化工原理课程设计--脉冲气流干燥器设计
化工原理课程设计干燥设计
学校代码: 10128学号: @@@@@@课程设计说明书题目:干燥涂料的气流干燥器设计学生姓名:@@@@学院:化工学院班级:@@@@指导教师:@@@@二零一一年@月@ 日内蒙古工业大学课程设计任务书课程名称:化工原理课程设计学院:化工学院班级:@@@@@学生姓名:@@@学号:@@@@_ 指导教师:@@@前言课程设计是化工原理课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程中的实际问题复杂性、学习化工设计基本知识的初次尝试。
化工原理课程设计是化学化工及相关专业学生学习化工原理课程必修的三大环节(化工原理理论课、化工原理实验课以及化工原理课程设计)之一,是综合应用本门课程和有关先修课程所学知识,完成以某一单元操作为主的一次综合性设计实践。
通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的程序和方法,培养学生分析和解决工程实际问题的能力。
同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。
在当前大多数学生结业工作以论文为主的情况下,通过课程设计培养学生的设计能力和严谨的科学作风就更为重要。
化工课程设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业及多学科的交叉、综合和相互协调,是集体性的劳动。
先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。
在化工课程设计中,化工单元设备的设计是整个化工过程和装置设计的核心和基础,并贯穿于设计过程的始终,作为化工类的本科生及研究生,熟练掌握化工单元设备的设计方法是十分重要的。
目录第一章干燥器设计基础 (1)干燥技术概论 (1)干燥器的分类 (1)1.2.1厢式干燥器(盘式干燥器) (1)1.2.2带式干燥器 (1)1.2.3气流干燥器 (1)1.2.4沸腾床干燥器 (1)1.2.5转筒干燥器 (1)1.2.6喷雾干燥器 (2)1.2.7滚筒干燥器 (2)干燥器的设计 (2)1.3.1 干燥介质的选择 (2)1.3.2 干燥介质进入干燥器时的温度 (2)1.3.3流动方式的选择 (2)1.3.4 物料离开干燥器时的温度 (3)1.3.5干燥介质离开干燥器时的相对湿度和温度 (3)第二章气流干燥器的设计基础 (4)气流干燥器概述 (4)干燥过程及其对设备的基础 (4)2.2.1干燥流程的主体设备 (4)2.2.2 提高干燥过程的经济措施 (4)气流干燥的适用范围 (5)气流干燥装置的选择 (5)颗粒在气流干燥管中的传热速率 (5)2.5.1加速运动阶段 (5)2.5.2等速运动阶段 (6)气流干燥管直径和高度的其他近似计算方法 (6)2.6.1费多罗夫法 (6)2.6.2 桐栄良法 (7)2.6.3 简化计算方法 (7)第三章气流干燥管的设计计算 (8)已知条件 (8)干燥管的物料衡算 (8)3.2.1干燥管的物料平衡 (8)3.2.2干燥管的热量平衡 (9)加速运动干燥管直径及高度计算 (10)3.3.1干燥管的直径计算 (10)3.3.2干燥管的高度计算 (10)计算气流干燥管的压降 (11)3.4.1气固相与干燥管壁的摩擦损失 (11)3.4.2克服位能提高所需要的压降 (12)3.4.3颗粒加速所引起的压降损失 (12)3.4.4其他的局部阻力损失引起的压降 (12)风机选型 (12)预热器的选型 (13)主要符号和单位表 (14)课程设计总结 (16)主要参考文献 (17)第一章干燥器设计基础干燥技术概论干燥通常是指将热量加于湿物料并排除挥发性湿分,而获得一定湿含量的固体的过程。
气流和单层流化床联合干燥装置设计
化工原理课程设计任务书(干燥装置设计)(一)设计题目:气流和单层流化床联合干燥装置设计(二)设计任务及操作条件1.用于散颗粒状药品干燥2.生产能力:处理量13735 Kg/h 物料含水率(湿基)22% ,气流干燥器中干燥至10%,再在单层流化床干燥器中干燥至0.5%(湿基)。
3.进料温度20℃,离开流化床干燥器的温度120℃。
4.颗粒直径:平均直径d m=0.3mm最大粒径d max=0.5mm最小粒径d min=0.1mm5.干燥介质:烟道气(性质与空气同)。
初始湿度:H0=0.01 kg水/kg绝干气入口温度:t1=800℃废气温度:t2=125℃(两种干燥器出口温度相同)6.操作压力:常压(101.3 kPa)7.年生产日330 天,连续操作24 小时/天。
8.厂址:柳州地区(三)设计内容1. 干燥流程的确定及说明.2. 干燥器主体工艺尺寸计算及结构设计。
3. 辅助设备的选型及核算(气固分离器、供风装置、供料器)。
4. A3 图纸2 张:带控制点的工艺流程图主体设备图(四)设计基础数据1.被干燥物料:颗粒密度:ρs =2000 kg/m3干物料比热容:C s =0.712kJ/kg.℃假设物料中除去的全部为非结合水。
2.分布板孔径:d0 = 5mm3.流化床干燥器卸料口直接接近分布板4.干燥介质的物性常数可按125℃的空气查取5.干燥装置热损失为有效传热量的15%目录1设计方案简介 (1)1.1 气流干燥器 (1)1.2 单层圆筒流化床干燥器 (1)1.3 气流和单层流化床联合干燥 (2)2 气流干燥器的设计计算 (3)2.1 物料衡算 (3)2.1.1 水分蒸发量 (3)2.1.2 气流干燥器的产品量 (4)2.1.3 绝干物料量 (4)2.1.4 物料的干基湿含量 (4)2.1.5 空气的用量 (4)2.2 热量衡算 (4)2.2.1 物料在气流干燥室的出口温度和空气的出口湿含量 (4)2.2.2 热损失 (5)2.2.3 物料升温所需要的热量 (6)2.2.4 总热量消耗 (6)2.3 气流干燥管直径的计算 (6)2.3.1 最大颗粒的沉降速度 (6)2.3.2 干燥管内的平均操作气速 (6)2.3.3 干燥管的直径 (6)2.4 气流干燥管的长度 (7)2.4.1 物料干燥所需的总热量 (7)2.4.2 平均传热温差 (7)2.4.3 表面给热系数 (8)2.4.4 气流干燥管的长度 (8)2.5 气流干燥管压降的计算 (8)2.5.1 气、固相与管壁的摩擦损失 (8)2.5.2 克服位能提高所需的压降 (9)2.5.3 局部阻力损失 (9)2.5.4 总压降 (9)3 单层圆筒流化床的设计计算 (9)3.1 物料衡算 (9)3.1.1 流化床干燥器中水分蒸发量 (9)3.1.2 流化床干燥器的产品产量 (10)3.1.3 绝干物料量 (10)3.1.4 物料的最终干基湿含量 (10)3.2 热量衡算 (10)3.2.1 水分蒸发所需热量 (10)3.2.2 干物料升温所需热量 (10)3.2.3 干燥器中所需热量 (10)3.2.4 热损失 (10)3.2.5 干燥过程所需总热量 (10)3.2.6 干空气用量 (11)3.2.7 最终废气湿含量 (11)3.3 最小颗粒的逸出速度 (11)3.4 扩大段直径的确定 (11)3.5 床层直径的确定 (11)3.6 分离段直径的确定 (12)3.7 流化床干燥器总高度的确定 (12)3.7.1 流化床床层高度 (12)3.7.2 分离段高度 (13)3.7.3 扩大段高度 (13)3.7.4 总高 (13)3.8 颗粒在流化床中的平均停留时间 (13)3.9 流化床的分布板 (13)3.9.1 选用侧流式分布板 (13)3.9.2 分布板的孔数 (13)3.9.3 开孔率 (13)4 主要附属设备的选型与计算 (14)4.1空气预热器 (14)4.1.1 饱和蒸汽温度 (14)4.1.2 空气的平均温度 (14)4.1.3 初步选型 (14)4.1.4 空气从t0升到t1所需热量 (14)4.1.5 实际风速和空气的质量流速 (14)4.1.6 排管的传热系数 (14)4.1.7 传热温差 (14)4.1.8 所需传热面积 (15)4.1.9 所需的单元排管数 (15)4.1.10性能校核 (15)4.2 风机 (15)4.3 旋风分离器 (16)4.4 供料器 (16)5 主要设计结果列表 (16)6 设计述评 (17)7 参考资料 (17)8主要符号说明 (18)1设计方案简介1.1气流干燥器气流干燥器主要用于小颗粒物料的干燥。
气流干燥设备课程设计
气流干燥设备课程设计一、课程目标知识目标:1. 学生能理解气流干燥设备的工作原理及其在工业中的应用。
2. 学生能掌握气流干燥设备的主要结构组成及其功能。
3. 学生能了解气流干燥过程中涉及的热力学和流体力学基础知识。
技能目标:1. 学生能运用所学知识,分析并解决气流干燥设备在实际应用中出现的问题。
2. 学生能设计简单的气流干燥流程,并进行基本的设备参数计算。
3. 学生能通过图表和数据,对气流干燥过程进行评价和分析。
情感态度价值观目标:1. 培养学生对气流干燥技术的研究兴趣,激发其探索精神和创新意识。
2. 增强学生的环保意识,使其认识到气流干燥技术在节能减排方面的重要性。
