受均布载荷简支梁三角形常应变单元的fortran 程序计算数据
fortran指令大全
附录C SCILAB 部分函数指令表(c)LIAMA. All rights reserved.(注解:本指令表只收集了部分常用指令, 有关全部指令请参照文档文件)+ 加- 减* 矩阵乘数组乘*.1. 通用指令^ 矩阵乘方数组乘方^.\ 反斜杠或左除help 在线帮助/ 斜杠或右除apropos 文档中关键词搜寻或.\ 数组除/.ans 缺省变量名以及最新表达式的运算结果== 等号~= 不等号clear 从内存中清除变量和函数< 小于exit 关闭SCILAB> 大于quit 退出SCILAB<= 小于或等于save 把内存变量存入磁盘>= 大于或等于exec 运行脚本文件&,and 逻辑与mode 文件运行中的显示格式|,or 逻辑或getversion 显示SCILAB 版本~,not 逻辑非ieee 浮点运算溢出显示模式选择: 冒号who 列出工作内存中的变量名( ) 园括号edit 文件编辑器[ ] 方括号type 变量类型{ } 花括号what 列出SCILAB 基本命令小数点.format 设置数据输出格式, 逗号chdir 改变当前工作目录; 分号getenv 给出环境值// 注释号mkdir 创建目录= 赋值符号pwd 显示当前工作目录' 引号evstr 执行表达式' 复数转置号转置号'.ans 最新表达式的运算结果2.运算符和特殊算符%eps 浮点误差容限, =2-52≈2.22×10-16%i 虚数单位= √(-1)%inf 正无穷大%pi 圆周率,π=3.1415926535897....3. 编程语言结构abort 中止计算或循环break 终止最内循环case 同select 一起使用continue 将控制转交给外层的for或while循环else 同if一起使用elseif 同if一起使用end 结束for,while,if 语句for 按规定次数重复执行语句if 条件执行语句otherwise 可同switch 一起使用pause 暂停模式return 返回select 多个条件分支then 同if一起使用while 不确定次数重复执行语句eval 特定值计算feval 函数特定值计算或多变量计算function 函数文件头global 定义全局变量isglobal 检测变量是否为全局变量error 显示错误信息lasterror 显示最近的错误信息sprintf 按格式把数字转换为串warning 显示警告信息4.基本数学函数acos 反余弦acosh 反双曲余弦acot 反余切acoth 反双曲余切acsc 反余割acsch 反双曲余割asin 反正弦asinh 反双曲正弦atan 反正切atanh 反双曲正切cos 余弦cosh 双曲余弦cotg 余切coth 双曲余切sin 正弦sinh 双曲正弦tan 正切tanh 双曲正切exp 指数log 自然对数log10 常用对数log2 以2为底的对数sqrt 平方根abs 绝对值conj 复数共轭imag 复数虚部real 复数实部ceil 向上(正无穷大方向)取整fix 向零方向取整floor 向下(负无穷大方向)取整round 四舍五入取整sign 符号函数gsort 降次排序erf 误差函数erfc 补误差函数gamma gamma 函数interp 插值函数interpln 线性插值函数intsplin 样条插值函数smooth 样条平滑函数spline 样条函数quarewave 方波函数sign 符号函数double 将整数转换为双精度浮点数5.基本矩阵函数和操作eye 单位阵zeros 全零矩阵ones 全1 矩阵rand 均匀分布随机阵genmarkov 生成随机Markov 矩阵linspace 线性等分向量logspace 对数等分向量logm 矩阵对数运算cumprod 矩阵元素累计乘cumsum 矩阵元素累计和toeplitz Toeplitz 矩阵disp 显示矩阵和文字内容length 确定向量的长度size 确定矩阵的维数diag 创建对角阵或抽取对角向量find 找出非零元素1的下标matrix 矩阵变维rot90 矩阵逆时针旋转90度sub2ind 据全下标换算出单下标tril 抽取下三角阵triu 抽取上三角阵conj 共轭矩阵companion 伴随矩阵det 行列式的值norm 矩阵或向量范数nnz 矩阵中非零元素个数null 清空向量或矩阵中的某个元素orth 正交基rank 矩阵秩trace 矩阵迹cond 矩阵条件数rcond 逆矩阵条件数inv 矩阵的逆lu LU分解或高斯消元法pinv 伪逆qr QR分解givens Givens 变换linsolve 求解线性方程lyap Lyapunov 方程hess Hessenberg 矩阵poly 特征多项式schur Schur 分解expm 矩阵指数expm1 矩阵指数的Pade逼近expm2 用泰勒级数求矩阵指数expm3 通过特征值和特征向量求矩阵指数funm 计算一般矩阵函数logm 矩阵对数sqrtm 矩阵平方根6. 特性值与奇异值spec 矩阵特征值gspec 矩阵束特征值bdiag 块矩阵, 广义特征向量eigenmarkov 正则化Markov 特征向量pbig 特征空间投影svd 奇异值分解sva 奇异值分解近似7. 矩阵元素运算cumprod 元素累计积cumsum 元素累计和hist 统计频数直方图max 最大值mean 平均值median 中值min 最小值prod 元素积sort 由大到小排序std 标准差sum 元素和trapz 梯形数值积分corr 求相关系数或方差8. 稀疏矩阵运算sparse 稀疏矩阵(只存储非零元素)adj2sp 邻接矩阵转换为稀疏矩阵full 稀疏矩阵转换为全矩阵mtlb_sparse 将SCILAB 稀疏矩阵转换为MA TLAB稀疏矩阵格式sp2adj 稀疏矩阵转换为邻接矩阵speye 稀疏矩阵方式单位阵sprand 稀疏矩阵方式随机矩阵spzeros 稀疏矩阵方式全零阵lufact 稀疏矩阵LU分解lusolve 稀疏矩阵方程求解spchol 稀疏矩阵Cholesky分解9. 输入输出函数diary 生成屏幕文本记录disp 变量显示file 文件管理input 用户键盘输入load 读已存的变量mclose 关闭文件mget 读二进制文件mgetl 按行读ASCII码文件mgetstr 读字符串中单个字mopen 打开文件mput 写二进制文件mfscanf 读ASCII 码文件print 将变量记录为文件read 读矩阵变量save 存变量为二进制文件strartup 启动文件write 按格式存文件xgetfile 对话方式获取文件路径x_dialog 建立Xwindow参数输入对话框Tk_Getvar 得到Tk文件变量Tk_EvalFile 执行Tk 文件10. 函数与函数库操作deff 在线定义函数edit 函数编辑器function 打开函数定义functions SCILAB 函数或对象genlib 在给定目录下建立所有文件的函数库get_function_path 读函数库的文件存储目录路径getd 读函数库中的全部文件getf 在文件中定义一个函数lib 函数库定义macro SCILAB函数或对象macrovar 输入变量个数newfun 输出变量个数11. 字符串操作code2str 将SCILAB数码转换为字符串convstr 字母大小转换emptystr 清空字符串grep 搜寻相同字符串part 字符提取str2code 将字符串转换为SCILAB数码string 字符串转换strings SCILAB 对象, 字符串strcat 连接字符strindex 字符串的字符位置搜寻strsubst 字符串中的字符替换12. 日期与时间date 日期getdate 读日期与时间timer CPU时间计时13. 二维图形函数plot2d 直角坐标下线性刻度曲线champ 2 维向量场champ1 由颜色箭头表示的2维向量场contour2d 等高线图errbar 曲线上增加误差范围框线条grayplot 应用颜色表示的表面xgrid 画坐标网格线histplot 统计频数直方图Matplot 散点图阵列14. 三维图形函数plot3d 三维表面plot3d1 用颜色或灰度表示的三维表面param3d 三维中单曲线param3d1 三维中多曲线contour 三维表面上的等高线图hist3d 三维表示的统计频数直方图geom3d 三维向二维上的投影15. 线条类图形xpoly 单线条或单多边形xpolys 多线条或多各多边形xrpoly 正多边形xsegs 非连接线段xfpoly 单个多边形内填充xfpolys 多个多边形内填充xrect 矩形xfrect 单个矩形内填充xrects 多个矩形内填充xarc 单个弧线段或弧园xarcs 多个弧线段或弧园xfarc 单个弧线段或弧园填充xfarcs 多个弧线段或弧园填充xarrows 多箭头16. 图形注释, 变换xstring 图形中字符xstringb 框内字符xtitle 图形标题xaxis 轴名标注plotframe 图形加框并画坐标网格线isoview 等尺寸比例显示(原图形窗口不改变)square 等尺寸比例显示(原图形窗口改变)xsetech 设置小窗口xchange 转换实数为图形象素坐标值subplot 设置多个子窗口17. 图形颜色及图形文字colormap 应用颜色图getcolor 交互式选择颜色图addcolor 增加新色于颜色图graycolormap 线性灰度图hotcolormap 热色(红到黄色)颜色图xset 图形显示方式设定xget 读当前图形显示方式设定getsymbol 交互式选择符号和尺寸18. 图形文件及图形文字xsave 将图形存储为文件xload 从磁盘中读出图形文件xbasimp 将图形按PS文件打印或存储为文件xs2fig 将图形生成Xfig 格式文件xbasc 取消图形窗及其相关内容xclear 清空图形窗driver 选择图形驱动器xinit 图形驱动器初始化xend 关闭图形xbasr 图形刷新replot 更改显示范围后的图形刷新xdel 关闭图形xname 改变当前图形窗名称19. 控制分析用图形bode 伯德图坐标gainplot 幅值图坐标(伯德图中的幅值图) nyquist 奈奎斯特图m_circle M-圆图chart 尼库拉斯图black Black-图evans 根轨迹图sgrid s 平面图plzr 零-极点图zgrid z 平面图20. 图形应用中的其它指令graphics 图形库指令表xclick 等待鼠标在图形上的点击输入locate 由鼠标点击读入图形中的多点位置坐标xgetmouse 由鼠标点击读入图形中的当前点位置坐标21. 系统与控制abcd 状态空间矩阵cont_mat 可控矩阵csim 线性系统时域响应dsimul 状态空间的离散时域响应feedback 反馈操作符flts 时域响应(离散、采样系统〕frep2tf 基于传递函数的频域响应freq 频域响应g_margin 幅值裕量imrep2ss 基于状态空间的脉冲响应lin 线性化操作lqe Kalman 滤波器lqg LQG补偿器lqr LQ补偿器ltitr 基于状态空间的离散时域响应obscont 基于观测器的控制器observer 观测器obsv_mat 观测矩阵p_margin 相位裕量phasemag 相位与幅值计算ppol 极点配置repfreq 频域响应ricc Riccati 方程rtitr 基于传递函数的离散时域响应sm2ss 系统矩阵到状态空间变换ss2ss 反馈连接的状态空间到状态空间变换ss2tf 状态空间到传递函数变换stabil 稳定性计算tf2ss 传递函数到状态空间变换time_id SISO系统最小方差辨识22. 鲁棒控制augment 被控对象增广操作bstap Hankel 矩阵近似ccontrg H∞控制器dhnorm 离散H∞范数h2norm H2 范数h_cl 闭环矩阵h_inf H∞控制器h_norm H∞范数hankelsv Hankel 矩阵奇异值leqr H∞控制器的LQ增益linf 无穷范数riccati Riccati 矩阵sensi 敏感函数23. 动态系统arma ARMA模型arma2p 基于AR模型中获得多项式矩阵armac ARMAX 辨识arsimul ARMAX系统仿真noisegen 噪声信号发生器odedi 常微分方程仿真检测prbs_a 伪随机二进制序列发生器reglin 线性拟合24. 系统与控制实例artest Arnold 动态系统bifish 鱼群人口发展的离散时域模型boucle 具有观测器的动态系统相位图chaintest 生物链模型gpech 渔业模型fusee 登陆火箭问题lotest Lorennz 吸引子mine 采矿问题obscontl可控可观系统portr3d 三维相位图portrait 二维相位图recur 双线性回归方程systems 动态系统tangent 动态系统的线性化tadinit 动态系统的交互初始化25. 非线性工具(优化与仿真〕bvode 边界值问题的常微分方程dasrt 隐式微分方程过零解dassl 代数微分方程datafit 基于测量数据的参数辨识derivative 导数计算fsolve 非线性函数过零解impl 线性微分方程int2d 二维定积分int3d 三维定积分intg 不定积分leastsq 非线性最小二乘法linpro 线性规划lmisolver 线性不等矩阵ode 常微分方程ode_discrete 离散常微分方程ode_root 常微分方程根解odedc 连续/离散常微分方程optim 非线性优化quapro 线性二次型规划semidef 半正定规划26. 多项式计算coeff 多项式系数coffg 多项式矩阵逆degree 多项式阶数denom 分母项derivat 有理矩阵求导determ 矩阵行列式值factors 因式分解hermit Hermit 型horner 多项式计算invr 有理矩阵逆lcm 最小公倍数ldiv 多项式矩阵长除numer 分子项pdiv 多项式矩阵除pol2des 多项式矩阵到表达式变换pol2str 多项式到字符串变换polfact 最小因式residu 余量roots 多项式根simp 多项式化简systmat 系统矩阵27. 信号处理%asn 椭圆积分%k Jacobi完全椭圆积分%sn Jacobi 椭圆函数analpf 模拟量低通滤波器buttmag Butterworth 滤波器响应cepstrum 倒谱计算cheb1mag Chebyshev 一型响应cheb2mag Chebyshev 二型响应chepol Chebyshev 多项式convol 卷积corr 相关, 协方差cspect 谱估计(应用相关法)dft 离散富立叶变换fft 快速富立叶变换filter 滤波器建模fsfirlin FIR滤波器设计hank 协方差矩阵到Hankel矩阵变换hilb Hilbert 变换iir IIR数字滤波器intdec 信号采样率更改kalm Kalman 滤波器更新mese 最大熵谱估计mfft 多维快速富立叶变换mrfit 频率响应拟合phc Markov 过程srkf Kalman 滤波器平方根sskf 稳态Kalman 滤波器system 观测更新wfir 线性相位FIR滤波器weiener Weiener(维纳)滤波器window 对称窗函数yulewalk 最小二乘滤波器zpbutt Buthererworth 模拟滤波器zpch1 Chebyshev 模拟滤波器28. 音频信号analyze 音频信号频域图auread 读*.au 音频文件auwrite 写*.au 音频文件lin2mu 将线性信号转换为µ率码信号loadwave 取*.wav 音频文件mapsound 音频信号图示mu2lin 将µ率码信号转换为线性信号playsnd 音频信号播放savewave 存*.wav 音频文件wavread 读*.wav 音频文件wavwrite 写*.wav 音频文件29. 语言与数据转换工具ascii 字符串的ASCII码excel2sci 读ASCII 格式的Excel 文件fun2string 将SCILAB 函数生成ASCII 码mfile2sci 将MA TLAB 的M 格式文件转换为SCI格式文件mtlb_load 取MA TLAB第4版本文件中变量matlb_save 按MA TLAB 第 4 版本文件格式存变量pol2tex 将多项式转换为TeX格式sci2for 将SCILAB 函数转换为FORTRAN格式文件texprint 按TeX 格式输出SCILAB 对象translatepaths 将子目录下的所有MA TLAB 文件转换为SCI文件格式一个公式写成Fortran语言代码program baiduinteger::I,J,Nreal*8::Cr,Treal*8,dimension(:),allocatable ::P,XN=3!变量X的个数Cr=5.0d0!常量Cr,自己设定T=4.0d0!常量T,自己设定allocate(P(N),X(N))! =======读入变量X的值do I=1,Nwrite(*,*)"请输入第",I," 个变量的值:"read(*,*)X(I)enddo! =======读入变量X的值do I=1,NP(I)=(-4.2d0/Cr**2*X(I)+2.9/Cr)*Twrite(*,*)“第”,I," 个变量X对应结果:",P(I)enddoend。
Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参单元的有限元程序
Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参单元的有限元程序:c--------------------------------------------------------------------------c.....FEA2DP---A finite element analysis program for2D elastic problemscc Tangent matrix is stored with varioud band methodc This program is used to demonstrte the usage of vrious bandc Storage schem of symmetric and unsymmetric tangent matrixcc Wang shunjinc At chongqing vniversity(06/06/2013)c-------------------------------------------------------------------------program FEA2DPcc a(1)-a(n1-1):x(ndm,nummnp);a(n1)-a(n2-1):f(ndf,numnp)c a(n2)-a(n3-1):b(neq);a(n3)-a(n4-1):ad(neq)c a(n4)-a(n5-1):al(nad);a(n5)-a(n6-1):nu(nad)cc ia(1)-ia(n1-1):ix(nen1,numel);ia(n1)-ia(n2-1):id(ndf,numnp)c ia(n2)-ia(n3-1):jd((ndf*numnp);ia(n3)-ia(n4-1):idl(nen*numel*ndf)cimplicit real*8(a-h,o-z)dimension a(100000),ia(1000)character*80headcommon/cdata/numnp,numel,nummat,nen,neqcommon/sdata/ndf,ndm,nen1,nstcommon/iofile/ior,iowcnmaxm=100000imaxm=1000ior=1iow=2cc Open files for data input and outputcopen(ior,file='input.dat',form='formatted')open(iow,file='output.dat')cc.....Read titlecread(ior,'(a)')headwrite(iow,'(a)')headcc.....Read and print control informationcc numnp:number of nodesc numel:number of elementsc nummat:number of material typesc nload:number of loadsc ndm:number of coordinats of each nodec ndf:number of degrees of freedomc nen:number of nodes in each elementcread(ior,'(7i5)')numnp,numel,nummat,nload,ndm,ndf,nenwrite(iow,2000)numnp,numel,nummat,nload,ndm,ndf,nen cc.....Set poiters for allocation of data