性规划的对偶理论和灵敏度分析自测题key

i i ii第二章 线性规划的对偶理论和灵敏度分析自测题1. 判断下述说法是否正确(1) 任何线性规划问题存在并具有唯一的对偶问题。
(2) 线性规划原问题的对偶问题的对偶是原问题本身。
(3) 原问题的任一可行解对应的目标函数值都不超过其对偶问题的任一可行解对应的目标函数值。
(4) 已知对偶问题的最优解中, y * > 0 ,则原问题中在资源最优配置下,第i 种资源已完全消 耗殆尽。
(5) 已知对偶问题的最优解中, y * = 0 ,则原问题中在资源最优配置下,第 i 种资源一定未 完全消耗。
(6) 影子价格就是市场价格。
(7) 若第 i 种资源的影子价格为 y * > 0 ,则在保持原问题中其它条件不变时,在资源最优配置下,当第i 种资源增加10个单位时,最优值将一定增加10 y * .(8) 在应用对偶单纯形法计算时,若在某一个单纯形表中,出现某行除该行对应的基变量值小于0外,该行其余元素全部大于或等于0,则可以判断该线性规划问题无最优解。
(9) 在应用对偶单纯形法计算时,若在某一个单纯形表中,出现某行除该行对应的基变量值小于0外,该行其余元素全部小于或等于0,则可以判断该线性规划问题的对偶问题无最优解。
(10)线性规划的原问题和其对偶问题的最优值如果存在,则必然相等。
(11)线性规划问题的最终单纯形表中,当仅某一非基变量在目标函数中的系数变化时,线性规划问题的最优解一定不改变。
(12)线性规划问题的最终单纯形表中,当仅有某一基变量在目标函数中的系数变化时,线性规划问题的最优解一定不改变。
(13)线性规划问题的最终单纯形表中,当仅有某一非基变量在系数矩阵中的列变化时,线性规划问题的最优解一定不改变。
(14)线性规划问题的最终单纯形表中,当仅有某一基变量在系数矩阵中的列变化时,线性规划问题的最优解一定不改变。
(15)线性规划问题的最终单纯形表中,当仅有某种资源的数量变化时,线性规划问题的最优值一定改变。
运筹学2对偶问题

§2.1线性规划的对偶模型 Dual model of LP
Ch2 Dual Problem
2019/9/19
Page 11 of 19
在例2.1中,原问题的最优解X=(24.24,0,46.96) 对偶问题的最优解Y=(10.6,0.91,0,0) 最优值z=w=5712.12
分析:
1. y1=10.6说明在现有的资源限量的条件下,增加 一个单位第一种资源可以给企业带来10.6元的利润; 如果要出售该资源,其价格至少在成本价上加10.6元。
1
1
3
5 x
x
2
2
8 10
x 1 0 , x 2 0
【解】这是一个对称形式的线性规划,它的对偶问题求最
小值,有三个变量且非负,有两个“ ≥”约束,即
min w 6 y1 8 y2 10 y3
5 y1 7 y2 y3 4 y1 2 y2 3y3 3 yi 0, i 1,2,3
§2.1线性规划的对偶模型 Dual model of LP
Ch2 Dual Problem
2019/9/19
Page 16 of 19
若给出的线性规划不是对称形式,可以先化成对称形式再 写对偶问题。也可直接按表2-1中的对应关系写出非对称 形式的对偶问题。
例如,原问题是求最小值,按表2-1有下列关系:
及食物价格如下表,试建立此人在满足健康需要的基础上
花费最少的数学模型。
含量 食物
营养成分
一
二
三 四 五 六 需要量
A
13 25 14 40 8 11 ≥80
B
24
9
30 25 12 15 ≥150
第三章-对偶理论及灵敏度分析3课件

