最值问题集锦05-备战2020年中考数学之最值问题集锦(原卷版)

合集下载

2020年中考数学压轴题专题4 几何最值存在性问题学案(原版+解析)

2020年中考数学压轴题专题4 几何最值存在性问题学案(原版+解析)

专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。

几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。

【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB 的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN 最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx +c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.B C M N为顶点(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以,,,的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x +c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q (2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB 的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x=-+的图像与坐标轴交于A、B两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点. (Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值; (Ⅲ)点1(,)2Q Q b y +在抛物线上,当22AM QM +的最小值为332时,求b 的值. 16.(2019·湖南中考真题)如图,抛物线y =ax 2+bx (a >0)过点E (8,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左侧),点C 、D 在抛物线上,∠BAD 的平分线AM 交BC 于点M ,点N 是CD 的中点,已知OA =2,且OA :AD =1:3.(1)求抛物线的解析式;(2)F 、G 分别为x 轴,y 轴上的动点,顺次连接M 、N 、G 、F 构成四边形MNGF ,求四边形MNGF 周长的最小值;(3)在x 轴下方且在抛物线上是否存在点P ,使△ODP 中OD 610求出点P 的坐标;若不存在,请说明理由;(4)矩形ABCD 不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K 、L ,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点D (﹣2,﹣3)和点E (3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标; (3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P →M →N →A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.专题四 几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

中考数学专题讲练03 几何最值类问题综合(原卷版)

中考数学专题讲练03 几何最值类问题综合(原卷版)

培优冲刺03 几何最值类问题综合本考点是中考五星高频考点,难度中等偏上,在全国很多地市的中考试卷中多有考查。

(2022年柳州中考试卷第18题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为.【分析】连接DG,将DG绕点D逆时针旋转90°得DM,连接MG,CM,MF,作MH ⊥CD于H,利用SAS证明△EDG≌△DFM,得MF=EG=2,再说明△DGC≌△DMH (AAS),得CG=DH=2,MH=CD=4,求出CM的长,再利用三角形三边关系可得答案.【解答】解:方法一:连接DG,将DG绕点D逆时针旋转90°得DM,连接MG,CM,MF,作MH⊥CD于H,∵∠EDF=∠GDM,∴∠EDG=∠FDM,∵DE=DF,DG=DM,∴△EDG≌△MDF(SAS),∴MF=EG=2,∵∠GDC=∠DMH,∠DCG=∠DHM,DG=DM,∴△DGC≌△MDH(AAS),∴CG=DH=2,MH=CD=4,∴CM==2,∵CF≥CM﹣MF,∴CF的最小值为2﹣2,方法二:连接AG、AE,由方法一同理得,AE=CF,AG=2,∵AE≥AG﹣EG=2﹣2,∴AE的最小值为2﹣2,∴CF的最小值为2﹣2,故答案为:2﹣2.点评:本题主要考查了正方形的性质、旋转的性质、全等三角形的判定和性质,勾股定理,三角形三边关系等知识,做辅助线构造全等三角形是解题的关键。

初中数学中,几何最值问题属于难度较大的一类题,问题环境可以是三角形、四边形、圆或者反比例函数、二次函数。

而常用到的最值原理则有:两点之间线段最短(三点共线)、点到直线的距离垂线段最短、圆和圆外定点的最值原理等。

这类题的原理虽然较为固定,但对学生的逻辑思维能力要求较高,综合型较强。

本考点是中考五星高频考点,难度较大,个别还会以压轴题出现,在全国多地市的中考试卷中多有考查。

专题05 方程-2020年中考数学模拟试题汇编考前必练(原卷版)

专题05 方程-2020年中考数学模拟试题汇编考前必练(原卷版)