arrayscnen1=nen+4nst=nen*ndfnneq=ndf*numnpcn1=ndm*numnp+1n2=n1+ndf*numnp+1ci1=nen1*numel+1i2=i1+ndf*numnp+1i3=i2+ndf*numnp+1i4=i3+numel*nen*ndf+1cc.....Call mesh input subroutine to read all mesh dataccall pmesh(a(1),a(n1),ia(1),ia(i1),ndf,ndm,nen1,nload)cpute profileccall profil(ia(i2),ia(i3),ia(i1),ia(1),ndf,nen1,nad)cn3=n2+neq+1n4=n3+neq+1n5=n4+nad+1n6=n5+nad+1cc The lengthes of real and integer arrayscwrite(iow,2222)n6,i4cc The lengthes of array exceeds the limitationcif(n6>nmaxm.or.i4>imaxm)thenif(n6>nmaxm)write(iow,3333)n6,nmaxmif(i4>nmaxm)write(iow,4444)i4,imaxmstopend ifctute and aseemble element arraysccall assem(nad,ia(1),ia(i1),ia(i2),a(1),a(n2),a(n3),1a(n4),a(n5))cc Form load vectorccall pload(ia(i1),a(n1),a(n2),nneq,neq)cc.....Triangular decomposition of a matrix stored in profile formccall datri(ndf,numnp,ia(i2),neq,nad,.false.,a(n3),a(n5),a(n5))cc For unsymmtric tangent matirxc Call datri(ndf,numnp,ia(i2),neq,nad,.true.,a(n3),a(n4),a(n5))cc Solve equationsccall dasol(ndf,numnp,a(n2),ia(i2),neq,nad,aengy,a(n3),a(n5),a(n5)) cc For unsymmetric tangent matrixc Call dasol(ndf,numnp,a(n2),ia(i2),neq,nad,aengy,a(n3),a(n5),a(n5)) cc Output nodal displacementsccall prtdis(ia(i1),a(n2),ndf,numnp,neq)cc.....Close input and output files;destroy temporary disk filescclose(ior)close(iow)cc.....Input/output formatsc1000format(20a4)2000format(//x5x,'number of nodal points=',i6/15x,'number of elements=',i6/25x,'number of material sets=',i6/35x,'number of nodal loads=',i6/45x,'dimension of coordinate space=',i6/55x,'degree of freedoms/node=',i6/65x,'nodes per element(maximum)=',i6)2222format(//,10x,'the lengthe of real array is',i10,/,110x,'the lengthe of integer array is',i10)3333format(//,10x,'the lengthe of real array',i10,'exceed the',1'maximun value',i10)4444format(//,10x,'the lengthe of integer array',i10,'exceed the',1'maximun value',i10)cstopendccsubroutine pmesh(x,f,ix,id,ndf,ndm,nen1,nload)cc......Data input routine for mesh descriprioncimplicit real*8(a-h,o-z)dimension x(ndm,numnp),f(ndf,numnp),id(ndf,numnp),ix(nen1,numel)common/bdata/head(20)common/cdata/numnp,numel,nummat,nen,neqcommon/mater/ee,xnu,itypecommon/iofile/ior,iowcc.....Input constrain codes and nodal coordinate datacc id(k,j):constrain code of kth degree of freedom of node j,=0:free,=1:fixed c x(k,j):kth coordinate of node jcdo i=1,numnpread(ior,'(3i5,2f10.4)')j,(id(k,j),k=1,ndm),(x(k,j),k=1,ndm) end docwrite(iow,'(//17hnodal coordinates,/)')do i=1,numnpwrite(iow,'(3i5,2f10.4)')i,(id(k,i),k=1,ndm),(x(k,i),k=1,ndm) end docc.....element data inputcc ix(k,j):global node number of kth node in element jcdo i=1,numelread(ior,'(9i5)')j,(ix(k,j),k=1,nen)end docwrite(iow,'(//,18helement definition,/)')do i=1,numelwrite(iow,'(9i5)')j,(ix(k,j),k=1,nen)end docc.....Material data inputcc ee:young's modulus,xnu:poisson ratioc itype:type of problem,=1,:plane stress,=2:plane strain,=3:axi-symmetric cread(ior,'(2f10.4,i5)')ee,xnu,itypewrite(iow,'(//,19hmateial properties,/)')write(iow,'(2(e10.4,5x),i5)')ee,xnu,itypecc.....force/disp data inputcc f(k,j):concentrate load at node j in k directioncf=0.0d0do i=1,nloadread(ior,'(i5,2f10.4)')j,(f(k,j),k=1,ndf)end docwrite(iow,'(//,20happlied nodal forces,/)')do i=1,nloadwrite(iow,'(i5,2f10.4)')j,(f(k,j),k=1,ndf)end docreturncc format statementsc2000format('mesh1>',$)3000format(1x,'**warning**element connections necessary'1'to use block in macro program')4000format('**current problem valies**'/i6,'nodes,',1i5,'elmts,',i3,'matls,',i2,'dims,',i2,'dof/node,',2i3,'nodes/elmt')endccsubroutine assem(nad,ix,id,jd,x,b,ad,al,au)cc Call element subroutine and assemble global tangent matrixcimplicit real*8(a-h,o-z)dimension ilx(nen),xl(ndf,nen),ld(ndf,nen),s(nst,nst),p(nst)dimension ix(nen1,numel),id(ndf,numnp),jd(ndf*numnp)dimension x(ndm,numnp),b(neq),ad(neq),al(nad),au(nad)common/cdata/numnp,numel,nummat,nen,neqcommon/sdata/ndf,ndm,nen1,nstcnel=nencc elenment loopcdo320n=1,numels=0.0d0!element stiffness matrixp=0.0d0!nodal forcene=ndo310i=1,nenilx(i)=ix(i,ne)!current element definitiondo k=1,ndmxl(k,i)=x(k,ilx(i))!nodal coords in current elementend dokk=ilx(i)do k=1,ndfld(k,i)=id(k,kk)!equation numbersend do310continuecc Call element libccall elmt01(xl,ilx,s,p,ndf,ndm,nst)cc Asemmble tangent matrix and load vector if neededccall dasbly(ndf,nad,s,p,ld,jd,nst,b,ad,al,au)c320continue!end element loopcreturnendccsubroutine dasbly(ndf,nad,s,p,ld,jp,ns,b,ad,al,au)cc.....Assemble the symmetric or unsymmetric arrays for'dasol'cimplicit real*8(a-h,o-z)c logical alfl,aufl,bfldimension ad(neq),al(nad),au(nad)dimension ld(ns),jp(ndf*numnp),b(neq),s(ns,ns),p(ns)common/cdata/numnp,numel,nummat,nen,neqcommon/iofile/ior,iowcc alfl=true:for unsymmetric matirx assemblec alfl=false:for symmetric matirx assemblec s:element stiffness matrixc p:load or internal force vectorc ad:diagonal elementsc au:upper triangle elementsc al:lower triangle elementsc jp:pointer to last element in each row/column of al/au respectivec ld:equation numbers of each freedom degree in an element(get from id) cc.....Loop through the rows to perform the assemblycdo200i=1,nsii=ld(i)if(ii.gt.0)thenc if(aufl)then!assemble stiffness matrixcc.....Loop through the columns to perform the assemblycdo100j=1,nsif(ld(j).eq.ii)thenad(ii)=ad(ii)+s(i,j)elseif(ld(j).gt.ii)thenjc=ld(j)jj=ii+jp(jc)-jc+1au(jj)=au(jj)+s(i,j)c if(alfl)al(jj)=al(jj)+s(j,i)!unsymmetricendif100continueendifc if(bfl)b(ii)=b(ii)+p(i)!assemble nodal forcec endif200continuecreturnendccsubroutine dasol(ndf,numnp,b,jp,neq,nad,energy,ad,al,au)cc.....Solution of symmetric equations in profile formc.....Coeficient matrix must be decomposed into its triangularc.....Factor using datri beforce using dasol.cc jp:pointer to last element in each row/column of al/au respecive ccimplicit real*8(a-h,o-z)dimension ad(neq),al(nad),au(nad)dimension b(neq),jp(ndf*numnp)common/iofile/ior,iowdata zero/0.0d0/cc.....Find the first nonzero entry in the ring hand sidecdo is=1,neqif(b(is).ne.zero)go to200end dowrite(iow,2000)returnc200if(is.lt.neq)thencc.....Reduce the right hand sidecdo300j=is+1,neqjr=jp(j-1)jh=jp(j)-jrif(jh.gt.0)thenb(j)=b(j)-dot(al(jr+1),b(j-jh),jh)end if300continueend ifcc.....Multiply inverse of diagonal elementscenergy=zerodo400j=is,neqbd=b(j)b(j)=b(j)*ad(j)energy=energy+bd*b(j)400continuecc.....backsubstitutioncif(neq.gt.1)thendo500j=neq,2,-1jr=jp(j-1)jh=jp(j)-jrif(jh.gt.0)thencall saxpb(au(jr+1),b(j-jh),-b(j),jh,b(j-jh))end if500continueend ifcreturnc2000format('**dasol warning1**zero right-hand-side vector') endccsubroutine datest(au,jh,daval)cc.....test for rankcimplicit real*8(a-h,o-z)dimension au(jh)cdaval=0.0d0cdo j=1,jhdaval=daval+abs(au(j))end docreturnendccsubroutine datri(ndf,numnp,jp,neq,nad,flg,ad,al,au)cc.....Triangular decomposiontion of a matrix stored in profile form cimplicit real*8(a-h,o-z)logical flgdimension jp(ndf*numnp),ad(neq),al(nad),au(nad)common/iofile/ior,iowcc.....n.b.tol should be set to approximate half-word precision.cdata zero,one/0.0d0,1.0d0/,tol/0.5d-07/cc.....Set initial values for contditioning checkcdimx=zerodimn=zerocdo j=1,neqdimn=max(dimn,abs(ad(j)))end dodfig=zerocc.....Loop through the columns to perform the triangular decomposition cjd=1do200j=1,neqjr=jd+1jd=jp(j)jh=jd-jrif(jh.gt.0)thenis=j-jhie=j-1cc.....If diagonal is zeor compute a norm for singularity testcif(ad(j).eq.zero)call datest(au(jr),jh,daval)do100i=is,iejr=jr+1id=jp(i)ih=min(id-jp(i-1),i-is+1)if(ih.gt.0)thenjrh=jr-ihidh=id-ih+1au(jr)=au(jr)-dot(au(jrh),al(idh),ih)if(flg)al(jr)=al(jr)-dot(al(jrh),au(idh),ih)end if100continueend ifcc.....Reduce the diagonalcif(jh.ge.0)thendd=ad(j)jr=jd-jhjrh=j-jh-1call dredu(al(jr),au(jr),ad(jrh),jh+1,flg,ad(j))cc.....Check for possible errors and print warningscif(abs(ad(j)).lt.tol*abs(dd))write(iow,2000)jif(dd.lt.zero.and.ad(j).gt.zero)write(iow,2001)jif(dd.gt.zero.and.ad(j).lt.zero)write(iow,2001)jif(ad(j).eq.zero)write(iow,2002)jif(dd.eq.zero.and.jh.gt.0)thenif(abs(ad(j)).lt.tol*daval)write(iow,2003)jendifendifcc.....Stroe reciprocal of diagonal,compute condition checkscif(ad(j).ne.zero)thendimx=max(dimx,abs(ad(j)))dimn=min(dimn,abs(ad(j)))dfig=max(dfig,abs(dd/ad(j)))ad(j)=one/ad(j)end if200continuecc.....Print conditioning informationcdd=zeroif(dimn.ne.zero)dd=dimx/dimnifig=dlog10(dfig)+0.6write(iow,2004)dimx,dimn,dd,ifigcreturncc.....formatsc2000format('**datri warning1**loss of at least7digits in', 1'reducing diagonal of equation',i5)2001format('**datri warning2**sign of changed when', 1'reducing equation',i5)2002format('**datri warning3**reduced diagonal is zero zeri for', 1'equation',i5)2003format('**datri warning4**rank failure ffo zero unreduced', 1'diagonal in equation',i5)2004format(//'conditon check:d-max',e11.4,';d-min',e11.4, 1';ratio',e11.4/'maximim no.diagonal digits lost:',i3) 2005format('cond ck:dmax',1p1e9.2,';dmin',1p1e9.2,1';ratio',1p1e9.2)endccsubroutine dredu(al,au,ad,jh,flg,dj)cc.....Reduce diagonal element in triangular decompositioncimplicit real*8(a-h,o-z)logical flgdimension al(jh),au(jh),ad(jh)cdo j=1,jhud=au(j)*ad(j)dj=dj-al(j)*udau(j)=udend docc.....Finish computation of column of al for unsymmetric matricescif(flg)thendo j=1,jhal(j)=al(j)*ad(j)end doend ifcreturnendccsubroutine profil(jd,idl,id,ix,ndf,nen1,nad)cpute profile of global