对流换热与准则数

合集下载

对流换热计算式

对流换热计算式

关系式返回到上一层以下汇总了工程中最常见的几类对流换热问题的对流换热计算关系式,适用边界条件,已定准则的适用范围,特征尺寸与定性温度的选取方法。

一、掠过平板的强迫对流换热应注意区分层流和湍流两种流态 ( 一般忽略过渡流段 ) ,恒壁温与恒热流两种典型的边界条件,以及局部 Nu 数和平均 Nu 数。

沿平板强迫对流换热准则数关联式汇总注意:定性温度为边界层的平均温度,即。

二、管内强迫对流换热(1) 流动状况不同于外部流动的情形,无论层流或者湍流都存在流动入口段和充分发展段,两者的长度差别很大。

计算管内流动和换热时,速度必须取为截面平均速度。

(2) 换热状况管内热边界层也同样存在入口段和充分发展段,只有在流体的 Pr 数大致等于 1 的时候,两个边界层的入口段才重合。

理解并准确把握两种典型边界条件 ( 恒壁温与恒热流 ) 下流体截面平均温度的沿程变化规律,对管内对流换热计算有着特殊重要的意义。

(3) 准则数方程式要注意区分不同关联式所针对的边界条件,因为层流对边界条件的敏感程度明显高于湍流时。

还需要特别指出,绝大多数管内对流换热计算式 5f 对工程上的光滑管,如果遇到粗糙管,使用类比率关系式效果可能更好。

下表汇总了不同流态和边界条件下管内强迫对流换热计算最常用的一些准则数关联式。

(4) 非圆截面管道仅湍流可以用当量直径的概念处理非圆截面管道的对流换热问题。

层流时即使用当量直径的概念也无法将不同截面形状管道换热的计算式全部统一。

常热流层流,充分发展段,常壁温层流,充分发展段,充-充分发展段,气体,-充分发展段,液体,;紊流,充分发展段,紊流,粗糙管紊流,粗糙管三、绕流圆柱体的强迫对流换热流体绕圆柱体流动时,流动边界层与掠过平板时有很大的不同出现脱体流动和沿程局部 Nu 数发生大幅度升降变化的根本原因。

横掠单根圆管的对流换热计算式还被扩展到非圆管的情形。

关联式:定性温度为主流温度,定型尺寸为管外径,速度取管外流速最大值。

第四章 对流换热_2

第四章 对流换热_2
粘性扩散能力 热扩散能力
体分子和流体微团的动量和
热量扩散的深度.
边界层型对流传热问题的数学描写
热边界层与流动边界层的关系
两种边界层厚度的相对大小取决于流体运动粘度与热扩散率的相对大小; 运动粘度反映流体动量扩散的能力,其值越大流动边界层越厚 。 热扩散率反映物体热量扩散的能力,在其它条件相同的情况下,其值越大 ,热边界层越厚。 称为普朗特数 Pr 令 其物理意义为流体的动量扩散能力与热量扩散能力之比。 a 对于层流边界层,当 Pr
速度边界层
流体流过固体壁面时,由于壁面层流体分子的不滑移特性,在流 体黏性力的作用下,近壁流体流速在垂直于壁面的方向上会从壁 面处的零速度逐步变化到来流速度。
u y
t∞ u
δ 0
t
δ
tw x
垂直于壁面的方向上流体流速发生显著变化的流体薄层定义为 速度边界层(流动边界层)。
边界层型对流传热问题的数学描写

2 13 Nu x 0.332 Re1 Pr x
hx x u x
努塞尔(Nusselt)数
Re x
Pr

a

雷诺(Reynolds)数
普朗特数

注意:特征尺 度为当地坐标x
与 t 之间的关系
u const,

dp 0 dx
动量传递 热量传递 规律相似 =t
边界层型对流传热问题的数学描写
热(温度)边界层 Thermal boundary layer
当流体流过平板而平板的温度tw与来流流体的温度t∞不相等时,在
壁面上方也能形成温度发生显著变化的薄层,常称为热边界层。
当壁面与流体之间的温差达到壁面与来流流体之间的温差的0.99倍时, 即 (t w t ) /(t w t ) 0.99 ,此位置就是边界层的外边缘,而该点到壁面

对流换热公式汇总与分析..

对流换热公式汇总与分析..

对流换热公式汇总与分析【摘要】流体与固体壁直接接触时所发生的热量传递过程,称为对流换热,它已不是基本传热方式。

本文尝试对对流换热进行简单分类并对无相变对流换热公式简单汇总与分析。

【关键词】对流换热 类型 公式 适用范围对流换热的基本计算形式——牛顿冷却公式:)(f w t t h q -= )/(2m W或2Am 上热流量 )(f w t t h -=Φ )(W上式中表面传热系数h 最为关键,表面传热系数是众多因素的函数,即),,,,,,,,(l c t t u f h p f w μαρλ=综上所述,由于影响对流换热的因素很多,因此对流换热的分析与计算将分类进行,本文所涉及的典型换热类型如表1所示。