2020年中考数学模拟试题汇编考前必练专题05方程一.选择题1.(2020•天河区模拟)已知关于x 的方程323a x bx --=的解是2x =,则代数式86a b -的值为()A.124- B.0 C.124 D.22.(2020•永康市模拟)明代程大位的《算法统宗》记载这样一首打油诗:《李白沽酒》无事街上走,提壶去买酒.遇店加一倍,见花喝一斗.三遇花和店,喝光壶中酒.就问此壶中,原有多少酒?李白出门遇到花和店各三次,且花、店交替遇到,则此打油诗答案为()A.34斗 B.78斗 C.98斗 D.118斗3.(2020•沙坪坝区校级一模)《九章算术》是中国古代第一部数学专著,也是世界上最早的印刷本数学书,它的出现标志着中国古代数学体系的形成.书中有如下问题:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?大意是:有几个人一起去买一件物品,如果每人出8元,则多了3元;如果每人出7元,则少了4元,问有多少人?该物品价值多少元?若设有x 人,物品价值y 元,根据题意,可列方程为()A.8374x y y x -=⎧⎨-=⎩ B.8374y x y x -=⎧⎨-=⎩C.8374x y x y -=⎧⎨-=⎩ D.8374y x x y +=⎧⎨-=⎩4.(2020•龙沙区一模)甲乙丙三人做一项工作,三人每天的工作效率分别为a 、b 、c ,若甲乙一天工作量和是丙2天的工作量,乙丙一天的工作量和是甲5天的工作量,下列结论正确的是()A.甲的工作效率最高B.丙的工作效率最高C.3c a =D.:3:2b c =5.(2020•仙居县模拟)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均单株盈利5元;以同样的栽培条件,若每盆每増加1株,平均单株盈利就减少0.5元,要使每盆的盈利为20元,需要每盆増加几株花苗?设每盆增加x 株花苗,下面列出的方程中符合题意的是()A.(3)(50.5)20x x +-= B.(3)(50.5)20x x -+=C.(3)(50.5)20x x --= D.(3)(50.5)20x x ++=6.(2020•井研县一模)关于x 的一元二次方程2(3)2(1)0x k x k -+++=的根的情况是()A.有两个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根7.(2020•沙坪坝区校级一模)如果关于x 的分式方程1222x a x x++=--有非负整数解,关于y 的不等式组21235(2)(3)y y y y a +⎧+⎪⎨⎪-<+-⎩ 有且只有4个整数解,则所有符合条件的a 的和是()A.3- B.2- C.1 D.28.(2020•鹿城区校级二模)王师傅乘大巴车从甲地到相距60千米的乙地办事,办好事后乘出租车返回甲地,出租车的平均速度比大巴车快20千米/时,回来时乘出租车所花时间比去时乘大巴车节省了15.设大巴车的平均速度为x 千米/时,则下面列出的方程中正确的是()A.60160(1)520x x =-⨯+ B.16060(1520x x -⨯=+C.60160205x x +=+ D.60601205x x =-+二.填空题9.(2020•新余模拟)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x 人,可列方程为__________.10.(2009•江门校级一模)已知方程52x m +=-的解是1x =,则m 的值为__________.11.(2020•北京模拟)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x 匹,大马有y 匹,依题意,可列方程组为__________.12.(2020•兖州区一模)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为__________.13.(2020•衡水模拟)已知1-是方程20-+的值为__________.a b bx ax b+-=的一个根,则22214.(2020•成华区模拟)若方程2240--=的两个实数根为α,β,则22x xαβ+的值为__________. 15.(2020•李沧区一模)随着市民环保意识的日渐增强,文明、绿色的环保祭扫方式(鲜花祭奠、网络祭奠等)正成为一种趋势,清明节期间,我区某花店用4000元购买了若干花束,很快就售完了,接着又用4500元购买了第二批花束.已知第二次购买的花束的数量是第一批所购花束的数量的1.5倍,且每束花的进价比第一批的进价少5元.若设第一批所购花束的数量为x束,则可列方程为__________.16.(2020•嘉兴模拟)某物流仓储公司用A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为__________.三.解答题17.(2018•山西模拟)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型313元 2.3元/公里纯电动型38元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.18.(2017•红桥区一模)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按售价打九折超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?19.(2017•萍乡二模)某物流公司承接A、B两种货物运输业务,已知3月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A 货物运费单价增加了40%,B货物运费单价上涨到40元/吨;该物流公司4月承接的A种货物和B种数量与3月份相同,4月份共收取运费13000元.试求该物流公司月运输A、B两种货物各多少吨?20.(2020•运城模拟)某市园林局准备种植A种花木4200棵,B种花木2400棵.现计划安排26人同时种植这两种花木,已知每人每天能种植A种花木30棵或B种花木20棵,则应分别安排多少人种植这两种花木,才能确保同时完成各自的任务?21.(2020•渠县校级一模)已知:关于x 的方程23(1)230(0)mx m x m m -+++=≠.(1)若方程有两个相等的实数根,求m 的值;(2)求此方程的两个根(若所求方程的根不是常数,就用含m 的式子表示);(3)若m 为整数,当m 取何值时方程的两个根均为正整数?22.(2020•西乡塘区校级一模)南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的98,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了%a ,乙种树木单价下降了2%5a ,且总费用为6804元,求a 的值.23.(2020•福田区校级模拟)骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A 型车去年6月份销售总额为3.2万元,今年经过改造升级后A 型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?24.(2020•封开县一模)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?25.(2020•市南区一模)近期受疫情影响,需要居家学习,某中学为方便教师线上直播授课,计划给教师配备电脑手写板.信息城现有甲、乙两种手写板,若每台甲种手写板的价格比每台乙种手写板的价格少300元,且用6000元购买甲种手写板的数量与用7500元购买乙种手写板的数量相同.(1)求每台甲种手写板和乙种手写板的价格;(2)若学校计划到信息城购买50台手写板,购买甲种手写板的数量不少于乙种手写板数量的2倍,信息城给出的优惠方案:一次性购买不少于10台乙种手写板,则乙种手写板的价格按原价七五折优惠,否则按原价购买.请你帮学校设计一种最省钱的购买方案.26.(2020•广陵区校级模拟)2020年1月份,为抗击新型冠状病毒,某药店计划购进一批甲、乙两种型号的口罩,已知一袋甲种口罩的进价与一袋乙种口罩的进价和为40元,用90元购进甲种口罩的袋数与用150元购进乙种口罩的袋数相同.(1)求每袋甲种、乙种口罩的进价分别是多少元?(2)该药店计划购进甲、乙两种口罩共480袋,其中甲种口罩的袋数少于乙种口罩袋数的1723,药店决定此次进货的总资金不超过10000元,求商场共有几种进货方案?27.(2020•汇川区三模)在新冠疫情防控初期,防疫物资一度紧缺,为确保如期开学,某学校开学前准备采购若干把体温枪.据了解,当销量不超过200台时,体温枪的单价y(元)与销量x(把)成一次函数关系.现厂家给出价格表如表所示.x(单位:把)1050100y(单位:元)420400375(1)求y与x之间的函数关系式;(2)经调查发现,体温枪按订单数量进行生产.每把体温枪的成本m(元)与生产数量x(把)之间的函数关系如图所示.当总利润9000W 元时,求每把体温枪的成本m等于多少元?。

2024年中考数学复习 胡不归最值问题(原卷版+答案解析)

2024年中考数学复习 胡不归最值问题(原卷版+答案解析)