arrayscimplicit real*8(a-h,o-z)dimension jd(ndf*numnp),idl(numel*nen*ndf),id(ndf,numnp),1ix(nen1,numel)common/cdata/numnp,numel,nummat,nen,neqcommon/frdata/maxfcommon/iofile/ior,iowcc jd:column hight(address of diagonal elements)c id:boudary condition codes before this bubroutine's runningc id:equation numbers in global array(excluded restrained nodes)after running c idl:element strech orderc nad:total number of non-zero elements except diagonal elementsc in global tangent matrixcc.....Set up the equation numberscneq=0cdo10k=1,numnpdo10n=1,ndfj=id(n,k)if(j.eq.0)thenneq=neq+1id(n,k)=neqelseid(n,k)=0endif10continuecpute column heightsccall pconsi(jd,neq,0)cdo50n=1,numelmm=0nad=0do30i=1,nenii=iabs(ix(i,n))if(ii.gt.0)thendo20j=1,ndfjj=id(j,ii)if(jj.gt.0)thenif(mm.eq.0)mm=jjmm=min(mm,jj)nad=nad+1idl(nad)=jjendif20continueend if30continueif(nad.gt.0)thendo40i=1,nadii=idl(i)jj=jd(ii)jd(ii)=max(jj,ii-mm)40continueendif50continuecpute diagongal pointers for profilecnad=0jd(1)=0if(neq.gt.1)thendo60n=2,neqjd(n)=jd(n)+jd(n-1)60continuenad=jd(neq)end ifcc.....Set element search order to sequentialcdo70n=1,numelidl(n)=n70continuecc.....equation summarycmaxf=0mm=0if(neq.gt.0)mm=(nad+neq)/neqwrite(iow,2001)neq,numnp,mm,numel,nad,nummatcreturnc2001format(5x,'neq=',i5,5x,'numnp=',i5,5x,'mm=',i5,/5x, 1'numel=',i5,5x,'nad=',i5,5x,'nummat=',i5/) endcsubroutine saxpb(a,b,x,n,c)cc.....Vector times scalar added to second vectorcimplicit real*8(a-h,o-z)dimension a(n),b(n),c(n)cdo k=1,nc(k)=a(k)*x+b(k)end docreturnendcsubroutine pconsi(iv,nn,ic)cc.....Zero integer arraycdimension iv(nn)cdo n=1,nniv(n)=icend docreturnendcsubroutine elmt01(xl,ilx,s,p,ndf,ndm,nst)cc.....plane linear elastic element routinec ityp=1:plane stressc=2:plane strainc=3:axisymmetriccimplicit real*8(a-h,o-z)dimension xl(ndm,nen),ilx(nen),sigr(6)dimension d(18),s(nst,nst),p(nst),shp(3,9),sg(16),tg(16),wg(16)character wd(3)*12common/cdata/numnp,numel,nummat,nen,neqcommon/mater/ee,xnu,itypecommon/iofile/ior,iowdata wd/'plane stress','plane strain','axisymmetric'/cc xl(ndm,nen):coords of each node in current elementc ilx(nen):element definition of current elementc d(18):materials propertiesc s(nst,nst):element stiffness matrixc p(ns):nodal force and internal forcec shp(3,9):shape function and its derivativesc sg(16),tg(16),wg(16):weight coefficients of guass intergtation c l,k:integration pointscl=2k=2e=eenel=nencc d(14):thickness;d(11),d(12):body forcesc.....Set material patameter type and flagscityp=max(1,min(ityp,3))j=min(ityp,2)cd(1)=e*(1.+(1-j)*xnu)/(1.+xnu)/(1.-j*xnu)d(2)=xnu*d(1)/(1.+(1-j)*xnu)d(3)=e/2./(1.+xnu)d(13)=d(2)*(j-1)if((d(14).le.0.0d0).or.ityp.ge.2)d(14)=1.0d(15)=itypd(16)=ed(17)=xnud(18)=-xnu/el=min(4,max(1,l))k=min(4,max(1,k))d(5)=ld(6)=kc d(9)=t0c d(10)=e*alp/(1.-j*xnu)lint=0cwrite(iow,2000)wd(ityp),d(16),d(17),d(4),l,k,d(14),1d(11),d(12)cc.....stiffness/residual computationcl=kcc Compute cordinates and weights of integtation pointc`sg,tg:cootds;wg=wp*wqcif(l*l.ne.lint)call pguass(l,lint,sg,tg,wg)cpute integrals of shape functionscdo340l=1,lintcc Compute shape function and their derivatives to local and global coordinate systemccall shape(sg(l),tg(l),xl,shp,xsj,ndm,nen,ilx,.false.)cc Compute global coordinates of integration pointscxx=0.0yy=0.0do j=1,nenxx=xx+shp(3,j)*xl(1,j)yy=yy+shp(3,j)*xl(2,j)end doxsj=xsj*wg(l)*d(14)!xsj+|j|(sp,tq)*wp*wq*tcpute jacobian correction for plane stress and strain problemscif(ityp.le.2)thendv=xsjxsj=0.0zz=0.0c sigr4=-d(11)*dv!d(11)body forceelsecc For anisymmetric problemcdv=xsj*xx*3.1415926*2.zz=1./xxc sigr4=sigr(4)*xsj-d(11)*dvendifj1=1cc.....Loop over rowscdo330j=1,nelw11=shp(1,j)*dvw12=shp(2,j)*dvw22=shp(3,j)*xsjw22=shp(3,j)*dv*zzccpute the internal forces out of balancecc p(j1)=p(j1)-(shp(1,j)*sigr(1)+shp(2,j)*sigr(2))*dvc1-shp(3,j)*sigr4c p(j1+1)=p(j1+1)-(shp(1,j)*sigr(2)+shp(2,j)*sigr(3))*dvc1+d(12)*shp(3,j)*dv!d(12)body force cc.....Loop over columns(symmetry noted)c Compute stiffness matrixck1=j1a11=d(1)*w11+d(2)*w22a21=d(2)*w11+d(1)*w22a31=d(2)*(w11+w22)a41=d(3)*w12a12=d(2)*w12a32=d(1)*w12a42=d(3)*w11do320k=j,nelw11=shp(1,k)w12=shp(2,k)w22=shp(3,k)*zzs(j1,k1)=s(j1,k1)+w11*a11+w22*a21+w12*a41s(j1+1,k1)=s(j1+1,k1)+(w11+w22)*a12+w12*a42s(j1,k1+1)=s(j1,k1+1)+w12*a31+w11*a41s(j1+1,k1+1)=s(j1+1,k1+1)+w12*a32+w11*a42k1=k1+ndf320continuej1=ndf+j1330continue340continuecc.....Make stiffness symmetriccdo360j=1,nstdo360k=j,nsts(k,j)=s(j,k)360continuecreturncc.....Formats for input-outputc1000format(3f10.0,3i10)1001format(8f10.0)2000format(/5x,a12,'linear elastic element'//110x,'modulus',e18.5/10x,'poission ratio',f8.5/10x,'density',e18.5/ 210x,'guass ptr/dir',i3/10x,'stress pts',i6/10x,'thickness',e16.5/310x,'1-gravity',e16.5/10x,'2-gtavity',e16.5/10x,'alpha',e20.5/410x,'base temp',e16.5/)2001format(5x,'element stresses'//'elmt1-coord',2x,'11-stress',2x, 1'12-stress',2x,'22-stress',2x,'33-stress',3x,'1-coord',2x,3x,2'2-stress'/'matl2-coord',2x,'11-strain',2x,'12-strain'2x,3'22-strain',2x,'33-strain',6x,'angle'/39('-'))2002format(i4,0p1f9.3,1p6e11.3/i4,0p1f9.3,1p4e11.3,0p1f11.2/) 5000format('input:e,nu,rho,pts/stiff,pts/stre',1',type(1=stress,2=strain,3=axism)',/3x,'>',$)5001format('input:thickness,1-body force,1-body force,alpha,' 1,'temp-base'/3x,'>',$)endcsubroutine shape(ss,tt,xl,shp,xsj,ndm,nel,ilx,flg)cc.....Shape function routine for two dimension elementscimplicit real*8(a-h,o-z)logical flgdimension xl(ndm,nel),s(4),t(4),x(nel)dimension shp(3,nel),xs(2,2),sx(2,2)data s/-0.5d0,0.5d0,0.5d0,-0.5d0/,1t/-0.5d0,-0.5d0,0.5d0,0.5d0/cc.....Form4-node quatrilateral shape functionscc nel:nuber of nodes per elementcdo100i=1,4shp(3,i)=(0.5+s(i)*ss)*(0.5+t(i)*tt)shp(1,i)=s(i)*(0.5+t(i)*tt)shp(2,i)=t(i)*(0.5+s(i)*ss)100continuecc.....Form triangge bu adding their and fourth together for triangle element cif(nel.eq.3)thendo i=1,3shp(i,3)=shp(i,3)+shp(i,4)enddoendifcc.....Add quatratic terms if necessary for element with more than4nodes cif(nel.gt.4)call shap2(ss,tt,shp,ilx,nel)cc.....Construct jacobian and its inversecdo125i=1,2do125j=1,2xs(i,j)=0.0do120k=1,nelxs(i,j)=xs(i,j)+xl(i,k)*shp(j,k)120continue125continuecc xsj:determinate of jacob matrixcxsj=xs(1,1)*xs(2,2)-xs(1,2)*xs(2,1)cif(flg)returnc flg=false:form global derivativescif(xsj.le.0.0d0)xsj=1.0sx(1,1)=xs(2,2)/xsjsx(2,2)=xs(1,1)/xsjsx(1,2)=-xs(1,2)/xsjsx(2,1)=-xs(2,1)/xsjcc....Form global derivativescdo130i=1,neltp=shp(1,i)*sx(1,1)+shp(2,i)*sx(2,1)shp(2,i)=shp(1,i)*sx(1,2)+shp(2,i)*sx(2,2)shp(1,i)=tp130continuecreturnendcsubroutine shap2(s,t,shp,ilx,nel)cc....Add quadtatic function as necessarycimplicit real*8(a-h,o-z)dimension shp(3,9),ilx(nel)cs2=(1.-s*s)/2.t2=(1.-t*t)/2.do100i=5,9do100j=1,3shp(j,i)=0.0100continuecc.....Midsize nodes(serenipity)cif(ilx(5).eq.0)go to101shp(1,5)=-s*(1.-t)shp(2,5)=-s2shp(3,5)=s2*(1.-t)101if(nel.lt.6)go to107if(ilx(6).eq.0)go to102shp(1,6)=t2shp(2,6)=-t*(1.+s)shp(3,6)=t2*(1.+s)102if(nel.lt.7)go to107if(ilx(7).eq.0)go to103shp(1,7)=-s*(1.+t)shp(2,7)=s2shp(3,7)=s2*(1.+t)103if(nel.lt.8)go to107if(ilx(8).eq.0)go to104shp(1,8)=-t2shp(2,8)=-t*(1.-s)shp(3,8)=t2*(1.-s)cc.....Interior node(lagragian)c104if(nel.lt.9)go to107if(ilx(9).eq.0)go to107shp(1,9)=-4.*s*t2shp(2,9)=-4.*t*s2shp(3,9)=4.*s2*t2cc.....Correct edge nodes for interior node(lagrangian) cdo106j=1,3do105i=1,4105shp(j,i)=shp(j,i)-0.25*shp(j,9)do106i=5,8106if(ilx(i).ne.0)shp(j,i)=shp(j,i)-.5*shp(j,9)cc.....Correct corner nodes for presense of midsize nodes c107do108i=1,4k=mod(i+2,4)+5l=i+4do108j=1,3108shp(j,i)=shp(j,i)-0.5*(shp(j,k)+shp(j,l))returnendcsubroutine pguass(l,lint,r,z,w)cc.....Guass points and weights for two dimensionscimplicit real*8(a-h,o-z)dimension lr(9),lz(9),lw(9),r(16),z(16),w(16)c common/eldtat/dm,n,ma,mct,iel,neldata lr/-1,1,1,-1,0,1,0,-1,0/,lz/-1,-1,1,1,-1,0,1,0,0/data lw/4*25,4*40,64/cc lint:number of integration pointsc r,z:coordinates of integration pointsc w:wp*wq,product of the two weightsclint=l*lcc.....1x1integerationc1r(1)=0.z(1)=0.w(1)=4.creturncc.....2x2integerationc2g=1.0/sqrt(3.d0)do i=1,4r(i)=g*lr(i)z(i)=g*lz(i)w(i)=1.end docreturncc.....3x3integerationc3g=sqrt(0.60d0)h=1.0/81.0d0cdo i=1,9r(i)=g*lr(i)z(i)=g*lz(i)w(i)=h*lw(i)enddocreturncendcsubroutine pload(id,f,b,nneq,neq) cc.....Form load vector in compact formcimplicit real*8(a-h,o-z)dimension f(nneq),b(neq),id(nneq)common/iofile/ior,iowcb=0.0d0cj=id(n)if(j.gt.0)thenb(j)=f(n)endifenddocreturnendcsubroutine prtdis(id,b,ndf,numnp,neq)cc Print out nodal displacementscimplicit real*8(a-h,o-z)dimension id(ndf,numnp),b(neq),u(ndf,numnp)common/iofile/ior,iowcu=0.0d0do100i=1,numnpdo j=1,ndfn=id(j,i)if(n>0)u(j,i)=b(n)end do100continuecc Out nodal displacementscwrite(iow,'(//,19hnodal displacements,/)')do i=1,numnpwrite(iow,'(5x,i5,2x,3(e12.4,3x))')i,(u(k,i),k=1,ndf) end docreturnendcdouble precision function dot(a,b,n)implicit real*8(a-h,o-z)dimension a(n),b(n)cc.....Dot product functioncdot=0.0d0do10k=1,ndot=dot+a(k)*b(k)10continuereturn end。
求简支梁受均布荷载跨中位移有限元分析步骤(平面梁单元)
K151 M O K 5151
对号入座,组合整体刚度矩阵,并将各个分块矩阵对应的数值代入, 组合成整体刚度矩阵
1
6l 12 6l 2l 2 −12 −6l 2 6l 2l 0 0 0 0 0 0 0 EI 0 K= 3 l M M 0 0 0 0 −12 −6l
ql RA − 12 2 6l −12 ql 2 − 6l 12 0 ql 0 0 0 EI 0 ql = l 0 M M ql RB − 2 0 ql 2 0 12
{Fpy }( 2 )
− ql / 2 − ql 2 / 12 2 = − ql / 2 3 2 ql / 12
……
1
2
3
….
