高斯小学奥数五年级上册含答案_数字谜综合一

合集下载

高斯小学奥数五年级上册含答案_整除问题进阶

高斯小学奥数五年级上册含答案_整除问题进阶

第二讲整除问题进阶例题1. 答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有□2 0 O是99的倍数,只能是99 •两个空中先后要填1和7.例题2. 答案:123483789详解:设这个九位数为1234ab789,两位截断求和1 23 b7 89 160 ba是99 的倍数,只能是198 .所以a=8, b=3.例题3.答案:6详解:利用7的整除特性,口89 59 □30能被7整除,只能填6.例题4.答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|兀帀就可以了.空格中要填5.例题5. 答案:768768详解:形如abcabc一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6. 答案:20999详解:利用数字谜,从后往前逐位确定.313913 232323239 f39 f 739626269 999 99999999练习1. 答案:6237简答:两位截断后的和是99 .练习2. 答案:12327678简答:两位截断后的和是198.练习3.答案:5712 或5782简答:利用7的整除特性,右2与5的差是7的倍数,空格中可以填1或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下匚•它是13的倍数, 那么空格中只能填0.作业1.答案:7 的倍数有7315, 58674, 360360; 13 的倍数有325702, 360360简答:牢记7和13的判断方法.作业2.答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知和6能被7整除,框中填5满足条件.作业4.答案:9简答:应用三位截断,可知8C 能被7和13整除,即8C 是91的倍数,框中填9 满足条件.作业5.答案:3简答:应用三位截断,可知口3能被7整除,框中填3满足条件.第二讲整除问题进阶厂我只能填在中同、怎样才能保证是11的倍数呢7 /"我翌填在白位和、个位上+怎么填才好呢?墨莫和小高在黑板前玩一个填三位数的游戏.如果填岀的三位数是H的倍数,那么小高就ST, 如果不是11的倍数则墨莫嬴.观察小高和墨英的话,逆冇必胜的策略上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等•现在我们再来学习一些新的判断方法.一、截断作和六位数L_l2003LJ能冋时被9和11整除.这个六位数是多少?皿U 能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数23 能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数123口口678能被99整除,这个八位数是多少?、截断作差阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小咼写一个一位数放在59与89之间辩需一金右佶豹kal I PQ估徂仪金右佶貓■台次朮7敕阵洁白•小直官的貓■具虫/卜:【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.四位数5^[2能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.25个5 25个9变得简短一些.因为 1001是13的倍数,而555555、999999分别是555、999与1001的乘 积,说明它们都是13的倍数.那我们是不是可以去掉这个 51位数上的一些5和9,并仍然 保证它能被13整除?已知多位数[1L 1 {33L 3能被13整除,那么中间方格内的数字是多少?2010 个 12010 个 3【分析】能被6, 7, 8整除的数有什么特点呢?最难把握的在于这个六位数能被 7整除, 我们应该怎样安排数字才能使得它的前三位与后三位的差能被 7整除呢?题目只要求我们 写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.【分析】在本题中,55L 35^992L39能被13整除.这个数的位数太多,我们可以想办法使它用数字6, 7, 8各两个,要组成能同时被6, 7, 8整除的六位数.请写出一个满足要求的六位数.【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑•我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积•接下来,大家想到该怎么办了吗?枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946〜1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业i1. 在7315, 58674, 325702 , 96723 , 360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33 能同时被9和11整除,这个四位数是多少?3. 四位数2^8能被7整除,那么这个四位数是多少?4. 已知多位数81口154258切2l§8 (2012个258)能同时被7和13整除,方格内的数字是2012 个258多少?5. 已知多位数[1L 1 03L 3能被7整除,那么中间方格内的数字是多少?2011 个1 2011 个3。

高斯小学奥数五年级上册含答案_数字谜综合一

高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。

五年级奥数教师解析版含答案 7.数字谜综合1

五年级奥数教师解析版含答案  7.数字谜综合1

涉及分数与小数的各种类型的数字谜问题,包括竖式的补填、算式的构造、小数的舍人与变化等.较为复杂的数字问题,以及其他略有综合性的数字谜问题.1.有一个四位整数,在它的某位数字前面加上一个小数点,再与这个四位数相加,得数是2000.81.求这个四位数是多少?【分析与解】设四位整数4的某位数字前加上一个小数点得到一个新的数B,A与B的和为2000.81,而小数只能由B得到,且0.81为B的小数部分,所以小数点加在A的百位与十位之间,即缩小了100倍.有A+0.01A=2000.81,所以A=1981.2.老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老师说最后一位数字错了,其他的数字都对.正确答案应该是什么?【分析与解】老师说最后一位数字错了,那么前3位数字是正确的,所以正确的平均数在12.40~12.5(不能取12.5)之间,那么这13个数的和在161.2~162.5(不能取162.5),因为这13个数都是自然数,所以它们的和也应该是自然数.那么这13个数的和只能是162,它们的平均数应该是162÷13≈12.46.所以正确的平均数应该是12.46.3.两个带小数相乘,乘积四舍五人以后是22.5.这两个数都只有一位小数,且个位数字都是4.这两个数的乘积四舍五入前是多少?【分析与解】因为这两个带小数均只有一位小数,那么给它们均乘以10,则这两个数均是整数.开始它们的乘积在22.45~22.55(不能取22.55)之间,所以在这两个数在均乘以10以后再相乘而得到的乘积应该在2245~2255(不能取2255)之间.一一验证,2245=5×449,2246=2×1123,2247=3×7×107,2248=2×2×2×281,2249=13×173,2250=2×3×3×5×5×5,2251为质数,2252=2×2×563,2253=3×751,2254=2×7×7×23.其中只有2254可以表达为(2×23)×(7×7)=46×49,两个十位数字均为4的数的乘积.所以,四舍五人前的乘积应为2254÷10÷10=22.54.即两个数的乘积四舍五人前是22.54.4.[4.2×5-(1÷2.5+9.1÷0.7)]÷O.04=100改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?【分析与解】我们先把题中左边算式计算一遍,在计算过程中发现问题.[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=[21-(0.4+13) ]÷0.04=[21-13.4]÷0.04=7.6÷0.04=190注意到在“[21-(0.4+13)]÷O.04”这一步中如果(0.4+13)是(4+13),那么最终的结果为100.所以只需将1÷2.5改为1÷0.25,即将2.5改为O.25即可.5.在算式2÷3÷4÷5÷6中添上若干个括号,使算式的结果是整数,并且尽可能小.试写出添加完括号后的算式.【分析与解】注意到将除号前加一个括号,可以使括号内的除号在脱括号之后变为乘号.又注意到2、3、4、5、6只有5含有质因数5,就是说其他的质因数可能经过变换运算法则除去,而质因数只能保留,且只能作为乘数,也就是说题中算式变化后是最终的结果最小为5.有2÷3÷4÷5÷6=EFCD,现在要得到5,扩大了5÷1180=900,所以必须将原来作为除数的30变为乘数30,有5×6=30,所以将5、6由除数变为乘数.有2÷3÷(4÷5÷6)=5,此式即为所求.6.用1,4,5,6四个数,并适当选择加号、减号、乘号、除号以及括号,组成一个结果等于24的正确算式.【分析与解】有24=2×2×2×3,常规的方法,无法使1,4,5,6通过运算得到24,但是注意到可利用分数:有4÷16=24,6÷14=24等.于是有下面两个算式满足:4÷(1-5÷6)=24,6÷(5÷4-1)=24.评注:此类题是常说的“24点”游戏:从一副扑克牌中除去大王、小王,A表示1,J表示11,Q表示12,K表示13,其他的牌表示的数等于牌面数字.从剩下的52张牌中任意抽取4张,通过选择运算使它们最终的计算结果为24.7.1+1+1≈0.658上式是经过四舍五入得到的等式,其中每个△代表一个一位数.那么这3个△所代表的3个数分别是多少?【分析与解】设△代表的三个数从小到大为a、b、c.当a取最小值2时,1+1+1最小为12+18+19≈0.736,所以a最小取3.当a=3,b最小取 4时, 1+1+1最小为13+14+19≈0.694,所以b最小取5.当a=3,b=5时,1+1+1最小为13+15+19≈0.644,有可能.验证当,a=3,b=5,c=8时有13+15+18≈0.658.满足.所以这三个数分别为3、5、8.评注:此题从极端情况开始一一枚举而得.8.用0,1,2,…,9这10个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能的大.那么这5个两位数的和是多少?【分析与解】要求5个数的和是奇数,所以这5个数中有奇数个奇数,如果用9、8、7、6、5作十位数字,那么个位数字为0、1、2、3、4,这样组成的5个数中有2个数是奇数.所以调整,将9、8、7、6、4作为十位数字,0、1、2、3、5作为个位数字,那么组成的5个两位数的和是(9+8+7+6+4)×10+(0+1+2+3+5)=351.因为已经使十位数字尽可能的大,所以所得的和为最大值.即在满足题意下,得到的5个两位数的和为351.9.将I,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍,那么最小的和是多少?【分析与解】设分成的3组数的和从大到小依次为a、b、c,a=2c,并且有a+b+c=b+3c=1+2+3+…+8=36.3c为3的倍数,36为3的倍数.所以b为3的倍数.解得b3c11a2c22=⎧⎪=⎨⎪==⎩,b6c10a2c20=⎧⎪=⎨⎪==⎩,b9c9a2c18=⎧⎪=⎨⎪==⎩,b12c8a2c16=⎧⎪=⎨⎪==⎩,b15c7a2c14=⎧⎪=⎨⎪==⎩,不难看出随着b的增大,a在减小,所以其他情况不用再讨论.满足条件的解只有b=12,c=8,a=16.1,2,3,4,5,6,7,8可以分成{1,2,3,4,6}、{5,7}、{8}这三组.所以满足题意的最小一组数的和为8.10.用1,2,3,4,5,6,7,8,9这9个数字组成3个三位数(每个数字只用一次),使其中最大的三位数被3除余2,并且尽可能的小;次大的三位数被3除余1;最小的三位数能被3整除.那么,最大的三位数是多少?【分析与解】被3除余2、1、0的数,其数字和除以3也分别余2、1、0.为了使最大的三位数尽可能的小,所以其百位最小取3,因为如果取1或2,那么剩下两个三位中的某一个其百位数字大于3,显然不满足.当最大三位数的百位取3时,1,2,3,4,5,6,7,8,9组成的三个三位数只能是3口口、2口口、l口口,而3口口的十位最小取4,百位与十位的数字和为7,则个位只能取7.所以满足条件的最大三位数是347.11.红、黄、蓝和白色卡片各一张,每张上写有一个数字.小明将这4张卡片如图7-l放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差.结果小明发现,无论白色卡片上是什么数字,计算结果都是1998.问红、黄、蓝3张卡片上各是什么数字?红黄白蓝图7—1【分析与解】设这个四位数为abcd,其中a、b、c、d依次代表红、黄、白、蓝.有abcd=1000a+lOOb+10c+d,而abcd的数字和为a+b+c+d,所求的差为:(1000a+100b+10c+d)-10(a+b+c+d)=1998,即990a+90b-9d=1998.因为a、b、d均为小于10的自然数,所以a=2,b=l,d=8.即红、黄、蓝3张卡片上的数字分别为2、1、8.评注:对于用字母表示的数,注意到其在10进制中与其各个位数数字的关系.如:abcde中的a在万位表示10000a,b在千位表示1000b,….12.一个四位数的数码都是由非零的偶数码组成,它又恰是某两个偶数码组成的数的平方.问这个四位数是多少?【分析与解】设这个四位数为A=abcd,其为B=ef的平方,因为f只能取0、2、4、6、8,所以B平方后的个位为0、4、6.即d为4或6.而B中的十位数字e只能取4、6、8这三个数,不然平方后得到的不是4位数.验证有68×68=4624满足.13.一个整数乘以13后,乘积的最后三位数是123.这样的整数中最小的是多少?【分析与解】设A=cba×13=123.,有cba,B=123方法一:123一定是13的倍数,而13的倍数满足其后三位与前面隔开,差是13的倍数.123÷13=9……6,那么6123一定是13的倍数,且为满足条件的最小自然数.那么题中所求的最小整数为6123÷13=471.方法二:有A的个位a只能是1,不然其与13的乘积的个位不是3.显然有A的个位1与13相乘过程中进有1,则A的十位b乘以13得到的数的个位为2-1=1,显然只有当b=7时才能满足.此时A的十位7与13相乘过程中进有9,则A的百位c乘以13得到的数的个位为(1+10)-9=2,显然只有c=4.而乘以13后得到的积其最后三位数是123.于是417而这样的数中最小的是471.14.将1,2,3,4,5,6,7,8,9分别填入图7-2中的9个圆圈内,使其中一条边上的4个数之和与另一条边的4个数之和的比值最大.那么这个比值是多少?【分析与解】为了使比值尽可能的大,那么一边应尽可能的小,另一边尽可能的大.有两种情况:第一种情况,两边上各自4个数字和的比值为47894321++++++=2810=2.8, 第二种情况,两边上各自4个数字和的比值为6+7+8+96+1+2+3=3012=2.5. 显然有第一种情况的比值最大,为2.8.15.在图7-3所示的除法算式中,只知道一个数字“3”,且商是一个循环小数.问被除数是多少?【分析与解】 为了方便说明,标出字母.O.A3B =A3B 999=A3B ÷999=EF ÷CD ,被除数与除数均为两位数. 所以A3B 999可以约分后为EF CD,999为除数CD 的倍数, 999=3×3×3×37,999的约数中只有27、37为两位数,所以除数CD 只能是27或37. 第四行对应为CD ×3,且为三位数,所以CD =37.那么第四行为37×3=111.则第五行首位为0减1,借位后为9.当B=1时,37×B+EF小于37×(1+1)=54,不满足;当B=2时,37×B+EF=37×2+EF=90,解得被除数EF=16.。