表1典型换热类型1. 受迫对流换热 1.1 内部流动1.1.1 圆管内受迫对流换热 (1)层流换热公式西德和塔特提出的常壁温层流换热关联式为14.03/13/13/1)()(PrRe86.1wf fff l d Nu μμ= 或写成 14.03/1)()(86.1w f f f l d Pe Nu μμ=式中引用了几何参数准则ld,以考虑进口段的影响。

适用范围:16700Pr 48.0<<,75.9)(0044.0<<wfμμ。

定性温度取全管长流体的平均温度,定性尺寸为管内径d 。

如果管子较长,以致2])()Pr [(Re 14.03/1≤⋅wf l dμμ则f Nu 可作为常数处理,采用下式计算表面传热系数。

常物性流体在热充分发展段的Nu 是)(66.3)(36.4const t Nu const q Nu w f f ====(2)过渡流换热公式对于气体,5.1Pr 6.0<<f ,5.15.0<<wf T T ,410Re 2300<<f 。

45.03/24.08.0)]()(1[Pr )100(Re 0214.0wf f f f T T l dNu +-=对于液体,500Pr 5.1<<f ,20Pr Pr 05.0<<wf ,410Re 2300<<f 。

单相流体对流换热及准则关联式-2

单相流体对流换热及准则关联式-2

5105Re ×<:const E.Pohlhausen ,1921)关联式:xu ∞=Re ;Pr Re 332.0315.0精确解n三、横掠管束(Flow across tube banks)管壳式换热器中流体绕流管束汽车拖拉机冷却水箱中空气绕流管束空调器中流体在蒸发器或冷凝器中绕流管束1、流动和换热情况顺排、叉排In-line tube rowsStaggered tube rows后几排管子的表面传热系数是第一排的1.3~1.7倍顺排、叉排:层流310Re <后半周涡旋流前半周层流:;102~105Re 52××=:紊流5102Re ×>2、表面传热系数的计算关联式茹考思卡斯(Zhukauskas )关联式:N pw f f n f f S S C Nu ε⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=2125.036.0Pr Pr Pr Re N ε—管排数影响的校正系数5006.010216≤<×≤≤f f Pr Re 适用范围:fw t t 、定性温度:特征长度: 管外径DS 1/S 2—相对管间距s 1§6-3 自然对流换热一、概述静止的流体,与不同温度的固体壁面相接触,热边界层内、外的密度差形成浮升力(或沉降力)导致流动tg g f f B ∆=−=αρρρ )(固体壁面与流体的温差是自然对流的根本原因Natural Convection Heat Transfer层流:810Pr Gr <湍流:1010Pr Gr >过渡区:10810Pr Gr 10<<自模化现象:在常壁温或常热流边界条件下,达到旺盛紊流时,h x 将保持不变,与壁面高度无关x u u ⎜⎜⎝⎛+∂∂ρu ⎜⎜⎝⎛∂∂ρ湍流换热(BaileyNu=x湍流换热(Vliet .0==x x xh Nu λ四、有限空间中的自然对流换热有限空间自然对流换热:热由封闭的有限空间高温壁传到它的低温壁的换热过程靠近热壁的流体因浮升力而向上运动,靠近冷壁的流体则向下运动有限空间中的自然对流换热是热壁与冷壁间两个自然对流过程的组合扁平矩形封闭夹层竖壁夹层水平夹层倾斜夹层(1)夹层厚度δ与高度H 之δ/H 比较大(大于0.3),冷热两壁的自然对流边界层不会互相干扰。

传热学bi、fo、nu、re、pr、gr准则数的定义式及其物理意义

传热学bi、fo、nu、re、pr、gr准则数的定义式及其物理意义

传热学bi、fo、nu、re、pr、gr准则数的定义式及其物理意义摘要:一、传热学基本概念介绍二、Bi准则数的定义及物理意义三、Fo准则数的定义及物理意义四、Nu准则数的定义及物理意义五、Re准则数的定义及物理意义六、Pr准则数的定义及物理意义七、Gr准则数的定义及物理意义八、总结正文:传热学是研究物体间热量传递规律的一门学科,其中Bi、Fo、Nu、Re、Pr、Gr准则数是传热学中重要的无量纲数,它们在描述热传递过程有着重要的应用。

一、Bi准则数(毕托管数):Bi = q/(kA),其中q为热流密度,k为导热系数,A为传热面积。

Bi数描述了热流在物体内部分布的均匀性,当Bi数远小于1时,热流在物体内部分布均匀,传热过程可视为稳态;当Bi数远大于1时,热流在物体内部分布不均匀,传热过程趋向于非稳态。