二、原问题与对偶问题的数学模型
继续
三、原问题与对偶问题的对应关系
返回
第三章-对偶理论及灵敏度分析3
一、对偶问题的提出
对
偶 问
实例:某家电厂家利用现有资源生产两种
题
产品, 有关数据如下表:
上页 下页 返回
设备A 设备B 调试工序
产品Ⅰ 产品Ⅱ
0
5
6
2
1
1
利润(元) 2
1
D
15时 24时 5时
第三章-对偶理论及灵敏度分析3
第三章 对偶理论及灵敏度分析
3.1.1 线性规划对偶问题 3.1.2 对偶问题的基本性质 3.1.3 影子价格 3.1.4 对偶单纯形法 3.2.1 灵敏度问题及其图解法 3.2.2 灵敏度分析 3.2.3 参数线性规划
第三章-对偶理论及灵敏度分析3
3.1.1 线性规划的对偶问题
一、对偶问题的提出
下页
(Y1,Y2
)
A A
C
返回
Y1 0 ,Y2 0
第三章-对偶理论及灵敏度分析3
对 偶 问
(mY1inwY2 )(YA1YC2 )b
题
Y1 0, Y2 0
令 YY1 ,Y 得2对偶问题为:
上页
下页
maYxA
w C
Yb
返回
Y无约束
证毕。
第三章-对偶理论及灵敏度分析3
三、原问题与对偶问题的对应关系
设备B –––– 元/y时2
问 题
调试工序 –––– 元y/3时
付出的代价最小,
且对方能接受。
上页
下页
出让代价应不低于
返回
用同等数量的资源
收
对偶单纯形法+灵敏度分析讲解

北京联合大学 耿钰
第四节 对偶单纯形法
例 用对偶单纯形法求解
maxZ x1 4x2 3x4
x1 2x2 x3 x4 3
x
2x j
10 jx2
1,24,x33,4 x4
2
能否用对偶单纯形法呢?
原问题表中的检验数满足最优性条件
CN-CB B-1 N≤0
ATY ≥ CT;
min w Y T b bTY
-CB B-1 ≤0;
Y≥0
CB:1×m B-1:m ×m
YT= CB B-1
CB B-1:1 ×m Y: m ×1
ATY CT s.t.
Y 0
从上面可以看出:
1、当原问题达到最优时,松弛变量经过上述转换后构成的检验 数的相反数为其对偶问题的一个可行解,反之亦成立
-1 x1 7 0 x3 4
7
1 7/2 0 5/2 -2 -1/2 0 3/2 1 3/2 -1 -1/2 0 -1/2 0 -1/2 -2 -1/2
最优解 X*=(7,0,4, 0)T
Z*=-7
北京联合大学 耿钰
例6 用对偶单纯形法求解
min w 2x1 3x2 4x3
(P)
x1 2x2 x3 3 2x1 x2 3x3 4
原问题不 可行,应 该换基迭 代。但按 对偶单纯 形法的思 想,每次 均应保证 检验数均 非正
cj
CB XB b -1 x1 3 0 x6 -8
3
-1 -4 0 -3 0 0
x1 x2 x3 x4 x5 x6 1 2 - 1 1 -1 0 0 -3 -2 -3 2 1 0 -2 -1 -2 -1 0
运筹学第二章第6讲