3. 培养学生的团队协作精神,使其在小组讨论和实践中学会倾听、尊重和合作。
课程性质:本课程为应用技术类课程,注重理论联系实际,提高学生的实践操作能力。
学生特点:高二年级学生,已具备一定的物理和数学基础,思维活跃,动手能力强。
教学要求:结合学生特点和课程性质,通过理论讲解、案例分析、小组讨论和实地考察等多种教学方式,使学生在掌握基本知识的同时,提高解决实际问题的能力。
课程目标具体、可衡量,以便于教学设计和评估。
二、教学内容1. 气流干燥设备的基本概念与工作原理- 气流干燥的定义及分类- 气流干燥设备的工作原理及特点- 相关物理现象的介绍(如传热、传质等)2. 气流干燥设备的主要结构及功能- 进料系统、干燥室、风机、加热器等组件的结构及作用- 各部件的相互关系及其对干燥效果的影响3. 气流干燥过程的热力学和流体力学基础- 热力学基本概念及在气流干燥中的应用- 流体力学基本原理及其在气流干燥设备中的应用4. 气流干燥设备的设计与计算- 设备参数的确定方法- 干燥流程的设计原则- 基本干燥计算方法及应用5. 案例分析与评价- 分析典型气流干燥设备在实际应用中的优缺点- 探讨不同工况下气流干燥设备的性能评价方法6. 实践操作与考察- 组织学生进行气流干燥实验操作,加深对理论知识的理解- 安排实地考察,了解气流干燥设备在工业生产中的应用教学内容按照教学大纲进行安排和进度制定,确保科学性和系统性。
QG脉冲气流干燥机工艺原理
QG脉冲气流干燥机工艺原理
工作原理
在QG系列脉冲气流干燥机内气流夹带物料从切线方向进入,沿着内壁形成螺旋运动,物料在气流中均匀分布与旋转拢动,强化了干燥过程,凡能用气流干燥的物料,QG系列脉冲气流干燥机均匀能适应,特别对增水性、颗粒小、不怕粉碎和热敏性物料龙为适用。
视物料的特性,如果粉尘回收采用脉冲布袋除尘或者水沫除尘,回收率可达99.99%。
下为QG系列脉冲气流干燥机工作流程动态示意图,此流程示意为负压气流干燥,用户可根据产品特性选择正压形式的干燥方法。
设备特点
1、QG系列脉冲气流干燥机干燥强度大、设备投资省、蒸发能力大,可从50kgH2O/h~2000kgH2O/h;
2、干燥时间短,适用于热敏性物料,成品不与外界接触,无污染,质量好;
3、设备成套提供,热源可选择蒸汽加热或配套使用燃煤、燃油、燃气热风炉等。
4、基本型气流干燥机适用于松散状、粘性小、成品为颗粒及粉末的物料。
应用范围
QG系列脉冲气流干燥机适应的物料比较多,除基本型提及的物料外,还
有:安眠酮、A.B.C中间体、A.B.S树脂、A.S.C、白炭黑、苯吡唑酮、茶粕、草酸催化剂、促进剂m.d.m、触媒、沉淀炭粉、二氧化钛、活性碳、氟硅酸钠、氟石矿、硅胶粉未、合成树脂、磷酸钙、聚丙烯树脂、金霉素、偏硅酸钠、硫酸钠、硫化矿、磷矿粉、兰BB、四环素、三氧化铁、碳酸钙、氧化铁、石膏缓凝剂等。
技术参数
作者:热风循环烘箱。
直管气流干燥器化工原理课程设计
目录(一)诸论(二)题目及数据(三)流程图(四)流程与方案选择说明与论证(五)干燥器主要部件和尺寸的计算1.基本物料衡算2.干燥管主要参数的计算3.加速段管长的计算4.恒速段管长的计算(六)主要附属设备的选型和计算1.加料器的选型和计算2.空气加热器的选型和计算3.旋风分离器的选型和计算4.风机的选型和计算(七)设计评价;(八)设计结果概览(九)参考文献诸论(一)化工原理课程设计的目的和要求课程设计是《化工原理》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。
在整个教学计划中,它也起着培养学生独立工作能力的重要作用。
课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。
所以,课程设计是培养学生独立工作能力的有益实践。
通过课程设计,学生应该注重以下几个能力的训练和培养:1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力;2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力;3. 迅速准确的进行工程计算的能力;4.用简洁的文字,清晰的图表来表达自己设计思想的能力(二)聚氯乙烯简介分子式为-[CH2CHCl]-n,简称PVC, PVC为无定形结构的白色粉末,支化度较小。
工业生产的PVC分子量一般在5万~12万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加;无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态;有较好的机械性能,抗张强度60MPa左右,冲击强度5~10kJ/m2;有优异的介电性能。
但对光和热的稳定性差,在100℃以上或经长时间阳光曝晒,就会分解而产生氯化氢,并进一步自动催化分解,引起变色,物理机械性能也迅速下降,在实际应用中必须加入稳定剂以提高对热和光的稳定性。
气流干燥器设计26
目录一、设计任务 .................................................................................................................................. 3 二、设备的简介 .............................................................................................................................. 3 旋风分离器是最常用的气固分离设备。
对于颗粒直径大于5微米的含尘气体,其分离效率较高,压降一般为1000~2000 Pa 。
旋风分离器的种类很多,各种类型的旋风分离器的结构尺寸都有一定的比例关系,通常以圆柱直径的若干倍数表示。
............................................... 3 三、工艺条件 .................................................................................................................................. 3 四、工艺数据计算 .. (4)1.物料衡算 (4)2. 热量衡算 ............................................................................................................................ 4 3. 检验假设的物料出口温度 (5)D=au Vπ36004=1514.3360043054⨯⨯⨯= m (6)取整,即D= (6)5. 气流干燥管长度Y............................................................................................................. 6 =3600400[ kw ..................................................................................................................................... 7 r A --阿基米得数 .. (8)将湿空气由15℃加热到90℃所需的热量为 (8)v G =1.22051030.35⨯=(kg/h ) (8)A 1=11m t K Q ∆=8.149601001030.35=⨯⨯ m 2.......................................................................................... 9 六、工艺设计计算结果汇总表 .................................................................................................... 12 七 干燥装置的工艺流程 .............................................................................................................. 12 参考文献 ........................................................................................................................................ 13 附表1 ............................................................................................................................................. 14 附表2 (14)附表3 (15)附表4 (15)附图1: 干燥装置流程示意图 (16)气流干燥器的设计一、设计任务化工原理课程设计任务书二十六二、设备的简介气流干燥器一般由空气滤清器、热交换器、干燥管、加料管、旋风分离器、出料器及除尘器等组成。