胡不归最值问题【专题说明】胡不归模型问题解题步骤如下;1、将所求线段和改写为“PA +b a PB ”的形式b a <1 ,若b a>1,提取系数,转化为小于1的形式解决。

2、在PB 的一侧,PA 的异侧,构造一个角度α,使得sin α=b a 3、最后利用两点之间线段最短及垂线段最短解题【模型展示】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使AC V 2+BC V 1的值最小.ACV 2+BC V 1=1V 1BC +V 1V 2AC ,记k =V 1V 2,即求BC +kAC 的最小值.构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【模型总结】在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段.【练习】1.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+12BD的最小值为( )A.32B.3C.1+32D.1+32.如图,在ΔABC中,∠A=15°,AB=10,P为AC边上的一个动点(不与A、C重合),连接BP,则22AP+PB的最小值是( )A.52B.53C.1033 D.83.ΔABC中,∠A=90°,∠B=60°,AB=2,若点D是BC边上的动点,则2AD+DC的最小值为( )A.4B.3+3C.6D.23+34.如图所示,菱形ABCO的边长为5,对角线OB的长为45,P为OB上一动点,则AP+55OP的最小值为( )A.4B.5C.25D.355.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AB=16,∠ABC=60°,D为弧AC的中点,M是弦AC上任意一点(不与端点A、C重合),连接DM,则12CM+DM的最小值是( )A.43B.33C.23D.46.在ΔABC中,∠ACB=90°,P为AC上一动点,若BC=4,AC=6,则2BP+AP的最小值为(  )A.5B.10C.52D.1027.【问题探究】在等边三角形ABC中,AD⊥BC于点D,AB=2.(1)如图1.E为AD的中点,则点E到AB的距离为 34 ;(2)如图2,M为AD上一动点.则12AM+MC的最小值为 ;【问题解决】如图3,A,B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍,那么为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,中转站M应修在距A地 km处.8.如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+12PB的最小值是 .9.如图,直角三角形ABC中,∠A=30°,BC=1,AC=3,BD是∠ABC的平分线,点P是线段BD上的动点,求CP+12BP的最小值 .10.如图,已知RtΔABC中,∠ACB=90°,∠BAC=30°,延长BC至D使CD=BC,连接AD,且AD=4,点P为线段AC上一动点,连接BP.则2BP+AP的最小值为 .11.如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+32PD的最小值等于 .12.如图,在平面直角坐标系中,直线y=-x+4的图象分别与y轴和x轴交于点A和点B.若定点P的坐标为(0,63),点Q是y轴上任意一点,则12PQ+QB的最小值为 .13.如图,在ΔABC 中,AB =5,AC =4,sin A =45,BD ⊥AC 交AC 于点D .点P 为线段BD 上的动点,则PC +35PB 的最小值为 .14.如图,在ΔABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,那么:(1)AE = 25 ;(2)CD +55BD 的最小值是 .15.如图,在ΔABC 中,∠A =90°,∠B =60°,AB =2,若D 是BC 边上的动点,则2AD +DC 的最小值为 .16.如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象交x 轴于A 、B 两点,交y 轴于C 点,P 为y 轴上的一个动点,已知A (-2,0)、C (0,-23),且抛物线的对称轴是直线x =1.(1)求此二次函数的解析式;(2)连接PB ,则12PC +PB 的最小值是 ;17.已知:如图1,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点D(0,-6),直线y=-13x+2交x轴于点B,与y轴交于点C.(1)求抛物线的函数解析式;(2)在线段OB上有一动点P,直接写出10DP+BP的最小值和此时点P的坐标.18.如图,已知抛物线y=k8(x+2)(x-4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-33x+b与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)在(1)条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?19.抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(-1,0),C(0,3).(1)求抛物线的解析式;(2)如图,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D 处,且DD =2CD,点M是平移后所得抛物线上位于D 左侧的一点,MN⎳y轴交直线OD 于点N,连结CN.当55D N+CN的值最小时,求MN的长.20.如图,矩形ABCD的对角线AC,BD相交于点O,ΔCOD关于CD的对称图形为ΔCED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.胡不归最值问题【专题说明】胡不归模型问题解题步骤如下;1、将所求线段和改写为“PA +b a PB ”的形式b a <1 ,若b a>1,提取系数,转化为小于1的形式解决。