例题4:写出以下模型的对偶问题
max z = 3 x1 − 2 x2 − 5 x3 + 7 x4 + 8 x5 x2 − x3 + 3 x4 − 4 x5 = −6 2 x1 + 3 x2 − 3 x3 − x4 ≥ 2 − x1 + 2 x3 − 2 x4 ≤ −5 s.t. − 2 ≤ x1 ≤ 10 5 ≤ ≤ 25 x2 , ≥ 0, 为自由变量 x5 x3 x4
OR1
对偶问题(或原问题) 对偶问题(或原问题) 目标函数 MinW
约束条件数: 约束条件数:n 第i个约束条件类型为“≥” 个约束条件类型为“ ” 个约束条件类型为 个约束条件类型为“ ” 第i个约束条件类型为“≤” 个约束条件类型为 个约束条件类型为“ 第i个约束条件类型为“=” 个约束条件类型为 对偶变量数: 个 对偶变量数:m个 第i个变量 个变量≥0 个变量 个变量≤0 第i个变量 个变量 第i个变量是自由变量 个变量是自由变量
OR1
15
2 弱对偶性:极大化原问题的任一可行解的目标 弱对偶性: 函数值不大于其对偶问题任意可行解的目标函数 值。即: C X≤ Yb
证明:设原问题为maxZ=CX, AX ≤b ,X ≥0. ≥0. 证明: 原问题为maxZ=CX,
为原问题的可行解, ≤b, X 为原问题的可行解,有AX ≤b,
二.对偶线性规划的定义 对偶线性规划的定义
max Z = CX ( LP ) AX ≤ b S .T . X ≥ 0
称线性规划(DLP)为线性规划 为线性规划(LP)的对偶线性规划 称线性规划 为线性规划 的对偶线性规划
minω = yb ( DLP ) yA ≥ C S .T . y ≥ 0
数学建模---对偶问题和灵敏度分析

对偶问题例题1:某养鸡场所用的混合饲料由n 种天然饲料配合而成。
要求在这批配合饲料中必须含有m 种不同的营养成分,且第i 种营养成分的含量不低于bi 。
已知第i 种营养成分在每单位第j 种天然饲料中的含量为a ij ,每单位第j 天然饲料的价格为c j 。
试问,应如何对这n 种饲料配方,使这批饲料的费用最小? 解 设x j 为第j 种天然饲料的用量。
显然,a ij x j 即为所用第j 种天然饲料中第i 种营养成分的含量,1nij j j a x =∑为这批混合饲料中第i 种营养成分的总含量;它不应低于bi 。
于是,我们得下列线性规划模型(1—1):1min nj jj f c x ==∑11,,..01,,nij j i j j a x b i m s t x j n=⎧≥=⎪⎨⎪≥=⎩∑现设想有一个饲料加工厂欲把这m 种营养成分分别制成m 种营养丸。
设第i 种营养丸的价格为ui(i =1,…,m)。
则养鸡场采购一个单位的第j 种天然饲料,就相当于对这m 种营养丸分别采购数量a 1j ,…a mj ,所化费用为1mij ii a u =∑养鸡场自然希望在用营养丸代替天然饲料时,在价格上能相对地比较便宜,故而饲料加工厂为了能与天然饲料供应者竞争,在制订价格时必然满足下述条件:11,,mij ij i a uc j n =≤=∑另一方面,养鸡场如果全部采购营养丸来代替天然饲料进行配料,则第i 种营养丸就需采购bi 个单位,所化费用为b i u i ,总费用为z=∑b i u i饲料加工厂面临的问题是:应把这m 种营养丸的单价ui(f=1,…,m)定为多少,才能使养鸡场乐意全部采用该厂生产的营养丸来取代这批天然饲料,且使本厂在竞争中得到最大收益。
为该问题建立数学模型,即得如下线性规划(1—2):1max mi i i z b u ==∑11,,..01,,mij i j i ia u c j n s t u i m =⎧≤=⎪⎨⎪≥=⎩∑我们称问题(1—2)为原有问题 (1—1)的对偶问题(记为(D))。
运筹学第二章灵敏度分析