气流干燥器的设计
气流干燥器的设计
气流干燥器是一种用于去除空气中的湿气的设备,广泛应用于各个领域,如工业、医疗和农业等。
其主要原理是通过将湿气和空气分离,使湿气通过一系列的处理过程被除去,从而实现空气的干燥。
气流干燥器的设计需要考虑多个因素,包括工作原理、结构和材料的选择等。
首先,气流干燥器的工作原理一般采用吹风干燥法。
在该原理下,湿气通过干燥器进入,然后通过加热和脱水的过程被除去。
一般来说,气流干燥器由加热器、风扇和除湿装置组成。
加热器用于提供热量,使湿气蒸发并转化为蒸汽,然后被风扇吹走。
除湿装置则用于吸附湿气,从而使干燥后的空气湿度更低。
其次,气流干燥器的结构设计需要考虑到其工作效率和使用便捷性。
一般来说,气流干燥器的外壳采用金属材料制成,以确保其结构的稳定性和耐用性。
同时,为了提高工作效率,可以在干燥器内部设置多个加热元件和除湿装置,以增加干燥面积和处理能力。
此外,为了方便使用,还可以在干燥器上设置温度和湿度的调节装置,以满足不同的干燥需求。
最后,气流干燥器的材料选择需要考虑其耐高温和耐腐蚀性能。
由于干燥过程中需要加热器提供高温,所以加热器的材料需要具有良好的耐高温性能,如不锈钢、铜合金等。
此外,湿气的除去过程可能会产生腐蚀性物质,所以除湿装置的材料需要具有良好的耐腐蚀性能,如特种陶瓷、塑料等。
同时,为了确保设备的使用寿命,也需要考虑材料的稳定性和耐磨性。
总之,气流干燥器的设计需要综合考虑工作原理、结构和材料等因素。
通过合理的设计,可以提高干燥器的工作效率和使用寿命,从而满足不同
领域对于空气干燥的需求。
化工原理课程设计流化床干燥器
化工原理课程设计流化床干燥器1. 引言流化床干燥器是一种广泛应用于化工生产过程中的干燥设备。
它以颗粒物料在气流中进行流态化为基本原理,通过热传导和传质来实现物料的干燥。
本文将介绍流化床干燥器的原理、设计要点以及流化床干燥器在化工工艺中的应用。
2. 流化床干燥器的原理流化床干燥器的原理是利用气体的流态化特性,使干燥床内的颗粒物料在气流的作用下呈现出类似于液体的流动状态。
此时,颗粒物料之间的接触面积增大,热传导和传质效果提高,从而实现干燥的目的。
具体来说,流化床干燥器将气体通过底部的气体分布板喷入干燥床中,使颗粒物料悬浮在气流中形成流化状态。
气流的速度和温度可以通过控制调节,以达到对物料的干燥需求。
干燥床内的气体通过床顶的排气管排出,同时带走物料中的水分,实现干燥效果。
3. 流化床干燥器的设计要点流化床干燥器的设计需要考虑以下几个要点:3.1 物料的性质物料的性质包括颗粒粒径、形状、密度以及湿度等。
这些性质将直接影响到气体分布和流化床的设计参数。
因此,在进行流化床干燥器设计时,需要充分了解物料的性质,并根据实际情况进行合理选择。
3.2 气体流速和温度气体的流速和温度对流化床干燥器的干燥效果有重要影响。
流速过小会导致物料沉积在干燥床底部,干燥效果不佳,流速过大则会带走物料并增大设备能耗。
温度过低会延长干燥时间,温度过高则可能引起物料的结焦和变质。
因此,在设计时需要合理选择气体流速和温度。
3.3 干燥床的高度和直径干燥床的高度和直径也是设计中需要考虑的重要参数。
床高度和直径的选择将直接影响流化床的流态化效果。
床高度过大会增加气体的压降和能耗,床直径过小则使床内颗粒物料的分布不均匀。
因此,需要根据物料的性质和干燥要求来选择合适的床高度和直径。
4. 流化床干燥器的应用流化床干燥器在化工工艺中有着广泛的应用。
以下是几个常见的应用场景:4.1 粉状物料的干燥流化床干燥器可以对粉状物料进行有效的干燥。
例如,在制药工艺中,通过流化床干燥器可以将湿度较高的粉状药品进行干燥,提高药品的质量和稳定性。
化工原理课程设计--脉冲气流干燥器设计
化工原理课程设计题目:脉冲气流干燥器设计系别: 化学材料与工程系专业:_学号:姓名:指导教师:二零一四年一月二十七日目 录设计任务书 (3)1.概述 (3)1.1气流干燥的特点 (3)1.2设计方案简介 (3)2.工艺计算及主体设备设计 (4)2.1已知的基本条件 (4)2.2物料衡算和热量衡算 (4)2.2.1物料衡算 (4)2.2.2热量衡算 (5)2.2.3校核假设的物料出口温度2m t (5)2.3气流干燥管直径的计算 (6)2.3.1加速段气流干燥管直径的计算 (6)2.3.2加速运动段管高的计算 (6)2.3.3减速段管高的计算 (11)2.4总的干燥管的高度 (19)3.辅助设备的选择与计算 (19)3.1管路的选择与计算 (19)3.2加料装置 (19)3.3风机 (20)3.4热风加热装置 (20)3.5分离装置 (20)4.主要符号和单位 (21)5. 干燥装置的工艺流程 (22)6.设计评价 .......................................................................................................................................... 22 附录 ........................................................................................................................................................ 23 参考文献 .. (24)设计任务书本次以重油燃烧气为干燥介质,对物料进行干燥,分离,保证品质,在设计过程中涉及工艺计算及主体设备设计,风机的选择,热风加热装置,加料装置的选择等,通过循环让物料及过程中产生的中间物及废料达到最高利用率。
化工原理课程设计流化床干燥器
目录I设计任务书一、设计题目万吨/年流化床干燥器设计二、设计任务及操作条件1.设计任务生产能力进料量万吨/年以干燥产品计操作周期260天/年进料湿含量13%湿基出口湿含量1%湿基2.操作条件干燥介质湿空气110℃含湿量取kg干空气湿空气离开预热器温度即干燥器进口温度110℃气体出口温度自选热源饱和蒸汽,压力自选物料进口温度15℃物料出口温度自选操作压力常压颗粒平均粒径3.设备型式流化床干燥器4.厂址合肥三、设计内容:1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计1硫化床层底面积的确定;2干燥器的宽度、长度和高度的确定及结构设计4、辅助设备选型与计算5、设计结果汇总6、工艺流程图、干燥器设备图、平面布置图7、设计评述II第一章概述流化床干燥器简介将大量固体颗粒悬浮于运动着的流体之中,从而使颗粒具有类似于流体的某些表观特性,这种流固接触状态称为固体流态化;流化床干燥器就是将流态化技术应用于固体颗粒干燥的一种工业设备,目前在化工、轻工、医学、食品以及建材工业中都得到了广泛应用;1)流态化现象图1流态化现象图空气流速和床内压降的关系为:图2空气流速和床内压降关系图空气流速和床层高度的关系为:流化床的操作范围:u mf ~u t图3空气流速和床层高度关系图2) 流化床干燥器的特征优点:1床层温度均匀,体积传热系数大2300~7000W/m3·℃;生产能力大,可在小装置中处理大量的物料;Velocity Height0fbed FixedFluidize A DB CEU mf Velocity PressuredropU mf2由于气固相间激烈的混合和分散以及两者间快速的给热,使物料床层温度均一且易于调节,为得到干燥均一的产品提供了良好的外部条件;3物料干燥速度大,在干燥器中停留时间短,所以适用于某些热敏性物料的干燥;4物料在床内的停留时间可根据工艺要求任意调节,故对难干燥或要求干燥产品含湿量低的过程非常适用;5设备结构简单,造价低,可动部件少,便于制造、操作和维修;6在同一设备内,既可进行连续操作,又可进行间歇操作;缺点:1床层内物料返混严重,对单级式连续干燥器,物料在设备内停留时间不均匀,有可能使部分未干燥的物料随着产品一起排出床层外;2一般不适用于易粘结或结块、含湿量过高物料的干燥,因为容易发生物料粘结到设备壁面上或堵床现象;3对被干燥物料的粒度有一定限制,一般要求不小于30m、不大于6mm;4对产品外观要求严格的物料不宜采用;干燥贵重和有毒的物料时,对回收装量要求苛刻;5不适用于易粘结获结块的物料;3流化床干燥器的形式1、单层圆筒形流化床干燥器连续操作的单层流化床干燥器可用于初步干燥大量的物料,特别适用于表面水分的干燥;然而,为了获得均匀的干燥产品,则需延长物料在床层内的停留时间,与此相应的是提高床层高度从而造成较大的压强降;在内部迁移控制干燥阶段,从流化床排出的气体温度较高,干燥产品带出的显热也较大,故干燥器的热效率很低;2、多层圆筒形流化床干燥器热空气与物料逆向流动,因而