专题10 二次函数与线段关系及最值定值问题 (原卷版)备战2020年中考数学之解密压轴解答题命题规律

专题10 二次函数与线段关系及最值定值问题 (原卷版)备战2020年中考数学之解密压轴解答题命题规律

备战2020中考数学之解密压轴解答题命题规律专题10 二次函数与线段关系及最值定值问题 【类型综述】图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用. 一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.【方法揭秘】由勾股定理产生的函数关系,在两种类型的题目中比较常用.类型一,已知“边角边”,至少一边是动态的,求角的对边.如图1,已知点A 的坐标为(3, 4),点B 是x 轴正半轴上的一个动点,设OB =x ,AB =y ,那么我们在直角三角形ABH 中用勾股定理,就可以得到y 关于x 的函数关系式.类型二,图形的翻折.已知矩形OABC 在坐标平面内如图2所示,AB =5,点O 沿直线EF 翻折后,点O 的对应点D 落在AB 边上,设AD =x ,OE =y ,那么在直角三角形AED 中用勾股定理就可以得到y 关于x 的函数关系式.图1 图2【典例分析】【例1】如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;(2)类比探究:如图③,在旋转过程中,PE PF的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ;①在旋转过程中,若1t =时,求对应的EPF ∆的面积;②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.【例2】如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G .(1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y .①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.【例3】抛物线2(0)y ax bx c a =++≠与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,4)C -.已知(2,0)A -,抛物线的对称轴l 交x 轴于点(1,0)D .(1)求出,,a b c 的值;(2)如图1,连接BC ,点P 是线段BC 下方抛物线上的动点,连接,PB PC .点,M N 分别在y 轴,对称轴l 上,且MN y ⊥轴.连接,AM PN .当PBC ∆的面积最大时,请求出点P 的坐标及此时AM MN NP ++的最小值;(3)如图2,连接AC ,把AOC ∆按照直线y x =对折,对折后的三角形记为A OC ∆'',把A OC ∆''沿着直线BC 的方向平行移动,移动后三角形的记为A O C ∆''''',连接DA '',DC '',在移动过程中,是否存在DA C ∆''''为等腰三角形的情形?若存在,直接写出点C ''的坐标;若不存在,请说明理由.【例4】如图在锐角△ABC 中,BC =6,高AD =4,两动点M 、N 分别在AB 、AC 上滑动(不包含端点),且MN ∥BC ,以MN 为边长向下作正方形MPQN ,设MN =x ,正方形MPQN 与△ABC 公共部分的面积为y .(1)如图(1),当正方形MPQN 的边P 恰好落在BC 边上时,求x 的值;(2)如图(2),当PQ 落△ABC 外部时,求出y 与x 的函数关系式(写出x 的取值范围)并求出x 为何值时y 最大,最大是多少?【例5】如图,抛物线y=12-x2+mx+m(m>0)的顶点为A,交y轴于点C.(1)求出点A的坐标(用含m的式子表示);(2)若直线y=﹣x+n经过点A,与抛物线交于另一点B,证明:AB的长是定值;(3)连接AC,延长AC交x轴于点D,作直线AD关于x轴对称的直线,与抛物线分别交于E、F两点.若∠ECF=90°,求m的值.【例6】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于点C(0,﹣3).(1)求二次函数解析式;(2)若点Q为抛物线上一点,且S△ABQ=12S△ACQ,求点Q的坐标;(3)若直线l:y=mx+n与抛物线有两个交点M,N(M在N的左边),P为抛物线上一动点(不与M,N重合).过P作PH平行于y轴交直线l于点H,若HM HNHP⋅=5,求m的值.【变式训练】 1.如图,抛物线y =ax 2+4x +c (a ≠0)与反比例函数y =5x的图象相交于点B ,且点B 的横坐标为5,抛物线与y 轴交于点C (0,6),A 是抛物线的顶点,P 和Q 分别是x 轴和y 轴上的两个动点,则AQ +QP +PB 的最小值为_____.2.如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D 是抛物线 y =﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________3.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.4.如图,在Rt △ABC 中,∠BAC =90°,AB =AC =16cm ,AD 为BC 边上的高,动点P 从点A 出发,沿A →D 2cm /s 的速度向点D 运动,过P 点作PE ∥BC 交AC 于点E ,过E 点作EF ⊥BC 于点F ,设△ABP 的面积为S 1,四边形PDFE 的面积为S 2,则点P 在运动过程中,S 1+S 2的最大值为______.5.在平面直角坐标系中,已知()A 2,4、()P 1,0,B 为y 轴上的动点,以AB 为边构造ABC V ,使点C在x 轴上,BAC 90.M ∠=o 为BC 的中点,则PM 的最小值为______.6.如图,在平面直角坐标系中,抛物线y=﹣x 2+4x 与x 轴交于点A ,点M 是x 轴上方抛物线上一点,过点M 作MP ⊥x 轴于点P ,以MP 为对角线作矩形MNPQ ,连结NQ ,则对角线NQ 的最大值为_________.7.如图,在平面直角坐标系中,过A (-1,0)、B (3,0)两点的抛物线交y 轴于点C ,其顶点为点D ,设△ACD 的面积为S 1,△ABC 的面积为S 2.小芳经探究发现:S 1︰S 2是一个定值.这个定值为________.8.如图,在平面直角坐标系中,有二次函数23333y x x =--+,顶点为H ,与x 轴交于A 、B 两点(A 在B 左侧),易证点H 、B 关于直线3:33l y x =+对称,且A 在直线l 上.过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,则HN NM MK ++的最小值为________9.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P 是抛物线上的一个动点(不与点A 点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .当2PE ED =时,求P 点坐标;(3)如图所示,设抛物线与y 轴交于点F ,在抛物线的第一象限内,是否存在一点Q ,使得四边形OFQC 的面积最大?若存在,请求出点Q 的坐标;若不存在,说明理由.10.如图,在矩形ABCD 中,AB=18,AD=12,点M 是边AB 的中点,连结DM ,DM 与AC 交于点G ,点E ,F 分别是CD 与DG 上的点,连结EF ,(1)求证:CG=2AG .(2)若DE=6,当以E ,F ,D 为顶点的三角形与△CDG 相似时,求EF 的长.(3)若点E 从点D 出发,以每秒2个单位的速度向点C 运动,点F 从点G 出发,以每秒1个单位的速度向点D 运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG 的面积的最小值.11.如图①,抛物线y=a(x 2+2x-3)(a≠0)与x 轴交于点A 和点B ,与y 轴交于点C ,且OC=OB.(1)直接写出点B 的坐标是( , ),并求抛物线的解析式;(2)设点D 是抛物线的顶点,抛物线的对称轴是直线l ,连接BD ,线段OC 上的点E 关于直线l 的对称点E'恰好在线段BD 上,求点E 的坐标;(3)若点F 为抛物线第二象限图象上的一个动点,连接BF ,CF ,当△BCF 的面积是△ABC 面积的一半时,求此时点F 的坐标.12.如图,抛物线y =﹣x 2+mx +2与x 轴交于点A ,B ,与y 轴交于点C ,点A 的坐标为(1,0) (1)求抛物线的解析式(2)在抛物线的对称轴l 上找一点P ,使PA +PC 的值最小,求出点P 的坐标(3)在第二象限内的抛物线上,是否存在点M ,使△MBC 的面积是△ABC 面积的12?若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线212y x mx n =++交x 轴于A 、B 两点,直线y=kx+b 经过点A ,与这条抛物线的对称轴交于点M (1,2),且点M 与抛物线的顶点N 关于x 轴对称.(1)求抛物线的函数关系式;(2)设题中的抛物线与直线的另一交点为C,已知P(x,y)为线段AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.求线段PQ的最大值及此时P坐标;(3)在(2)的条件下,求△AQC面积的最大值.14.如图,抛物线y=﹣12x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.(3)连接AD并延长,过抛物线上一点Q(Q不与A重合)作QN⊥x轴,垂足为N,与射线交于点M,使得QM=3MN,若存在,请直接写出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,点A在抛物线y=- x2 + 4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB 的长.(2)点P 为线段AB .上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当∆PBE 的面积最大时,求PH + HF + 12FO 的最小值. (3)在(2)中,PH+HF+12方FO 取得最小值时,将∆CFH 绕点C 顺时针旋转60°后得到∆CF'H',过点F'作CF'的垂线与直线AB 交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使以点D ,Q ,R ,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.16.已知,二次函数24y x x c =-+的图像与x 轴的一个交点为O(0,0),点P (m ,0)是x 轴正半轴上的一个动点.(1)如图1,求二次函数的图像与x 轴另一个交点的坐标;(2)如图2,过点P 作x 轴的垂线交直线33y x =与点C ,交二次函数图像于点D , ①当PD=2PC 时,求m 的值;如图3,已知A (3,-3)在二次函数图像上,连结AP ,求12AP OP +的最小值;(3如图4,在第(2)小题的基础上,作直线OD,作点C关于直线OD的对称点C’,当C’落在坐标轴上时,请直接写出m的值.17.如图1,已知抛物线y =ax2+bx +c 经过A(-3,0),B (1,0 ),C (0,3 )三点,其顶点为D,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求∆PBC 周长的最小值;(3)如图2,若 E 是线段AD 上的一个动点(E 与A, D 不重合),过E 点作平行于y 轴的直线交抛物线于点 F ,交x 轴于点G ,设点 E 的横坐标为m ,四边形AODF 的面积为S 。