五上数学奥数题及答案

五上数学奥数题及答案

五上数学奥数题及答案题目一:数字谜题题目描述:一个数字被4除余1,被5除余2,被6除余3。

求这个数字。

解题思路:这个问题是一个典型的中国剩余定理问题。

设这个数字为x,根据题目条件,我们可以得到以下同余方程组:x ≡ 1 (mod 4)x ≡ 2 (mod 5)x ≡ 3 (mod 6)答案:首先计算4、5、6的最小公倍数,即LCM(4,5,6) = 60。

然后找到满足条件的最小的x,即x = 60k + 29,其中k是整数。

当k=0时,x=29是最小的解。

题目二:几何问题题目描述:一个正方形的边长为10厘米,求正方形内接圆的面积。

解题思路:正方形内接圆的直径等于正方形的边长。

答案:内接圆的半径r = 10 / 2 = 5厘米。

圆的面积A = πr² = π * 5² = 25π平方厘米。

题目三:组合问题题目描述:有5种不同的书,要分给3个不同的人,每人至少一本,问有多少种不同的分法?解题思路:这是一个组合问题,我们可以将其视为将5本书分配给3个人的问题。

答案:首先,我们需要从5本书中选出2本作为一个组合,然后将这个组合和剩下的3本书分配给3个人。

选择2本书的方法有C(5,2)种,分配给3个人的方法有3!种。

所以总的分法为C(5,2) * 3! = 10 * 6 = 60种。

题目四:逻辑推理题目描述:有5个盒子,每个盒子里都装有不同数量的球,数量分别为1, 2, 3, 4, 5。

现在有5个人来拿球,每个人拿一个盒子,每个人拿到的球数都比他之前的人多。

问最后一个人拿到的球数是多少?解题思路:根据题目描述,每个人拿到的球数都比前一个人多,所以最后一个拿到的球数应该是最多的。

答案:最后一个人拿到的球数是5。

题目五:数列问题题目描述:一个数列的前五项是1, 3, 6, 10, 15,求第六项。

解题思路:观察数列的规律,可以发现每一项都是前一项加上一个递增的自然数。

答案:第一项到第二项增加了2(3-1),第二项到第三项增加了3(6-3),以此类推。

五年级奥数数字谜综合一——分数小数数字迷

五年级奥数数字谜综合一——分数小数数字迷
分数与小数互化 分数与分数比较大小 难点:与数论结合 重点例题:例1,例2,例3,例5
答案
【例1】 1981 【例2】最后只有1.5×2.4=3.6和1.5.×4.2=6.3两个答案。 【例3】 5 【例4】 83 【例5】6.8
2
A 7
是最简分数且
A 7
7 10
,A最小是____。
【例4】(★★★) 已知a是一个自然数,A、B是1至9中的数字, 最简分数 a 0.3A3B 。请问:a是多少? 222
1
【例5】(★★★) 在下图的竖式中,填上数字,使竖式成立,那么 商最大是多少?
本讲总结:
基础:整数数字谜 新增:小数四则运算
小数数字谜
有一个四位整数,在它的某位数字前面加上一个
小数点,再与这个四位数相加,得数是 2000.81,
求这个四位数是多少?
【例2】(★★★) 把1至6填入下面的方框中,每个数字恰好使用一 次,使得等式成立。请写出乘积的所有答案。
【例3】(★★★)2012走美杯五年级

高斯小学奥数五年级上册含答案_整除问题进阶

高斯小学奥数五年级上册含答案_整除问题进阶

第二讲整除问题进阶例题1.答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有208++是99的倍数,只能是99.两个空中先后要填1和7.例题2.答案:123483789详解:设这个九位数为1234789++++=+是99a b baab,两位截断求和1234789160的倍数,只能是198.所以a=8,b=3.例题3.答案:6详解:利用7的整除特性,895930-=能被7整除,只能填6.例题4.答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|59就可以了.空格中要填5.例题5.答案:768768详解:形如abcabc一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6.答案:20999详解:利用数字谜,从后往前逐位确定.练习1.答案:6237简答:两位截断后的和是99.练习2.答案:12327678简答:两位截断后的和是198. 练习3. 答案:5712或5782简答:利用7的整除特性,72与5的差是7的倍数,空格中可以填1或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下.它是13的倍数,那么空格中只能填0.作业1. 答案:7的倍数有7315,58674,360360;13的倍数有325702,360360简答:牢记7和13的判断方法.作业2. 答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知能被7整除,框中填5满足条件.作业4. 答案:9简答:应用三位截断,可知能被7和13整除,即是91的倍数,框中填9满足条件.作业5. 答案:3简答:应用三位截断,可知能被7整除,框中填3满足条件. 第二讲 整除问题进阶13 81 81 76上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等.现在我们再来学习一些新的判断方法.一、截断作和能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位数)之和能被99整除.六位数2008能同时被9和11整除.这个六位数是多少?【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数能被99整除,这个八位数是多少?二、截断作差能被7、11、13整除的数的特征:从个位开始,每三位一截,奇数段之和与偶数段之和的差能被7或11或13整除.【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小高写一个一位数放在59与89之间拼成一个五位数5989,使得这个五位数能被7整除.请问:小高写的数是多少?123678 已知九位数1234789能被99整除,这个九位数是多少?23四位数572能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.【分析】在本题中,255259555999□个个能被13整除.这个数的位数太多,我们可以想办法使它变得简短一些.因为1001是13的倍数,而555555、999999分别是555、999与1001的乘积,说明它们都是13的倍数.那我们是不是可以去掉这个51位数上的一些5和9,并仍然保证它能被13整除?已知多位数2010120103111333个个能被13整除,那么中间方格内的数字是多少?【分析】能被6,7,8整除的数有什么特点呢?最难把握的在于这个六位数能被7整除,我们应该怎样安排数字才能使得它的前三位与后三位的差能被7整除呢?题目只要求我们写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.用数字6,7,8各两个,要组成能同时被6,7,8整除的六位数.请写出一个满足要求的六位数.已知51位数255259555999个个能被13整除,中间方格内的数字是多少?一个五位数,它的末三位为999.如果这个数能被23整除,那么这个五位数最小是多少?【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑.我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积.接下来,大家想到该怎么办了吗?课堂内外自古成功在尝试枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946~1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”.这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业1. 在7315,58674,325702,96723,360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33能同时被9和11整除,这个四位数是多少?3. 四位数278能被7整除,那么这个四位数是多少?4. 已知多位数201225881258258258□个(2012个258)能同时被7和13整除,方格内的数字是多少?5. 已知多位数2011120113111333个个能被7整除,那么中间方格内的数字是多少?。

五年级奥数专题 数字谜综合(学生版)

五年级奥数专题 数字谜综合(学生版)

学科培优数学数字谜学生姓名授课日期教师姓名授课时长知识定位什么是数字迷?数字谜,一般是指那些含有未知数字或未知运算符号的算式。

这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则、数的性质(和差积商的位数,数的整除性、奇偶性、尾数规律等)来进行正确的推理、判断。

重难点:1.横式迷问题2.竖式迷题中的除法式迷3.试验法在解决数字迷问题的应用考点: 1.复杂的横式迷题2.复杂的竖式谜题3.枚举和筛选相结合的方法(试验法)解决数字谜题知识梳理如何解决数字谜题?解数字谜,一般是从某个数的首位或末位数字上寻找突破口。

推理时应注意:(1)数字谜中的文字、字母或其它符号,只取0~9中的某个数字;(2)要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;(3)必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;(4)数字谜解出之后,最好验算一遍。

横式的补填空格和破译字母问题中,解题的基本方法有尾数分析,分情况试算,数值估算,以及因数分解等。

同学们在解题时要灵活应用。

例题精讲【试题来源】【题目】在下面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。

那么所填的3个数字之和是多少?□,□8,□97【试题来源】【题目】在下列各等式的方框中填入恰当的数字,使等式成立,并且算式中的数字关于等号左右对称:(1)12×23□=□32×21, (2)12×46□=□64×21,(3)□8×891=198×8□, (4)24×2□1=1□2×42, (5)□3×6528=8256×3□。

【试题来源】【题目】在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□, (2)7□□8÷37=□1□,(3)3□□3÷2□=□17, (4)8□□□÷58=□□6。