物料在器内停留时间及干燥产品的含湿量比较均匀,最终产品的质量易于控制;由于物料与热空气多次接触,废气中水蒸气的饱和度较高,热利用率得到提高;此种干燥器适用于内部水分迁移控制的物料或产品要求含湿量很低的场合;多层圆筒型流化床干燥器结构较复杂,操作不易控制,难以保证各层板上均形成稳定的流比状态以及使物料定量地依次送入下一定;另外,气体通过整个设备的压强降较大,需用较高风压的风机;3、卧式多室流化床干燥器与多层流化床干燥器相比,卧式多室流化床干燥器高度较低,结构筒单操作方便,易于控制,流体阻力较小,对各种物料的适应性强,不仅适用于各种难于干燥的粒状物料和热敏性物料,而且已逐步推广到粉状、片状等物料的干燥,干燥产品含湿量均匀;因而应用非常广泛;4干燥器选形时应考虑的因素1物料性能及干燥持性其中包括物料形态片状、纤维状、粒状、液态、膏状等、物理性质密度、粒度分布、粘附性、干燥特性热敏性、变形、开裂等、物料与水分的结合方式等因素;2对干燥产品质量的要求及生产能力其中包括对干燥产品特殊的要求如保持产品特有的香味及卫生要求;生产能力不同,干燥设备也不尽相同;3湿物料含湿量的波动情况及干燥前的脱水应尽量避免供给干燥器湿物料的含湿量有较大的波动,因为湿含量的波动不仅使操作难以控制面影响产品质量,而且还会影响热效率,对含湿量高的物料,应尽可能在干燥前用机械方法进行脱水,以减小干燥器除湿的热负荷;机械脱水的操作费用要比干燥去水低廉的多,经济上力求成少投资及操作费用;4操作方便.劳动条件好;5适应建厂地区的外部条件如气象、热源、场地,做到因地制宜; 5干燥原理干燥通常是指将热量加于湿物料并排除挥发湿分大多数情况下是水,而获得一定湿含量固体产品的过程;湿分以松散的化学结合或以液态溶液存在于固体中,或积集在固体的毛细微结构中;当湿物料作热力干燥时,以下两种过程相继发生:过程1.能量大多数是热量从周围环境传递至物料表面使湿分蒸发;过程2.内部湿分传递到物料表面,随之由于上述过程而蒸发;干燥速率由上述两个过程中较慢的一个速率控制,从周围环境将热能传递到湿物料的方式有对流、传导或辐射;在某些情况下可能是这些传热方式联合作用,工业干燥器在型式和设计上的差别与采用的主要传热方法有关;在大多数情况下,热量先传到湿物料的表面热按后传入物料内部,但是,介电、射频或微波干燥时供应的能量在物料内部产生热量后传至外表面;整个干燥过程中两个过程相继发生,并先后控制干燥速率;6)物料的干燥特性物料中的湿分可能是非结合水或结合水;有两种排除非结合水的方法:蒸发和汽化;当物料表面水分的蒸汽压等于大气压时,发生蒸发;这种现象是在湿分的温度升高到沸点时发生的,物料中出现的即为此种现象;如果被干燥的物料是热敏性的,那么出现蒸发的温度,即沸点,可由降低压力来降低真空干燥;如果压力降至三相点以下,则无液相存在,物料中的湿分被冻结;在汽化时,干燥是由对流进行的,即热空气掠过物料;降热量传给物料而空气被物料冷却,湿分由物料传入空气,并被带走;在这种情况下,物料表面上的湿分蒸汽压低于大气压,且低于物料中的湿分对应温度的饱和蒸汽压;但大于空气中的蒸汽分压;干燥技术是一门跨学科、跨行业、具有实验科学性的技术;传统的干燥器主要有箱式干燥器、隧道干燥器、转同干燥器、带式干燥器、盘式干燥器、桨叶式干燥器、流化床干燥器、喷动床干燥器、喷雾干燥器、气流干燥器、真空冷冻干燥器、太阳能干燥器、微波和高频干燥器、红外热能干燥器等;干燥设备制作是密集型产业,我国的国产干燥设备价格相对低廉,因此具有较强的竞争力;主要包括:1物料静止型或物料输送型干燥器;2物料搅拌型干燥器;3物料热风输送型干燥器;4物料移动状态;5辐射能干燥器将大量固体颗粒悬浮于运动着的流体之中,从而使颗粒具有类似于流体的某些表观特性,这种流固接触状态称为固体流态化;流化床干燥器就是将流态化技术应用于固体颗粒干燥器德一种工业设备,目前在化工、轻工医学、食品以及建材工业中得到广泛的应用;设计方案简介一、设计任务所要求的内容见附设计任务书二、主体设备的选择计算管的高度与管径时所需的公式与参数,可由参考文献查得;具体计算见设计书;来自气流干燥器的颗粒状物料用星形加料器加到干燥室的第一室,依次经过各室后,于℃离开干燥器;湿空气由送风机送到翅片型空气加热器,升温到120℃后进入干燥器,经过与悬浮物料接触进行传热传质后温度温度降到了73℃;废气经旋风分离器净化后由抽风机排除至大气;空气加热器以400kPa的饱和水蒸气作热载体;图4干燥器主体设备图三、辅助设备的选择辅助设备在干燥中起着关键的作用;加料装置的选择必须考虑到所加物料的湿度、颗粒的大小和物料的处理量,因此,综合考虑选择装置,可以用旋转式加料装置;风机和热风加热装置的选择稍微有点难,因为没有具体的数据可以选择使用,为了节省整个装置的成本,我们可以选择有同样功能的标准设备,此具体的风机没有,我们就可以选择稍大的现有的标准风机来代替;至于分离装置的,因为是要求达到环保的排放标准,必须选择能处理极小粒径的,例如,旋风分离器,其他离粒径在5微米左右,排放出的颗粒基本达到要求,不需要再安装更好的布袋分离器,同时也可以节省成本;四、整个装置的流程图见附录;风机提供出所需要的风量,经热风加热器到需要的温度后,送入主体设备并带着加入的物料往上走进行干燥过程;因为颗粒有自身的重量要往下运动,就与向上的热风形成逆流运动,加大了干燥的效果;运动流化床干燥装置,减少了干燥的时间和主体设备的高度;最后由分离设备分离器出需要的干物料,并排出难分离的颗粒;五、具体的计算与装置的选择见下面的设计书;第二章 设计计算设计参数被干燥物料:颗粒密度s ρ=1400kg/m 3;堆积密度b ρ=700kg/m3;绝干物料比热s C =kg ℃;颗粒平均直径dm=m μ150;临界湿含量C X =;平衡湿含量*X ≈0;要求物料从ω1=15%湿基,干燥至ω2=1%湿基物料进口温度θ1=15℃物料静床层高度0Z 为;干燥装置热损失为有效传热量的15%;干燥条件确定:1.干燥介质——湿空气,根据成都的年平均气象条件,将空气进预热器温度定为16℃,相对湿度定为84%;2.干燥介质进入干燥器温度1t =110℃;3.物料进入干燥器温度:1θ=15℃4.干燥介质离开干燥器的相对湿度和2ϕ和2t :对气流干燥器,一般要求2t 较物料出口温度高10—30℃,或者较出口气体的绝热饱和温度湿球温度高20—50℃;5.热源:饱和蒸汽,压力400kPa;物料衡算由给定的任务条件已知,生产能力为3526kg/h 以干燥产品计,即为h kg G /35262=,又ω1=,ω2= 湿基01.001.0101.0ω-1ω222=-==X ,15.013.0113.0ω-1ω111=-==X 绝干物质质量流率为干燥器单位时间汽化水分量为水在16℃下的饱和蒸汽压为空气湿度为绝干气体质量流率为12H H W L -=,01H H = =,00956.070.4882-=H L a空气和物料出口温度的确定空气出口温度比出口处湿球温度要高出20—50℃,在这里取35℃;由t 1=110℃,00956.01=H 查上页湿度图得:1w t =℃ 近似取2138w w t t ==℃, 则2383573t =+=℃设物料离开干燥器的温度2θ, 因C X X <2,而05.0=Xc2280 2250246023702340231024302400 2490 02030 40 50 60 10 7080 90 100温度/℃110120H图5湿空气的湿度-温度图湿度/k g.kg 干空气-1汽化潜热/k J/kg湿比热容/kJ.kgH 2O.℃-1湿比体积/m 3.k g 干故可用公式)()(22222222222222)()()))(()(w S C w t t C X X r w S C w C w S w w t t C X X r X X X X t t C X X r t t t --*****--------=--θ又因2230285.227.2491w w t r -= =故代入数据2403.760.051.256(7338)20.0052403.760.005 1.256(7338)()730.0573382403.760.05 1.256(7338)θ⨯-⨯-⨯-⨯-=-⨯--得到=2θ℃干燥器的热量衡算图6干燥器热量衡算图如图6所示,干燥器中不补充能量,故=d Q 0 干燥器中的热量衡算可表达为:l l m w p Q Q Q Q Q Q '+++== b物理意义是气体冷却放出的热量Q p 用于三个方面:以w Q 气化湿分,以m Q 加热物料,以l Q 补偿设备的热损失;其中,)(120θw v W c t c r W Q -+==⨯+⨯⨯⨯⨯)152.62(-⨯)(020t t Lc Q H l -='))(884.1005.1(020t t H L -+))(884.1005.1(010t t H L -+L 因为干燥器的热损失为有消耗热量的15%,即)%(15m w l Q Q Q += =+=将上面各式代入b 式, 即为=+++ 解得L=绝干气/h将L=代入a 式 即为00956.070.4882-=H ,解得2H =水/kg 绝干气干燥器的热效率许多资料和教科书上都是以直接用于干燥目的的w Q 来计算热效率 所以dp wh Q Q Q +=η,其中0=d Q 故干燥器的热效率为第三章干燥器工艺尺寸设计流化速度的确定1.