2020年中考数学一轮复习题型05方案型应用题(原卷版)

2020年中考数学一轮复习题型05方案型应用题(原卷版)

题型05 方案型应用题一、单选题1.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种2.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)A.方案1 B.方案2C.方案3 D.三个方案费用相同3.小明去商店购买A B、两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种4.某电信公司有A、B两种计费方案:月通话费用y(元)与通话时间x(分钟)的关系,如图所示,下列说法中正确的是()A.月通话时间低于200分钟选B方案划算B.月通话时间超过300分钟且少于400分钟选A方案划算C.月通话费用为70元时,A方案比B方案的通话时间长D.月通话时间在400分钟内,B方案通话费用始终是50元5.图为歌神KTV的两种计费方案说明.若嘉淇和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务员试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们同一间包厢里欢唱的人数至少有( )A.6人B.7人C.8人D.9人6.某商店搞促销:某种矿泉水原价每瓶5元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买()瓶矿泉水时,第二种方案更便宜.A.5 B.6 C.7 D.87.某种肥皂零售价每块2元,当购买数量不少于2块时,商场有两种优惠方案:第一种,一块肥皂按原价,其余按原价的七折销售;第二种,全部按原价的八折优惠,在购买相同数量的肥皂的情况下,要使第一种方案比第二种方案合算,最少需要购买肥皂()A.3块B.4块C.5块D.6块8.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()9.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有()A.2种B.3种C.4种D.5种10.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.李明两次购物分别付款80元,252元.如果李明一次性购买与这两次相同的物品,则应付款()A.288元B.332元C.288元或316元D.332元或363元二、填空题11.某学校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,至少买一个排球,在购买资金恰好用尽的情况下,购买方案有_____种.12.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有种租车方案.13.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种14.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有______种.15.为丰富学生的体育活动,某校计划使用资金2000元购买篮球和足球(两种球都买且钱全部花光).若每个篮球80元,每个足球50元,则该校的购买方案个数为_________.16.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同. 三个房间的粉刷面积和三种颜色的涂料费用如下表:17.现有边长相等的正三角形、正方形、正六边形的地砖,要求至少用两种不同的地砖作平面镶嵌(两种地砖的不同拼法视作为同一种组合),则共有组合方案_____种.18.如图,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案是________.19.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种.20.某地突发地震期间,为了紧急安置房屋倒塌的30名灾民,需要搭建可容纳6人或4人的帐篷若干个,若所搭建的帐篷恰好(既不多也不少)能容纳这30名灾民,则不同的搭建方案有__种.三、解答题21.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.22.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B 型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?23.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?24.某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.25.某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B 商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?26.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?27.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.28.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过元50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超出50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为 kg x (0)x . (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1元,在乙批发店花费2元,分别求1,2关于的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为____________kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.29.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?30.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.。

备战2025年中考数学冲刺专项训练(全国)专题05 二次函数中的平移、旋转、对称(原卷版)

备战2025年中考数学冲刺专项训练(全国)专题05 二次函数中的平移、旋转、对称(原卷版)