高斯小学奥数五年级上册含答案_直线形计算中的比例关系

高斯小学奥数五年级上册含答案_直线形计算中的比例关系

J望 昆大侠 溝了!这个故事 说起来就久远 了■ ■ ■ ■ 1■律!□-5T L不打里思与蔡川因为这一战攀道剑鮒眾翳胡请1乍亦第十八讲 直线形计算中的比例关系很久以前.青一场n惊江 鬭的人战.匚 原大侠望昆与 魔救蹌一高手 黎川相约在华 山之昴决斗.苓苓「这个飞繚是 怎么来的呼这就是 ■小黎飞镖" 的来由了!望昆用尽力■击出一 劃”正好打在•小養飞 *JT 上,井在无星不轉 的飞傑上留下了一道削*决斗的情况十幷滋 熱.熾后黎川发出了自 己的绝招•小柴飞象, 打向了箋昆.在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系, 中的基本结论.当两个三角形同高或等高的时候,它们面积的比等于对应底之比.如图所示,对于三角形ABD与三角形BDC ,它们有共同的高BH ,可知三角形ABD的面积AD 三角形BDC的面积DC °例题1.如图,AE:EB=3:2, CD:DB=7:5,三角形ABC的面积是60,求三角形AED的面积.「分析」图中是否有等高的三角形?练习1.如图,CE : AE 2:5 , CD : DB 7:5三角形ABC面积为120,求三角形AED的面积.在前面的漫画中我们认识了“小黎飞镖” •把“飞镖”立起来(如图),标好字母,A 会发现两个三角形:三角形ADE与三角形ABC •这两个三角形有一个公共的角A,并且■'角A的两边AD、AE分别在AB、AC上.对于符合这种情况的三角形ADE与三角形ABC, 我们称之为“共角三角形” . DF面我们复习一下其AB对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:在“小黎飞镖”中,有三角形ADE的面积AD AE .(同学们,可以想一想如何来证明这三角形ABC的面积AB AC个结论.提示:连结四边形BDEC的一条对角线)例如:如果在“小黎飞镖”中,D点是AB上靠近B的3等分点,E点是AC上靠近AAD 2 AE 1的3等分点,那么,,那么三角形ADE的面积就是三角形ABC面积的AB 3 AC 32 1 23 3 9 .有了这个结论,在解决一些问题时,就方便很多了•请看下面的问题.例题2.如图,在三角形ABC中,AD的长度是BD的3倍,AC的长度是EC的3倍.三角形AED的面积是10,那么三角形ABC的面积是多少?「分析」△ ADE占厶ABC的几分之几?应该怎么利用鸟头模型来计算?练习2. 积是8, 三角形ABC中,BD的长度是AB的丄,AE的长度是AC的1 .三角形AED的面4那么三角形ABC的面积是多少?例题3•如图,已知长方形ADEF的面积是16, BE=3BD, CE=CF .请问:三角形BEC的面积是多少?「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?练习3 .如图,长方形 ABCD 的面积是48, BE:CE=3:5 , DF:CF=1:2 .三角形CFE 的面积是接着,我们来看一看在任意四边形中三角形之间的面积关系. 如图,对于一个任意的四边形ABCD ,连结对角线 AC 和BD ,将整个四边形分成 本结论,我们可以得到如下关系:例题4.如图,某公园的外轮廓是四边形 ABCD ,被对角线AC 、BD 分成4个部分.三角形BOC 的面积是2平方千米,三角形 COD 的面积是3平方千米,三角形 AOB 的面积是1平 方千米.如果公园由大小为 6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多 少平方千米? 「分析」△ BOC 、A COD 和厶AOB 的面积都知道了,那么△ AOC 的面积是多少呢?练习4.四边形ABCD 中,AC 、BD 两条对角线交于 O 点,三角形 ABO 的面积为6,三角 形AOD 的面积为8,三角形BOC 的面积是15,那么四边形 ABCD 的面积是多少?4个小三角形,由等高三角形的基BO DO§S2 §4 §3AO S ( S, CO S 4§3§i S 4 §2 §3 3 S 2 §1 S 3§1 S 3§>§4D「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?例题6 .图中四边形 ABCD 的对角线AC 和BD 交于0点,如果△ ABD 的面积是30平方厘 米,△ ABC 的面积是48平方厘米,△ BCD 的面积是50平方厘米.请问:△ BOC 的面积是 多少? 「分析」题目中给出了 3个大三角形的面积, 能不能找出四个小三角形之间的面积关系呢?1例题5.如图,△ ABC 的面积是36,并且AE AC , CD3的面积.1BC , BF 】AB ,试求△ DEF 4 5BC 0三角形中的五心重心:三角形各边上的中线交于一点,称为三角形重心;垂心:三角形各边上的高交于一点,称为三角形垂心;外心:三角形各边上的垂直平分线交于一点,称为三角形外心;内心:三角形三内角平分线交于一点,称为三角形内心;旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.锐箱三劑形金第三箱形註第三垢形三角形的垂心三角形的旁心三角形的内心三朿形附W21.如图,△ ABC 中,BD 的长度是AB 的,如果△ ABC 的面积为15,那么3△ ADC 的面积是多少?如图所示,在长方形 ABCD 中,DE CE , CF 2BF ,如果长方 形ABCD 的面积为18,那么阴影部分的面积是多少?如图,四边形 ABCD 中,AC 、BD 两条对角线交于 0点,△ ADO的面积为30, △ ABO 的面积为6,^ DOC 的面积是20,那么四边形 ABCD 的面积是多少?2. 3. 如图,AE : EB 4:3 , CD : DB 形AED 的面积是多少?如图,AD:DB 1:4 , AE: EC ADE 的面积是多少?3:1 ,三角形ABC 的面积是84,1:5,如果△ ABC 的面积是120, 三角那么△4.5.B F C第十八讲直线形计算中的比例关系例题1.答案:15详解:因为三角形ACD与三角形ADB同高,所以S ACD :S ADB CD: DB 7:5,所以角形ADB面积为25 ;同理,三角形AED与三角形BED等高,所以S AED : S BED AE:EB 3: 2,所以三角形AED面积为15.例题2.答案:20详解:AD是AB的3, AE是AC的-.根据鸟头模型,有厶ADE面积是△ ABC面积的4 33 2 1.那么△ ABC的面积是20.4 3 2例题3.答案:3详解:连结DF,根据鸟头模型,可知△ BCE面积是△ DEF面积的1 3.那么△4 2 81 3BCE的面积是16 3 .2 8例题4.答案:0.6详解:由题意,S BOC : S COD BO :OD S BOA : S DOA ,三角形BOC面积为2平方千米,三角形COD面积为3平方千米,三角形BOA面积为1平方千米,则三角形AOD面积是1.5平方千米,陆地总面积 6.9平方千米,则人工湖面积为 2 3 1 1.5 6.9 0.6平方千米.例题5.答案:15详解:由鸟头模型可得,S AEF36 4 148S BFD 36—3275 35545124827SCDE36 -6, S DEF 36615 .4355例题6.答案:30详解:AO:CO §AB D:S BCD 3:5,所以S BOC S ABC 8 30平万厘米练习1. 答案:50简答:△ ACD的面积是1207 5 7 70 ,△ AED的面积是70 2 5 5 50.练习2. 答案:32简答:83 - 32 .4 3练习3.答案:10简答:4815 2“10 .2 8 3练习4. 答案:49简答:△ COD的面积是8 15 6 20,四边形ABCD的面积为6 8 15 20 49.作业1.答案:52 1简答:由BD的长度是AB的—得AD: AB 1:3,那么三角形ADC的面积为15 - 5 .3 3作业2. 答案:12简答:由于CD:DB 3:1,三角形ABC的面积是84,可知三角形ADB的面积为84 (3 1) 21,又由于AE : EB 4:3,可知三角形AED的面积为21 (4 3) 4 12. 作业3.答案:4简答:由已知条件得AD : AB 1:5 , AE : AC 1:6,利用“共角三角形”得三角形AED1 1的面积是120 - - 4.5 6作业4.答案:6简答:由于长方形ABCD的面积为18,可知三角形BCD的面积为9,三角形CEF为三12 1 1角形BCD的--1,那么阴影部分的面积是9 (1 J) 6.2 3 3 3作业5. 答案:60简答:利用任意四边形的结论得三角形BOC的面积是:6 20 30 4,所以四边形ABCD的面积是6 20 30 4 60.。