CB
-3 -5 -Z’
xB x1 X2
2.4 对偶解的经济解释
一、对偶线性规划 的解: P55
Cj xB x3 x1 x2 z b 7/2 7/2 3/2 x1 1 0 0 y4 Cj yB b y1 15/2 0 原问题变量 x2 0 0 1 0 y5 对偶问题变量 y2 y3 x3 1 0 0 0 y1 原问题变量 x4 5/4 1/4 -1/4 1/4 y2 x5 -15/2 -1/2 3/2 1/2 y3
T.G.Koopman(库普曼)和 L.V.Kamtorovich(康脱罗维奇)
二人因此而共同分享了1975年的第7届诺贝尔经 济学奖。
2.5 灵敏度分析
一、灵敏度分析的含义 是指系统或事物因周围条件变化显示出来的敏感性程度的分析。 对于线性规划问题的灵敏度分析是指参数A,b,C变化引起的 对原问题解的变化的分析。 其中:A为技术参数矩阵,b为资源向量,C为价值向量 可以用参数变化后的问题重新用单纯形法求解? 没必要,意义不大,有些问题看不出来。 把相应的变化反映到最终单纯形表中,再根据情况用相应的方 法求解。
Z 50 x1 30 x2
2.1 线性规划的对偶问题与对偶理论
假设现有乙公司准备租借用(购买)该木器厂的木工和 油漆工两种劳力的劳务,需要考虑这两种劳务以什么 样的价格租入最合算?而同时甲公司要以什么条件才 会租让?甲公司肯定会以自己利用两种劳力的劳务组 织生产所获得的利润最大为条件,设每个木工的租用 价格为y1,每个油漆工的租用价格为y2,则乙公司愿 意租用的出资为:
0 变量 0 无限制
型 约束 型 型
0 变量 0 无限制
型 约束 型 型
线性规划中的对偶问题与灵敏度分析

线性规划中的对偶问题与灵敏度分析线性规划是一种优化方法,广泛应用于各个领域的决策问题。
在线性规划中,对偶问题与灵敏度分析是两个重要的概念和工具,可以帮助我们更好地理解和解决实际问题。
1. 对偶问题在线性规划中,对偶问题是指与原始问题相对应的一个问题。
它通过转换原始问题并构造一个新的问题,以便从不同的角度来解释和解决原始问题。
对偶问题能够提供原始问题的一些有用信息,并且在某些情况下,对偶问题的解与原始问题的解是相等的。
对偶问题的构造可以通过拉格朗日对偶性理论来完成。
该理论通过构造一个拉格朗日函数,将原始问题中的约束条件转化为拉格朗日乘子,从而得到对偶问题。
对偶问题的目标函数是原始问题的约束条件的线性组合。
解决对偶问题可以通过求解拉格朗日函数的最优化问题来实现。
对于线性规划问题,对偶问题的解可以通过求解一组线性方程或线性不等式来获得。
对偶问题的解不仅可以提供原始问题的一些信息,还可以用于检验原始问题的解的可行性和最优性。
2. 灵敏度分析灵敏度分析是在线性规划中评估解决方案对问题参数变化的响应程度的方法。
它可以帮助我们了解如果问题的参数发生变化,对解决方案的影响有多大,并做出相应的调整和决策。
灵敏度分析可以通过改变单个参数或多个参数来进行。
其中,常见的灵敏度分析包括目标函数系数的变化、约束条件右侧常量的变化和新增或取消约束条件。
这些变化可以用来模拟实际情况中可能发生的条件变化,以及评估解决方案的稳定性和可行性。
在进行灵敏度分析时,我们可以通过计算变动参数对解决方案的影响程度来得到一些关键指标。
例如,参数的变化导致目标函数值的变化量称为“影子价格”,而约束条件右侧常量的变化导致解决方案中相应决策变量的变化量,则称为“机会成本”。
灵敏度分析的结果可以帮助我们确定参数的重要性,判断解决方案的可行性和稳定性,以及找到最佳的决策方案。
在实际应用中,灵敏度分析可以帮助我们应对不确定性和风险,做出更加准确和可靠的决策。
《运筹学》第二章 对偶问题和灵敏度分析jssk1