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k均变号沿x轴翻折y=-a(x-h)²-k a、k变号,h不变沿y轴翻折y=a(x+h)²+k a、h不变,h变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy中,抛物线21(0)y ax bx aa=+-<与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示).(2)当B的纵坐标为3时,求a的值;(3)已知点11(,2Pa-,(2,2)Q,若抛物线与线段PQ恰有一个公共点,请结合函数图象求出a的取值范围.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m 的值.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y 时,直接写出自变量x 的取值范围.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x - 时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x 时,y 的最小值为5,求m 的值.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x -时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q 的坐标.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q 的横坐标:若不存在,请说明理由.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:;(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.20.(2023•天门三模)如图,在平面直角坐标系中,已知抛物线223y x x =--的顶点为A ,与y 轴交于点C ,线段//CB x 轴,交该抛物线于另一点B .(1)求点B 的坐标及直线AC 的解析式;(2)当二次函数223y x x =--的自变量x 满足1m x m + 时,此函数的最大值为p ,最小值为q ,且2p q -=.求m 的值;(3)平移抛物线223y x x =--,使其(备用图)顶点始终在直线AC 上移动,当平移后的抛物线与射线BA 只有一个公共点时,设此时抛物线的顶点的横坐标为n ,请直接写出n 的取值范围.21.(2023•米东区模拟)如图,已知二次函数2(y x bx c b =-++,c 为常数)的图象经过点(3,1)A ,点(0,4)C ,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交该二次函数图象于点B ,连结BC .(1)求该二次函数的解析式及点M 的坐标;(2)若将该二次函数图象向下平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围.22.(2023•驻马店二模)如图1所示,平面直角坐标系中,抛物线223y ax ax =-+交x 轴于A 、B 两点,与y 轴交于点C ,已知点A 坐标为(1,0)-.(1)求抛物线解析式及其顶点坐标.(2)若将抛物线向右平移m 个单位,得新抛物线“V ”,若“V ”与坐标轴仅有两个交点,求m 值.(3)若点M 为线段AB 上一动点,过点M 作y 轴平行线,该平行线与“V ”交点为N ,请直接写出点N 的纵坐标N y 的取值范围.23.(2023•宝鸡二模)如图,抛物线2:4L y ax bx =++与x 轴交于点(1,0)A -、(3,0)B ,与y 轴交于点C .将抛物线L 向右平移一个单位得到抛物线L '.(1)求抛物线L 与L '的函数解析式;(2)连接AC ,探究抛物线L '的对称轴上是否存在点P ,使得以点A ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.题型二:二次函数中的翻折问题24.(2024•江西模拟)已知二次函数265(0)y kx kx k k =-+>经过A ,B 两定点(点A 在点B 的左侧),顶点为P .(1)求定点A ,B 的坐标;(2)把二次函数265y kx kx k =-+的图象在直线AB 下方的部分向上翻折,将向上翻折得到的部分与原二次函数位于直线AB 上方的部分的组合图象记作图象W ,求向上翻折部分的函数解析式;(3)在(2)中,已知ABP ∆的面积为8.①当14x 时,求图象W 中y 的取值范围;②若直线y m =与图象W 从左到右依次交于C ,D ,E ,F 四点,若CD DE EF ==,求m 的值.25.(2023•零陵区三模)在平面直角坐标系中,二次函数2229y x mx m =-+-+的图象与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求A 、B 两点的坐标(用含m 的式子表示);(2)将该二次函数图象在x 轴下方的部分沿x 轴翻折,其他部分保持不变,得到一个新的函数图象.若当31x -- 时,这个新函数G 的函数值y 随x 的增大而减小,结合函数图象,求m 的取值范围;(3)已知直线:1l y =,点C 在二次函数2229y x mx m =-+-+的图象上,点C 的横坐标为2m ,二次函数2229y x mx m =-+-+的图象在C 、B 之间的部分记为M (包括点C ,)B ,图象M 上恰有一个点到直线l 的距离为2,直接写出m 的取值范围.26.(2023•连云港)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点(0M ,)(3)m m - ,且平行于x 轴,与抛物线1L 交于A 、B 两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC 、CD 、DB ,若BCD ∆为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD ∆的面积为3,E 、F 两点分别在边BC 、CD 上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.27.(2024•盐城模拟)已知抛物线2(31)2(y ax a x a =---为常数且0)a ≠与y 轴交于点A .(1)点A 的坐标为;对称轴为(用含a 的代数式表示);(2)无论a 取何值,抛物线都过定点B (与点A 不重合),则点B 的坐标为;(3)若0a <,且自变量x 满足13x - 时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A 与点B 之间的函数图象记作图象M (包含点A 、)B ,若将M 在直线2y =-下方的部分保持不变,上方的部分沿直线2y =-进行翻折,可以得到新的函数图象1M ,若图象1M 上仅存在两个点到直线6y =-的距离为2,求a 的值.28.(2023•扶余市二模)如图,抛物线2y x bx c =++与x 轴交于点(1,0)A ,(5,0)B ,顶点为P .(1)求该抛物线的解析式,并直接写出点P 的坐标;(2)如图,把原抛物线x 轴下方的部分沿x 轴翻折到x 轴上方,将翻折得到的部分与原抛物线x 轴上方的部分记作图形M ,在图形M 中,回答:①点A ,B 之间的函数图象所对应的函数解析式为2(3)4y x =--+(15)x ;②当342x 时,求y 的取值范围;③当2m x m + ,且32m >时,若最高点与最低点的纵坐标的差为154,直接写出m 的值.29.