51
ql Fpy = − 2
1
−
ql 12
2
ql 0 ql 0 L
−
ql 2
ql 12
根据
[ F ] = [ K ][δ ]
υ1 = 0
−12 −6l 24 0 −12 6l 0 0 0 0 M 6l 2l 2 −6l 2l 2 0 0 0 0
求出各节点的结点位移
[δ ]
0 θ 1 v2 θ2 v3 θ3 M 0 θ51
0 1 −
0 0
2 3 l l2 1 2 − 3 2 l l
δ1 1 δ 2 = N δ e − [ ] l δ3 1 δ 4 l2 0 0
Fortran 程序语言设计
c 目标函数, 等式约束方程, 不等式约束方程【教科书】p213 10-2(1)c 设计变量(design Variables)设为4个:c b----width矩形截面宽度c h----height矩形截面高度c As----受力筋截面面积(◆导出变量,非设计变量)c Ns----受力筋根数c Ds----受力筋截面直径subroutine funct (x,f) !目标函数子程序IMPLICIT DOUBLE PRECISION (A-H,O-Z)c IMPLICIT nonecommon /kprint / kprint1,kprint2,kprint3,kprint4,kprint5COMMON /nfile/ nf_i1, nf_i2, nf_o1, nf_o2common /c1/ nfuninteger*4 kprint1,kprint2,kprint3,kprint4,kprint5integer*4 nf_i1, nf_i2, nf_o1, nf_o2integer*4 nfunreal*8 x(1),freal*8 b,h,As,Ns,Dsreal*8 C_c,C_s,GAMMAsdata C_c /400.d0/data C_s /4500.d0/data GAMMAs /7.8d0/C object function 计算b=X(1)h=X(2)Ns=X(3)Ds=X(4)As=0.25d0*3.1415926d0*Ds**2 * NscF = b*h*C_c + As*GAMMAs*C_sCnfun=nfun+1returnendsubroutine const ( x, g, KflagG )c 计算约束条件的子程序c KflagG=1, 计算部分G(I), 当G(I)>0时,即返回;c KflagG=2, 计算全部G(I).c KflagG=6, 满足全部G(I)后的返回标志.IMPLICIT DOUBLE PRECISION (A-H,O-Z)common /kprint/ kprint1,kprint2,kprint3,kprint4,kprint5COMMON /nfile / nf_i1, nf_i2, nf_o1, nf_o2common /c2/ ncstinteger*4 kprint1,kprint2,kprint3,kprint4,kprint5integer*4 nf_i1, nf_i2, nf_o1, nf_o2integer*4 ncst,KflagGreal*8 x(1),g(1)real*8 b,h,Asreal*8 fy,fc,GAMMAd,F,d,rho_min,rho_max,gsi_b,b0,wreal*8 gsi,alphas,Fcr,rhodata fy /310.d+6/data fc /10.0d+6/data GAMMAd /1.2d0/data F /626.375d+3/data d /6.5d0/data rho_min /0.004d0/data rho_max /0.03d0/data b0 /0.2d0/C 约束条件计算b=X(1)h=X(2)Ns=X(3)Ds=X(4)As=0.25d0*3.1415926d0*Ds**2 * Nsc 约束条件计算c 强度约束----承载力w=1.2687-0.0291*(d/b)+0.0001*( d/b)**2Fcr=w*(fc*b*h+fy*As)cg(1) = F - Fcr/GAMMAdif (KflagG.eq.1 .and. G(1).gt.0.d0) returnc 最小配筋率min rhorho = As/b/hg(2) = rho_min - rhoif (KflagG.eq.1 .and. G(2).gt.0.d0) returnif (KflagG.eq.1 .and. G(3).gt.0.d0) returng(3)=4.52d-4-Asc 最大配筋率max rhog(4) =rho-rho_maxif (KflagG.eq.1 .and. G(4).gt.0.d0) returng(5)=b0-bif (KflagG.eq.1 .and. G(5).gt.0.d0) returnc 几何约束g(6) = - hif (KflagG.eq.1 .and. G(6).gt.0.d0) returnc 几何约束g(7) = b0 - bif (KflagG.eq.1 .and. G(7).gt.0.d0) returnif (KflagG .eq. 1) KflagG=2 !约束条件全部满足c 以上优化计算中仅列出了主要约束条件。
Fortran语言-有限元程序分析-平面钢架
程序框图:程序特点:问题类型:可用于计算结构力学的平面刚架问题单元类型:直接利用杆单元载荷类型:节点载荷及非节点载荷,其中非节点载荷包括均布荷载和垂直于杆件的集中荷载材料性质:所有杆单元几何性质相同,且由相同的均匀材料组成方程求解:结构刚度矩阵采用满阵存放,Gauss消元过程采用《数值分析》中的列主元素消去法输入文件:按先处理法的要求,由手工生成输入数据文件1.主要变量:ne: 单元个数nj: 结点个数n: 自由度e: 弹性模量(单位:KN/m2)a: 杆截面积zi: 惯性矩np: 结点荷载个数nf: 非结点荷载个数x(nj): 存放结点的x轴坐标y(nj): 存放结点的y轴坐标ij(ne,2): 存放单元结点编号,其中ij(nj,1)存放起始结点编号,ij(nj,2)存放终止结点编号jn(nj,3): 存放结点位移编号,以组成单元定位数组pj(np,3): 存放结点荷载信息,其中pj(np,1)存放结点荷载作用结点号,pj(np,2)存放荷载方向代码(1—x方向;2—y方向;3—转角),pj(np,3)存放荷载大小pf(ne,4): 存放非结点荷载信息,其中pf(ne,1)存放荷载作用单元号,pf(ne,2)存放荷载代码(1—均布荷载,2—垂直集中荷载),pf(ne,3)存放荷载大小,pf(ne,4)荷载作用距离(均布荷载,集中荷载均以单元起始结点为计算起始位置)。
2.子例行子程序哑元信息:第一部分:基本部分I. subroutine lsc(Length & Sin & Cos):输入哑元:m(单元号),nj,ne,x,y,ij输出哑元:bl(杆件长度),si(正弦值),co(余弦值)II. subroutine elv(Element Location Vector):输入哑元:m,ne,nj,ij,jn输出哑元:lv(单元定位数组)III. subroutine esm(Element Stiffness Matrix):输入哑元:e,a,zi,bl,si,co输出哑元:ek(整体坐标系下的单刚矩阵)IV. subroutine eff(Element Fixed-end Forces)输入哑元:i,pf,nf,bl输出哑元:fo(局部坐标系下单元固端力)第二部分:主程序直接调用部分I. subroutine tsm(Total Stiffness Matrix 计算总刚矩阵)输入哑元:ne,nj,n,e,x,y,ij,a,zi,jn输出哑元:tkII. subroutine jlp(Joint Load Vector 计算结点荷载)输入哑元:ne,nj,n,np,nf,x,y,ij,jn,pj,pf输出哑元:p(结点荷载列矩阵)III. subroutine gauss(带列主元素消去的高斯法)输入(输出)哑元:tk,p,n ;(注意,算出位移后,直接存储到结点荷载列矩阵)IV. subroutine mvn(Member-end forces of elements 计算各单元的杆端力)输入哑元:ne,nj,n,nf,e,x,y,ij,a,zi,jn,pf,p3.文件管理:源程序文件:pff.for程序需读入的数据文件:input.txt程序输出的数据文件:output4.数据文件格式:【输出文件格式】: 1. 第1部分: 每行数据依次为:结点号,结点x 方向位移,结点y 方向位移,结点转角位移 2. 第2部分:每行数据依次为:单元号,xi F ,yi F ,i M ,xj F ,yj F ,j M源程序:program PFF implicit nonereal tk(100,100),x(50),y(50),p(100),pj(50,3),pf(50,4) integer ij(50,2),jn(50,3) integer ne,nj,n,np,nf real e,a,ziopen(1,file="input.txt",status="old") open(2,file="output.txt",status="old")read(1,*) ne,nj,n,e,a,zi,np,nfcall input(ne,nj,x,y,ij,jn,np,nf,pj,pf)call tsm(ne,nj,n,e,x,y,ij,a,zi,jn,tk)call jlp(ne,nj,n,np,nf,x,y,ij,jn,pj,pf,p)call gauss(tk,p,n)call mvn(ne,nj,n,nf,e,x,y,ij,a,zi,jn,pf,p)endsubroutine input(ne,nj,x,y,ij,jn,np,nf,pj,pf)dimension x(nj),y(nj),ij(ne,2),jn(nj,3),pj(np,3),pf(nf,4) read(1,*)(x(i),y(i),i=1,nj)read(1,*)(ij(i,1),ij(i,2),i=1,ne)read(1,*)((jn(i,j),j=1,3),i=1,nj)if (np>0) read(1,*)((pj(i,j),j=1,3),i=1,np)if (nf>0) read(1,*)((pf(i,j),j=1,4),i=1,nf)endsubroutine tsm(ne,nj,n,e,x,y,ij,a,zi,jn,tk)dimension x(nj),y(nj),ij(ne,2),jn(nj,3),tk(n,n),ek(6,6),lv(6) do i=1,ndo j=1,ntk(i,j)=0enddoenddodo m=1,necall lsc(m,ne,nj,x,y,ij,bl,si,co)call esm(e,a,zi,bl,si,co,ek)call elv(m,ne,nj,ij,jn,lv)do l=1,6i=lv(l)if (i/=0) thendo k=1,6j=lv(k)if (j/=0) tk(i,j)=tk(i,j)+ek(l,k)enddoendifenddoenddoendsubroutine lsc(m,ne,nj,x,y,ij,bl,si,co) dimension x(nj),y(nj),ij(ne,2)i=ij(m,1)j=ij(m,2)dx=x(j)-x(i)dy=y(j)-y(i)bl=sqrt(dx*dx+dy*dy)si=dy/blco=dx/blendsubroutine esm(e,a,zi,bl,si,co,ek) dimension ek(6,6)c1=e*a/blc2=2.0*e*zi/blc3=3.0*c2/blc4=2.0*c3/bls1=c1*co*co+c4*si*sis2=(c1-c4)*si*cos3=c3*sis4=c1*si*si+c4*co*cos5=c3*cos6=c2ek(1,1)=s1ek(1,2)=s2ek(1,3)=-s3ek(1,4)=-s1ek(1,5)=-s2ek(1,6)=-s3ek(2,2)=s4ek(2,3)=s5ek(2,4)=-s2ek(2,5)=-s4ek(2,6)=s5ek(3,3)=2*s6ek(3,4)=s3ek(3,5)=-s5ek(3,6)=s6ek(4,4)=s1ek(4,5)=s2ek(4,6)=s3ek(5,5)=s4ek(5,6)=-s5ek(6,6)=2.0*s6do i=1,5do j=i+1,6ek(j,i)=ek(i,j)enddoenddoendsubroutine elv(m,ne,nj,ij,jn,lv)dimension ij(ne,2),jn(nj,3),lv(6)i=ij(m,1)j=ij(m,2)do k=1,3lv(k)=jn(i,k)lv(k+3)=jn(j,k)enddoendsubroutine jlp(ne,nj,n,np,nf,x,y,ij,jn,pj,pf,p)dimension x(nj),y(nj),ij(ne,2),jn(nj,3),pj(np,3),pf(nf,4),p(n),fo(6),pe(6),lv(6) do i=1,np(i)=0.0enddoif (np>0) thendo i=1,npj=int(pj(i,1))k=int(pj(i,2))l=jn(j,k)if (l/=0) p(l)=pj(i,3)enddoendifif(nf>0) thendo i=1,nfm=int(pf(i,1))call lsc(m,ne,nj,x,y,ij,bl,si,co)call eff(i,pf,nf,bl,fo)call elv(m,ne,nj,ij,jn,lv)pe(1)=-fo(1)*co+fo(2)*sipe(2)=-fo(1)*si-fo(2)*cope(3)=-fo(3)pe(4)=-fo(4)*co+fo(5)*sipe(5)=-fo(4)*si-fo(5)*cope(6)=-fo(6)do j=1,6l=lv(j)if (l/=0) p(l)=p(l)+pe(j) enddoenddoendifendsubroutine eff(i,pf,nf,bl,fo) dimension pf(nf,4),fo(6)no=int(pf(i,2))q=pf(i,3)c=pf(i,4)b=bl-cc1=c/blc2=c1*c1c3=c1*c2do j=1,6fo(j)=0.0enddogoto(10,20),no10 fo(2)=-q*c*(1.0-c2+c3/2.0)fo(3)=-q*c*c*(0.5-2.0*c1/3.0+0.25*c2) fo(5)=-q*c*c2*(1.0-0.5*c1)fo(6)=q*c*c*c1*(1.0/3.0-0.25*c1) return20 fo(2)=-q*b*b*(1.0+2.0*c1)/bl/blfo(3)=-q*c*b*b/bl/blfo(5)=-q*c2*(1.0+2.0*b/bl)fo(6)=q*c2*breturnendsubroutine gauss(e,d,n)dimension e(n,n),d(n),a(n,n+1)do i=1,ndo j=1,na(i,j)=e(i,j)enddoenddodo i=1,na(i,n+1)=d(i)enddodo k=1,n-1do i=k+1,nif (abs(a(i,k))>abs(a(k,k))) thendo j=1,n+1c=a(k,j)a(k,j)=a(i,j)a(i,j)=cenddoelseendifenddodo i=k+1,na(i,k)=a(i,k)/a(k,k)do j=k+1,n+1a(i,j)=a(i,j)-a(i,k)*a(k,j)enddoenddoenddoa(n,n+1)=a(n,n+1)/a(n,n)do i=n-1,1,-1do j=i+1,np=p+a(i,j)*a(j,n+1)enddoa(i,n+1)=(a(i,n+1)-p)/a(i,i)p=0enddodo i=1,nd(i)=a(i,n+1)enddoendsubroutine mvn(ne,nj,n,nf,e,x,y,ij,a,zi,jn,pf,p)dimension x(nj),y(nj),ij(ne,2),jn(nj,3),pf(nf,4),lv(6),fo(6),d(6),fd(6),f(6),ek(6,6),p(n) write(2,10)10 format(//2x,"结点位移"/5x,"结点号",9x,"u向位移",9x,"v向位移",9x,"角位移") do j=1,njdo i=1,3d(i)=0.0l=jn(j,i)if (l/=0) d(i)=p(l)enddowrite(2,20)j,d(1),d(2),d(3)20 format(2x,i6,4x,3e15.6)enddowrite(2,30)30 format(/2x,"单元杆端力及弯矩"/4x,"单元号",13x,"Fx",17x,"Fy",17x,"弯矩") do m=1,necall lsc(m,ne,nj,x,y,ij,bl,si,co)call esm(e,a,zi,bl,si,co,ek)call elv(m,ne,nj,ij,jn,lv)do i=1,6l=lv(i)d(i)=0.0if(l/=0) d(i)=p(l)enddodo i=1,6fd(i)=0.0do j=1,6fd(i)=fd(i)+ek(i,j)*d(j)enddoenddof(1)=fd(1)*co+fd(2)*sif(2)=-fd(1)*si+fd(2)*cof(3)=fd(3)f(4)=fd(4)*co+fd(5)*sif(5)=-fd(4)*si+fd(5)*cof(6)=fd(6)if (nf>0) thendo i=1,nfl=int(pf(i,1))if (m==l) thencall eff(i,pf,nf,bl,fo)do j=1,6f(j)=f(j)+fo(j)enddoendifenddoendifwrite(2,40)m,f40format(2x,i8,4x,"Ix=",f12.4,3x,"Iy=",f12.4,3x,"Mi=",f12.4/14x,"Jx=",f12.4,3x,"J y=",f12.4,3x,"Mj=",f12.4)enddoend【算例】:课题二:平面刚架有限元程序分析题目一:分析如图所示结构,其中5AB BC CD m ===, 3.5ED EF FG m ===,40GPa E =,20.02m A =,44410m I -=⨯。