临界流化速度的计算对于均匀的球星颗粒的流化床,开始流化的孔隙率4.0=mf ε在110℃下空气的有关参数为:密度ρ=3/kg m ,粘度s Pa ⋅⨯=-51018.2μ,导热系数223.210/W m λ-=⨯⋅℃ 所以253323)1018.2(81.9898.0)898.01400()1015.0()(--⨯⨯⨯-⨯⨯=-=μρρρgd Ar s = 由4.0=mf ε和Ar 值,查李森科关系图得mf Ly =6102-⨯ 临界流化速度为23ρμρgLy u s mf mf ==2563898.081.914001018.2102⨯⨯⨯⨯⨯--=s m /1006.93-⨯2.沉降速度的计算颗粒被带出时,床层的孔隙率1≈ε;根据1=ε及Ar 的数值,查李森科关系图可得mf Ly =55.0带出速度为s m gLy u s t /5889.0898.081.914001018.255.025323=⨯⨯⨯⨯==-ρμρ 带出速度即为颗粒的沉降速度; 3.操作流化速度 取操作流化速度为t u即0.70.70.58890.4122/t u u m s =⨯=⨯=流化床层底面积的计算1、干燥第一阶段所需底面积表面汽化阶段所需底面积1A 可以按公式 式中,静止时床层高度为m Z 15.00=; 干空气的质量流速取为u ρ,即⋅=⨯⨯⨯⨯=⨯=---25.1335.13/51.35469.21015.0032.0104(Re)104m W d mλα℃ =a α24000=842402/W m ⋅℃由于时,mm mm d m 9.015.0<=所得a α需要校正,由m d 从图可查的11.0=C ;所以⨯='11.0a α84240=2/W m ⋅℃ 公式⎥⎦⎤⎢⎣⎡---=1)()(2111000w w H H r X X G t t A L C C L aZ α即可演变为:解得1A =2、物料升温阶段所需底面积物料升温阶段的所需底面积2A 可以按公式 公式中:=--=--2.6211015110ln ln2111θθt t ⎥⎦⎤⎢⎣⎡---=1ln /211122000θθαt t c G A L C C L aZ m c H H 即为:解得2A = 3、床层总面积流化床层总的底面积21A A A +==+=2m干燥器长度和宽度今取宽度b=,长度a=4m,则流化床的实际底面积为; 沿长度方向在床层内设置5个横向分隔板,板间距约为.停留时间物料在床层中的停留时间为:干燥器高度流化床的总高度分为浓相段高度和分离段高度;流化床在界面以下的区域称为浓相区,界面以上的区域称为稀相区; 1、浓相段高度而ε由式=⨯+⨯=⎪⎪⎭⎫⎝⎛+=21.0221.02)53.875469.236.05469.218(Re 36.0Re 18Ar ε由此m Z Z 764.08822.014.0115.011001=--⨯=--=εε 2、分离段高度对非圆柱形设备,应用当量直径e D 代替设备直径D由0.4122/u m s =以及e D =从资料查得 从而2 1.5 1.5 1.048 1.571e z D ==⨯=m 3、干燥器高度为了减少气流对固体颗粒的带出量,取分布板以上的总高度为;干燥器结构设计1、布气装置设计布气装置包括分布板和预分布器两部分;其作用除了支撑固体颗粒、防止漏料以及使气体均匀分布外,还有分散气流使其在分布板上产生较小气泡的作用,以造成良好的起始流化条件与抑制聚式流化床的不稳定性;如图7所示;图7布气装置图采用单层多孔布气板;取分布板压降为床层压降的15%;则 取阻力系数2ξ=,则筛孔气速为: 干燥介质的体积流量为:选取筛孔直径0 1.5d mm =,则总筛孔数目为:31036936.140015.0365.5442020=⨯⨯∏⨯=∏=u d V n S 个 分布板的实际开孔率为:在分布板上筛孔按等边三角形布置,孔心距为: 可取T=.预分布器的作用是在分布板前预先把气体分布均匀一些,避免气流直冲分布板而造成局部速度过高,对于大型干燥器,尤其需要装置预分布器; 2、分隔板设计为了改善气固接触情况和使物料在床层内停留的时间分布均匀,沿长度方向设置5个横向分隔板板间距约为;隔板与分布板之间的距离为20-50mm,隔板做成上下移动式,以调节其与分布板之间的距离;分隔板宽,高,由5mm 厚钢板制造;3、物料出口堰高h将u 和mf u 代入上式,即可以得到 解得:v E =以公式013232.14()Re18 1.52ln()15()()vc v bh Z E G hE b ρ-=-计算h 的数值 代入相关数据可得:整理上式得到0.265211710.3189650.004457ln h h =+ 经试差解得h=为了便于调节物料的停留时间,溢流堰的高度设计成可调节结构;第四章附属设备的设计与选型风机的选择为了克服整个干燥系统的阻力以输送干燥介质;必须选择合适类型的风机并确定其安装方式;送风机风机按其结构形式有轴流式和离心式两类;轴流式的特点是排风量大而风压很小,一般仅用于通风换气,而不用于气体输送;故选择离心式通风机;其风机进口体积流量V 1为 排风机同理可得到物料出干燥塔的温度下的体积流量V 2:气固分离器为了获得较高的回收率,同时避免环境污染,需将从干燥器中出来的空气进行气固分离,在干燥系统中使用的分离器主要有旋风分离器、袋滤器、湿式洗涤器等;旋风分离器如图8所示是利用惯性离心力的作用从气流中分离出颗粒的设备;其上部为圆筒形,下部为圆锥形;它内部的静压力在器壁附近最高,仅稍低于气体进口处的压强,越往中心静压力越低,中心处的压力可降到气体出口压力以下;旋风分离器的分离效率通常用临界粒径的大小来判断,临界粒径越小,分离效率越高;在此次设计中采用旋风分离器分离5m μ以上的PVC 粉尘以能达到工艺和环境要求;经考虑,故选用/8.2XLP B -型旋风分离器;式中t r 为出口空气温度下的密度,即为73o c 时的密度:31.04/t r kg m =,另外取65tr p=∆;可得 D =图8旋风分离器装置图加料器供料器是保证按照要求定量、连续或间歇、均匀地向干燥器供料与排料;常用的供料器有圆盘供料器、旋转叶轮供料器、螺旋供料器、喷射式供料器等;将这些供料器相比较:对于圆盘供料器,虽然结构简单、设备费用低,但是物料进干燥器的量误差较大,只能用于定量要求不严格而且流动性好的粒状物料;对于旋转叶轮供料器,操作方便,安装简便,对高大300o C 的高温物料也能使用,体积小,使用范围广,但在结构上不能保持完全气密性,对含湿量高以及有黏附性的物料不宜采用;对于螺旋供料器,密封性能好,安全方便,进料定量行高,还可使它使用于输送腐蚀性物料;但动力消耗大,难以输送颗粒大、易粉碎的物料;对于喷射式供料器空气消耗量大,效率不高,输送能力和输送距离受到限制,磨损严重;我们本次设计的任务是干燥PVC,它在进入干燥器之前的温度下为固态颗粒状,颗粒平均直径m d =150m μ,且硬度和刚性都较高;因为圆盘供料器只能用于定量要求不严格的物料,所以通常情况下不选用;又因为螺旋供料器容易沉积物料,不宜用于一年330天,每天24小时的连续工作;另外我们较高硬度和刚性的PVC 对设备存在磨损,如果再加上空气流的喷射作用,磨损将会更大,故不能选用喷射式供料器;综上我们选用星形供料装置,如图9所示,且3=2.143m /h mv sq q ρ=,因此可选择其规格和操作参数如下:规格:200200φ⨯生产能力:3m h4/叶轮转速:20/minr传动方式:链轮直联设备质量:66kg齿轮减速电机:型号561JTC功率1kW输出转速31/minr图9星形供料装置图第五章设计结果列表参考资料:化工原理第二版,科学出版社;化工原理课程设计,天津大学技术出版社;化工原理设计导论,成都科技大学出版社;先进干燥技术,T.库德,.牟久大着,化学工业出版社;化工设计,黄璐,王保国着,化学工业出版社;附录主要参数说明G1——物料进口量G2——物料出口量W——水分蒸发量ρs——物料密度M——物料干基L——空气用量θ1、θ2——物料进出口温度1θ2θt1、t2—-气体进出口温度1t2tcs——干物料比热scQ——热消耗量ω——物料湿含量H——温度Re——雷诺数u——空气速度γ——物料重度——空气相对湿度ε——固体床层空隙率A——床层面积D——床层直径φd——分布板开空率τ——平均停留时间。
化工原理课程设计卧式多室流化床干燥器的设计
化工原理课程设计设计题目卧式多室流化床干燥器的设计学生姓名刘伟学号20113040专业班级高分子材料与工程11-2班指导教师刘雪霆2014年6月23日至7月4日化工原理课程设计成绩评定表设计题目卧式多室流化床干燥器的设计成绩课程设计主要内容本次课程设计我们采用卧式多室流化床干燥器将颗粒状PVC的干基含水量从42%减少至0.26%,生产能力为1400kg/h(以干燥产品计)。
经过对总费用包括设备折旧费、空气预热和风机运转费优化设计后,该流程可概括为:来自气流干燥器的颗粒状物料用星型加料器加入干燥器的第一室,再经过其余的四个室,在67.17℃下离开干燥器。