二、Fo准则数(福克数):Fo = Re/(Pr),其中Re为雷诺数,Pr为普朗特数。

Fo数描述了流体流动对传热的影响,当Fo数远小于1时,流体流动对传热的影响较小;当Fo数远大于1时,流体流动对传热的影响较大。

三、Nu准则数(努塞尔数):Nu = q/(kA),其中q为热流密度,k为导热系数,A为传热面积。

Nu数描述了热传导过程的特性,当Nu数远小于1时,热传导过程可视为稳态;当Nu数远大于1时,热传导过程趋向于非稳态。

四、Re准则数(雷诺数):Re = ul/(kρ),其中u为流体速度,l为特征长度,k为导热系数,ρ为流体密度。

Re数描述了流体流动的特性,当Re数远小于1时,流体流动呈层流状态;当Re数远大于1时,流体流动呈湍流状态。

五、Pr准则数(普朗特数):Pr = k/(ρcp),其中k为导热系数,ρ为流体密度,cp为流体比热容。

Pr数描述了流体热传导与对流换热的相对重要性,当Pr数远小于1时,热传导作用占主导地位;当Pr数远大于1时,对流换热作用占主导地位。

六、Gr准则数(格拉特数):Gr = q/(kA),其中q为热流密度,k为导热系数,A为传热面积。

相流体对流传热特征数关联式

相流体对流传热特征数关联式

查表6-10得C=0.48,n=1/4;
Num
C(Gr
Pr)
n m
h
m
d0
C(Gr
Pr)
n m
0.0272 0.48 1.56 108 0.7 0.4 0.383
55.96W / (m2 K )
h AV
2
H
3 2
§6-4 外部强制对流传热
三、流体横掠管束时的强迫对流换热
§6-4 外部强制对流传热
除管径影响传热系数外,管距、管排数和排列方 式也影响对流换热系数。
x2
d
x2
d
x1
x1
直列(管束a中)管子顺的排排列和流体
(b)叉排 错列管束中管子的排列和流体
在管束中运动特性的示意
在管束中运动特性的示意
f
125)
Prf
1/ 3[1
(de l
)](
f
w
) 0.14
定性温度:(tf1+tf2)/2; 特征尺寸:管内径(当量直径);
特征流速:平均流速;
第六章 单相Байду номын сангаас流传热的实验关联式
§6-1 相似原理与量纲分析 §6-2 相似原理的应用 §6-3 内部强制对流的实验关联式 §6-4 外部强制对流传热 §6-5 大空间与有限空间内自然对流传热 §6-6 射流冲击传热的实验关联式
一、 自然对流换热现象的特点
以竖直平板在空气中自 然冷却过程进行分析。
1) 温度与速度分布 2) 流动形态
xt
x
t
u
紊流区
t∞ 过渡区
层流区
y
hx
0
§6-5 大空间与有限空间内自然对流传热

知识点:层流状态的对流换热计算PPT讲解

知识点:层流状态的对流换热计算PPT讲解
Nu f 0.15Re f
0.3 Grf Pr w

0.25
(1)
利用上式可求出管道全程长度的平均换热系数。这个公 式适用于任何流体,并且也考虑了热流方向和自由流动的影 响。
知识点:层流状态的对流换热计算
上式是以流体的温度tf作为定性温度,以管子内径d作为 定型尺寸。对非圆形截面的流道,定型尺寸可采用当量直径 de。Prw是以壁面温度tw作定性温度的普朗特准则。 在管内作层流运动的流体为粘度较大的油类时,自然对 流被抑制,流动呈严格的层流状态。对于这种情况,式(1) 中的准则,此时求得的换热系数为层流时的最低值。 (2)当l/d <50时,对流换热系数可按式上式求出α 值 后再乘以管长修正系数ε f,其值可由表1查得。
知识点:层流状态的对流换热计算
雷诺数小于2300时流体在管内处于层流运动状态,由于 各部分之间换热靠导热方式,因此换热过程比较缓慢。在这 种情况下,自然对流的产生会造成流体的扰动,因而显著增 强了换热,这就使得在层流时,自由流动的影响不能忽略。 考虑到上述影响,流体在层流时放热的准则方程式具有 下列形式: (1)当l/d≥50,且(Gr.Pr)>8×105时
f w

0.14
(2)
层流的管长修正系数ε
l d
1 1.90 2 1.70 5 1.44 10 1.28 15 1.18
f
表1
30 1.05 40 1.02 50 l
20 1.13
f
知识点:层流状态的对流换热计算
(3)当(Gr.Pr)<8×105时,层流换热可以用下式计算
d Nu f 1.86Re f Prf l
1 3 1 3 1 3
式中 d─管子直径,m; l─管长,m。 上式不能用于很长的管子,当管道太长时,d/l将趋近 于零。(2)式的定性温度和定型尺寸同(1)式。μ w是以 壁面温度tw作定性温度的动力粘滞系数。 由于层流的对流换热系数的数值很小,所以绝大多数的 换热设备都不是按层流范围设计的,只有在少数应用粘性很 大的流体的设备中才能见到层流流动。

第五章对流传热分析

第五章对流传热分析

第五章对流换热分析通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。

5.1 内容提要及要求5.1.1 对流换热概述1.定义及特性对流换热指流体与固体壁直接接触时所发生的热量传递过程。

在对流换热过程中,流体内部的导热与对流同时起作用。

牛顿冷却公式q h(t w t f ) 是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。

研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。

2.影响对流换热的因素(1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。

(2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。

(3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。

(4)流体的相变:冷凝和沸腾是两种最常见的相变换热。

(5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。

综上所述,可知表面传热系数是如下参数的函数h f u, t w , t f , , c p , ,,, l这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。

3.分析求解对流换热问题分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。

同时,分析求解的前提是给出正确地描述问题的数学模型。

在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数由上式可有h xtt x yW/(m 2 K)w,x其中为过余温度,h xxyW/(m 2 K)w,x对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。