2013-2014学年五年级(上)奥数训练检测卷:数字谜综合

2013-2014学年五年级(上)奥数训练检测卷:数字谜综合

2013-2014学年五年级(上)奥数训练检测卷:数字谜综合一、解答题(共18小题,满分0分)1.已知□○○△×□×□△=□□□△△△,其中□、○、△代表不同的数字,那么三位数“△□○”=.2.在1010050,1010000,1010025,1010100这四个数中,是完全平方数,它是的平方.3.一个四位数,它各位数字和的10倍比这个数本身小1989,它的各位数字和的100倍比这个数本身小909.求这个四位数为.4.一个六位数,前三位数都是奇数,后三位都是偶数,前三位与后三位对调之后,形成的新六位数是原来六位数的5.5倍,则原来的六位数是.5.请破译下面的横式,相同汉字表示相同数字,不同汉字表示不同数字.学习好勤动脑×5=勤动脑学习好×8.6.7950可以分解为三个质数的平方和,这三个质数分别为、、.7.如图,相同汉字表示相同数字,不同汉字表示不同数字,那么“欢乐谷”代表的三位数为.8.破解下列横式,相同的汉字表示相同的数字,不同的汉字表示不同的数字.岁岁×年年=花相似年年÷岁岁=人÷不同.9.用+、﹣、×、÷四个运算符填入下列□中,使得a+b+c+d的值最大,则最大值=.□=a □=b □=c □=d.10.在□中填入大于1的数字,使得横式成立.11.将1至9填入右图的圆圈中,可以使得由图中线段构成的7个三角形的三个顶点处所填的数字之和都是15,那么阴影三角形的三个顶点出所填数字的乘积可能为.12.请将1、2、3、4、5、7、8、9这8个数字填入图中的8个圆圈,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.(1)请在图中上给出一个填法;(2)这个共同的和可能是(写出所有可能的答案);(3)一共有种满足题目要求的填法(图形不旋转或翻转).13.现有五个不完整的四位数:“5□48”,“69□3”,“3□86”,“4□59”,“7□21”.其中可能为完全平方数的有个;写出那些补全之后的平方数.14.已知一个四位数平方之后,后四位与原来的四位数相同,那么原来那个四位数是.15.一个五位数中,2换成5,5换成2,其它不变,形成的新五位数的一半仍然比原来的五位数来的大1,则这个五位数可能为.16.一个五位数前三位形成的三位数可以被9整除,后两位形成的两位数可以被7整除,把这个五位数按逆序写出后,形成的新的五位数与原数之和为67866,那么这个五位数为.17.将+、﹣、×、÷四个运算符填入下列□中,使得运算结果最大,则最大值=.1□□□□.18.某个数是大于1000而且小于2000的整数.这个数加1是完全平方数,它的一半加1也是完全平方数,那么这个数是.2013-2014学年五年级(上)奥数训练检测卷:数字谜综合参考答案与试题解析一、解答题(共18小题,满分0分)1.已知□○○△×□×□△=□□□△△△,其中□、○、△代表不同的数字,那么三位数“△□○”=730.【解答】解:根据□□□△△△一定是111的倍数,可得:□□□△△△=111×□00△,则□○○△×□×□△=111×□00△,又由于111=3×37,所以,□○○△×□×□△=□00△×3×37,所以可以得出○=0,□=3,△=7,所以,△□○=730.故答案为:730.2.在1010050,1010000,1010025,1010100这四个数中,1010025是完全平方数,它是1005的平方.【解答】解:(1)如果完全平方数的十位数字是奇数,则它的个位数字一定是6,所以1010050不是完全平方数;(2)因为1010000=101×1002,101不是完全平方数,所以1010000不是完全平方数;(3)完全平方数的各位数字之和只能是0、1、4、7、9,但1010100的各位数字之和是3,所以它不是一个完全平方数;(4)因为1010025=10052,所以1010025是一个完全平方数.综上,可得,在1010050,1010000,1010025,1010100这四个数中,1010025是完全平方数,它是1005的平方.故答案为:1010025、1005.3.一个四位数,它各位数字和的10倍比这个数本身小1989,它的各位数字和的100倍比这个数本身小909.求这个四位数为2109.【解答】解:由于各个数字和的10倍的值,个位为0,各个数字和的10倍比这个数小1989,这个数的个位就是9.同理可知,这个数的末两位是09又各个数字和的90倍=1989﹣909=1080,各个数字和=1080÷90=12,设这个四位数是AB09,则A+B+0+9=12,1000A+100B+9=12×100+909即1000A+100B+9=210010A+B=21所以,A=2,B=1.则这个数就是2109.故答案为:2109.4.一个六位数,前三位数都是奇数,后三位都是偶数,前三位与后三位对调之后,形成的新六位数是原来六位数的5.5倍,则原来的六位数是153846.【解答】解:设前三位是x,后三位是y,则此数是1000x+y,把后半部分移到前面,是1000y+x.则:1000y+x=5.5(1000x+y)=5500x+5.5y5499x=994.5y10998x=1989y94x=17y所以y是94的倍数,y是三位数且三个数字都是偶数,所以y=282或846,y=282,x=51,不是三位数y=846,x=153,符合题意所以原数是153846.故答案为:153846.5.请破译下面的横式,相同汉字表示相同数字,不同汉字表示不同数字.学习好勤动脑×5=勤动脑学习好×8.【解答】解:设“学习好”为x,“勤动脑”为y,则“学习好勤动脑”为1000x+y,“勤动脑学习好”为1000y+x,则有:(1000x+y)×8=(1000y+x)×58000x+8y=5000y+5x7995x=4992y即:128x=205y观察发现,128和205有重复数字2,所以不合适(1)两边乘以2,有256x=410y,发现没有重复数字,所以x=410,y=256,即410256;(2)两边乘以3,有384x=615y,也没有重复数字,所以x=615,y=384,即615384;(3)有512x=802y,有重复数字,两边乘以5,超出了3位数,不予考虑;所以,合乎条件的有:410256和615384,最少是410256;所以答案为:410256×5=61538×8.6.7950可以分解为三个质数的平方和,这三个质数分别为2、5、89.【解答】解:设7950分解的三个质因数分别为m、n、p,则m2+n2+p2=7950,因为三个数的平方和是一个偶数,所以m、n、p中必有一个偶数,m、n、p均为质数,质数中只有2是偶数,所以m、n、p中必有一个数是2;不妨设p=2,则m2+n2=7950﹣22=7946=52+892,所以这三个质数分别为2、5、89.故答案为:2,5,89.7.如图,相同汉字表示相同数字,不同汉字表示不同数字,那么“欢乐谷”代表的三位数为625.【解答】解:故答案为:625.8.破解下列横式,相同的汉字表示相同的数字,不同的汉字表示不同的数字.岁岁×年年=花相似年年÷岁岁=人÷不同.【解答】解:年年×岁岁=(年×11)×(岁×11)=121×年×岁=花相似,即花相似=121×年×岁;花相似是一个三位数,121乘1~9来排除;因为年和岁都不能等于1,所以,1、2、3、5、7、可以排除,它们只能分解成1乘以他们本身;因为121×9=1089,不是三位数,所9排除;只有4.6.8,一一排除,可知,花相似=121×8=968;年×岁=8;岁岁÷年年=人÷不同,可以知道岁<年;综上可得:年=4,岁=2;人÷不同=岁÷年=2÷4;0~9剩下0、1、3、5、7,只有:人÷不同=5÷10.由以上可得:44×22=968,22÷44=5÷10.9.用+、﹣、×、÷四个运算符填入下列□中,使得a+b+c+d的值最大,则最大值=5.□=a □=b □=c □=d.【解答】解:a=,b=,c=,d=,此时a+b+c+d的值最大,则最大值为:=5.故答案为:5.10.在□中填入大于1的数字,使得横式成立.【解答】解:[3×(23+8)]2=8649故答案为:3,2,8,6,4.11.将1至9填入右图的圆圈中,可以使得由图中线段构成的7个三角形的三个顶点处所填的数字之和都是15,那么阴影三角形的三个顶点出所填数字的乘积可能为120.【解答】解:根据图示,计算7个三角形的三个顶点处所填的数字之和时,阴影三角形的三个顶点的被重复计算了3次;因为1+2+3+…+9=45,所以阴影三角形的三个顶点出所填数字的和=15×7﹣45×2=15,经验证,阴影三角形的三个顶点处所填数字只能是4、5、6,所以它们的积是:4×5×6=120.故答案为:120.12.请将1、2、3、4、5、7、8、9这8个数字填入图中的8个圆圈,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.(1)请在图中上给出一个填法;(2)这个共同的和可能是(写出所有可能的答案)13;(3)一共有4种满足题目要求的填法(图形不旋转或翻转).【解答】解:(1);(2)1+2+3+4+5+7+8+9=39,设幻和是a,则四个三角形上数字的和相当于4a,重复加的数字就是中间正方形四个顶点上的数之和即一个幻和a,因此可得:4a﹣a=39,解得a=13,即这个共同的和可能是13;(3)一共有4种满足题目要求的填法:、、、.故答案为:13、4.13.现有五个不完整的四位数:“5□48”,“69□3”,“3□86”,“4□59”,“7□21”.其中可能为完全平方数的有1个;写出那些补全之后的平方数7921=89×89.【解答】解:(1)因为完全平方数的末位数只能是0、1、4、5、6、9,所以“5□48”,“69□3”不可能成为完全平方数;(2)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数;①因为“4□59”的十位数字是奇数,但它的个位数字不是6,所以“4□59”不可能成为完全平方数;②因为“3□86”的个位数字是6,但它的十位数字不是奇数,所以“3□86”不可能成为完全平方数;(3)当7□21中方框内的数是9时,此时,7921是一个完全平方数,7921=89×89;所以可能为完全平方数的有1个,补全之后的平方数为:7921=89×89.故答案为:1、7921=89×89.14.已知一个四位数平方之后,后四位与原来的四位数相同,那么原来那个四位数是9376.【解答】解:设原来四位数是abcd=1000a+100b+10c+d,则(1000a+100b+10c+d)×(1000a+100b+10c+d)=106•a2+10000b2+200000ab+20000ac+2000(ad+bc)+100×(c2+2bd)+20cd+d2,所以一个四位数平方之后的后四位数与2000(ad+bc)+100×(c2+2bd)+20cd+d2的后四位数相同,推理,可得a=9,b=3,c=7,d=6,即原来的四位数是9376,93762=87909376.故答案为:9376.15.一个五位数中,2换成5,5换成2,其它不变,形成的新五位数的一半仍然比原来的五位数来的大1,则这个五位数可能为29995或29998.【解答】解:由题意可知,原来数字的万位数显然是2,则新5位数的万位是5,又原数字的千位必须大于4,否则乘2不能进一,又百位乘2后只能向千位进一,所以千位只能是9,由此依次可推出原数的前四位数字为2、9、9、9,又形成的新五位数的一半仍然比原来的五位数来的大1,经检验:59992÷2﹣1=29995,59998÷2﹣1=29998.所以原五位数可为:29995或29998.16.一个五位数前三位形成的三位数可以被9整除,后两位形成的两位数可以被7整除,把这个五位数按逆序写出后,形成的新的五位数与原数之和为67866,那么这个五位数为54921.【解答】解:设五位数为abcde,则有:10000a+1000b+100c+10d+e+10000e+1000d+100c+10b+a=67866,即10000(a+e)+1000(b+d)+200c+10(b+d)+(a+e)=67866明显a+e=6(前四项个位都为0,而最后各位为6)所以1000(b+d)+200c+10(b+d)=7860同理,可得b+d=6,得200c=1800c=9则由abc能被9整除,a+b+c=a+b+9能被9整除,推得a+b能被9整除,a+b=9;综合a+e=6b+d=6a+b=9推得a+b=4+5[不能=3+6=2+7…]则de=21再推得a=5综上,这五位数是54921;故答案为:54921.17.将+、﹣、×、÷四个运算符填入下列□中,使得运算结果最大,则最大值= 2.1□□□□.【解答】解:==2故答案为:2.18.某个数是大于1000而且小于2000的整数.这个数加1是完全平方数,它的一半加1也是完全平方数,那么这个数是1680.【解答】解:因为312=961(960的一半加1不是一个数的平方)332=1089(1088一半加1不是一个数的平方)352=1225(1224一半加1不是一个数的平方)372=1369(1268一半加1不是一个数的平方)392=1521(1519一半加1不是一个数的平方)412=1681(1680的一半加1是841=292)因此,这个数是1680.故答案为:1680.。

高思奥数导引小学五年级含详解答案第13讲.数字谜综合一

高思奥数导引小学五年级含详解答案第13讲.数字谜综合一

第13讲数字谜综合一内容概述涉及小数、分数、循环小数的数字谜问题;需要利用数论知识解决的数学问题。

典型问题兴趣篇1.有一个四位数,在它的某位数字后加上一个小数点,得到一个小数。

再把这个小数和原来的四位数相加,得数是4003.64。

求这个四位数。

2.试将1、2、3、4、5、6、7分别填入下面的方框中,每个数字只用一次:□□□(这是一个三位数),□□□(这是一个三位数),□(这是一个一位数),使得这三个数中任意两个都互质。

已知其中一个三位数已填好,它是714,求另外两个数。

3.用1至9这9个数字各一次组成若干个数,这些数中最多有多少个合数?4.如图13-1,4个小三角形的顶点处有6个圆圈。

在这些圆圈中分别填上6个质数(可以重复),使得它们的和是20,而且每个小三角形3个顶点上上的数之和相等。

请问:这6个质数的乘积是多少?5.在一个带有余数的除法算式中,商比除数大2,在被除数、除数、商和余数中,最大数与最小数之差是1023。

请问:此算式中的4个数之和最大可能是多少?迎杯春杯=好好好”中,不同的汉字表示不同的数字,相同的汉字表示相6.在乘法算式“同的数字。

请问“迎+春+杯+好”等于多少?7. 将1至9这9个数填入下面算式中的9个方框内(每个数字只能用一次),使等式成立。

5568⨯=⨯=8. 循环小数0.AB 化成最简分数后,分子与分母之和为40,那么A 和B 分别是多少?9. 在算式“7+数学竞赛=华罗庚金杯”中,华、罗、庚、金、杯、数、学、竞、赛九个字,分别代表数字1、2、3、4、5、6、7、8、9。

已知“竞=8,赛=6”,请把这个算式写出来。

10. 已知“BAD BAD GOOD +=”是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字,已知GOOD 不是8的倍数。

请问:ABGD 代表的四位数是什么?拓展篇1.[4.25(12.59.10.7)]0.04100⨯-÷+÷÷=. 改动上面算式中的一个数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?2.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质。

小学奥数5-1-2-4 最值的数字谜(一).专项练习及答案解析

小学奥数5-1-2-4 最值的数字谜(一).专项练习及答案解析

1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

【例 1】 有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11469,那么其中最小的四位数是多少?【考点】加减法的进位与借位 【难度】3星 【题型】填空【解析】 设这四个数字是a b c d >>>,如果0d ≠,用它们组成的最大数与最小数的和式例题精讲知识点拨教学目标5-1-2-4.最值中的数字谜(一)是11469a b c dd c b a +,由个位知9a d +=,由于百位最多向千位进1,所以此时千位的和最多为10,与题意不符.所以0d =,最大数与最小数的和式为011469a b c c b a +,由此可得9a =,百位没有向千位进位,所以11a c +=,2c =;64b c =-=.所以最小的四位数cdba 是2049.【答案】2049【例 2】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数,如果新数比原数大7902,那么所有符合这样条件的四位数中原数最大的是 .7902D C BA AB CD - 【考点】加减法的进位与借位 【难度】4星 【题型】填空【解析】 用A 、B 、C 、D 分别表示原数的千位、百位、十位、个位数字,按题意列减法算式如上式.从首位来看A 只能是1或2,D 是8或9;从末位来看,102A D +-=,得8D A =+,所以只能是1A =,9D =.被减数的十位数B ,要被个位借去1,就有1B C -=.B 最大能取9,此时C 为8,因此,符合条件的原数中,最大的是1989.【答案】1989【例 3】 在下面的算式中,A 、B 、C 、D 、E 、F 、G 分别代表1~9中的数字,不同的字母代表不同的数字,恰使得加法算式成立.则三位数EFG 的最大可能值是 .2006A B C D E FG + 【考点】加减法的进位与借位 【难度】4星 【题型】填空【解析】 可以看出,1A =,6D G +=或16.若6D G +=,则D 、G 分别为2和4,此时10C F +=,只能是C 、F 分别为3或7,此时9B E +=,B 、E 只能分别取()1,8、()2,7、()3,6、()4,5,但此时1、2、3、4均已取过,不能再取,所以D G +不能为6,16D G +=.这时D 、G 分别为9和7;且9C F +=,9B E +=,所以它们可以取()3,6、()4,5两组.要使EFG 最大,百位、十位、个位都要尽可能大,因此EFG 的最大可能值为659.事实上134********+=,所以EFG 最大为659.【答案】659【巩固】 如图,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么四位数“奥林匹克”最大是奥林匹克+奥数网2008【考点】加减法的进位与借位 【难度】4星 【题型】填空【关键词】学而思杯,6年级,1试,第2题【解析】 显然“2≤奥”,所以“1=奥或2”,如果“2=奥”,则四位数与三位数的和超过2200,显然不符合条件,所以“1=奥”,所以“9≤林”,如果“9=林”那么“200819001008+=--=匹克数网”,“0=匹=数”,不符合条件,所以“林”最大只能是8,所以“20081800100108+=--=匹克数网”,为了保证不同的汉字代表不同的数字,“匹克”最大是76,所以“奥林匹克”最大是1876。