有限元编程算例(fortran)
有限元编程算例(Fortran)本程序通过Fortran语言编写,程序在Intel Parallel Studio XE 2013 with VS2013中成功运行,程序为《计算力学》(龙述尧等编)一书中的源程序,仅作研究学习使用,省去了敲写的麻烦。
源程序为:!Page149COMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AECOMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200) OPEN(5,FILE='DATAIN')!OPEN(6,FILE='DATAOUT',STATUS='NEW')CALL DATAIF(IND.EQ.0)GOTO 10EO=EO/(1.0-UN*UN)UN=UN/(1.0-UN)10 CALL TOTSTICALL LOADCALL SUPPORCALL SOLVEQCALL STRESSPAUSE!STOPENDSUBROUTINE DATACOMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AECOMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200)READ(5,*)NJ,NE,NZ,NDD,NPJ,INDNJ2=NJ*2NPJ1=NPJ+1READ(5,*)EO,UN,GAMA,TEREAD(5,*)((JM(I,J),J=1,3),I=1,NE)READ(5,*)((CJZ(I,J),J = 1,2),I=1,NJ)!Page150READ(5,*)(NZC(I),I=1,NZ)READ(5,*)((PJ(I,J),J=1,2),I=1,NPJ1)WRITE(6,10)(I,(CJZ(I,J),J=1,2),I=1,NJ)10 FORMA T(4X,2HNO,6X,1HX,6X,1HY/(I6,2X,F7.2,F7.2))RETURNENDSUBROUTINE ELEST(MEO,IASK)COMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AECOMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200) IE=JM(MEO,1)JE=JM(MEO,2)ME=JM(MEO,3)CM=CJZ(JE,1)-CJZ(IE,1)BM=CJZ(IE,2)-CJZ(JE,2)CJ=CJZ(IE,1)-CJZ(ME,1)BJ=CJZ(ME,2)-CJZ(IE,2)AE=(BJ*CM-BM*CJ)/2.0IF(IASK.LE.1) GOTO 50DO 10 I=1,3DO 10 J=1,6B(I,J)=0.010 CONTINUEB(1,1)=-BJ-BMB(1,3)=BJB(1,5)=BMB(2,2)=-CJ-CMB(2,4)=CJB(2,6)=CMB(3,1)=B(2,2)B(3,2)=B(1,1)B(3,3)=B(2,4)B(3,4)=B(1,3)B(3,5)=B(2,6)!Page151B(3,6)=B(1,5)DO 20 I=1,3DO 20 J=1,6B(I,J)=B(I,J)/(2.0*AE) 20 CONTINUED(1,1)=EO/(1.0-UN*UN)D(1,2)=EO*UN/(1.0-UN*UN) D(2,1)=D(1,2)D(2,2)=D(1,1)D(1,3)=0.0D(2,3)=0.0D(3,1)=0.0D(3,2)=0.0D(3,3)=EO/(2.0*(1.0+UN))DO 30 I=1,3DO 30 J=1,6S(I,J)=0.0DO 30 K=1,3S(I,J)=S(I,J)+D(I,K)*B(K,J)30 CONTINUEIF(IASK.LE.2) GOTO 50DO 40 I=1,6DO 40 J=1,6EKE(I,J)=0.0DO 40 K=1,3!**********************************Exchange B And S***********************************************EKE(I,J)=EKE(I,J)+B(K,I)*S(K,J)*AE*TE40 CONTINUE50 CONTINUERETURNENDSUBROUTINE TOTSTICOMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AECOMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200)!Page152DO 20 I=1,NJ2DO 20 J=1,NDDTKZ(I,J)=0.020 CONTINUE!*************Not Understanded*****************************DO 30 MEO=1,NECALL ELEST(MEO,3)DO 30 I=1,3DO 30 II=1,2LH=2*(I-1)+IILDH=2*(JM(MEO,I)-1)+IIDO 30 J=1,3DO 30 JJ=1,2L=2*(J-1)+JJLZ=2*(JM(MEO,J)-1)+JJLD=LZ-LDH+1IF(LD.LE.0) GOTO 30TKZ(LDH,LD)=TKZ(LDH,LD)+EKE(LH,L)30 CONTINUERETURNENDSUBROUTINE LOADCOMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AECOMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200)DO 10 I=1,NJ2P(I)=0.010 CONTINUEIF(NPJ.EQ.0) GOTO 30DO 20 I=1,NPJI1=I+1J=IFIX(PJ(I1,2))P(J)=PJ(I1,1)20 CONTINUE30 IF(GAMA.LE.0.0) GOTO 50!Page153DO 40 MEO=1,NECALL ELEST(MEO,1)PE=-GAMA*AE*TE/3.0IE=JM(MEO,1)JE=JM(MEO,2)ME=JM(MEO,3)P(2*IE)=P(2*IE)+PEP(2*JE)=P(2*JE)+PEP(2*ME)=P(2*ME)+PE40 CONTINUE50 CONTINUERETURNENDSUBROUTINE SUPPORCOMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AECOMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200)DO 60 I=1,NZMZ=NZC(I)TKZ(MZ,1)=1.0DO 10 J=2,NDDTKZ(MZ,J)=0.010 CONTINUEIF(MZ-NDD)20,20,3020 JO=MZGOTO 4030 JO=NDD40 DO 50 J = 2,JOJ1=MZ-JTKZ(J1+1,J)=0.050 CONTINUEP(MZ)=0.060 CONTINUERETURNEND!Page154SUBROUTINE SOLVEQCOMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AECOMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200)NJ1=NJ2-1DO 50 K=1,NJ1IF(NJ2-K-NDD+1)10,10,2010 IM=NJ2GOTO 3020 IM=K+NDD-130 K1=K+1DO 50 I=K1,IML=I-K+1C=TKZ(K,L)/TKZ(K,1)LD1=NDD-L+1DO 40 J=1,LD1M=J+I-KTKZ(I,J)=TKZ(I,J)-C*TKZ(K,M)40 CONTINUEP(I)=P(I)-C*P(K)50 CONTINUEP(NJ2)=P(NJ2)/TKZ(NJ2,1)DO 100 I1 = 1,NJ1I=NJ2-I1!************************************************************************下面一行可能出错IF(NDD-NJ2+I-1)60,60,7060 JO=NDDGOTO 8070 JO=NJ2-I+180 DO 90 J=2,JOLH=J+I-1P(I)=P(I)-TKZ(I,J)*P(LH)90 CONTINUEP(I)=P(I)/TKZ(I,1)100 CONTINUE!Page155WRITE(6,110)(I,P(2*I-1),P(2*I),I=1,NJ)!************************************************************************************ 110 FORMA T(2X,3HJD=,3X,2HU=,12X,2HV=/(I4,3X,F16.7,3X,F16.7))RETURNENDSUBROUTINE STRESSCOMMON/X1/NJ,NE,NZ,NDD,NPJ,IND,NJ2,EO,UN,GAMA,TE,AECOMMON/X2/JM(100,3),NZC(50),CJZ(100,2),PJ(100,2),B(3,6),D(3,3),S(3,6),TKZ(200,20),EKE(6,6),P(200) DIMENSION WY(6),YL(3)DO 60 MEO=1,NECALL ELEST(MEO,2)DO 10 I=1,3DO 10 J=1,2LH=2*(I-1)+JLDH=2*(JM(MEO,I)-1)+JWY(LH)=P(LDH)10 CONTINUEDO 20 I=1,3YL(I)=0.0DO 20 J=1,6YL(I)=YL(I)+S(I,J)*WY(J)20 CONTINUESIGX=YL(1)SIGY=YL(2)TOXY=YL(3)PYL=(SIGX+SIGY)/2.0SIG=(SIGX-SIGY)**2/4.0+TOXY*TOXYRYL=SQRT(SIG)SIG1=PYL+RYLSIG2=PYL-RYLIF(SIGY.EQ.SIG2) GOTO 30CETA1=TOXY/(SIGY-SIG2)CETA=90.0-57.29578*ATAN(CETA1)GOTO 40!Page15630 CETA=0.040 WRITE(6,50)MEO,SIGX,SIGY,TOXY,SIG1,SIG2,CETA50FORMA T(4X,2HE=,I3/2X,3HSX=,F11.3,3X,3HSY=,F11.3,3X,4HTAU=,F11.3/2X,3HS1=,F11.3,3X,3HS2=,F11. 3,3X,4HCET=,F11.3)!50FORMA T(4X,2HE=,I3/2X,3HSX=,Fll.3,3X,3HSY=,F11.3,3X,4HTAU=,F11.3/2X,3HSl=,Fll.3,3X,3HS2=,F11.3,3 X,4HCET=,F11.3)60 CONTINUERETURNEND输入文件为datain28,36,9,10,4,01,0.17,0,11,5,22,5,62,6,33,6,73,7,44,7,85,9,66,9,106,10,77,10,117,11,88,11,129,13,1010,13,1410,14,11 11,14,15 11,15,12 12,15,16 13,17,14 14,17,18 14,18,15 15,18,19 15,19,16 16,19,20 17,21,18 18,21,22 18,22,19 19,22,23 19,23,20 20,23,24 21,25,22 22,25,26 22,26,23 23,26,27 23,27,24 24,27,28 0,61,62,63,60,51,52,53,50,41,42,43,40,31,32,33,30,21,22,23,20,11,12,13,10,01,02,03,07,15,23,31,39,47,49,50,550,0-5E4,2-10E4,4-10E4,6-5E4,8输出结果为:DATAOUTNO X Y1 0.00 6.002 1.00 6.003 2.00 6.004 3.00 6.005 0.00 5.006 1.00 5.007 2.00 5.008 3.00 5.009 0.00 4.0010 1.00 4.0011 2.00 4.0012 3.00 4.0013 0.00 3.0014 1.00 3.0015 2.00 3.0016 3.00 3.0017 0.00 2.0018 1.00 2.0019 2.00 2.0020 3.00 2.0021 0.00 1.0022 1.00 1.0023 2.00 1.0024 3.00 1.0025 0.00 0.0026 1.00 0.0027 2.00 0.0028 3.00 0.00JD= U= V=1 -29766.873 -1173917.7502 -14003.185 -1174018.8753 -3753.270 -1179518.1254 0.000 -1181719.7505 -26382.471 -1072681.5006 -10746.993 -1073615.0007 -2064.593 -1082360.7508 0.000 -1085873.2509 -13536.995 -964010.12510 3372.794 -970055.12511 7268.415 -989269.12512 0.000 -998401.81213 7816.581 -835383.43814 27176.234 -861713.93815 22063.230 -905726.12516 0.000 -927165.18817 29514.479 -665602.87518 53419.637 -747340.43819 34876.832 -839806.81220 0.000 -881219.12521 29580.273 -416288.71922 52944.918 -632601.12523 17504.195 -803765.68824 0.000 -859481.93825 0.000 0.00026 -120102.820 -583505.37527 -76202.375 -787347.18828 0.000 -829170.812E= 1SX= -1489.530 SY=-101489.383 TAU= -1489.531 S1= -1467.348 S2=-101511.562 CET= 179.147 E= 2SX= -1475.844 SY=-100654.875 TAU= -1790.500 S1= -1443.531 S2=-100687.188 CET= 178.966 E= 3SX= -7021.670 SY=-101597.672 TAU= -3741.688 S1= -6873.875 S2=-101745.469 CET= 177.738 E= 4SX= -8067.500 SY= -98528.750 TAU= -4459.156 S1= -7848.227 S2= -98748.023 CET= 177.185 E= 5SX= -13143.328 SY= -99391.750 TAU= -1662.500 S1= -13111.293 S2= -99423.781 CET= 178.896 E= 6SX= -14652.781 SY= -98337.500 TAU= -1501.062S1= -14625.867 S2= -98364.414 CET= 178.973 E= 7SX= -2923.122 SY=-109168.297 TAU= -5888.469 S1= -2597.762 S2=-109493.656 CET= 176.837 E= 8SX= -716.078 SY=-103681.562 TAU= -8617.406 S1= 0.148 S2=-104397.789 CET= 175.249 E= 9SX= -9188.316 SY=-105121.867 TAU= -9771.594 S1= -8203.125 S2=-106107.062 CET= 174.243 E= 10SX= -12285.000 SY= -95180.250 TAU= -12199.594 S1= -10526.887 S2= -96938.359 CET= 171.799 E= 11SX= -14170.516 SY= -95500.750 TAU= -5489.531 S1= -13801.664 S2= -95869.602 CET= 176.156 E= 12SX= -22797.406 SY= -91347.000 TAU= -3902.844 S1= -22575.914 S2= -91568.492 CET= 176.752 E= 13SX= -5104.269 SY=-129494.438 TAU= -11708.750 S1= -4011.727 S2=-130586.977 CET= 174.669 E= 14SX= 969.672 SY=-108176.375 TAU= -21424.750 S1= 5024.582 S2=-112231.281 CET= 169.283 E= 15SX= -14954.572 SY=-110883.469 TAU= -18383.531 S1= -11552.273 S2=-114285.766 CET= 169.515 E= 16SX= -19890.141 SY= -86924.312 TAU= -25131.188 S1= -11514.844 S2= -95299.609 CET= 161.569 E= 17SX= -22109.688 SY= -87301.625 TAU= -10225.406 S1= -20543.453 S2= -88867.859 CET= 171.292 E= 18SX= -35190.453 SY= -77219.000 TAU= -9162.000 S1= -33280.023 S2= -79129.430 CET= 168.222 E= 19SX= -9785.850 SY=-171444.172 TAU= -20524.969 S1= -7220.594 S2=-174009.422 CET= 172.876 E= 20SX= 4594.438 SY=-113592.375 TAU= -46145.688 S1= 20477.398 S2=-129475.336 CET= 161.007 E= 21SX= -25287.307 SY=-118672.312 TAU= -30023.750 S1= -16467.512 S2=-127492.109 CET= 163.629 E= 22SX= -30634.422 SY= -71127.188 TAU= -44991.469 S1= -1543.715 S2=-100217.891 CET= 147.114 E= 23SX= -34259.609 SY= -71743.438 TAU= -14637.906 S1= -29220.699 S2= -76782.344 CET= 161.005 E= 24SX= -43958.047 SY= -53418.938 TAU= -17697.562 S1= -30369.627 S2= -67007.359 CET= 142.482 E= 25SX= -19028.160 SY=-252549.000 TAU= -34958.688 S1= -13907.055 S2=-257670.094 CET= 171.666 E= 26SX= 3973.812 SY=-114063.750 TAU= -92238.344 S1= 54459.047 S2=-164548.984 CET= 151.307 E= 27SX= -39180.809 SY=-121400.055 TAU= -39312.688 S1= -23409.074 S2=-137171.781 CET= 158.140 E= 28SX= -42804.766 SY= -43317.938 TAU= -65723.062 S1= 22662.211 S2=-108784.914 CET= 135.112 E= 29SX= -42224.094 SY= -43219.188 TAU= -10273.375 S1= -32436.225 S2= -53007.055 CET= 136.386 E= 30SX= -21830.422 SY= -25448.312 TAU= -23810.344 S1= 239.594 S2= -47518.328 CET= 137.172 E= 31SX= -48815.199 SY=-424587.344 TAU= -79800.078 S1= -32570.844 S2=-440831.688 CET= 168.494 E= 32SX=-132271.750 SY= -71582.000 TAU=-175409.250 S1= 76087.781 S2=-279941.531 CET= 130.093 E= 33SX= -45090.102 SY= -56761.105 TAU= 804.781 S1= -45034.867 S2= -56816.336 CET= 3.926 E= 34SX= 42332.711 SY= -9221.938 TAU= -47066.344 S1= 70218.328 S2= -37107.555 CET= 149.354 E= 35SX= -20899.344 SY= -19971.375 TAU= 16235.219 S1= -4193.512 S2= -36677.207 CET= 45.819E= 36SX= 73163.914 SY= -17873.250 TAU= -17873.344 S1= 76547.250 S2= -21256.586 CET= 169.281。
有限元计算结构力学fortran程序
有限元计算结构力学fortran程序计算结构力学程序计算结构力学编程大作业时间,2007年6月!!!***************************************************************** ***********!!! 关于程序的说明!!!***************************************************************** ***********!一、功能:! 1、可计算包括节点力,一般非节点力,支座沉降、温度荷载作用、制造误差的平! 面桁架、梁、刚架及其组合结构的节点位移与杆端力;! 2、可同时计算多种工况下的节点位移与杆端力。
!******************************************************************* **********!******************************************************************* ***********!! 二、变量说明:! NE——单元数;! N——结构中自由度数;! NJ——节点数;! NS——特殊节点数,包括支座节点、主从节点(1节点不做主节点)、连接桁架的铰节点(没有转角);! NAI——结构的单元截面类型数;! MT——单元截面类型号;! NL——荷载工况数;! H——截面高度;! E——弹性模量;! JC——单元定位向量数组;! X(NJ),Y(NJ)——节点的X,Y坐标值;! JE(NE,2)——单元两端节点码数组;! AI(NAI,2)——按单元类型顺序存放A与I,AI(I,1)—第I类单元的截面积,AI(I,2)—第I类单元的! 惯性矩;! MT(NE)——单元所属单元类型号;! JS(NS,4)——特殊节点信息,JS(I,1)—结点码;JS(I,2),JS(I,3),JS(I,4)—U,V,CETA约束信息,! 有约束为1,没有约束为0;从节点某位移同主节点时位移时,该位移约束信息填主节点码;!! PJ(NP,3)——节点荷载信息数组;PJ(I,1)—节点力所在节点号;PJ(I,2)—节点力作用坐标方向:! 坐标方向U,V,M分别为1,2,3; PJ(I,3)—节点力的大小(含正负号);U,V方向集中力时,! 与坐标轴正向同向为正,M按右手法则为正;本程序推导过程取y轴向下为正。
三角形常应变单元程序的编制与使用共18页文档
三角形常应变单元程序的编制与使用有限元法是求解微分方程边值问题的一种通用数值方法,该方法是一种基于变分法(或变分里兹法)而发展起来的求解微分方程的数值计算方法,以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。
有限元分析的基本步骤可归纳为三大步:结构离散、单元分析和整体分析。
对于平面问题,结构离散常用的网格形状有三角形、矩形、任意四边形,以三个顶点为节点的三角形单元是最简单的平面单元,它较矩形或四边形对曲边边界有更好Array的适应性,而矩形或四边形单元较三节点三角形有更高的计算精度。
Matlab语言是进行矩阵运算的强大工具,因此,用Matlab语言编写有限元中平面问题的程序有优越性。
本章将详细介绍如何利用Matlab语言编制三角形常应变单元的计算程序,程序流程图见图1。
有限元法中三节点三角形分析结构的步骤如下:1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。
2)单元分析,建立单元刚度矩阵。
3)整体分析,建立总刚矩阵。
4)建立整体结构的等效节点荷载和总荷载矩阵5)边界条件处理。
6)解方程,求出节点位移。
7)求出各单元的单元应力。
8)计算结果整理。
计算结果整理包括位移和应力两个方面;位移计算结果一般不需要特别的处理,利用计算出的节点位移分量,就可画出结构任意方向的位移云图;而应力解的误差表现在单元内部不满足平衡方程,图1 程序流程图单元与单元边界处应力一般不连续,在边界上应力解一般与力的边界条件不相符合。
1.1 程序说明% 三角形常应变单元求解结构主程序●功能:运用有限元法中三角形常应变单元解平面问题的计算主程序。
●基本思想:单元结点按右手法则顺序编号。
●荷载类型:可计算结点荷载。
●说明:主程序的作用是通过赋值语句、读取和写入文件、函数调用等完成算法的全过程,即实现程序流程图的程序表达。
1 程序准备format short e %设定输出类型clear all %清除所有已定义变量clc %清屏●说明:format short e -设定计算过程中显示在屏幕上的数字类型为短格式、科学计数法;clear all -清除所有已定义变量,目的是在本程序的运行过程中,不会发生变量名相同等可能使计算出错的情况;clc -清屏,使屏幕在本程序运行开始时2 全局变量定义global NNODE NPION NELEM NVFIX NFORCE COORD LNODS YOUNG POISS THICKglobal FORCE FIXEDglobal BMATX DMATX SMATX AREAglobal ASTIF ASLOD ASDISPglobal FP1说明:NNODE—单元结点数,NPION—总结点数, NELEM—单元数,NVFIX—受约束边界点数,NFORCE—结点力数,COORD—结构结点坐标数组,LNODS —单元定义数组,YOUNG—弹性模量,POISS—泊松比,THICK—厚度FORCE —节点力数组(n,3) n:受力节点数目,(n,1):作用点,(n,2):x方向,(n,3):y方向; FIXED—约束信息数组(n,3) n:受约束节点数目, (n,1):约束点 (n,2)与(n,3)分别为约束点x方向和y方向的约束情况,受约束为1否则为0BMATX—单元应变矩阵(3*6), DMATX—单元弹性矩阵(3*3),SMATX—单元应力矩阵(3*6),AREA—单元面积ASTIF—总体刚度矩阵,ASLOD—总体荷载向量,ASDISP—结点位移向量FP1—数据文件指针3 打开文件FP1=fopen('input.txt','rt'); %打开输入数据文件存放初始数据●说明:FP1=fopen('input.txt','rt'); -打开已存在的输入数据文件input.txt,且设置其为只读格式,使程序在执行过程中不能改变输入文件中的数值,并用文件句柄FP1来执行FP2=fopen('output.txt','wt'); -打开输出数据文件,该文件不存在时,通过此命令创建新文件,该文件存在时则将原有内容全部删除。
Fortran计算实例
do 20 i=1,(im+1)/2
d1(i)=u1(i)=0.d0 20
t1(i)=1.d0
do 30 i=(im+1)/2+1,im d1(i)=1.d-1 u1(i)=0.d0 设定初值
30
t1(I)=1.d0
tim=0.d0
dt=0.9d0*dx 999 continue do 40 i=1,im d (i)= d1 (i)
c
a
b
s
5. 编程及调试
a, b,c 系数
program diffusion
parameter(im=1001) implicit double precision(a-h,o-z) dimension x(im),bb(im) dimension b1(im) Dimension a(im),b(im),c(im),s(im) b0=1.67d-5 t0=1.d5 L0=1.d5 …… 设定常数 可将3个变量一起 放在一个2维数组
tim=tim+dt
write(*,*)tim,dt
如0.02, 0.04, 0.06, 0.08,……。即每 0.02时间间隔则将结果输出到数据文件。
主 体 部 分
888
if(tim在某些时刻)call output(tim,d1,u1,t1)
if(输出结果的次数等于tend/0.02)goto 888 goto 999 close(10) End Subroutine output(tim,d1,u1,t1) …..