第六章单相流体对流换热及准则关联式_传热学

第六章单相流体对流换热及准则关联式_传热学
4
定性温度为流体平均温度tf ,管内径为特征长度。
c.米海耶夫公式:
Nuf 0.021 Ref
0.8
Prf
0.43
定性温度为流体平均温度tf ,管内径为特征长度。 实验验证范围:
Prf Prw
0.25
l / d 50, Re f 10 4 ~ 1.75 10 6 , Pr f 0.6 ~ 700
(1)驱动力是浮升力
(2)边界层内速度分布与温度分布——以热竖壁的自然对流 为例 当y→∞:u=0, T=T∞ 当y→0:u=0, T=Tw 因此,速度u在中间具有一个最大值(y=δ/3处),即呈现 中间大、两头小的分布
(3)自然对流层流湍流流态 流态的判断准则:瑞利准则Ra=Gr*Pr 当Ra<109, 边界层处于层流 当109 <Ra<1010 , 边界层处于过渡区 当Ra>1010 , 边界层处于紊流
二.管内受迫对流换热计算
1. 紊流换热计算公式
a.迪贝斯-贝尔特修正公式
Nu f 0.023 Re 0f.8 Pr fn
n=0.4 加热流体
n=0.3
实验验证范围:
冷却流体
当流体与壁面具有中等以下温差时
l / d 10, Re f 10 4 , Pr f 0.7 ~ 160
定性温度为流体平均温度tf ,管内径为特征长度。
当雷诺数Re<2300时管内流动处于层流状态,由于层流 时流体的进口段比较长,因而管长的影响通常直接从计算公 式中体现出来。这里给出Sieder-Tate的准则关系式:
d f Nu f 1.86 Re f Pr f l w
1 3
0.14

传热学讲义对流换热——第六章

传热学讲义对流换热——第六章

第六章 单相流体对流换热及准则关联式第一节 管内受迫对流换热本章重点:准确掌握准则方程式的适用条件和定性温度、定型尺寸的确定。

1-1 一般分析),,,,,,,,(l c t t u f h p f w μαρλ=流体受迫在管内对流换热时,还应考虑以下因素的影响:① 进口段与充分发展段,② 平均流速与平均温度,③ 物性场的不均匀性,④ 管子的几何特征。

一、进口段与充分发展段1.流体在管内流动的主要特征是,流动存在着两个明显的流动区段,即流动进口(或发展)段和流动充分发展段,如图所示。

(1)从管子进口到边界层汇合处的这段管长内的流动称为管内流动进口段。

(2)进入定型流动的区域称为流动充分发展段。

在流动充分发展段,流体的径向速度分量v 为零,且轴向速度u 不再沿轴向变化,即:0=∂∂xu, 0=v 2.管内的流态(1)如果边界层在管中心处汇合时流体流动仍然保持层流,那么进入充分发展区后也就继续保持层流流动状态,从而构成流体管内层流流动过程。

2300Re <用νdu m =Re 判断流态, 式中 m u 为管内流体的截面平均流速, d 为管子的内直径,ν为流体的运动黏度。

(2)如果边界层在管中心处汇合时流体已经从层流流动完全转变为紊流流动,那么进入充分发展区后就会维持紊流流动状态,从而构成流体管内紊流流动过程。

410Re >(3)如果边界层汇合时正处于流动从层流向紊流过渡的区域,那么其后的流动就会是过渡性的不稳定的流动,称为流体管内过渡流动过程。

410Re 2300<<3.热进口段和热充分发展段当流体温度和管壁温度不同时,在管子的进口区域同时也有热边界层在发展,随着流体向管内深入,热边界层最后也会在管中心汇合,从而进入热充分发展的流动换热区域,在热边界层汇合之前也就必然存在热进口区段。

随着流动从层流变为紊流, 热边界层亦有层流和紊流热边界层之分。

热充分发展段的特征对常物性流体,在常热流和常壁温边界条件下,热充分发展段的特征是:)(1x f t f =及)(2x f t w =与管内任意点的温度),(r x f t =组成的无量纲温度⎪⎪⎭⎫⎝⎛--x f x w w t t t t ,,x ,随管长保持不变,即: 0,,x ,=⎪⎪⎭⎫ ⎝⎛--∂∂x f x w w t t t t x 式中,t —管内任意点的温度,),(r x f t = ⇒xf x w w t t tt ,,x ,--仅是r 的函数。

传热学课件第六章--单相流体对流换热

传热学课件第六章--单相流体对流换热

第一节 管内受迫对流换热
一、定性分析(基本概念)
1.进口段与充分发展段 2>.对于换热状态 将上述无因次温度对r求导后且令r=R时有: t t t r r R w t t t t r w f w f
由于无因次温度不随x发生变化,仅是r的函数,故对无因次 温度求导后再令r=R,则上式显然应等于一常数。又据傅里叶 定律:q=-(t/r)r=R及牛顿冷却公式:q=h(tw-tf),上 t 式变为: t t r r R h Const w tw t f r tw t f