(2023•余江区一模)已知抛物线21:23(0)C y ax ax a =--≠(1)当1a =时,①抛物线1C 的顶点坐标为.②将抛物线1C 沿x 轴翻折得到抛物线2C ,则抛物线2C 的解析式为.(2)无论a 为何值,直线y m =与抛物线1C 相交所得的线段EF (点E 在点F 左侧)的长度都不变,求m 的值和EF 的长;(3)在(2)的条件下,将抛物线1C 沿直线y m =翻折,得到抛物线3C ,抛物线1C ,3C 的顶点分别记为P ,Q ,是否存在实数a ,使得以点E ,F ,P ,Q 为顶点的四边形为正方形?若存在,请求出a 的值:若不存在,请说明理由.30.(2023•越秀区校级三模)已知二次函数2y x bx m =++图象的对称轴为直线2x =,将二次函数2y x bx m =++图象中y 轴左侧部分沿x 轴翻折,保留其他部分得到新的图象C .(1)求b 的值;(2)①当0m <时,图C 与x 轴交于点M ,(N M 在N 的左侧),与y 轴交于点P .当MNP ∆为直角三角形时,求m 的值;②在①的条件下,当图象C 中40y -< 时,结合图象求x 的取值范围;(3)已知两点(1,1)A --,(5,1)B -,当线段AB 与图象C 恰有两个公共点时,直接写出m 的取值范围.题型三:二次函数对称问题31.(2024•雁塔区校级二模)如图,抛物线2:3L y ax bx =++经过(1,0)A -,(5,3)B 两点,与y 轴交于点C .(1)求该抛物线L 的表达式;(2)抛物线L '与抛物线L 关于直线BC 对称,P 是抛物线L 的x 轴上方且在对称轴左侧的一点,过点P 作y 轴的平行线交抛物线L '于点Q ,点P 、Q 关于抛物线L 的对称轴对称的点分别为M 、N .试探究是否存在一点P ,使得四边形PQNM 为长宽之比是1:2的矩形?若存在,求出点P 的横坐标;若不存在,请说明理由.32.(2023•鄞州区校级模拟)已知二次函数21441y ax ax a =++-的图象是M .(1)求M 关于点(1,0)R 成中心对称的图象N 的解析式2y ;(2)当25x 时,2y 的最大值为5,求a 的值.33.(2024•沙坪坝区校级模拟)如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于(2,0)A ,(4,0)B -,与y 轴交于(0,4)C ,连接AC ,作直线BC .(1)求该抛物线的解析式;(2)已知直线BC 上方抛物线上有一动点P ,过点P 作//PM x 轴交BC 于M ,过M 作//MN y 轴交x 轴于N ,求PM MN +的最大值和此时P 点坐标;(3)将原抛物线沿CB 方向平移个单位长度得到新抛物线,已知D 点是新抛物线上一动点,且DBC OAC BCO ∠=∠+∠,求所有符合条件的点D 的横坐标并写出其中一种情况的求解过程.34.(2023•海安市模拟)已知两个函数,如果对于任意的自变量x ,这两个函数对应的函数值记为1y ,2y ,都有点1(,)x y 、2(,)x y 关于点(,)x x 对称,则称这两个函数为关于y x =的对称函数,例如,112y x =和232y x =为关于y x =的对称函数.(1)判断:①13y x =和2y x =-;②11y x =+和21y x =-;③211y x =+和221y x =-,其中为关于y x =的对称函数的是(填序号);(2)若132y x =+和2(0)y kx b k =+≠为关于y x =的对称函数.求k 、b 的值.(3)若21(0)y ax bx c a =++≠和22y x n =+为关于y x =的对称函数,令21w y y =-,当函数w 与函数(02)y x x = 有且只有一个交点时,求n 的取值范围.35.(2023•雁塔区校级模拟)已知抛物线21:3C y ax bx =+-与x 轴于点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求抛物线1C 的解析式;(2)已知抛物线2C 与抛物线1C 关于y 轴对称,过点C 作//CD x 轴交抛物线1C 于点D ,P 是抛物线2C 上的一个动点,连接PB 、PC 、BC 、BD .若PBC BCD S S ∆∆=,求点P 的坐标.36.(2023•灞桥区校级模拟)如图,顶点M在y轴负半轴上的抛物线与直线2y x=+相交于点(2,0)A-,(4,6)B,连接AM,BM.(1)求该抛物线的函数表达式;(2)若将抛物线向下平移3个单位长度,则在平移后的抛物线上,且在直线AB的下方,是否存在点P,使得118ABP ABMS S∆∆=若存在,求出点P的坐标;若不存在,请说明理由.题型四:二次函数中的旋转问题37.(2023•吉安县校级一模)已知抛物线21y ax bx c =++分别交x 轴于(1,0)A -,(3,0)B 两点,且与y 轴交于点(0,3)C -.(1)求抛物线的解析式及顶点P 坐标;(2)将该二次函数绕点(4,0)旋转180︒,求旋转后的二次函数解析式;(3)设旋转后的抛物线顶点坐标为Q ,且与x 轴的右侧交点为D ,顺次连接A 、P 、D 、Q ,求四边形APDQ 的面积.38.(2023•郏县一模)如图,直线24y x =--与x 轴交于点A ,抛物线2421y ax x a =+++经过点(1,8),与x 轴的一个交点为(B B 在A 的左侧),过点B 作BC 垂直x 轴交直线于C .(1)求a 的值及点B 的坐标;(2)将ABC ∆绕点A 顺时针旋转90︒,点B 、C 的对应点分别为点E 、F .将抛物线2421y ax x a =+++沿x 轴向右平移使它过点F ,求平移后所得抛物线的解析式.39.(2023•郸城县二模)如图1,抛物线21y ax bx c =++分别交x 轴于(1,0)A -,(3,0)B 两点,且与y 轴交于点(0,3)C -.(1)求抛物线的表达式及顶点P 的坐标.(2)如图2,将该抛物线绕点(4,0)旋转180︒.①求旋转后的抛物线的表达式;②旋转后的抛物线顶点坐标为Q ,且与x 轴的右侧交于点D ,顺次连接A ,P ,D ,Q ,求四边形APDQ 的面积.40.(2023•长春模拟)如图,直线122y x =-与y 轴交于点A ,与x 轴交于点B .抛物线214y x bx c =++经过点A ,点B ,并与x 轴有另一交点C .(1)依题,点A 的坐标是,点B 的坐标是.(2)求抛物线的解析式.(3)在直线AB 下方的抛物线上有一点D ,求四边形ADBC 面积的最大值.(4)在x 轴上有一个动点(,0)P m ,将线段OA 绕点P 逆时针旋转90︒得到线段MN .直接写出线段MN 与抛物线只有一个公共点时m 的取值范围.题型五:二次函数中的几何变换41.(2024•梧州模拟)九年级数学兴趣小组的同学研究发现若把二次函数21y ax bx c =++的系数调换位置变成新的二次函数22y cx bx a =-+,且0b ≠,这两个函数有一定的关连,于是命名它们为“互为对调函数”,根据这个规定,解答下列问题:(1)若二次函数21325y x x =+-,则它的“对调函数”是2y =,且此“对调函数”与y 轴的交点是;(2)若k 、m 为非零实数,二次函数213y x kx m =++经过两个不同的点(,)A k h 与点(,)B m h ,请求出“对调函数”2y 的对称轴;(3)在(2)中,“对调函数”2y 的图象是否经过某两个定点?若经过,求出这两个定点坐标;若不经过,请说明理由.。