湿度为0.02的空气经翅片换热器(热载体为400kPa饱和水蒸气)加热至105℃后进入干燥器,经过与悬浮物料接触进行传质传热后,湿度增加到0.03,温度降至70.5℃。
尾气经过旋风分离器和布袋式除尘器,提高了产品的收率之后排放。
流程中采用前送后抽式供气系统,维持干燥器在略微负压下工作。
我主要进行Visio的做图工作。
为了后期画图的正常进行,前期我配合计算的同学把主要精力放在计算上面,中期我便全身心的投入到流程图的绘制之中,幸好之前参加过数学建模对Visio比较熟悉,况且之前电脑上都不能装CAD,我便果断用这个软件进行画图。
刚开始我满怀热情,可是画着画着,自己的信心也渐渐消磨掉,好不容易画完了流程图,可是当让老师看过之后,各种错误还是会有,我原来愿相信做图需要仔细仔细再仔细,认真认真再认真。
特别是在画装备图的时候,当画完一个主视图后,便很不想画了,可是当我看到别人的进度后,便又拿出电脑继续画图。
后期完成写论文。
在这期间,我对各种软件又有了深的了解,也学到了很多知识技能。
指导教师评语签名:2014年月日化工原理课程设计任务书学院化学与化工学院专业高分子材料与工程班级11级2班姓名刘伟学号20113040设计题目:卧式多室流化床干燥器的设计设计时间:2014.6.23—2014.7.4指导老师:刘雪霆设计任务:1400kg/h(以干燥产品计)操作条件:原料进干燥器的干基含水量:42%,温度:50℃,产品出干燥器的干基含水量:0.26%工艺参数:颗粒密度:1180kg/m³,堆积密度:510kg/m³,产品平均颗粒直径:0.62mm,干物料比热容:2.23kj/kg·℃,临界干基含水量:3.2%,平衡含水量:0.061%,新鲜空气温度:25℃,干燥器进口空气的温度:110℃,湿度:0.016kg水/kg干空气,物料静床层高度:0.15m,干燥器热损失为有效传热量的10%,年工作日:330天,设计成果:设计说明书一份带控制点的工艺流程图(3#图纸)1张主题设备装配图(1#图纸)1张目录前言 (2)一、流态化的定义 (2)二、流态化的分类 (3)三、流态化开发与应用实例 (4)四、卧式多室流化床干燥器的特点 (4)摘要 (5)Abstract (6)1干燥过程的工艺流程说明 (7)2干燥过程的物料衡算和热量衡算 (7)2.1物料衡算 (7)2.2空气和物料出口温度的确定 (8)2.3干燥器的热量衡算 (9)2.4预热器的热负荷和加热蒸汽消耗量 (10)3流化床干燥器的设计计算 (10)3.1临界流化速度mf u 的计算 (10)3.2流化床层底面积的计算 (12)3.3干燥器的宽度和长度 (13)3.4干燥器高度 (14)3.5干燥器结构设计 (15)3.5.1.布气装置 (15)3.5.2分隔板 (16)3.5.3物料出口堰高h (16)4.附属设备的选型 (16)4.1送风机和排风机 (16)4.1.1送风机 (17)4.1.2排风机 (17)4.2供料装置 (17)4.3换热器选型 (19)4.4空气过滤器 (20)4.5管路计算及管道选择 (21)4.6气固分离器 (22)4.7干燥器主体材质的选择 (24)5.卧式多室流化床干燥装置的设计计算结果汇总 (24)6.主要参数说明 (25)7.参考文献 (28)8.总结 (28)前言在人类的生产和生活中,经常遇见需要把一种物体的湿分除去的情况。
化工原理干燥器课程设计
化工原理干燥器课程设计 Last updated on the afternoon of January 3, 2021目录1 概述 (3)干燥技术现状及进展 (3)1.1.1干燥技术的概况 (3)1.1.2干燥技术现状 (3)气流干燥器的简介 (4)1.2.1气流干燥器的简介 (4)1.2.2脉冲式气流干燥器的简介 (5)2.设计任务及要求 (5)设计题目 (5)设计任务及操作条件 (5)设计内容 (5)3.干燥器主体工艺尺寸计算计算 (6)基本参数的确定 (6)物料衡算和能量衡算 (6)3.2.1物料衡算和热量衡算 (6)3.2.2气流干燥管直径的计算 (7)3.2.3气流干燥管长度的计算 (8)4.辅助设备的选型及核算 (17)鼓风机 (18)加热器 (18)进料器 (18)分离器 (19)除尘器 (19)5.设计结果汇总 (19)6 结论 (19)参考文献 (19)致谢………………………………………………………………………………附图一. 概述:干燥技术现状及进展人们通常把采用热物理方式将热量传给含水的物料并将此热量作为潜热而是水分蒸发、分离操作的过程称为干燥。
其特征是采用加热、降温、减压或其他能量传递的方式使物料中的水分挥发,冷凝、升华等相变过程与物料分离以达到去湿的目的。
干燥技术的应用,在我国具有十分悠久的历史,文明于世界的造纸技术,就显示了干燥技术的应用,现代干燥技术在国民生产中应用的程度与一个国家的综合国力和国民生活质量的水平密切相关,从某种意义上来说,它标志着这个国家国民经济和社会文明的发达程度。
1.1.1干燥技术的概况干燥技术的目的是除去某些原料、半成品中的水分或溶剂,就化学工业而言目的哦在于,使物料便于包装、运输、加工和使用,具体为(1)悬浮液和滤饼状的化工原料和产品,可经干燥成为固体,便于包装和运输。
(2)不少的化工原料和产品,由于水分的存在,有利于微生物的繁殖,易霉烂、虫蛀或变质,这类物料经过干燥便于贮藏,例如生物化学制品、抗生素及食品等,若含水量超过规定标准,易于变质影响使用期限,需要经干燥后才有利于贮藏。
化工原理干燥课程设计
化工原理课程设计课题名称年产量2222吨奶粉的干燥工艺设计班级姓名指导教师时间目录第一章绪论 .......................... 错误!未定义书签。
1.1 产品生产的国外发展概况及意义.错误!未定义书签。
1.2 原料的性质及来源................. 错误!未定义书签。
1.3 设计所采用的分离方法及特点 ... 错误!未定义书签。
第二章工艺流程设计及设备论证 .... 错误!未定义书签。
2.1 工艺流程叙述及论证 .............. 错误!未定义书签。
2.2工艺参数的选择论证............... 错误!未定义书签。
2.3设备论证 ............................ 错误!未定义书签。
第三章物料衡算 ...................... 错误!未定义书签。
第四章能量衡算 .................... 错误!未定义书签。
第五章设备设计计算与选型......... 错误!未定义书签。
第六章非工艺部分 ................... 错误!未定义书签。
6.1安全.................................. 错误!未定义书签。
6.2 三废情况及环保的大体方案 ...... 错误!未定义书签。
主要参考文献............................ 错误!未定义书签。
结束语.................................... 错误!未定义书签。
第一章绪论1.1 产品生产的国外发展概况及意义奶粉容易冲调,方便携带,营养丰富。
冲调时,即使用温水也能迅速溶解,适宜保存,并便于携带。
国奶粉市场竞争日趋激烈,国外奶粉品牌都在加紧抢占终端资源,随着我国本土奶粉品牌在研发、工艺、质量控制以及发展战略等方面的日渐成熟,我国奶粉的市场竞争将进入白热化阶段。
1.2 原料的性质及来源牛奶顾名思义是从雌性奶牛身上所挤出来的。
气流干燥器的设计
附图1: 干燥装置流程示意图 (16)年[3] 上海化工学院:干燥技术进展1976(54[4] 上海化工学院编:干燥技术进展、第三分册、气流干燥、(1979)(34)[5] 毕克侣:气流干燥器的设计、化工技术资料(设计分册)1964(9[6] 潘永康主编.现代干燥技术.北京市.化学工业出版社.1998年(36)[7] 天津大学化工原理教研室编,《化工原理》上、下册(第二版) [M]. 天津: 天津科技出版社,1996(35)[8] 黄少烈、邹华生主编.化工原理(第二版).北京市.高等教育出版社.2002年月第一版(19)[9] 柳金江, 刘超锋, 何清凤. 烟丝气流干燥系统气流干燥器的设计[J].广州化工, 2009,37(6): 173-174.[10] 张言文.气流干燥器数学模型及分段设计计算方法[J].计算机与应用化学, 2006,(04).[11] 高嘉安主编.淀粉与淀粉制品工艺学.北京市.中国农业出版社.2001(27)[12] 匡国柱史启才主编.化工单元过程及设备课程设计.北京市. 化学工业出版社2002年1月第一版(29))[6] 柴诚敬.《化工原理课程设计》[M]. 天津: 天津科学技术出版社, 2000(45)[7] 合肥工业大学化工系化工原理教研组:对流式干燥设备的设计(1963).(22)刘泽勇.气流干燥技术的应用[J].甘肃科技, 2000, (5): 71气流干燥器的设计一、设计任务化工原理课程设计任务书二十六二、设备的简介气流干燥器一般由空气滤清器、热交换器、干燥管、加料管、旋风分离器、出料器及除尘器等组成。
直管气流干燥器为最普遍的一种。