另外,不同断面具有不同的tf值,即tf随x变化,变化规律 与边界条件有关。
第一节 管内受迫对流换热
一、定性分析(基本概念)
2.定性参数 2>.管内流体平均温度 ①常热流通量边界条件: t tw// tw/
tf /
进口段 充分发展段
tf// x
如图,此时:tw>tf 经分析:充分发展段后: tf呈线性规律变化 tw也呈线性规律变化 此时,管内流体的平均温度为: t f t f tf 2
第三节
自 然 对 流 换 热
一、无限空间自由流动换热(大空间自然对流)
指热(冷)表面的四周没有其它阻得自由对流的物体存在。 一般准则方程式可整理成: Nu=f(Gr· Pr) 一般Gr· Pr>109时为紊流,否则为层流。 对于常壁温的自由流动换热,其准则方程式常可整理成: Num=C(Gr· Pr)mn C、n可参见表6=5,注意使用范围、定型尺寸、定性温度。 令:Ra=Gr· Pr Ra为瑞利准则数。 既适用常壁温也适用常热流边界的实验准则方程式,常见的 为邱吉尔(Churchill)和朱(Chu)总结的式6-19,20。

传热学典型习题详解2

传热学典型习题详解2

传热学典型习题详解2单相流体对流换热及准则关联式部分⼀、基本概念主要包括管内强制对流换热基本特点;外部流动强制对流换热基本特点;⾃然对流换热基本特点;对流换热影响因素及其强化措施。

1、对皆内强制对流换热,为何采⽤短管和弯管可以强化流体的换热答:采⽤短管,主要是利⽤流体在管内换热处于⼊⼝段温度边界层较薄,因⽽换热强的特点,即所谓的“⼊⼝效应”,从⽽强化换热。

⽽对于弯管,流体流经弯管时,由于离⼼⼒作⽤,在横截⾯上产⽣⼆次环流,增加了扰动,从⽽强化了换热。

2、其他条件相同时,同⼀根管⼦横向冲刷与纵向冲刷相⽐,哪个的表⾯传热系数⼤,为什么¥答:横向冲刷时表⾯传热系数⼤。

因为纵向冲刷时相当于外掠平板的流动,热边界层较厚,⽽横向冲刷时热边界层薄且存在由于边界层分离⽽产⽣的旋涡,增加了流体的扰动,因⽽换热强。

3、在进⾏外掠圆柱体的层流强制对流换热实验研究时,为了测量平均表⾯传热系数,需要布置测量外壁温度的热电偶。

试问热电偶应布置在圆柱体周向⽅向何处答:横掠圆管局部表⾯传热系数如图。

在0-1800内表⾯传热系数的平均值hm 与该曲线有两个交点,其所对应的周向⾓分别为φ1,φ2。

布置热电偶时,应布置在φ1,φ2所对应的圆周上。

由于对称性,在圆柱的下半周还有两个点以布置。

4、在地球表⾯某实验室内设计的⾃然对流换热实验,到太空中是否仍然有效,为什么答:该实验到太空中⽆法得到地⾯上的实验结果。

因为⾃然对流是由流体内部的温度差从⽽引起密度差并在重⼒的作⽤下引起的。

在太空中实验装置格处于失重状态,因⽽⽆法形成⾃然对流,所以⽆法得到顶期的实验结果。

5、管束的顺排和叉排是如何影响换热的`答:这是个相当复杂的问题,可简答如下:叉排时,流体在管间交替收缩和扩张的弯曲通道中流动,⽽顺排时则流道相对⽐较平直,并且当流速和纵向管间距s 2较⼩时,易在管的尾部形成滞流区.因此,⼀般地说,叉排时流体扰动较好,换热⽐顺排强.或:顺排时,第⼀排管⼦正⾯受到来流的冲击,故φ=0处换热最为激烈,从第⼆排起所受到的冲击变弱,管列间的流体受到管壁的⼲扰较⼩,流动较为稳定。

第六章单相流体对流换热及准则关联式_传热学汇总

第六章单相流体对流换热及准则关联式_传热学汇总
当雷诺数处于Re<2300<104的范围内时,管内流动属于 层流到紊流的过渡流动状态,流动十分不稳定。工程上常常 避免采用管内过渡流动区段。
例题 5-1 在一冷凝器中,冷却水以 1m/s 的流速流过内径为 10mm 、长 度为 3m 的铜管,冷却水的进 、出口温度分别为 15℃和65℃,试计算管内的表面传热系数。 解: 由于管子细长,l/d较大,可以忽略进口段的影响。冷 却水的平均温度为
定性温度为流体平均温度tf ,管内径为特征长度。
c.米海耶夫公式:
Nuf 0.021 Ref
0.8
Prf
0.43
定性温度为流体平均温度tf ,管内径为特征长度。 实验验证范围:
Prf Prw
0.25
l / d 50, Re f 104 ~ 1.75106 , Prf 0.6 ~ 700
流动充分发展区段的特征:
u 0, v 0 (u为轴向速度,v为径向速度) x
(2) 换热也存在着两个明显的区段,即热进口(或发展)区 段和热充分发展区段, 且常物性流体在热充分发展段的表面 传热系数保持不变,而入口段的热边界层薄,表面传热系数高。 热充分发展区段的特征:
t w t h ( t w t f ) 0, const x
' "
t m (t ' t " ) /(ln t ' t " )
(
' " , t 出口端流体与管壁温度 ) t 进口端流体与管壁温度
3、物性场不均匀
当流体与管壁之间的温差较大时,因管截面上流体温度变 化比较大,流体的物性受温度的影响会发生改变,尤其是流 体黏性随温度的变化导致管截面上流体速度的分布也发生改 变,进而影响流体与管壁之间的热量传递和交换。