u u 0 t x x u u T T u 0 t x x x T T u u ( 1)T 0 t x x
2维流体力学方程组,*号已略去
平面三角形单元常应变单元matlab程序的编制
三角形常应变单元程序的编制与使用有限元法是求解微分方程边值问题的一种通用数值方法,该方法是一种基于变分法(或变分里兹法)而发展起来的求解微分方程的数值计算方法,以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。
有限元分析的基本步骤可归纳为三大步:结构离散、单元分析和整体分析。
对于平面问题,结构离散常用的网格形状有三角形、矩形、任意四边形,以三个顶点为节点的三角形单元是最简单的平面单元,它较矩形或四边形对曲边边界有更好的适应性,而矩形或四边形单元较三节点三角形有更高的计算精度。
Matlab语言是进行矩阵运算的强大工具,因此,用Matlab语言编写有限元中平面问题的程序有优越性。
本章将详细介绍如何利用Matlab语言编制三角形常应变单元的计算程序,程序流程图见图1。
有限元法中三节点三角形分析结构的步骤如下:1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。
2)单元分析,建立单元刚度矩阵。
3)整体分析,建立总刚矩阵。
4)建立整体结构的等效节点荷载和总荷载矩阵5)边界条件处理。
6)解方程,求出节点位移。
7)求出各单元的单元应力。
8)计算结果整理。
计算结果整理包括位移和应力两个方面;位移计算结果一般不需要特别的处理,利用计算出的节点位移分量,就可画出结构任意方向的位移云图;而应力解的误差表现在单元内部不满足平衡方程,单元与单元边界处应力一般不连续,在边界上应力解一般与力的边界条件不相符合。
图1 程序流程图1.1 程序说明%******************************************************************* % 三角形常应变单元求解结构主程序%******************************************************************* ●功能:运用有限元法中三角形常应变单元解平面问题的计算主程序。
用常应变三角形单元解弹性力学平面问题的程序
用常应变三角形单元解弹性力学平面问题的程序******************************************************************** ANALYSIS PROGTAM OF FINITE ELEMENT METHOD ** FOR PLANE STRESS/STRAIN OF TRIANGULAR ELEMENT ** ----- FEMT3.FOR ----- **------------------------------------------------------------- ** Subroutines: 1-SDATA, 2-STE, 3-ATE, 4-DTE, 5-BTE, 6-STIFF ** 7-EQUPE, 8-INSCD, 9-BGSMT, 10-SIGME ********************************************************************DIMENSION LND(50,3),X(100),Y(100),JR(20,3),PJ(20,3),P(200)REAL KS(200,100)OPEN(5,FILE='FEMT3.DAT')OPEN(6,FILE='FEMT3.OUT',STATUS='NEW')READ(5,*) NJ,NE,NS,NPJ,IPS(结点、单元、支承、荷载、类型)WRITE(6,*)' FINITE ELEMENT ANALYSIS IN PLANE PROBLEM'WRITE(6,*)' SOURCE DATA OUTPUT'WRITE(6,20) NJ,NE,NS,NPJ,IPS20 FORMAT(4X,'NJ',3X,'NE',3X,'NS',3X,'NPJ',2X,'IPS'/1X,5I5)IF(IPS.EQ.0) WRITE(6,*)' PLANE STRESS PROBLEM'IF(IPS.EQ.1) WRITE(6,*)' PLANE STRAIN PROBLEM'CALL SDATA(NJ,NE,NS,NW,NPJ,IPS,E,PR,T,V,LND,X,Y,JR,PJ)NJ2=2*NJWRITE(6,50) NJ250 FORMAT(/1X,'DEGREES OF FREEDOM=',I5)WRITE(6,60) NW60 FORMAT(1X,'BAND WIDTH=',I5)CALL STIFF(NJ,NE,NJ2,NW,LND,X,Y,E,PR,T,KS)(总刚6)CALL EQUPE(NJ,NE,NPJ,NJ2,T,V,LND,X,Y,PJ,P)({P}7)CALL INSCD(NS,NW,NJ2,JR,KS,P)(引入支承条件8)CALL BGSMT(NJ,NJ2,NW,KS,P)(解方程9)CALL SIGME(NE,NJ,NJ2,E,PR,LND,X,Y,P)(求应力10)CLOSE(5)CLOSE(6)END*--------------------------------------------------------C SUBPROGRAM-1C INPUT STRUCTURAL DATASUBROUTINE SDATA(NJ,NE,NS,NW,NPJ,IPS,E,PR,* T,V,LND,X,Y,JR,PJ)DIMENSION LND(NE,3),X(NJ),Y(NJ),JR(NS,3),PJ(NPJ,3)READ(5,*) E,PR,T,V(弹性模量、泊松比、厚度、容重)WRITE(6,10) E,PR,T,V10 FORMAT(/6X,'E',10X,'PR',9X,'T',9X,'V'/,4F10.2)READ(5,*)((LND(I,J),J=1,3),I=1,NE)(结点编码)WRITE(6,20)20 FORMAT(/1X,'ELEMENT INFORMATION'/3X,'ELEM',3X,* 'I J K'/)WRITE(6,30)(I,(LND(I,J),J=1,3),I=1,NE)30 FORMAT(1X,4I5)READ(5,*)(X(I),Y(I),I=1,NJ)(结点坐标)WRITE(6,40)40 FORMAT(/1X,'COORDINATES OF NODES'/3X,'NODES',* 8X,'X',13X,'Y')WRITE(6,50)(I,X(I),Y(I),I=1,NJ)50 FORMAT(1X,I5,2E15.6)READ(5,*)((JR(I,J),J=1,3),I=1,NS)(约束信息)WRITE(6,60)60 FORMAT(/1X,'CONSTRAINED NODES'/3X,'NODE',3X,'X',4X,'Y') WRITE(6,70)((JR(I,J),J=1,3),I=1,NS)70 FORMAT(1X,3I5)READ(5,*)((PJ(I,J),J=1,3),I=1,NPJ)(荷载信息)WRITE(6,80)80 FORMAT(/1X,'LOAD CASES'/3X,'NODE',8X,'X',13X,'Y')WRITE(6,90)((PJ(I,J),J=1,3),I=1,NPJ)90 FORMAT(1X,F5.0,2E15.6)100 NW=0(半带宽)DO 110 IE=1,NEDO 110 I=1,3DO 110 J=1,3IW=IABS(LND(IE,I)-LND(IE,J))IF(NW.LT.IW) THENNW=IWENDIF110 CONTINUENW=(NW+1)*2IF(IPS.NE.0) THENE=E/(1.0-PR*PR)PR=PR/(1.0-PR)ENDIFEND*---------------------------------------------------------C SUBPROGRAM-2C CALCULATE ELEMENT STIFFNESS MATRIXSUBROUTINE STE(IE,NJ,NE,LND,X,Y,E,PR,T,KE)DIMENSION LND(NE,3),X(NJ),Y(NJ),B(3,6),D(3,3)REAL KE(6,6)CALL ATE(IE,NJ,NE,LND,X,Y,AE)CALL DTE(E,PR,D)CALL BTE(IE,NJ,NE,LND,X,Y,AE,B)DO 10 I=1,6DO 10 J=1,6KE(I,J)=0.DO 10 K=1,3DO 10 K1=1,310 KE(I,J)=KE(I,J)+B(K,I)*D(K,K1)*B(K1,J)C=AE*TDO 30 I=1,6DO 30 J=1,630 KE(I,J)=KE(I,J)*CEND*------------------------------------------------ C SUBPROGRAM-3C CALCULATE ELEMENT AREASUBROUTINE ATE(IE,NJ,NE,LND,X,Y,AE)DIMENSION LND(NE,3),X(NJ),Y(NJ)I=LND(IE,1)J=LND(IE,2)K=LND(IE,3)XIJ=X(J)-X(I)YIJ=Y(J)-Y(I)XIK=X(K)-X(I)YIK=Y(K)-Y(I)AE=.5*(XIJ*YIK-XIK*YIJ)END*---------------------------------------------- C SUBPROGRAM-4C CALCULATE ELASTICITY MATRIXSUBROUTINE DTE(E,PR,D)DIMENSION D(3,3)DO 10 I=1,3DO 10 J=1,310 D(I,J)=0.D(1,1)=E/(1.-PR*PR)D(1,2)=E*PR/(1.-PR*PR)D(2,1)=D(1,2)D(2,2)=D(1,1)D(3,3)=.5*E/(1.+PR)END*------------------------------------------------ C SUBPROGRAM-5C CALCULATE MATRIX [B]SUBROUTINE BTE(IE,NJ,NE,LND,X,Y,AE,B)DIMENSION LND(NE,3),X(NJ),Y(NJ),B(3,6)I=LND(IE,1)J=LND(IE,2)K=LND(IE,3)DO 10 II=1,3DO 10 JJ=1,610 B(II,JJ)=0.B(1,1)=Y(J)-Y(K)B(1,3)=Y(K)-Y(I)B(1,5)=Y(I)-Y(J)B(2,2)=X(K)-X(J)B(2,4)=X(I)-X(K)B(2,6)=X(J)-X(I)B(3,1)=B(2,2)B(3,2)=B(1,1)B(3,3)=B(2,4)B(3,4)=B(1,3)B(3,5)=B(2,6)B(3,6)=B(1,5)DO 20 I1=1,3DO 20 J1=1,620 B(I1,J1)=.5/AE*B(I1,J1)END*------------------------------------------------------- C SUBPROGRAM-6C CALCULATE GLOBAL STIFFNESS MATRIXSUBROUTINE STIFF(NJ,NE,NJ2,NW,LND,X,Y,E,PR,T,KS) DIMENSION LND(NE,3),X(NJ),Y(NJ)REAL KS(NJ2,NW),KE(6,6)DO 5 I=1,NJ2DO 5 J=1,NW5 KS(I,J)=0.DO 10 IE=1,NECALL STE(IE,NJ,NE,LND,X,Y,E,PR,T,KE)DO 10 I=1,3IZ=LND(IE,I)DO 10 II=1,2IH =2*(I -1)+IIIDH=2*(IZ-1)+IIDO 10 J=1,3JZ=LND(IE,J)DO 10 JJ=1,2L =2*(J -1)+JJIL=2*(JZ-1)+JJIF(IL.GE.IDH) THENIDL=IL-IDH+1KS(IDH,IDL)=KS(IDH,IDL)+KE(IH,L)ENDIF10 CONTINUEEND*-------------------------------------------------------- C SUBPROGRAM-7C CALCULATE NODAL LOAD VECTORSUBROUTINE EQUPE(NJ,NE,NPJ,NJ2,T,V,LND,X,Y,PJ,P) DIMENSION LND(NE,3),X(NJ),Y(NJ),PJ(NPJ,3),P(NJ2) DO 10 I=1,NJ210 P(I)=0.DO 20 I=1,NPJII=PJ(I,1)P(2*II-1)=PJ(I,2)20 P(2*II)=PJ(I,3)30 IF(V.EQ.0.) GOTO 50DO 40 IE=1,NECALL ATE(IE,NJ,NE,LND,X,Y,AE)PE=-V*AE*T/3.DO 40 I=1,3II=LND(IE,I)40 P(2*II)=P(2*II)+PE50 RETURNEND*---------------------------------------------C SUBPROGRAM-8C INTRODUCE BOUNDARY CONDITIONSUBROUTINE INSCD(NS,NW,NJ2,JR,KS,P)DIMENSION P(NJ2),JR(NS,3)REAL KS(NJ2,NW)DO 30 I=1,NSIR=JR(I,1)DO 30 J=2,3IF(JR(I,J).EQ.0) GOTO 30II=2*IR+J-3KS(II,1)=1.DO 10 JJ=2,NW10 KS(II,JJ)=0.IF(II.GT.NW) JO=NWIF(II.LE.NW) JO=IIDO 20 JJ=2,JO20 KS(II-JJ+1,JJ)=0.P(II)=0.30 CONTINUEEND*-------------------------------------------C SUBPROGRAM-9C SOLVE EQUATIONS BY GS METHODSUBROUTINE BGSMT(NJ,NJ2,NW,KS,P)DIMENSION P(NJ2)REAL KS(NJ2,NW)NJ1=NJ2-1DO 20 K=1,NJ1IF(NJ2.GT.K+NW-1) IM=K+NW-1IF(NJ2.LE.K+NW-1) IM=NJ2K1=K+1DO 20 I=K1,IML=I-K+1C=KS(K,L)/KS(K,1)IW=NW-L+1DO 10 J=1,IWM=J+I-K10 KS(I,J)=KS(I,J)-C*KS(K,M)20 P(I)=P(I)-C*P(K)P(NJ2)=P(NJ2)/KS(NJ2,1)DO 40 I1=1,NJ1I=NJ2-I1IF(NW.GT.NJ2-I+1) JO=NJ2-I+1IF(NW.LE.NJ2-I+1) JO=NWDO 30 J=2,JOK=J+I-130 P(I)=P(I)-KS(I,J)*P(K)40 P(I)=P(I)/KS(I,1)WRITE(6,50)50 FORMAT(/1X,'NODAL DISPLACEMENTS'/3X,* 'NODE',5X,'X-DISP.',8X,'Y-DISP.')DO 60 I=1,NJ60 WRITE(6,70) I,P(2*I-1),P(2*I)70 FORMAT(1X,I5,2E15.6)END*--------------------------------------------------- C SUBPROGRAM-10C CALCULATE ELEMENT STRESS MATRIXSUBROUTINE SIGME(NE,NJ,NJ2,E,PR,LND,X,Y,P)DIMENSION LND(NE,3),X(NJ),Y(NJ),D(3,3),B(3,6), * S(3,6),ST(3),P(NJ2),DE(6)WRITE(6,*)WRITE(6,*)' ELEMENT STRESSES'CALL DTE(E,PR,D)DO 50 IE=1,NECALL ATE(IE,NJ,NE,LND,X,Y,AE)CALL BTE(IE,NJ,NE,LND,X,Y,AE,B)DO 10 I=1,3DO 10 J=1,6S(I,J)=0.DO 10 K=1,310 S(I,J)=S(I,J)+D(I,K)*B(K,J)DO 20 I=1,3DO 20 J=1,2IH=2*(I-1)+JIW=2*(LND(IE,I)-1)+J20 DE(IH)=P(IW)DO 30 I=1,3ST(I)=0.DO 30 J=1,630 ST(I)=ST(I)+S(I,J)*DE(J)SGX=ST(1)SGY=ST(2)TXY=ST(3)ASG=(SGX+SGY)*.5RSG=SQRT(.25*(SGX-SGY)**2+TXY*TXY)SGMA=ASG+RSGSGMI=ASG-RSGIF(SGY.EQ.SGMI) CETA=0.IF(SGY.NE.SGMI) CETA=90.-57.29578*ATAN* (TXY/(SGY-SGMI))50 WRITE(6,60) IE,SGX,SGY,TXY,SGMA,SGMI,CETA60 FORMAT(1X,'ELEMENT NO.=',I4/2X,'SIGX=',E10.4, * 2X,'SIGY=',E10.4,2X,'TXY =',E10.4/2X,'SGMA=', * E10.4,2X,'SGMI=',E10.4,2X,'CETA=',E10.4)END。
Fortran语言有限元程序分析报告平面钢架
程序框图:程序特点:问题类型:可用于计算结构力学的平面刚架问题单元类型:直接利用杆单元载荷类型:节点载荷及非节点载荷,其中非节点载荷包括均布荷载和垂直于杆件的集中荷载材料性质:所有杆单元几何性质相同,且由相同的均匀材料组成方程求解:结构刚度矩阵采用满阵存放,Gauss消元过程采用《数值分析》中的列主元素消去法输入文件:按先处理法的要求,由手工生成输入数据文件1.主要变量:ne: 单元个数nj: 结点个数n: 自由度e: 弹性模量(单位:KN/m2)a: 杆截面积zi: 惯性矩np: 结点荷载个数nf: 非结点荷载个数x(nj): 存放结点的x轴坐标y(nj): 存放结点的y轴坐标ij(ne,2): 存放单元结点编号,其中ij(nj,1)存放起始结点编号,ij(nj,2)存放终止结点编号jn(nj,3): 存放结点位移编号,以组成单元定位数组pj(np,3): 存放结点荷载信息,其中pj(np,1)存放结点荷载作用结点号,pj(np,2)存放荷载方向代码(1—x方向;2—y方向;3—转角),pj(np,3)存放荷载大小pf(ne,4): 存放非结点荷载信息,其中pf(ne,1)存放荷载作用单元号,pf(ne,2)存放荷载代码(1—均布荷载,2—垂直集中荷载),pf(ne,3)存放荷载大小,pf(ne,4)荷载作用距离(均布荷载,集中荷载均以单元起始结点为计算起始位置)。