高斯小学奥数五年级上册含答案_整除问题进阶

高斯小学奥数五年级上册含答案_整除问题进阶

第二讲整除问题进阶例题1. 答案:120087详解:能被9 和11 整除可以看作是能被99 整除,可以两位截断求数段和,那么有2 0 8 是99 的倍数,只能是99.两个空中先后要填 1 和7.例题2. 答案:123483789详解:设这个九位数为1234ab789 ,两位截断求和 1 23 4a b7 89 160 ba 是99的倍数,只能是198.所以a=8,b=3.例题3. 答案:6详解:利用7 的整除特性,89 59 30 能被7 整除,只能填6.例题4. 答案:5详解:555555、999999 能被13 整除,前面依次去掉555555,后面一次去掉999999 后仍然是13 的倍数.所以只需要满足13 |5 9 就可以了.空格中要填5.例题5. 答案:768768详解:形如abcabc 一定能被7 整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8 组成.又可知这个六位数一定能被 3 整除,所以只要保证后三位能被8 整除就可以了.答案不唯一.例题6. 答案:20999详解:利用数字谜,从后往前逐位确定.3 1 3 9 1 32 3 2 3 2 3 2 3→→→9 3 9 7 3 96 2 6 2 69 9 9 9 9 9 9 9 9 9 9 9练习1. 答案:6237简答:两位截断后的和是99.练习2. 答案:12327678简答:两位截断后的和是198.练习3. 答案:5712 或5782简答:利用7 的整除特性,7 2 与5 的差是7 的倍数,空格中可以填 1 或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下.它是13 的倍数,那么空格中只能填0.作业1. 答案:7 的倍数有7315,58674,360360;13 的倍数有325702,360360简答:牢记7 和13 的判断方法.作业2. 答案:6336简答:这个四位数是99 的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知7 6 能被7 整除,框中填 5 满足条件.作业4. 答案:9简答:应用三位截断,可知能被7 和13 整除,即是91 的倍数,框中填981 81满足条件.作业5. 答案:3简答:应用三位截断,可知能被7 整除,框中填 3 满足条件.1 3第二讲整除问题进阶上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等.现在我们再来学习一些新的判断方法.一、截断作和能被99 整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位数)之和能被99 整除.例题 1六位数2008 能同时被9 和11 整除.这个六位数是多少?【分析】能同时被9 和11 整除,说明这个六位数能被99 整除.想一想,99 的整除特性是什么?练习 1四位数23 能同时被9 和11 整除,这个四位数是多少?例题 2已知九位数1234 789 能被99 整除,这个九位数是多少?【分析】这个九位数是99 的倍数,说明两位截断以后,各段之和是99 的倍数.这个99 的倍数可能是多少呢?练习 2已知八位数能被99 整除,这个八位数是多少?123 678二、截断作差能被7、11、13 整除的数的特征:从个位开始,每三位一截,奇数段之和与偶数段之和的差能被7 或11 或13 整除.例题 3阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小高写一个一位数放在59 与89 之间拼成一个五位数59 89 ,使得这个五位数能被7 整除.请问:小高写的数是多少?【分析】根据能被7 整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7 整除,我们可以由此将问题简化.练习 3四位数57 2 能被7 整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.例题 4已知51 位数55L 5 99L 9能被13 整除,中间方格内的数字是多少?1 2 3 1 2 32 5个5 25个9能被13 整除.这个数的位数太多,我们可以想办法使它【分析】在本题中,5152L35□9192L3925个 5 25个9变得简短一些.因为1001 是13 的倍数,而555555、999999 分别是555、999 与1001 的乘积,说明它们都是13 的倍数.那我们是不是可以去掉这个51 位数上的一些 5 和9,并仍然保证它能被13 整除?练习 411L 1 33L 3能被13 整除,那么中间方格内的数字是多少?已知多位数{ {2010 1 2010 3个个例题 5用数字6,7,8 各两个,要组成能同时被6,7,8 整除的六位数.请写出一个满足要求的六位数.【分析】能被6,7,8 整除的数有什么特点呢?最难把握的在于这个六位数能被7 整除,我们应该怎样安排数字才能使得它的前三位与后三位的差能被7 整除呢?题目只要求我们写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.例题 6一个五位数,它的末三位为999.如果这个数能被23 整除,那么这个五位数最小是多少?【分析】我们没有学过能被23 整除的数的特征,而且23 也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑.我们尝试从整除的定义来入手,这个五位数能被23 整除,就是说它能写成23 与另一个数的乘积.接下来,大家想到该怎么办了吗?课堂内外自古成功在尝试枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946~1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”.这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业1.在7315,58674,325702,96723,360360中,7的倍数有哪些?13的倍数有哪些?2.四位数33能同时被9和11整除,这个四位数是多少?3.四位数278能被7整除,那么这个四位数是多少?4.已知多位数81□1258424528L424358(2012个258)能同时被7和13整除,方格内的数字是2012个258多少?5.已知多位数{{11L133L3能被7整除,那么中间方格内的数字是多少?2011120113个个。

五年级奥数.数字谜综合

五年级奥数.数字谜综合

数字谜综合涉及分数与小数的各种类型的数字谜问题,包括竖式的补填、算式的构造、小数的舍人与变化等.较为复杂的数字问题,以及其他略有综合性的数字谜问题.1.有一个四位整数,在它的某位数字前面加上一个小数点,再与这个四位数相加,得数是2000.81.求这个四位数是多少?【分析与解】设四位整数4的某位数字前加上一个小数点得到一个新的数B,A与B的和为2000.81,而小数只能由B得到,且0.81为B的小数部分,所以小数点加在A的百位与十位之间,即缩小了有2.12.40~133.4以后再相,2.4.?[4.2×5-=[21-(0.=[21-13.=7.6÷0.04=190注意到在“[21-(0.4+13)]÷O.04”这一步中如果(0.4+13)是(4+13),那么最终的结果为100.所以只需将1÷2.5改为1÷0.25,即将2.5改为O.25即可.5.在算式2÷3÷4÷5÷6中添上若干个括号,使算式的结果是整数,并且尽可能小.试写出添加完括号后的算式.【分析与解】注意到将除号前加一个括号,可以使括号内的除号在脱括号之后变为乘号.又注意到2、3、4、5、6只有5含有质因数5,就是说其他的质因数可能经过变换运算法则除去,而质因数只能保留,且只能作为乘数,也就是说题中算式变化后是最终的结果最小为5.有2÷3÷4÷5÷6=EFCD,现在要得到5,扩大了5÷1180=900,所以必须将原来作为除数的30变为乘数30,有5×6=30,所以将5、6由除数变为乘数.有2÷3÷(4÷5÷6)=5,此式即为所求.6.用1,4,5,6四个数,并适当选择加号、减号、乘号、除号以及括号,组成一个结果等于24的正确算式.【分析与解】有24=2×2×2×3,常规的方法,无法使1,4,5,6通过运算得到24,但是注意到可利用分数:有4÷16=24,6÷14=24等.于是有下面两个算式满足:4÷(1-5÷6)=24,6÷(5÷4-1)=24.评注:此类题是常说的“24点”游戏:从一副扑克牌中除去大王、小王,A表示1,J表示11,Q表示12,K表示13,其他的牌表示的数等于牌面数字.从剩下的52张牌中任意抽取4张,通过7上式是经过四舍五入得到的等式,其中每个3个数分别是多少?【分析与解】设△代表的三个数从小到大为当2当时,1+1+1最小为3当1+1最小为13+15+19 b=5,c=8时有13+1+1≈所以这三个数分别为3、5、8.87、6、55个9个和互不相等,且最大的和是最小的和的2倍,那么最小的和是多少?【分析与解】设分成的3组数的和从大到小依次为a、b、c,a=2c,并且有a+b+c=b+3c=1+2+3+…+8=36.3c为3的倍数,36为3的倍数.所以b为3的倍数.解得b3c11a2c22=⎧⎪=⎨⎪==⎩,b6c10a2c20=⎧⎪=⎨⎪==⎩,b9c9a2c18=⎧⎪=⎨⎪==⎩,b12c8a2c16=⎧⎪=⎨⎪==⎩,b15c7a2c14=⎧⎪=⎨⎪==⎩,不难看出随着b的增大,a在减小,所以其他情况不用再讨论.满足条件的解只有b=12,c=8,a=16.1,2,3,4,5,6,7,8可以分成{1,2,3,4,6}、{5,7}、{8}这三组.所以满足题意的最小一组数的和为8.10.用1,2,3,4,5,6,7,8,9这9个数字组成3个三位数(每个数字只用一次),使其中最大的三位数被3除余2,并且尽可能的小;次大的三位数被3除余1;最小的三位数能被3整除.那么,最大的三位数是多少?【分析与解】被3除余2、1、0的数,其数字和除以3也分别余2、1、0.为了使最大的三位数尽可能的小,所以其百位最小取3,因为如果取1或2,那么剩下两个三位中的某一个其百位数字大于3,显然不满足.当最大三位数的百位取3时,1,2,3,4,5,6,7,8,9组成的三个三位数只能是3口口、2口口、l口口,而3口口的十位最小取4,百位与十位的数字和为7,则个位只能取7.所以满足条件的最大三位数是347.11.红、黄、蓝和白色卡片各一张,每张上写有一个数字.小明将这4张卡片如图7-l放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差.结果小明发现,无论白色卡图7a以B:123一定是13的倍数,而13的倍数满足其后三位与前面隔开,差是123÷13=9……6,那么6123一定是13的倍数,且为满足条件的最小自然数.那么题中所求的最小整数为6123÷13=471.方法二:有A的个位a只能是1,不然其与13的乘积的个位不是3.显然有A的个位1与13相乘过程中进有1,则A的十位b乘以13得到的数的个位为2-1=1,显然只有当b=7时才能满足.此时A的十位7与13相乘过程中进有9,则A的百位c乘以13得到的数的个位为(1+10)-9=2,显然只有c=4.于是417而乘以13后得到的积其最后三位数是123.而这样的数中最小的是471.14.将1,2,3,4,5,6,7,8,9分别填入图7-2中的9个圆圈内,使其中一条边上的4个数之和与另一条边的4个数之和的比值最大.那么这个比值是多少?【分析与解】为了使比值尽可能的大,那么一边应尽可能的小,另一边尽可能的大.有两种情况:第一种情况,两边上各自4个数字和的比值为47894321++++++=2810=2.8,第二种情况,两边上各自4个数字和的比值为6+7+8+96+1+2+3=3012=2.5.显然有第一种情况的比值最大,为2.8.15.在图7-3所示的除法算式中,只知道一个数字“3”,且商是一个循环小数.问被除数是多少?【分析与解】为了方便说明,标出字母.O.A3B=999=当1.).口口口(由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5,6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2.如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少?【分析与解】设每个小三角形三个顶点上的数的和都是S.4个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:2×2×3×3×5×5=9003.在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.a b和cd其中a、b、c、d的值只能取自2、3、5或7.【分析与解】记两个乘数为7由已知条件,b与c相乘的个位数字仍为质数,这只可能是b与c中有一个是5另一个是3、5或7,如果b不是5,那么c必然是5,但73×5=365、77×5=385的十位数字都不是质数.因此b是5,c是3、5、7中的一个,同样道理,d也是3、5、7中的一个.且a、c 取质数,775×4.yx,是ll<121×2,5.+春+杯+好”那么37或74.当“迎杯“迎+春+杯+好”当“迎杯为16,显所以“迎6.数数在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少?【分析与解】“学数学”是“数数”的倍数,因而是“数”与1l的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6.“数学”所代表的两位数是16.7.将1,2,3,4,5,6,7,8,9这9个数字分别填人下式的各个方框中,可使此等式成立:口口×口口=口口×口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少? 【分析与解】3634=2×23×79,表达为两个两位数的乘积只能是(2×23)×79,即46×79;表达为一个两位数与一个三位数的乘积,只能是23×(2×79)=23×158.满足题意,所以这三个两位数中最大的一个是79.8.六年级的学生总人数是三位数,其中男生占35,男生人数也是三位数,而组成以上两个三位数的6个数字,恰好是l,2,3,4,5,6.那么六年级共有学生多少人? 【分析与解】设六年级总人数为xyz,其中男生有abc人.有xyz×35=abc,即5abc=3xyz,其中xyz为5的倍数,所以z为5.而abc为3的倍数,所以其数字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3或4,2,6或4,2,3.而c xyz最大为645,于是abc xyz为9.图d可以取2,3,410.在图?第41,所以只有3×7,第3行107、109 100、所以AB当AB为当53,乘数为11.图.那么所得的乘积是多少?【分析与解】方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220~229之间,所以它只能是3(否则4×60>229).而220~229之间个位数字不是2且是3的倍数的只有225=3×75和228=3×76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75×400=30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000÷76>394,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22口=AB×C ,其中C 不可能为1,又不能为2,那么最小为3.当C 为3时,22口=AB×3,那么A 只能为7,B 只能为4,5或6,(1)当B 为4时,74×3=222,第5行个位为2,不满足题意;(2)当B 为5时,AB×CDE 对应为75×3DE ,小于30000,不满足;(3)当B 为6时,AB×CDE 对应为76×3DE ,D 只能为9,此时第4行对应为AB、397、398、30248、题验证C 12.行开头两位为第二行9(1)9差不(2)99,所以只能为(3)98,所以可能为①②13.×8中,好”为有13,即128x=205y,有205,128x y =⎧⎨=⎩410,256x y =⎧⎨=⎩615,384x y =⎧⎨=⎩820512x y =⎧⎨=⎩所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614.互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l 不是互为反序的数.)【分析与解】首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数. 设ABC ×CBA =92565,那么C 、A 中必定有一个为5,一个为奇数.不妨设C 为5.5=92565.又注意到92565=3×3×5×11×1l×17.B BAB×5BA=92565,那么A只能为1,1551B为165时满足,所以这两个自然数为165、561.验证只有1515.开放的中国盼奥运×口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少?【分析与解】我们从“口”中所应填入的一位自然数开始分析,设A=“开放的中国盼奥运”,B=“盼盼盼盼盼盼盼盼盼”.于是B=A×口.显然口内不会是1.由于口是B的约数,因此口不会是“盼”所代表的数字,,这说明口内不会是5,,说明口内也不会是7.2时,B,是2能是4可以得到盼盼盼...盼=9个盼×盼。