第6章 单相流体对流换热及准则关联式

第6章 单相流体对流换热及准则关联式

根据质量守恒,掠过前半部时,
由于流动截面积逐渐缩小,流速
将逐渐增大,而到管子后半部,
由于流动截面逐渐增大,流速将 逐渐降低,大约以 = 90为界。
2013-7-9 15
3、横掠管束:
换热设备中管束的排列方式很多,比较普遍的 是顺排与叉排二种。
2013-7-9
16
流体掠过管束时,流动受到各排管子的连续干扰。来流 稳定,流经第一排后就产生扰动,以后又流过第二排、第三 排、扰动不断加强。叉排排列时更甚。在经过一定排数之后, 不管来流情况如何,流动都是很强烈的涡流 —— 达到管束 特有的稳定状态。
流动 起因 几何
形状 平壁: 自 由 流 动 换 热 竖壁 水平壁
流动 状态
层流 紊流 层流 紊流
准则方程式
Num C (Gr Pr)m
― P.165
式(6-16)
n
园管 (水平放 置)
式中:C、n值, 查P.166表6-5 (Gr.Pr)
29
2013-7-9
对 流 换 热 类 型 的 分 类 及 其 准 则 方 程 2013-7-9 式
4r 2 4f 2r d de 2r U
9
r1 r2
(5) 圆形管道:
d
2013-7-9
《注意》
把当量直径de作为定型尺寸,用同一公式进 行计算,并不是说明这二个现象相似。因为非 圆管与圆管,首先几何条件就不相似,而物理 现象的相似首先要满足几何相似的条件。
由于不是理论分析解而是实验解(经验公式), 所以有误差。有误差存在,就有可能使二组不 相似现象的实验点落在同一个误差带范围内, 用同一个方程式来描写。 对于不同几何形状的物体能整理成一个经验 公式的话,说明几何形状的影响不大。

实验二对流换热实验

实验二对流换热实验

实验二 对流换热实验一、实验目的1. 实验法测定空气受迫横向流过单管时的换热系数。

2. 运用相似理论,将实验数据整理成准则方程式,并与有关教材中推荐的相应的准则方程式相比较。

二、实验原理1. 当空气受迫横向流过单管时,按牛顿公式,换热系数)(f w t t F Q α-=(2-1)Q 为单管与空气流之间的对流换热量;实验采用单管为被加热管;单管内表面用电热丝均匀裹缠通电加热单管表面。

电热丝所消耗的电功率N 变为热能通过单管表面向空气流散。

当单管表面温度w t 不变时,这时电功率N 为对流换热量Q 。

F 为单管(直径D = 12mm ,长l = 300mm )在空气流中的表面积。

l D πF ⋅⋅= (2-2)f t 为风道气流平均温度,w t 为单管表面温度。

所以,对一定尺寸的单管,内表面用电热丝加热,置于风洞中处于稳定状态后,只需测量电热丝电功率N ,单管和气流温度w t 、f t ,即可计算出此种实验条件下的换热系数。

2. 根据相似理论的分析,流体受迫运动的准则方程式为:()Pr Re f Nu ⋅= (2-3)其中努谢尔特准则υVl=Re ,雷若准则υVlRe =,普朗特数λμC Pr P =。

l 为定型尺寸,取单管外径D ;Cp 、λ、υ、μ为流体在定性温度f t 时的定压比热、导热系数、粘度、动力粘度,V 为流体流过最窄截面处的流速。

对于空气,物理参数C p 、μ、λ近似为常数,所以Pr 数为一常数,原准则方程简化为nu Re C N ⋅= (2-4)式(2-4)中系数C ,指数n 为常数,可由实验得出,通过空气不同的流速情况下,单管和空气流之间的换热系数的测定,可以得到一组Re 和相应的Nu 数,把它们表示在双对数坐标图上(图1),则可求得C 和n 值。

图1 确定准则间函数关系的对数坐标图2 风洞装置pRe可控硅电源控制柜空气三、实验设备1. 气流的形成和气流速度的调节如图2所示,产生气流的设备有直流电机和离心通风机、若干节管道串连组成风洞,电机启动后空气吸入风洞流进风机,在风洞里形成空气流。

对流换热与准则数

对流换热与准则数

单相流体对流换热及准则关联式部分返回一、基本概念主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。

1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。

试判断这种说法的正确性?答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。

因此表面传热系数必与流体速度场有关。

2、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗?答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。

由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。

3、简述边界层理论的基本论点。

答:边界层厚度δ、δt与壁的尺寸l相比是极小值;边界层内壁面速度梯度及温度梯度最大;边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层;流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域);对流换热热阻主要集中在热边界层区域的导热热阻。