它的工作原理是:物料通过给料器从干燥管的下端进入后,被下方送来的热空气向上吹起,热空气和物料在向上运动中进行充分接触并作剧烈的相对运动,进行传热和传质,从而达到干燥的目的。
干燥后的产品从干燥管顶部送出,经旋风分离器回收夹带的粉末产品,而废气便经排气管排入大气中。
直管式气流干燥器的设计
直管式气流干燥器的设计直管式气流干燥器的设计直管气流干燥器设计Hefei University 《化工原理》课程设计——直管气流干燥器设计题目:直管气流干燥器干燥聚氯乙烯树脂系别:化学材料与工程系班级:10化工(1)班姓名:陈国庆学号:1003021037 队员:韩朝飞、陈国庆、韩朝飞教师:高大明日期:2013 -01-17 目录0 前言3 1 任务书5 1.1 设计题目:直管气流干燥器干燥聚氯乙稀树脂5 1.2 原始数据5 1.2.1 湿物料5 1.2.2 干燥介质6 1.2.3 水汽的性质6 2 流程示意图6 3 流程与方案的选择说明与论证7 3. 1 干燥介质加热器的选择7 3. 2 干燥器的选择8 3. 3 干燥介质输送设备的选择及配置9 3. 4 加料器的选择9 3. 5 细粉回收设备的选择9 4 干燥器主要部件和尺寸的计算9 4. 1 基本计算9 4. 1. 1 湿物料9 4. 1. 2 湿空气10 4. 1. 3 干燥管直径D的计算11 4.2 干燥管长度和干燥时间的计算12 4. 2. 1 加速段干燥管长度和所需干燥时间的计算12 4. 2. 2 匀速区的计算18 5 附属设备的选型19 5. 1 加料器的选择19 5. 2 加热器的选择19 5.3 旋风分离器的选择20 5.4 鼓风机的选择20 5.5 抽风机的选择206 主要符号和单位217 参考文献228 设计评价23 8. 1 气流干燥器的评价23 8. 2 设计内容的评价23 8. 3 课程设计的认识和体会24 1、概论干燥通常是指利用热能使物料中的湿分汽化,并将产生的蒸汽排出的过程,其本质为除去固相湿分,固相为被干燥的物料,气相为干燥介质。
干燥是最古老的单元操作之一,广泛地运用于各行各业中,几乎涉及国民经济的每个部门。
同时干燥过程亦十分复杂,因为它同时涉及到热量、质量和动量传递过程,用数学描述常存有困难和无效性。
在干燥技术的许多方面还存在“知其然而不知其所以然”,的状况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计--脉冲气流干燥器设计化工原理课程设计题目: 脉冲气流干燥器设计系别: 化学材料与工程系专业:_学号:姓名:指导教师:二零一四年一月二十七日目录设计任务书 (5)1.概述 (5)1.1气流干燥的特点 (5)1.2设计方案简介 (5)2.工艺计算及主体设备设计 (6)2.1已知的基本条件 (6)2.2物料衡算和热量衡算 (6)2.2.1物料衡算 (6)2.2.2热量衡算 (7)t (7)2.2.3校核假设的物料出口温度2m2.3气流干燥管直径的计算 (8)2.3.1加速段气流干燥管直径的计算 (8)2.3.2加速运动段管高的计算 (8)2.3.3减速段管高的计算 (13)2.4总的干燥管的高度 (21)3.辅助设备的选择与计算 (21)3.1管路的选择与计算 (21)3.2加料装置 (22)3.3风机 (22)3.4热风加热装置 (22)3.5分离装置 (23)4.主要符号和单位 (23)5. 干燥装置的工艺流程 (25)6.设计评价 (25)附录 (25)参考文献 (28)设计任务书本次以重油燃烧气为干燥介质,对物料进行干燥,分离,保证品质,在设计过程中涉及工艺计算及主体设备设计,风机的选择,热风加热装置,加料装置的选择等,通过循环让物料及过程中产生的中间物及废料达到最高利用率。
1.概述1.1气流干燥的特点气流干燥在我国是一种应用最广发最久远的干燥器,随着不同新型气流干燥器的开发成功,气流干燥我干燥领域方兴未艾。
由于干燥时间短适合容易受高温变质物料的干燥;不适合粘性大的物料干燥,管道较厂一般超过20米,安装的限制制约了其发展。
气流干燥器的主要缺点在于干燥管太高,为降低其高度,近年来出现了几种新型的气流干燥器:①多级气流干燥器。
将几个较短的干燥管串联使用,每个干燥管都单独设置旋风分离器和风机,从而增加了入口段的总长度。
②脉冲式气流干燥器。
采用直径交替缩小和扩大的干燥管(脉冲管),由于管内气速交替变化,从而增大了气流与颗粒的相对速度。
③旋风式气流干燥器。
使携带物料颗粒的气流,从切线方向进入旋风干燥室,以增大气体与颗粒之间的相对速度,也降低了气流干燥器的高度。
在气流干燥器中,主要除去表面水分,物料的停留时间短,温升不高,所以适宜于处理热敏性、易氧化、易燃烧的细粒物料。
但不能用于处理不允许损伤晶粒的物料。
目前,气流干燥在制药、塑料、食品、化肥和染料等工业中应用较广。
1.2设计方案简介。
物料呈颗粒状,圆球形,处理量为3000kg/h,颗粒平均直径在200m 本设计采用脉冲式气流干燥器来干燥物料,可以减少干燥管的高度和节省设备的成本。
脉冲式干燥器由于其不断变化的管径,可以使颗粒在管内保持与干燥气流的相对快速运动,增强了干燥的效果并减少了干燥的时间。
2.工艺计算及主体设备设计 2.1已知的基本条件2.1.1物料的基本参数干燥介质:空气稀释重油燃烧气 生产能力h kg G /30001= (湿基) 物料颗粒的平均直径m m d 4102200-⨯==μ 物料颗粒的最大直径m d μ500max = 物料密度3/2000m kg s =ρ要求物料从%251=X (干基),干燥至%5.02=X (干基) 物料进口温度C t m ︒=201干物料比热C kg kcal C kg kJ c m ︒⋅=︒⋅=/3.0/26.1 物料的临界含水量%2=c X (干基) 平衡湿含量极小,忽略不计。
2.1.2空气的基本参数进气流干燥管的空气温度C t ︒=4001 其空气湿含量干空气水kg kg X /025.01=2.2物料衡算和热量衡算 2.2.1物料衡算气流干燥管内的物料衡算式:)()(2121w w L X X G -=-(*) 绝干物料h kg X G G /240025.013000111=+=+=干燥去除水分h kg X X G W /588)005.025.0(2400)(21=-⨯=-= 结合(*)式有:)25.0(5882-=w L ①2.2.2热量衡算气流干燥管内热量衡算式:2)()(2211m w m c w m t X c c G LI X c c G LI ++=++选定空气的出口温度C t ︒=952,假设物料出口温度为76C ︒ 对于空气——水系统,运用下式:w t w I 595)46.024.0(++= 得到进口空气的焓值:kg kcal I /115025.0595400)025.046.024.0(1=⨯+⨯⨯+= 出口焓值:22227.6388.2259595)46.024.0(w w w I +=+⨯+= 将1I 、2I 值代入热量衡算式:76)025.013.0(2400)7.6388.22(20)25.013.0(24001152⨯⨯+⨯++⨯=⨯⨯++⨯x L L解得: 292327.6382.922+=L w L ② 联立 ①、② 式,得:h kg L /5310= kg kg Lw /136.0588025.02=+= kg kcal I /109136.07.6388.222=⨯+= 2.2.3校核假设的物料出口温度2m t按下式进行校核:])())(()[(2)(2222222w m S t t c X cw m s w m t t c X X X t t c X t t t t w m S -----=--ρρρ查得:C t w ︒=61 kg kcal s /563=ρ%2=c X 代入上式得: C t m ︒=6.762与假设的基本一致,不必试算。