高思奥数导引小学五年级含详解答案第17讲:计算综合一

高思奥数导引小学五年级含详解答案第17讲:计算综合一

第17讲计算综合一内容概述了解等比数列的基本概念,学会利用错位相减的方法进行求和;灵活使用各种方法简化比较复杂的分数算式;具有一定综合性的“定义新运算”问题;较复杂的数列与数表问题。

典型问题兴趣篇1.计算:(1)1248163264128256++++++++;(2)111111111248163264128256 ++++++++。

2.计算:23456333333+++++。

3.计算:199519951995199519951995 200920092009200920092009 ++++。

4.计算:131435 415263 342556⨯+⨯+⨯。

5.计算:1111111111 123456789100 2342342342+-++-++-++。

6.规定新运算“*”为:*32a b a b=⨯-⨯。

(1)计算:456**345⎛⎫⎪⎝⎭;(2)已知456**345x⎛⎫=⎪⎝⎭,求x。

7.图17-1中除了每行两端的数之外,其余每个数都是与它相连的上一行的两个数的平均数,例如:2.75是2.5和3的平均数。

请问:第100行中的各数之和是多少?8.有这样一列数,前两个数分别是0和1,从第三个数开始,每一个数都是前两个数的和:0,1,1,2,3,5,8,13,21,34,…。

请问:这个数列的第1000个数除以8所得的余数是多少?9.观察下面的数阵:根据前五行数所表达的规律,求(1)3367这个数在由上至下的第几行?在这一行中,它是由左向右第几个?(2)第28行第19个数是什么?10.观察数列11,12,22,12,13,23,33,13,14,24,34,44,34,24,14,…,求:(1)数列中第150项;(2)数列中前300项的和。

拓展篇1.如图17-2,有一个边长为81厘米的等边三角形,将它每条边三等分,以中间那一份为边向外作等边三角形,得到图17-3。

由图17-3通过同样方法又得到图17-4。

高斯小学奥数五年级上册含答案_整除问题进阶

高斯小学奥数五年级上册含答案_整除问题进阶

第二讲整除问题进阶例题1. 答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有□2 0 O是99的倍数,只能是99 •两个空中先后要填1和7.例题2. 答案:123483789详解:设这个九位数为1234ab789,两位截断求和1 23 b7 89 160 ba是99 的倍数,只能是198 .所以a=8, b=3.例题3.答案:6详解:利用7的整除特性,口89 59 □30能被7整除,只能填6.例题4.答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|兀帀就可以了.空格中要填5.例题5. 答案:768768详解:形如abcabc一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6. 答案:20999详解:利用数字谜,从后往前逐位确定.313913 232323239 f39 f 739626269 999 99999999练习1. 答案:6237简答:两位截断后的和是99 .练习2. 答案:12327678简答:两位截断后的和是198.练习3.答案:5712 或5782简答:利用7的整除特性,右2与5的差是7的倍数,空格中可以填1或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下匚•它是13的倍数, 那么空格中只能填0.作业1.答案:7 的倍数有7315, 58674, 360360; 13 的倍数有325702, 360360简答:牢记7和13的判断方法.作业2.答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知和6能被7整除,框中填5满足条件.作业4.答案:9简答:应用三位截断,可知8C 能被7和13整除,即8C 是91的倍数,框中填9 满足条件.作业5.答案:3简答:应用三位截断,可知口3能被7整除,框中填3满足条件.第二讲整除问题进阶厂我只能填在中同、怎样才能保证是11的倍数呢7 /"我翌填在白位和、个位上+怎么填才好呢?墨莫和小高在黑板前玩一个填三位数的游戏.如果填岀的三位数是H的倍数,那么小高就ST, 如果不是11的倍数则墨莫嬴.观察小高和墨英的话,逆冇必胜的策略上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等•现在我们再来学习一些新的判断方法.一、截断作和六位数L_l2003LJ能冋时被9和11整除.这个六位数是多少?皿U 能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数23 能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数123口口678能被99整除,这个八位数是多少?、截断作差阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小咼写一个一位数放在59与89之间辩需一金右佶豹kal I PQ估徂仪金右佶貓■台次朮7敕阵洁白•小直官的貓■具虫/卜:【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.四位数5^[2能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.25个5 25个9变得简短一些.因为 1001是13的倍数,而555555、999999分别是555、999与1001的乘 积,说明它们都是13的倍数.那我们是不是可以去掉这个 51位数上的一些5和9,并仍然 保证它能被13整除?已知多位数[1L 1 {33L 3能被13整除,那么中间方格内的数字是多少?2010 个 12010 个 3【分析】能被6, 7, 8整除的数有什么特点呢?最难把握的在于这个六位数能被 7整除, 我们应该怎样安排数字才能使得它的前三位与后三位的差能被 7整除呢?题目只要求我们 写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.【分析】在本题中,55L 35^992L39能被13整除.这个数的位数太多,我们可以想办法使它用数字6, 7, 8各两个,要组成能同时被6, 7, 8整除的六位数.请写出一个满足要求的六位数.【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑•我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积•接下来,大家想到该怎么办了吗?枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946〜1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业i1. 在7315, 58674, 325702 , 96723 , 360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33 能同时被9和11整除,这个四位数是多少?3. 四位数2^8能被7整除,那么这个四位数是多少?4. 已知多位数81口154258切2l§8 (2012个258)能同时被7和13整除,方格内的数字是2012 个258多少?5. 已知多位数[1L 1 03L 3能被7整除,那么中间方格内的数字是多少?2011 个1 2011 个3。