层流边界层的热阻为整个边界层的导热热阻。

紊流边界层的热阻为层流底层的导热热阻。

4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。

答:依据对流换热热阻主要集中在热边界层区域的导热热阻。

层流边界层的热阻为整个边界层的导热热阻。

紊流边界层的热阻为层流底层的导热热阻。

导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单相流体对流换热及准则关联式部分一、基本概念主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。

1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。

试判断这种说法的正确性答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。

因此表面传热系数必与流体速度场有关。

2、在流体温度边界层中,何处温度梯度的绝对值最大为什么有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。

由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。

3、简述边界层理论的基本论点。

答:边界层厚度δ、δt与壁的尺寸l相比是极小值;边界层内壁面速度梯度及温度梯度最大;边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层;流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域);对流换热热阻主要集中在热边界层区域的导热热阻。

层流边界层的热阻为整个边界层的导热热阻。

紊流边界层的热阻为层流底层的导热热阻。

4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。

答:依据对流换热热阻主要集中在热边界层区域的导热热阻。

层流边界层的热阻为整个边界层的导热热阻。

紊流边界层的热阻为层流底层的导热热阻。

导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。

5、确定对流换热系数h有哪些方法试简述之。

答:求解对流换热系数的途径有以下四种:(1)建立微分方程组并分析求解___应用边界层理论,采用数量级分析方法简化方程组,从而求得精确解,得到了Re,Pr及Nu等准则及其准则关系,表达了对流换热规律的基本形式。

(2)建立积分方程组并分析求解___先假定边界层内的速度分布和温度分布然后解边界层的动量和能量积分方程式求得流动、热边界层厚度,从而求得对流换热系数及其准则方程式。

以上两法目前使用于层流问题。

(3)根据热量传递和动量传递可以类比,建立类比律,借助于流动摩擦阻力的实验数据,求得对流换热系数。

此法较多用于紊流问题。

(4)由相似理论指导实验,确定换热准则方程式的具体形式,提供工程上常用准则方程式,求解准则关联式得到对流换热系数。

6、为什么热量传递和动量传递过程具有类比性答:如果用形式相同的无量纲方程和边界条件能够描述两种不同性质的物理现象,就称这两种现象是可类比的,或者可比拟的。

把它们的有关变量定量地联系起来的关系式就是类比律。

可以证明,沿平壁湍流时的动量和能量微分方程就能够表示成如下形式:其中:7、有若干个同类物理现象,怎样才能说明其单值性条件相似。

试设想用什么方法对以实现物体表面温度恒定、表面热流量恒定的边界条件答:所谓单值条件是指包含在准则中的各已知物理量,即影响过程特点的那些条件──时间条件、物理条件、边界条件。

所谓单值性条件相似,首先是时间条件相似(稳态过程不存在此条件)。

然后,几何条件、边界条件及物理条件要分别成比例。

采用饱和蒸汽(或饱和液体)加热(或冷却)可实现物体表面温度恒定的边界条件,而采用电加热可实现表面热流量恒定的边界条件。

8、管内紊流受迫对流换热时,Nu数与Re数和Pr数有关。

试以电加热方式加热管内水的受迫对流为例,说明如何应用相似理论设计实验,并简略绘制出其实验系统图。

答:⑴模型的选取依据判断相似的条件,首先应保证是同类现象,包括单值性条件相似;其次是保证同名已定准则数相等。

选取无限长圆管;圆管外套设有电加热器。

属于管内水的纯受迫流动。

⑵需要测量的物理量准则数方程式形式为。

由Re、Nu、Φ=IU、牛顿冷却公式,以及,可确定需要测量的物理量有:q v,d,,L,,,I,U。

所有流体物性由定性温度查取水的物性而得。

⑶实验数据的整理方法根据相似准则数之间存在由微分方程式决定的函数关系,对流传热准则数方程式形式应为,实验数据整理的任务就是确定C和n的数值。

为此必须有多组的实验数据。

由多组的实验数据,得:(Re、Pr)i→Nu i将转化为直线方程:;由(Re、Pr)i→Nu i得Xi→Yi,确定系数n 和C。

确定系数n和C的方法有图解法(右图)和最小二乘法。

图中的直线斜率即准则关联式的n,截距即式中的lgC,即,。

注意:为保证结果的准确性,直线应尽量使各点处在该线上,或均匀分布在其两侧。

⑷实验结果的应用根据相似的性质,所得的换热准则数式可以应用到无数的与模型物理相似的现象群,而不仅仅是实物的物理现象。

之所以说是现象群,是因为每一个Re均对应着一个相似现象群。

简单的实验系统如图所示。

9、绘图说明气体掠过平板时的流动边界层和热边界层的形成和发展。

答:当温度为t f的流体以u∞速度流入平板前缘时,边界层的厚度δ=δt=0,沿着X方向,随着X的增加,由于壁面粘滞力影响逐渐向流体内部传递,边界层厚度逐渐增加,在达到X c距离(临界长度X c由Re c来确定)之前,边界层中流体的流动为层流,称为层流边界层,在层流边界层截面上的流速分布,温度分布近似一条抛物线,如图所示。