2.3气流干燥管直径的计算 2.3.1加速段气流干燥管直径的计算由经验假设口空气速度s m u g /5.291=,空气进气流干燥管温度C t ︒=4001,空气 进气流干燥管湿度025.01=w ,查得空气比容kg m g /98.131=γ,代入下式:)(356.036005.2914.398.1531045.2914.336004360041111m L u V D g g g =⨯⨯⨯⨯=⨯⨯==γπ2.3.2加速运动段管高的计算(1)预热段干燥管的计算(a )已知进料温度C t w ︒=201,在进气C t ︒=4001、干空水kg kg w /025.01=气状态下的湿球温度C t ︒=61,故预热段所需热量为:hkcal q I /54100)2061()125.03.0(2400=-⨯⨯+⨯=(b )热气的热量衡算:2515.0025.046.024.0=⨯+=p c )400(2515.0531054100t -⨯⨯= 解得:C t ︒=360故在此段内,平均温度C t ave ︒=+=3802/)360400(,平均湿度025.01==H H ave ,查得气体各项性质为 :21096.2-⨯=g λ[g λ的定性温度为C ︒=+2212/)61380(]61024.3-⨯=g μ、92.1273273)244.1772.0(=+⨯+=aveave H t H v 干混合气混合湿气3/533.092.1/)025.01(m kg g =+=ρ(c )加速运动段预热带颗粒与气流间的传热量及Re 的计算⎥⎦⎤⎢⎣⎡---=)Re 1Re 1()Re (Re 7.2123.1023.127.027.00r r Ar A q ……(**)gt w A g g⋅⋅⨯∆⋅⋅⨯=μλ360042.0)(634ln该段内的平均气速s m g /6.28]3600)335.0(4/[92.153102=⨯⨯=πμ)(35.381.91024.3533.0)(102Re 64m g m g r u u u u -=⨯⨯⨯-⨯⨯=--C t ︒=------=∆6.318)]61360()61400ln[(/)]61360()61400[()(ln5621065.681.91024.336001096.242.06.3182400634⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯=--A 81.95)06.28(35.3Re =-⨯=将上述各数据代入式(**)中,得 )]81.951Re 1(123)Re 81.95(7.21[1065.65410023.123.127.027.05---⨯=rr Ar 4.110)1024.3(3)81.9533.0()81.92000()102(81.9434263423=⨯⨯⨯⨯⨯⨯⨯=⋅⋅⋅⋅⋅=--ggm p d g Ar μρρ代入得: 设5.74Re =,则上述等式右边项为:hkcal /5410054560)]106548.310980.4(8976.0)2024.34275.3(7.21[1065.6335≈=⨯-⨯--⨯-- 故预热带终了的5.74Re =,与其相对应的颗粒运动速度为:s m u m /36.635.35.746.2835.3Re 6.28=-=-=(d )预热带干燥管的高度计算预热带自81.95Re 0=、s m u m /0=开始,至5.74Re 1=、s m u m /36.6=结束。
由于Re 数值均处于过渡区,故干燥管高度的计算公式为)}Re 1Re 1(100)]Re 1Re 1(200)Re (Re 5[)Re 1Re 1(5{3402025.05.005.005.021-----⋅⋅--⋅⋅=ττττρμρμμρg p g g gp g gg pm d Ar Aru d u d LmL 2392.0)8.9515.741(533.010210081.91024.34.110)]8.9515.741(2006.284.110)5.748.95(533.010251024.3[)8.9515.741(55.28{81.91024.33)102(2000446225.05.0465.05.06241=-⨯⨯⨯⨯⨯⨯--⨯--⨯⨯⨯⨯--⨯⨯⨯⨯⨯⨯=------ (2)表面蒸发带干燥高度计算本段之所以要分开求干燥管高度,主要是消除由于气温变化过大而使平均气温下的个项气体特性数据和干燥管内气体流速与实际数值相差太大所带来的误差。
物料湿含量自0.25干燥至0.20区间(a )作热平衡,求物料干燥至湿含量0.20时气体的温度:)]61(45.0562)[2.025.0(2400)360(252.05310-+-=-⨯⨯t t其中 562是C t ︒=61的汽化潜热解得 C t ︒≈300(b )该段内各物理数据: C t ave ︒=+=3302/)300360(物料干燥至0.20时相应的气体湿含量为H '干混合气水kg kg H /0476.05310/)20.025.0(2400025.0=-⨯+='干燥用混合气在C t ave ︒=330、0363.02/)025.00476.0(=+=ave H 时的各项物 理性质为:干空气湿气kg m v H /81.1273330273)0363.0244.1773.0(3=+⨯+=湿混合气湿混合气3/573.081.1/)0363.01(m kg g =+=ρ 61008.3-⨯=g μ,029.0=g λ [定性温度为C ︒=+5.1952/)61330(](c )该段内气流与颗粒的给热量及e R '的计算干燥所需要的热量:h kcal q /80287)300360(252.05310=-⨯⨯=∏ 该段内平均气速:s m u g /97.263600)355.0(4[)81.15310(2=⨯⨯⨯=π)97.26(79.3)81.91008.3/()97.26(573.0102Re 64m m u u -=⨯⨯-⨯⨯=--故该段开始的2.78)36.697.26(79.3Re 0=-=传热平均温度:C t ︒=-----=∆269)]61300/()61360/[ln()]61300()61360[()(ln 561079.581.91008.33600029.042.02692400634⨯=⨯⨯⨯⨯⨯⨯⨯⨯=-A 4.131)1008.3(3)81.9/573.0()81.9/2000()102(81.942634=⨯⨯⨯⨯⨯⨯⨯=--Ar 将上述各数值代入给热量q 的计算公式得: )]2.781Re 1(1234.131)Re 2.78(7.21[1079.58028723.123.127.027.05---⨯⨯==∏r r q 设49Re =r ,则上述等式右边项为; h kcal /80287)]2.781491(1234.131)492.78(7.21[1079.523.123.127.027.05≈---⨯⨯ 故物料湿含量由0.25到0.20,该段终了的.49Re =与49相对应的颗粒速度为; s m u m /04.1479.34997.2679.3Re 97.26=-=-= (d )物料含湿量由0.25到0.20段干燥管的高度计算该段自2.78Re 0=,s m u m /36.6=开始,到49Re 2=,s m u m /04.14=结束 由于雷诺数数值均处于过渡区,故干燥管的高度的计算公式为:m L 539.0)}2.781491(573.010210081.91008.34.131)]2.781491(20097.264.131)492.78(573.010251008.3[)2.7815.491(597.26{81.91008.33)102(2000446225.05.0465.05.06242=-⨯⨯⨯⨯⨯⨯--⨯--⨯⨯⨯⨯--⨯⨯⨯⨯⨯⨯=------物料含湿量有0.20到0.15区间:(a )作热平衡方程,求物料干燥至湿含量为0.15是气体的温度:262.00476.046.024.0=⨯+=p c)]61(45.0562[)15.020.0(2400)300(262.05310-⨯+⨯-⨯=-⨯⨯t tC t ︒=⇒4.244(b )该段内各项物性数据为:C t ave ︒=+=2.2722/)4.244300(物料干燥至0.15时相应的气体湿含量为H '为干混合气水kg kg H /0702.05310/)15.020.0(24000476.0=-⨯+=' 干混合气水kg kg H ave /0589.02/)0476.00702.0(=+=干燥用混合气在0589.0,2.272=︒=bve bve H C t 时的各项物理性质为:干空气湿气kg m v H /69.12732.272273)0589.0244.1772.0(3=+⨯+= 干空气湿气kg m g /627.069.1/)0589.01(3=+=ρ81.9/1082.210875.256--⨯=⨯=g μ027.0=g λ [定性温度C ︒=+75.1662/)615.272(](c )该段内气流与颗粒的给热量及雷诺数的计算:干燥所需要的热量:h kcal q III /77352)4.244300(262.05310=-⨯⨯=该段内平均气速:s m u g /18.25])355.0(43600/[69.153102=⨯⨯⨯=π)18.25(45.41082.2/)18.25(627.0102Re 54g m u u -=⨯-⨯⨯⨯=--故该段开始时的6.49)04.1418.25(45.4Re 0=-⨯=传热平均温度C t m ︒=-----=∆210)]614.244/()61300ln[(/)]614.244()61300[()(ln 3 55106.41082.236000276.042.021********⨯=⨯⨯⨯⨯⨯⨯⨯=-A 165)81.9/1082.2(3)81.9/627.0()81.9/2000()102(81.942534=⨯⨯⨯⨯⨯⨯⨯=--Ar 将上述数值代入给热量的计算公式得 : )]6.491Re 1(123165)Re 6.49(7.21[106.47735223.123.127.027.05---⨯⨯==r III q 设6.24Re =,则上述等式右边项为: hkcal /77344)]6.4916.241(123165)6.246.49(7.21[106.423.123.127.027.05≈---⨯故物料湿含量由0.20→ 0.15,该段终了的6.24Re =。