五年级奥数基础教程-数字谜小学

五年级奥数基础教程-数字谜小学

数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

解:将5568质因数分解为5568=26×3×29。

由此容易知道,将 5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。

显然,符合题意的只有下面一种填法:174×32=58×96=5568。

例3 在443后面添上一个三位数,使得到的六位数能被573整除。

分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。

由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。

五年级奥数.数字谜综合

五年级奥数.数字谜综合

五年级奥数.数字谜综合数字谜综合涉及分数与小数的各种类型的数字谜问题,包括竖式的补填、算式的构造、小数的舍人与变化等.较为复杂的数字问题,以及其他略有综合性的数字谜问题.1.有一个四位整数,在它的某位数字前面加上一个小数点,再与这个四位数相加,得数是2000.81.求这个四位数是多少?【分析与解】设四位整数4的某位数字前加上一个小数点得到一个新的数B,A与B 的和为2000.81,而小数只能由B得到,且0.81为B的小数部分,所以小数点加在A的百位与十位之间,即缩小了100倍.有A+0.01A=2000.81,所以A=1981.2.老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老师说最后一位数字错了,其他的数字都对.正确答案应该是什么?【分析与解】老师说最后一位数字错了,那么前3位数字是正确的,所以正确的平均数在12.40~12.5(不能取12.5)之间,那么这13个数的和在161.2~162.5(不能取162.5),因为这13个数都是自然数,所以它们的和也应该是自然数.那么这13个数的和只能是162,它们的平均数应该是162÷13≈12.46.所以正确的平均数应该是12.46.3.两个带小数相乘,乘积四舍五人以后是22.5.这两个数都只有一位小数,且个位数字都是4.这两个数的乘积四舍五入前是多少?【分析与解】因为这两个带小数均只有一位小数,那么给它们均乘以10,则这两个数均是整数.开始它们的乘积在22.45~22.55(不能取22.55)之间,所以在这两个数在均乘以10以后再相乘而得到的乘积应该在2245~2255(不能取2255)之间.一一验证,2245=5×449,2246=2×1123,2247=3×7×107,2248=2×2×2×281,2249=13×173,2250=2×3×3×5×5×5,2251为质数,2252=2×2×563,2253=3×751,2254=2×7×7×23.其中只有2254可以表达为(2×23)×(7×7)=46×49,两个十位数字均为4的数的乘积.所以,四舍五人前的乘积应为2254÷10÷10=22.54.即两个数的乘积四舍五人前是22.54.4.[4.2×5-(1÷2.5+9.1÷0.7)]÷O.04=100改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?【分析与解】我们先把题中左边算式计算一遍,在计算过程中发现问题.[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=[21-(0.4+13) ]÷0.04=[21-13.4]÷0.04=7.6÷0.04=190注意到在“[21-(0.4+13)]÷O.04”这一步中如果(0.4+13)是(4+13),那么最终的结果为100.所以只需将1÷2.5改为1÷0.25,即将2.5改为O.25即可.5.在算式2÷3÷4÷5÷6中添上若干个括号,使算式的结果是整数,并且尽可能小.试写出添加完括号后的算式.【分析与解】注意到将除号前加一个括号,可以使括号内的除号在脱括号之后变为乘号.又注意到2、3、4、5、6只有5含有质因数5,就是说其他的质因数可能经过变换运算法则除去,而质因数只能保留,且只能作为乘数,也就是说题中算式变化后是最终的结果最小为5.有2÷3÷4÷5÷6=EFCD,现在要得到5,扩大了5÷1180=900,所以必须将原来作为除数的30变为乘数30,有5×6=30,所以将5、6由除数变为乘数.有2÷3÷(4÷5÷6)=5,此式即为所求.6.用1,4,5,6四个数,并适当选择加号、减号、乘号、除号以及括号,组成一个结果等于24的正确算式.【分析与解】有24=2×2×2×3,常规的方法,无法使1,4,5,6通过运算得到24,但是注意到可利用分数:有4÷16=24,6÷14=24等.于是有下面两个算式满足:4÷(1-5÷6)=24,6÷(5÷4-1)=24.评注:此类题是常说的“24点”游戏:从一副扑克牌中除去大王、小王,A表示1,J 表示11,Q表示12,K表示13,其他的牌表示的数等于牌面数字.从剩下的52张牌中任意抽取4张,通过选择运算使它们最终的计算结果为24.7.1+1+1≈0.658上式是经过四舍五入得到的等式,其中每个△代表一个一位数.那么这3个△所代表的3个数分别是多少?【分析与解】设△代表的三个数从小到大为a、b、c.当a取最小值2时,1+1+1最小为12+18+19≈0.736,所以a最小取3.当a=3,b最小取 4时, 1+1+1最小为13+14+19≈0.694,所以b最小取5.当a=3,b=5时,1+1+1最小为13+15+19≈0.644,有可能.验证当,a=3,b=5,c=8时有13+15+18≈0.658.满足.所以这三个数分别为3、5、8.评注:此题从极端情况开始一一枚举而得.8.用0,1,2,…,9这10个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能的大.那么这5个两位数的和是多少?【分析与解】要求5个数的和是奇数,所以这5个数中有奇数个奇数,如果用9、8、7、6、5作十位数字,那么个位数字为0、1、2、3、4,这样组成的5个数中有2个数是奇数.所以调整,将9、8、7、6、4作为十位数字,0、1、2、3、5作为个位数字,那么组成的5个两位数的和是(9+8+7+6+4)×10+(0+1+2+3+5)=351.因为已经使十位数字尽可能的大,所以所得的和为最大值.即在满足题意下,得到的5个两位数的和为351.9.将I,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍,那么最小的和是多少?【分析与解】设分成的3组数的和从大到小依次为a、b、c,a=2c,并且有a+b+c=b+3c=1+2+3+…+8=36.3c为3的倍数,36为3的倍数.所以b为3的倍数.解得b3c11a2c22=⎧⎪=⎨⎪==⎩,b6c10a2c20=⎧⎪=⎨⎪==⎩,b9c9a2c18=⎧⎪=⎨⎪==⎩,b12c8a2c16=⎧⎪=⎨⎪==⎩,b15c7a2c14=⎧⎪=⎨⎪==⎩,不难看出随着b的增大,a在减小,所以其他情况不用再讨论.满足条件的解只有b=12,c=8,a=16.1,2,3,4,5,6,7,8可以分成{1,2,3,4,6}、{5,7}、{8}这三组.所以满足题意的最小一组数的和为8.10.用1,2,3,4,5,6,7,8,9这9个数字组成3个三位数(每个数字只用一次),使其中最大的三位数被3除余2,并且尽可能的小;次大的三位数被3除余1;最小的三位数能被3整除.那么,最大的三位数是多少?【分析与解】被3除余2、1、0的数,其数字和除以3也分别余2、1、0.为了使最大的三位数尽可能的小,所以其百位最小取3,因为如果取1或2,那么剩下两个三位中的某一个其百位数字大于3,显然不满足.当最大三位数的百位取3时,1,2,3,4,5,6,7,8,9组成的三个三位数只能是3口口、2口口、l口口,而3口口的十位最小取4,百位与十位的数字和为7,则个位只能取7.所以满足条件的最大三位数是347.11.红、黄、蓝和白色卡片各一张,每张上写有一个数字.小明将这4张卡片如图7-l放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差.结果小明发现,无论白色卡片上是什么数字,计算结果都是1998.问红、黄、蓝3张卡片上各是什么数字?红黄白蓝图7—1【分析与解】设这个四位数为abcd,其中a、b、c、d依次代表红、黄、白、蓝.有abcd=1000a+lOOb+10c+d,而abcd的数字和为a+b+c+d,所求的差为:(1000a+100b+10c+d)-10(a+b+c+d)=1998,即990a+90b-9d=1998.因为a、b、d均为小于10的自然数,所以a=2,b=l,d=8.即红、黄、蓝3张卡片上的数字分别为2、1、8.评注:对于用字母表示的数,注意到其在10进制中与其各个位数数字的关系.如:abcde中的a在万位表示10000a,b在千位表示1000b,….12.一个四位数的数码都是由非零的偶数码组成,它又恰是某两个偶数码组成的数的平方.问这个四位数是多少?【分析与解】设这个四位数为A=abcd,其为B=ef的平方,因为f只能取0、2、4、6、8,所以B平方后的个位为0、4、6.即d为4或6.而B中的十位数字e只能取4、6、8这三个数,不然平方后得到的不是4位数.验证有68×68=4624满足.13.一个整数乘以13后,乘积的最后三位数是123.这样的整数中最小的是多少?【分析与解】设A=cba,B=123,有cba×13=123.方法一:123一定是13的倍数,而13的倍数满足其后三位与前面隔开,差是13的倍数.123÷13=9……6,那么6123一定是13的倍数,且为满足条件的最小自然数.那么题中所求的最小整数为6123÷13=471.方法二:有A的个位a只能是1,不然其与13的乘积的个位不是3.显然有A的个位1与13相乘过程中进有1,则A的十位b乘以13得到的数的个位为2-1=1,显然只有当b=7时才能满足.此时A的十位7与13相乘过程中进有9,则A的百位c乘以13得到的数的个位为(1+10)-9=2,显然只有c=4.于是417而乘以13后得到的积其最后三位数是123.而这样的数中最小的是471.14.将1,2,3,4,5,6,7,8,9分别填入图7-2中的9个圆圈内,使其中一条边上的4个数之和与另一条边的4个数之和的比值最大.那么这个比值是多少?【分析与解】为了使比值尽可能的大,那么一边应尽可能的小,另一边尽可能的大.有两种情况:第一种情况,两边上各自4个数字和的比值为47894321++++++=2810=2.8,第二种情况,两边上各自4个数字和的比值为6+7+8+96+1+2+3=3012=2.5.显然有第一种情况的比值最大,为2.8.15.在图7-3所示的除法算式中,只知道一个数字“3”,且商是一个循环小数.问被除数是多少?【分析与解】为了方便说明,标出字母.O.A3B =A3B999=A3B÷999=EF÷CD,被除数与除数均为两位数.所以A3B999可以约分后为EFCD,999为除数CD的倍数,999=3×3×3×37,999的约数中只有27、37为两位数,所以除数CD只能是27或37.第四行对应为CD×3,且为三位数,所以CD=37.那么第四行为37×3=111.则第五行首位为0减1,借位后为9.所以第五行为90,对应为CD×B+EF=37×B+EF(EF<CD).当B=1时,37×B+EF小于37×(1+1)=54,不满足;当B=2时,37×B+EF=37×2+EF=90,解得被除数EF=16.数字谜涉及质数与合数等概念,以及需要利用数的整除特征、分解质因数等数论手段解的数字谜问题.1.试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次: 口口口(这是一个三位数).口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求其他两个数.【分析与解】714=2×3×7×17.由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5,6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2.如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少?【分析与解】设每个小三角形三个顶点上的数的和都是S.4个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以 4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:2×2×3×3×5×5=9003.在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.a b和cd其中a、b、c、d的值只能取自2、3、5或7.【分析与解】记两个乘数为7由已知条件,b与c相乘的个位数字仍为质数,这只可能是b与c中有一个是5另一个是3、5或7,如果b不是5,那么c必然是5,但73×5=365、77×5=385的十位数字都不是质数.因此b是5,c是3、5、7中的一个,同样道理,d也是3、5、7中的一个.a的乘积的各位数字全是质数,所以乘积肯定大于2000,满足积大于再由已知条件,752000且a、c取质数,只有以下六种情况:775×3=2325,575×5=2875,775×5=3875,375×7=2625,575×7=4025,775×7=5425.其中只有第一组的结果各位数字是质数,因此a=7,c=3,同理,d也是3.最终算式即为775×33=255754.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.那么这个和数是多少?【分析与解】 设原来的两位数为xy ,则交换十位数字与个位数字后的两位数为,两个数的和为yx ,两个数和为 xy +yx =1010x y x y +++()11x y =+是ll 的倍数,因为它是完全平方数,所以也是11 ×11=121的倍数.但是这个和小于100+100=200<121×2,所以这个和数只能是121.5. 迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.那么“迎+春+杯+好”之和等于多少?【分析与解】 好好好=好×111=好×3×37.那么37必定是“迎杯”或“春杯”的约数,不妨设为“迎杯”的约数,那么“迎杯”为37或74.当“迎杯”为37时,“春杯”为“好”×3,且“杯”为7,此时“春杯”为27,“好”为9,“迎+春+杯+好”之和为3+2+7+9=21;当“迎杯”为74时,“春杯”为“好”×3÷2,且“杯”为4,此时“春杯”为24,“好”为16,显然不满足.所以“迎+春+杯+好”之和为3+2+7+9=21.6. 数数×科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少?【分析与解】“学数学”是“数数”的倍数,因而是“数”与1l的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6.“数学”所代表的两位数是16.7.将1,2,3,4,5,6,7,8,9这9个数字分别填人下式的各个方框中,可使此等式成立:口口×口口=口口×口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少?【分析与解】3634=2×23×79,表达为两个两位数的乘积只能是(2×23)×79,即46×79;表达为一个两位数与一个三位数的乘积,只能是23×(2×79)=23×158.满足题意,所以这三个两位数中最大的一个是79.8.六年级的学生总人数是三位数,其中男生占35,男生人数也是三位数,而组成以上两个三位数的6个数字,恰好是l,2,3,4,5,6.那么六年级共有学生多少人?【分析与解】设六年级总人数为xyz,其中男生有abc人.有xyz×35=abc,即5abc=3xyz,其中xyz为5的倍数,所以z为5.而abc为3的倍数,所以其数字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3或4,2,6或4,2,3.而c不能是偶数(不然z应为0),所以只能是l,2,6或1,2,3或4,2,3可能满足;又因为xyz最大为645,对应abc为387,即c不超过3.于是abc有可能为261,123,321,213,231,243这6种可能,验证只有当abc=261时,对应xyz为261÷3×5=435.所以六年级共有学毕435人.9.图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立.那么共有多少种不同的填法?1992=abc×d(a,b,c,d可以相同),【分析与解】设有1992=2×2×2×3×83,其中d可以取2,3,4,6,8这5种,对应的算式填法有5种.10.在图19-4残缺的算式中,只写出3个数字l,其余的数字都不是1.那么这个算式的乘积是多少?【分析与解】如下图所示,为了方便说明,将某些数用字母标出.第4行口口1对应为AB×C,其个位为1,那么B×C的个位数字也是1,而B、C又均不能为1,所以只有3×7,9×9对应为1,那么B为9、7或3.第3行10口对应为AB×D,可能为100、102、103、104、105、106、107、108、109.103、107、109均为质数,没有两位数的约数,不满足;100、105没有个位数字为3、7、9的约数,不满足;102=17×6、104=13×8、106=53×2、108=27×4,但102、104对应的AB中4均为1,不满足.所以AB为53或27.当AB为27时,第4行为27×C,且个位数字为1,所以只能为27×3=8l,但不是三位数,不满足.当AB为53时,第4行为53×C,且个位数字为1,所以只能为53×7=371,因此被乘数必须为53,乘数为72,积为3816.11.图19-5是一个残缺的乘法竖式,在每个方框中填入一个不是2的数字,可使其成为正确的算式.那么所得的乘积是多少?【分析与解】方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220~229之间,所以它只能是3(否则4×60>229).而220~229之间个位数字不是2且是3的倍数的只有225=3×75和228=3×76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75×400=30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000÷76>394,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22口=AB×C,其中C不可能为1,又不能为2,那么最小为3.当C为3时,22口=AB×3,那么A只能为7,B只能为4,5或6,(1)当B为4时,74×3=222,第5行个位为2,不满足题意;(2)当B为5时,AB×CDE对应为75×3DE,小于30000,不满足;(3)当B为6时,AB×CDE对应为76×3DE,D只能为9,此时第4行对应为AB×D即76×9=684.因为30000÷76>394,所以39E只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.验证C取其他值时没有满足题意的解.所以算式中所得的乘积为30096.12.请补全图19-6这个残缺的除法竖式.问这个除法算式的商数是多少?【分析与解】易知除号下第二行的首位为9.除号下第一行开头两位为1、0,商的十位为0.第二行9口对应为CD×A,(1)9口不可能为90,不然第一行前三位10口与第二行90的差不可能为一位数,不满足第三行特征;(2)9口对应为91时,第三行的首位对应为10口-91,最小为9,所以只能为9,那么有91=CD×A,928=CD×B,不可能;(3)9口对应为92时,第三行的首位对应为10口-92,最小为8,所以可能为8、9,①如果为9,那么对应有92=CD×A,928=CD×B,不可能;②如果为8,那么对应有92=CD×A,828=CD×B,不难得知A=l,B=9,CD=92时满足,那么被除数为92×109=10028.验证没有其他的情况满足,所以这个除法算式的商数为109.13.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑×5=勤动脑学习好×8中,“学习好勤动脑”所表示的六位数最小是多少?【分析与解】设“学习好”为x,“勤动脑”为Y,则“学习好勤动脑”为1000X+Y,“勤动脑学习好”为1000y+x,有(1000x+Y)×5=(1000y+x)×8,化简有4992x=7995y,4992=128×3×13,7995=3×41×5×13,即128x=205y,有205,128xy=⎧⎨=⎩410,256xy=⎧⎨=⎩615,384xy=⎧⎨=⎩820512xy=⎧⎨=⎩所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614.互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l不是互为反序的数.)【分析与解】首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数.设ABC×CBA=92565,那么C、A中必定有一个为5,一个为奇数.不妨设C为5.=92565.又注意到92565=3×3×5B BAB×5BA=92565,那么A只能为1,15515×11×1l×17.B为165时满足,所以这两个自然数为165、561.验证只有1515.开放的中国盼奥运×口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少?【分析与解】我们从“口”中所应填入的一位自然数开始分析,设A=“开放的中国盼奥运”,B=“盼盼盼盼盼盼盼盼盼”.于是B=A×口.显然口内不会是1.由于口是B的约数,因此口不会是“盼”所代表的数字,要不然A就等于111111111,这说明口内不会是5,而111111111不是7的倍数,说明口内也不会是7.如果口内填3,则“盼”只能是1或2,当“盼”是1时,B÷3=37037037,不符合要求;当“盼”时2时,B÷3=74074074,也不符合要求;说明口内不能填入3.口内也不会是偶数数字2、4、6和8.因为口内是偶数数字时,“盼”也是偶数数字,口内显然不会是2,如果口内是4,根据被4整除的特征,“盼”只能是8,这时A 就成了一个九位数,说明口内不能是4;类似的,可以说明口内不能是6和8.综上所需,口的数字只能是9,这时利用91111...1个=12345679×9,可以得到9个盼盼盼盼...盼=12345679×9×盼.于是“盼”代表的数字必须同时满足下面两个条件:经验证知◇=盼=7,即86419753×9=777777777.。