2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
实验二运筹学

实验二线性规划模型的对偶问题及灵敏度分析一、实验目的:进一步掌握线性规划模型的基本原理,理解线性规划的对偶问题,掌握R软件在线性规划问题灵敏度分析中的运用。
二、实验内容:(1)教材P127 习题1。
利用线性规划的最终单纯形表,对目标函数系数和约束方程的常数项进行灵敏度分析,并在R软件中验证你的计算结果;(2)教材P131 习题11。
写出该问题的对偶问题,并用R 软件求解原问题和对偶问题。
指出二者最优解与对偶价格之间的联系。
(3)建立教材P130 习题7的数学模型并用R软件分析。
三、实验要求:(1)利用线性规划基本原理对所求解问题建立数学模型;(2)熟练写出线性规划问题的对偶问题;(3)给出R软件中的输入并求解;(4)对目标函数系数及约束方程的常数项进行灵敏度分析四、实验报告要求:实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。
(1)maxz=20X1+8X2+6X38X1+3X2+2X3<=2502X1+X2<=504X1+3X3<=150X 1,X2,X3>=0> library(lpSolve)> obj<-c(20,8,6)> mat<-matrix(c(8,3,2,2,1,0,4,0,3),nrow=3,byrow=T) > dir<-c("<=","<=","<=")> rhs<-c(250,50,150)> x<-lp("max",obj,mat,dir,rhs,compute.sens=1)> x$status;x$solution;x$objval[1] 0[1] 0 50 50[1] 700> x$sens.coef.from;x$sens.coef.to[1] -1e+30 6e+00 3e+00[1] 2.4e+01 1.0e+30 1.0e+30C1范围是(-∞,24),C2范围是(6,+∞),C3范围是(3,+∞)> library(lpSolve)> obj<-c(20,8,6)> mat<-matrix(c(8,3,2,2,1,0,4,0,3),nrow=3,byrow=T) > dir<-c("<=","<=","<=")> rhs<-c(250,50,150)> x<-lp("max",obj,mat,dir,rhs,compute.sens=1)> x$status;x$solution;x$objval[1] 0[1] 0 50 50[1] 700> x$duals;x$duals.from;x$duals.to[1] 0 8 2 -4 0 0[1] -1.000000e+30 7.105427e-15 -2.842171e-14 0.000000e +00 -1.000000e+30 -1.000000e+30[1] 1.0e+30 5.0e+01 1.5e+02 2.5e+01 1.0e+30 1.0e+30b1,b2,b3的对偶价格分别为0、8、2;b1范围为(250,∞),b2范围为(0, 50),b3范围为(0, 150)。
管理运筹学--单纯形法的灵敏度分析与对偶对偶问题讲课讲稿

3. 初始单纯表中的约束系数矩阵为:
[A,I]=[B,N,I] 迭代后的单纯形表中约束系数矩阵为:
[B-1A, B-1I]=[B-1B, B-1N, B-1I]=[I , B-1N, B-1] 4. 若初始矩阵中变量xj的系数向量为Pj,迭代
x4
x5 值
0 x3
8
1
0
1
0
0
0 x4 12 0 2 0 1 0
0 x5 36 3 4 0 0 1
检验数j
3 50 0 0
• 最优基和最优基的逆
Cj
3 5 0 0 0比
CB XB
b
x1
x2 x3
x4
x5 值
0 x3 4 0 0 1 2/3 -1/3
5 x2 6 0 1 0 1/2 0
3 x1 4 1 0 0 -2/3 1/3
0
0
1
表
j
0
0 -50
0
-50
初始单纯形表为:
Cj
CB
CN
0
XB
XN
XS
0
X S
b
B
N
I
检验数j
CB
CN
0
当迭代若干步,基变量为X B时,新的单纯形表:
Cj
CB
CN
0
XB
XN
XS
CB
b X B
B-1
I
检验数j
0
B-1N CN- CB B-1N
B-1 - CB B-1
小结
1. 对应初始单纯表中的单位矩阵I,迭代后的 单纯形表中为B-1