在X c之后,随着边界层厚度δ的增加,边界层流动转为紊流称为紊流边界层,即使在紊流边界层中,紧贴着壁面的薄层流体,由于粘滞力大,流动仍维持层流状态,此极薄层为层流底层δt,在紊流边界层截面上的速度分布和温度分布在层流底层部分较陡斜,近于直线,而底层以外区域变化趋于平缓。

二、定量计算主要包括:类比率的应用;相似原理的应用;外掠平板的强制对流换热。

1、空气以40m/s的速度流过长宽均为的薄板,t f=20℃,t w=120℃,实测空气掠过此板上下两表面时的摩擦力为,试计算此板与空气间的换热量(设此板仍作为无限宽的平板处理,不计宽度z方向的变化)。

解应用柯尔朋类比律其中ρ、cp用定性温度查教材附录2(P309)“干空气的热物理性质”确定。

,,,带入上式,得,换热量:,2、在相似理论指导下进行实验,研究空气在长圆管内稳态受迫对流换热的规律,请问:(1)本项实验将涉及哪几个相似准则实验中应直接测量哪些参数才能得到所涉及的准则数据(3)现通过实验并经初步计算得到的数据如下表所示,试计算各试验点Re数及Nu数(4)实验点1、2、3、4的现象是否相似?(5)将实验点标绘在lgNu及lgRe图上。

(6)可用什么形式的准则方程式整理这些数据并确定准则方程式中的系数。

(7)现有另一根长圆管,d=80mm,管内空气速度s,t w=150℃;t f=50℃,试确定管内换热现象与上述表中哪个现象是相似的并用上表实验结果确定此管内的表面传热系数。

(8)又一未知流体的换热现象,已知其热扩散率a=30.2×10-6m2/s,λ=(mK);ν=×10-6m2/s;d=65mm,管内流速23m/s,它是否与上表中的实验现象相似是否可以用上表实验结果计算它的表面传热系数为什么如果能用,请计算其Nu数和表面传热系数解:㈠定性温度为为t f⑴由于是空气在长管内稳态受迫对流换热,所以涉及到的相似准则是Re和Nu。

⑵由Re=ud/ν、Nu=hd/λ、Φ=IU及Φ=hA(tw-tf)知道需要测量的物理量有u、d、A=πdL、tf、tf、I、U。

⑶计算结果见下表:(1-4:t f=10℃;5:t f=50℃,定性温度为t f)⑷由于,所以现象1-4不相似。

⑸图略(参考教材P140图5-26)⑹准则方程式形式为根据现象1-4数据,利用最小二乘法(也可以用图解法确定C 和n ),确定()中的C 和n 如下:,所以准则方程式为,其中⑺因现象5雷诺数(Re=)与现象1-4雷诺数均不相等,所以现象5不与现象1-4均不相似;且由于其雷诺数已超出了现象1-4的实验范围,所以无法用上述实验结果确定现象5的表面换热系数。

⑻因现象6雷诺数(Re=)与现象1-4雷诺数均不相等,所以现象6不与现象1-4均不相似;但由于其雷诺数处于现象1-4的实验范围,所以可以用上述实验结果确定现象6的表面换热系数,方法如下: 3、温度为50℃,压力为×105Pa 的空气,平行掠过一块表面温度为100℃的平板上表面,平板下表面绝热。

平板沿流动方向长度为,宽度为。

按平板长度计算的Re 数为4×l04。

试确定: (1)平板表面与空气间的表面传热系数和传热量;(2)如果空气流速增加一倍,压力增加到×105Pa ,平板表面与空气的表面传热系数和传热量。

现象序号 t w ℃λ W/m ℃ ν m 2/s d m u m/s h W/m 2℃ Re Nu lgRe lgNu 1 30 ×10-2×10-6 50×10-315 2 50 3 70 4 90 1065150×10-2×10-6 80×10-36×10-2×10-6 65×10-323解:本题为空气外掠平板强制对流换热问题。

(1)由于Re=4×104<5×105,属层流状态。

故:空气定性温度:℃空气的物性参数为,Pr=故:W/()散热量W(2)若流速增加一倍,,压力,则,,而:,故:所以:,属湍流。

据教材式(5—42b)=961W/(m2·K)散热量:W三、本章提要以下摘自赵镇南着,高等教育出版社,出版日期:2002年7月第1版《传热学》1、对流换热是一种非常复杂的物理现象。

它的热流速率方程即牛顿冷却公式。

对流换热问题的求解归根结底围绕着如何得到各种不同情况下的表面传热系数,它有局部值和平均值之分。

影响单相流体对流换热强弱的主要因素有流体的流动状态、发生流动的原因、流体的各项有关物性以及表面的几何形状等。

2、边界层理论在研究对流换热现象时扮演了极重要的角色。

边界层概念归根结底就是从数量级的观点出发,忽略主流中速度和过余温度1%的差异。

速度边界层和温度边界层的基本观点可以概括地总结为以下的基本内容(针对沿平壁的外部流动):(1)速度从零变化到几乎等于主论速度主要发生在紧贴壁面的薄层内:壁面上具有速度梯度的最大值;在壁面法线方向上,讨以把流场划分成边界层区和主流区,主流可视为等速、无粘性的理想流体;壁面法线方向上不存在压力梯度;在沿壁曲方向上流体依次为层流、过渡流和湍流状态。

相关文档
最新文档