五年级奥数专题-数字谜

五年级奥数专题-数字谜

五年级奥数专题-数字谜(一)数字谜小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名).谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”.这个地名第1个字可能是天.“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思.这样谜底就出来了:天津.算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原.“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示.文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字.文字算式谜也是最难的一种算式谜.在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧.①横式字谜一、例题与方法指导例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150.那么所填的3个数字之和是多少?思路导航:150*3-8-97-=345所以3个数之和为3+4+5=12.例2 在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□,(2)7□□8÷37=□1□,(3)3□□3÷2□=□17,(4)8□□□÷58=□□6.分析:(1) 6104/56=109(2)7548/37=204(3) 3393/29=117(4)8468/58=146例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式.求其中的除数.分析:40796/102=399...98.例4 我学数学乐×我学数学乐=数数数学数数学学数学在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字.如果“乐”代表9,那么“我数学”代表的三位数是多少?分析:学=1,我=8,数=6 ,81619*81619=6661661161例5 □÷(□÷□÷□)=24在式中的4个方框内填入4个不同的一位数,使左边的数比右边的数小,并且等式成立.思路导航:这样,我们可以先用字母代替数字,原等式写成:a/(b/c/d)=a/(b/c*d)=a*c*d/b,(a<b<c<d)当a=1时,有6*8/2=24,8*9/3=24;当a=2时,有4*9/3=12,6*8/4=12,8*9/6=12;所以,满足要求的等式有:1÷(2÷6÷8)=24,1÷(3÷8÷9)=24,2÷(3÷4÷9)=24,2÷(4÷6÷8)=24,2÷(6÷8÷9)=24.例6 ①□×□=5□;②12+□-□=□,把1至9这9个数字分别填入上面两个算式的各个方框中,使等式成立,这里有3个数字已经填好.分析:根据第一个等式,只有两种可能:7*8=56,6*9=54;如果为7*8=56,则余下的数字有:3、4、9,显然不行;而当6*9=54时,余下的数字有:3、7、8,那么,12+3-7=8或12+3-8=7都能满足.二、训练巩固1. 迎迎×春春=杯迎迎杯,数数×学学=数赛赛数,春春×春春=迎迎赛赛在上面的3个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.如果这3个等式都成立,那么,“迎+春+杯+数+学+赛”等于多少?分析:考察上面三个等式,可以从最后一个等式入手:能够满足:春春×春春=迎迎赛赛的只有88*88=7744,于是,春=8,迎=7,赛=4;这样,不难得到第一个为:77*88=6776,第二个为:55*99=5445;所以,迎+春+杯+数+学+赛=7+8+6+5+9+4=39.2. 迎+春×春=迎春,(迎+杯)×(迎+杯)=迎杯在上面的两个横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么“迎+春+杯”等于多少?分析:同样可以从第二个算式入手,发现满足要求的只有(8+1)*(8+1)= 81,于是,迎=8;这样,第一个算式显然只有:8+9*9=89;所以,迎+春+杯=8+9+1=18.三、拓展提升1.在下列各式的□中分别填入相同的两位数:(1)5×□=2□;(2)6×□=3□.2.将3~9中的数填入下列各式,使算式成立,要求各式中无重复的数字:(1)□÷□=□÷□;(2)□÷□>□÷□.3.在下列各式的□中填入合适的数字:(1)448÷□□=□;(2)2822÷□□=□□;(3)13×□□= 4□6.4.在下列各式的□中填入合适的数:(1) □÷32=8……31;(2)573÷32=□……29;(3)4837÷□=74……27.答案与提示练习224.(1)287;(2)17;()65.②竖式字谜一、例题与方法指导例1 在图4-1所示的算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字.那么“喜欢”这两个汉字所代表的两位数是多少?分析:首先看个位,可以得到“欢”是0或5,但是“欢”是第二个数的十位,所以“欢”不能是0,只能是5. 再看十位,“欢”是5,加上个位有进位1,那么,加起来后得到的“人”就应该是偶数,因为结果的百位也是“人”,所以“人”只能是2;由此可知,“喜”等于8. 所以,“喜欢”这两个汉字所代表的两位数就是85.例2 在图4-2所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.如果:巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?分析:还是先看个位,5个“谜”相加的结果个位还是等于“谜”,“谜”必定是5(0显然可以排出);接着看十位,四个“字”相加再加上进位2,结果尾数还是“字”,那说明“字”只能是6;再看百位,三个“数”相加再加上进位2,结果尾数还是“数”,“数”可能是4或9;再看千位,(1)如果“数”为4,两个“解”相加再加上进位1,结果尾数还是“解”,那说明“解”只能是9;5+6+4+9=24,30-24=6,“巧”等于6与“字”等于6重复,不能;(2)如果“数”为9,两个“解”相加再加上进位2,结果尾数还是“解”,那说明“解”只能是8;5+6+9+8=28,30-28=2,可以. 所以“数字谜”代表的三位数是965.例3在图4-3所示的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把这个竖式翻译成数字算式.分析:首先万位上“华”=1;再看千位,“香”只能是8或9,那么“人”就相应的只能是0或1.但是“华”=1,所以,“人”就是0;再看百位,“人”=0,那么,十位上必须有进位,否则“港”+“人”还是“港”.由此可知“回”比“港”大1,这样就说明“港”不是9,百位向千位也没有进位.于是可以确定“香”等于9的;再看十位,“回”+“爱”=“港”要有进位的,而“回”比“港”大1,那么“爱”就等于8;同时,个位必须有进位;再看个位,两数相加至少12,至多13,即只能是5+7或6+7,显然“港”=5,“回”=6,“归”=7. 这样,整个算式就是:9567+1085=10652.例4 图4-4是一个加法竖式,其中E,F,I,N,O,R S,T,X,Y分别表示从0到9的不同数字,且F,S不等于零.那么这个算式的结果是多少?分析:先看个位和十位,N应为0,E应为5;再看最高位上,S比F大1;千位上O最少是8;但因为N等于0,所以,I只能是1,O只能是9;由于百位向千位进位是2,且X不能是0,因此决定了T、R只能是7、8这两个;如果T=7,X=3,这是只剩下了2、4、6三个数,无法满足S、F是两个连续数的要求.所以,T=8、R=7;由此得到X=4;那么,F=2,S=3,Y=6.所以,得到的算式结果是31486.二、训练巩固1. 在图4-5所示的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字.那么D+G等于多少?分析:先从最高位看,显然A=1,B=0,E=9;接着看十位,因为E等于9,说明个位有借位,所以F只能是8;由F=8可知,C=7;这样,D、G有2、4,3、5和4、6三种可能.所以,D+G就可以等于6,8或10.2. 王老师家的电话号码是一个七位数,把它前四位组成的数与后三位组成的数相加得9063,把它前三位数组成的数与后四位数组成的数相加得2529.求王老师家的电话号码.分析:我们可以用abcdefg来表示这个七位数电话号码.由题意知,abcd+efg=9063,abc+defg=2529;首先从第一个算式可以看出,a=8,从第二个算式可以看出,d=1;再回到第一个算式,g=2,掉到第二个算式,c=7;又回到第一个算式,f=9,掉到第二个算式,b=3;那么,e=6.所以,王老师家的电话号码是8371692.3. 将一个四位数的各位顺序颠倒过来,得到一个新的四位数.如果新数比原数大7902,那么在所有符合这样条件的四位数中,原数最大是多少?分析:用abcd来表示愿四位数,那么新四位数为dcba,dcba-abcd=7902;由最高为看起,a最大为2,则d=9;但个位上10+a-d=2,所以,a只能是1;接下来看百位,b最大是9,那么,c=8正好能满足要求.所以,原四位数最大是1989.三、拓展提升1.已知图4-6所示的乘法竖式成立.那么ABCDE是多少?分析:由1/7的特点易知,ABCDE=42857.142857*3=428571.2. 某个自然数的个位数字是4,将这个4移到左边首位数字的前面,所构成的新数恰好是原数的4倍.问原数最小是多少?分析:由个位起逐个递推:4*4=16,原十位为6;4*6+1=25,原百位为5;4*5+2=22,原千位为2;4*2+2=10,原万位为0; 1*4=4,正好.所以,原数最小是102564.3. 在图4-7所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.则符合题意的数“迎春杯竞赛赞”是多少?分析:同第10题一样,也是利用1/7的特点.因为每个字母代表不同的数字,因此“好”只有3和6可选:好=3,则:142857*3=428571;好=6,则:142857*6=857142;两个都能满足,所以,符合题意的数“迎春杯竞赛赞”可能是428571或857142.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。

相关文档
最新文档