2.子例行子程序哑元信息:第一部分:基本部分I. subroutine lsc(Length & Sin & Cos):输入哑元:m(单元号),nj,ne,x,y,ij输出哑元:bl(杆件长度),si(正弦值),co(余弦值)II. subroutine elv(Element Location Vector):输入哑元:m,ne,nj,ij,jn输出哑元:lv(单元定位数组)III. subroutine esm(Element Stiffness Matrix):输入哑元:e,a,zi,bl,si,co输出哑元:ek(整体坐标系下的单刚矩阵)IV. subroutine eff(Element Fixed-end Forces)输入哑元:i,pf,nf,bl输出哑元:fo(局部坐标系下单元固端力)第二部分:主程序直接调用部分I. subroutine tsm(Total Stiffness Matrix 计算总刚矩阵)输入哑元:ne,nj,n,e,x,y,ij,a,zi,jn输出哑元:tkII. subroutine jlp(Joint Load Vector 计算结点荷载)输入哑元:ne,nj,n,np,nf,x,y,ij,jn,pj,pf输出哑元:p(结点荷载列矩阵)III. subroutine gauss(带列主元素消去的高斯法)输入(输出)哑元:tk,p,n ;(注意,算出位移后,直接存储到结点荷载列矩阵)IV. subroutine mvn(Member-end forces of elements 计算各单元的杆端力) 输入哑元:ne,nj,n,nf,e,x,y,ij,a,zi,jn,pf,p3.文件管理:源程序文件:pff.for程序需读入的数据文件:input.txt程序输出的数据文件:output4.数据文件格式:1.第1部分:每行数据依次为:结点号,结点x方向位移,结点y方向位移,结点转角位移2. 第2部分:每行数据依次为:单元号,xi F ,yi F ,i M ,xj F ,yj F ,j M源程序:program PFFimplicit nonereal tk(100,100),x(50),y(50),p(100),pj(50,3),pf(50,4) integer ij(50,2),jn(50,3)integer ne,nj,n,np,nfreal e,a,ziopen(1,file="input.txt",status="old")open(2,file="output.txt",status="old")read(1,*) ne,nj,n,e,a,zi,np,nfcall input(ne,nj,x,y,ij,jn,np,nf,pj,pf)call tsm(ne,nj,n,e,x,y,ij,a,zi,jn,tk)call jlp(ne,nj,n,np,nf,x,y,ij,jn,pj,pf,p)call gauss(tk,p,n)call mvn(ne,nj,n,nf,e,x,y,ij,a,zi,jn,pf,p)endsubroutine input(ne,nj,x,y,ij,jn,np,nf,pj,pf)dimension x(nj),y(nj),ij(ne,2),jn(nj,3),pj(np,3),pf(nf,4) read(1,*)(x(i),y(i),i=1,nj)read(1,*)(ij(i,1),ij(i,2),i=1,ne)read(1,*)((jn(i,j),j=1,3),i=1,nj)if (np>0) read(1,*)((pj(i,j),j=1,3),i=1,np)if (nf>0) read(1,*)((pf(i,j),j=1,4),i=1,nf)endsubroutine tsm(ne,nj,n,e,x,y,ij,a,zi,jn,tk) dimensionx(nj),y(nj),ij(ne,2),jn(nj,3),tk(n,n),ek(6,6),lv(6) do i=1,ndo j=1,ntk(i,j)=0enddoenddodo m=1,necall lsc(m,ne,nj,x,y,ij,bl,si,co)call esm(e,a,zi,bl,si,co,ek)call elv(m,ne,nj,ij,jn,lv)do l=1,6i=lv(l)if (i/=0) thendo k=1,6j=lv(k)if (j/=0) tk(i,j)=tk(i,j)+ek(l,k) enddoendifenddoenddoendsubroutine lsc(m,ne,nj,x,y,ij,bl,si,co)dimension x(nj),y(nj),ij(ne,2)i=ij(m,1)j=ij(m,2)dx=x(j)-x(i)dy=y(j)-y(i)bl=sqrt(dx*dx+dy*dy)si=dy/blco=dx/blendsubroutine esm(e,a,zi,bl,si,co,ek)dimension ek(6,6)c1=e*a/blc2=2.0*e*zi/blc3=3.0*c2/blc4=2.0*c3/bls1=c1*co*co+c4*si*si s2=(c1-c4)*si*cos3=c3*sis4=c1*si*si+c4*co*co s5=c3*cos6=c2ek(1,1)=s1ek(1,2)=s2ek(1,3)=-s3ek(1,4)=-s1ek(1,5)=-s2ek(1,6)=-s3ek(2,2)=s4ek(2,3)=s5ek(2,4)=-s2ek(2,5)=-s4ek(2,6)=s5ek(3,3)=2*s6ek(3,4)=s3ek(3,5)=-s5ek(3,6)=s6ek(4,4)=s1ek(4,5)=s2ek(4,6)=s3ek(5,5)=s4ek(5,6)=-s5ek(6,6)=2.0*s6do i=1,5do j=i+1,6ek(j,i)=ek(i,j)enddoenddoendsubroutine elv(m,ne,nj,ij,jn,lv)dimension ij(ne,2),jn(nj,3),lv(6) i=ij(m,1)j=ij(m,2)do k=1,3lv(k)=jn(i,k)lv(k+3)=jn(j,k)enddoendsubroutine jlp(ne,nj,n,np,nf,x,y,ij,jn,pj,pf,p)dimensionx(nj),y(nj),ij(ne,2),jn(nj,3),pj(np,3),pf(nf,4),p(n),fo(6), pe(6),lv(6)do i=1,np(i)=0.0enddoif (np>0) thendo i=1,npj=int(pj(i,1))k=int(pj(i,2))l=jn(j,k)if (l/=0) p(l)=pj(i,3)enddoendifif(nf>0) thendo i=1,nfm=int(pf(i,1))call lsc(m,ne,nj,x,y,ij,bl,si,co)call eff(i,pf,nf,bl,fo)call elv(m,ne,nj,ij,jn,lv)pe(1)=-fo(1)*co+fo(2)*sipe(2)=-fo(1)*si-fo(2)*cope(3)=-fo(3)pe(4)=-fo(4)*co+fo(5)*sipe(5)=-fo(4)*si-fo(5)*cope(6)=-fo(6)do j=1,6l=lv(j)if (l/=0) p(l)=p(l)+pe(j) enddoenddoendifendsubroutine eff(i,pf,nf,bl,fo) dimension pf(nf,4),fo(6)no=int(pf(i,2))q=pf(i,3)c=pf(i,4)b=bl-cc1=c/blc2=c1*c1c3=c1*c2do j=1,6fo(j)=0.0enddogoto(10,20),no10 fo(2)=-q*c*(1.0-c2+c3/2.0)fo(3)=-q*c*c*(0.5-2.0*c1/3.0+0.25*c2) fo(5)=-q*c*c2*(1.0-0.5*c1)fo(6)=q*c*c*c1*(1.0/3.0-0.25*c1) return20 fo(2)=-q*b*b*(1.0+2.0*c1)/bl/blfo(3)=-q*c*b*b/bl/blfo(5)=-q*c2*(1.0+2.0*b/bl)fo(6)=q*c2*breturnendsubroutine gauss(e,d,n)dimension e(n,n),d(n),a(n,n+1)do i=1,ndo j=1,na(i,j)=e(i,j)enddoenddodo i=1,na(i,n+1)=d(i)enddodo k=1,n-1do i=k+1,nif (abs(a(i,k))>abs(a(k,k))) then do j=1,n+1c=a(k,j)a(k,j)=a(i,j)a(i,j)=cenddoelseendifenddodo i=k+1,na(i,k)=a(i,k)/a(k,k)do j=k+1,n+1a(i,j)=a(i,j)-a(i,k)*a(k,j)enddoenddoenddoa(n,n+1)=a(n,n+1)/a(n,n)do i=n-1,1,-1do j=i+1,np=p+a(i,j)*a(j,n+1)enddoa(i,n+1)=(a(i,n+1)-p)/a(i,i)p=0enddodo i=1,nd(i)=a(i,n+1)enddoendsubroutine mvn(ne,nj,n,nf,e,x,y,ij,a,zi,jn,pf,p)dimensionx(nj),y(nj),ij(ne,2),jn(nj,3),pf(nf,4),lv(6),fo(6),d(6),fd( 6),f(6),ek(6,6),p(n)write(2,10)10 format(//2x,"结点位移"/5x,"结点号",9x,"u向位移",9x,"v向位移",9x,"角位移")do j=1,njdo i=1,3d(i)=0.0l=jn(j,i)if (l/=0) d(i)=p(l)enddowrite(2,20)j,d(1),d(2),d(3)20 format(2x,i6,4x,3e15.6)enddowrite(2,30)30 format(/2x,"单元杆端力及弯矩"/4x,"单元号",13x,"Fx",17x,"Fy",17x,"弯矩")do m=1,necall lsc(m,ne,nj,x,y,ij,bl,si,co)call esm(e,a,zi,bl,si,co,ek)call elv(m,ne,nj,ij,jn,lv)do i=1,6l=lv(i)d(i)=0.0if(l/=0) d(i)=p(l)do i=1,6fd(i)=0.0do j=1,6fd(i)=fd(i)+ek(i,j)*d(j) enddoenddof(1)=fd(1)*co+fd(2)*sif(2)=-fd(1)*si+fd(2)*cof(3)=fd(3)f(4)=fd(4)*co+fd(5)*sif(5)=-fd(4)*si+fd(5)*cof(6)=fd(6)if (nf>0) thendo i=1,nfl=int(pf(i,1))if (m==l) thencall eff(i,pf,nf,bl,fo) do j=1,6f(j)=f(j)+fo(j)enddoendifendifwrite(2,40)m,f40format(2x,i8,4x,"Ix=",f12.4,3x,"Iy=",f12.4,3x,"Mi=",f12.4/14x,"Jx=",f12.4,3x,"Jy=",f12.4,3x,"Mj=",f12.4)enddoend【算例】:课题二:平面刚架有限元程序分析题目一:分析如图所示结构,其中5AB BC CD m ===, 3.5ED EF FG m ===,40GPa E =,20.02m A =,44410m I -=⨯。
有限元教学程序及使用说明
附录有限元教学程序及使用说明§A-1平面三角形3结点有限元程序1、程序名:FEM3.FOR,FEM3.EXE2、程序功能本程序能计算弹性力学的平面应力问题和平面应变问题;能考虑自重和结点集中力两种荷载的作用,在计算自重时y轴取垂直向上为正;能处理非零已知位移,如支座沉降的作用。
主要输出的内容包括:结点位移、单元应力、主应力、第一主应力与x轴的夹角以及约束结点的支座反力。
程序采用Visual Fortran 编制而成,输入数据全部采用自由格式。
3、程序流程及框图图A-1 程序流程图277278图A-2 程序框图其中,各子程序的功能如下:INPUT ——输入结点坐标、单元信息和材料参数; MR ——形成结点自由度序号矩阵;FORMMA ——形成指标矩阵MA (N )并调用其他功能子程序,相当于主控程序; DIV ——取出单元的3个结点号码和该单元的材料号并计算单元的b i ,c i 等; MGK ——形成整体劲度矩阵并按一维存放在SK (NH )中; LOAD ——形成整体结点荷载列阵F ; OUTPUT ——输出结点位移或结点荷载;TREAT ——由于有非零已知位移,对K 和F 进行处理; DECOMP ——整体劲度矩阵的分解运算; FOBA ——前代、回代求出未知结点位移 ; ERFAC ——计算约束结点的支座反力; KRS ——计算单元劲度矩阵中的子块K rs 。
4、程序使用说明当程序开始运行时,按屏幕提示,键入数据文件的名字。
在运行程序之前,必须根据程序中输入要求建立一个存放原始数据的文件,这个文件的名字由少于8个字符或数字组成。
数据文件包括如下内容: ⑴ 总控信息,共一条,9个数据NP ,NE ,NM ,NR ,NI ,NL ,NG ,ND ,NC NP ——结点总数; NE ——单元总数;NM ——材料类型总数;279NR ——约束结点总数;NI ——问题类型标识,0为平面应力问题,1为平面应变问题; NL ——受荷载作用的结点的数目;NG ——考虑自重作用为1,不计自重为0; ND ——非零已知位移结点的数目;NC ——要计算支座约束反力的结点数目。
平面三角形单元常应变单元matlab程序的编制
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
三角形常应变单元程序的编制与使用
有限元法是求解微分方程边值问题的一种通用数值方法,该方法是一种基于变分法(或变分里兹法)而发展起来的求解微分方程的数值计算方法,以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。
有限元法中三节点三角形分析结构的步骤如下:
1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。
2)单元分析,建立单元刚度矩阵。
3)整体分析,建立总刚矩阵。
4)建立整体结构的等效。
POISS=fscanf(FP1,'%f',1)%泊松比
THICK=fscanf(FP1,'%d',1)%厚度
LNODS=fscanf(FP1,'%d',[3,NELEM])'%单元定义数组(单元结点号)
功能:运用有限元法中三角形常应变单元解平面问题的计算主程序。
基本思想:单元结点按右手法则顺序编号。
荷载类型:可计算结点荷载。
说明:主程序的作用是通过赋值语句、读取和写入文件、函数调用等完成算法的全过程,即实现程序流程图的程序表达。
%-----------------------------------------------------------------------------------------------------
globalFORCEFIXED
globalBMATXDMATXSMATXAREA
Fortran语言编写的有限元结构程序
算例一计算简图及结果输出用平面刚架静力计算程序下图结构的内力。
各杆EA,EI相同。
已知:642EA=4.010KN,EI=1.610KN m⨯⨯∙计算简图如下:(1)输入原始数据控制参数3,5,8,7,1,2(NE,NJ,N,NW,NPJ,NPF)结点坐标集结点未知量编号0.0,0.0,0,0 0.0,4.0,1,2,3 0.0,4.0,1,2,4 4.0,4.0,5,6,7 4.0,0.0,0,0,8单元杆端结点编号及单元EA、EI 1,2,4.0E+06,1.6E+04 3,4,4.0E+06,1.6E+04 5,4,4.0E+06,1.6E+04结点荷载7.0,-15.非结点荷载1.0,2.0,2.0,-2.0,1.0,4.0,-25.0(2)输出结果NE= 3 NJ= 5 N= 8 NW= 7 NPJ= 1 NPF= 2 NODE X Y XX YY ZZ1 0.0000 0.0000 0 0 02 0.0000 4.0000 1 2 33 0.0000 4.0000 1 2 44 4.0000 4.000056 75 4.0000 0.0000 0 0 8ELEMENT NODE-I NODE-J EA EI1 12 0.400000E+07 0.160000E+052 3 4 0.400000E+07 0.160000E+053 54 0.400000E+07 0.160000E+05CODE PX-PY-PM7. -15.0000ELEMENT IND A Q1. 2. 2.0000 -18.00002. 1. 4.0000 -25.0000NODE U V CETA1 0.000000E+00 0.000000E+00 0.000000E+002 -0.221743E-02 -0.464619E-04 -0.139404E-023 -0.221743E-02 -0.464619E-04 0.357876E-024 -0.222472E-02 -0.535381E-04 -0.298554E-025 0.000000E+00 0.000000E+00 0.658499E-03ELEMENT N Q M1 N1= 46.4619 Q1= 10.7119 M1= -6.8477N2= -46.4619 Q2= 7.2881 M2= 0.00002 N1= 7.2881 Q1= 46.4619 M1= 0.0000N2= -7.2881 Q2= 53.5381 M2= 14.15233 N1= 53.5381 Q1= 7.2881 M1= 0.0000N2= -53.5381 Q2= -7.2881 M2= -29.1523算例二计算简图及结果输出用平面刚架静力计算程序下图结构的内力。