中考数学复习考点知识讲解与练习05 最值问题

中考数学复习考点知识讲解与练习05 最值问题

中考数学复习考点知识讲解与练习专题05最值问题几何中的最值问题是学生几何学习中的一个难点,而最值问题又是中考的一个常考点,几何中最值问题,它的理论依据是两点之间线段最短和点线之间重线段最短,解决问题的办法直观的讲就是把折的问题转化为直的问题,而在一些比较综合的几何求最值问题中,建立平面直角坐标系来解决问题往往能达到意想不到的效果,通过设系求最值,也为高中学习打下良好的基础,经过本中考数学复习考点知识讲解与练习 专题的巩固与训练,本中考数学复习考点知识讲解与练习 专题内容较丰富,通过巩固训练,对后期一次函数及反比例函数和二次函数来的最值问题的一个预演,对整个中考复习有较好的引领作用。

一、单选题1.(2022·天津初二期末)如图,在平面直角坐标系xOy 中,直线l 是一三象限的角平分线,点P 的坐标为(3,1),点M 是直线l 上的动点,点N 是x 轴上的动点,则PM MN +的最小值为()A .2B .3C .4D .52.(2022·广西浦北)已知点()()()23,5,3,2,5,2A B P m ----,若PA PB +最短,则m值是()A B .4 C .4± D .3.(2022·安徽初三期中)在平面直角坐标系中,点P 的坐标()0,2,点Q 的坐标为391,44()(t t t ---为实数),当PQ 长取得最小值时,t 的值为() A .75- B .125- C .3 D .44.(2022·江阴市云亭中学初二月考)在平面直角坐标系中,已知定点A ,)和动点P (a ,a ),则PA 的最小值为( )A .B .4C .D .5.(2022·河北初三期中)如图,点(2,A ,()1,0N ,60AON ∠=,点M 为平面直角坐标系内一点,且MO MA =,则MN 的最小值为()A .1B .32C .3D .26.(2022·江苏初二期末)在平面直角坐标系中,点()A -,点()B a ,则当AB 取得最小值时,a 的值为()A .B .3-C .0D 7.(2022·唐山市第十一中学初一期中)如图,在平面直角坐标系中A (3,0),B (0,4),AB =5,P 是线段AB 上的一个动点,则OP 的最小值是( )A .245B .125C .4D .38.(2022·福建初一期末)平面直角坐标系中,点A (-2,-1) ,B (1,3) ,C (x,y) ,若AC∥ x轴,则线段BC 的最小值为()A.2 B.3 C.4 D.59.(2022·江苏初二期末)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(3,0)是x轴上的两点,则PA+PB的最小值为()A.3 B C D.410.(2022·江苏西安交大苏州附中初三)如图,菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为,点D是AB的中点,点P在OB上,则△ADP的周长最小值为()A.+B.3C.D.3二、填空题11.(2022·湖北房县·初一期末)平面直角坐标系中,点A(-3,2),B(3,4),C(x,y),若AC//x轴,则线段BC的长度最小时点C的坐标为______________________.12.(2022·陕西陇县·初一期末)在平面直角坐标系中,A (-3,6),M 是x 轴上一动点,当AM 的值最小时,点M 的坐标为_____.13.(2022·福建初一期中)平面直角坐标系中,点A (a ),B (﹣3则线段AB 的最小值为____.14.(2022·辽宁初一期末)平面直角坐标系中,点()()()3,2,3,4,,A B C x y -,若//AC x 轴,则线段BC 的最小值为________________.15的最小值,小明运用了“数形结合”的思想:如图所示,在平面直角坐标系中,取点()01A ,,点()4B ,-2,设点()P x ,0.那么AP =BP =.借助上述信息,可求出最小值为__________.16.(2022·福建泉州七中初二期中)在平面直角坐标系 xOy 中,点O 是坐标原点,点 B 的坐标是(3m, 4m - 4),则OB 的最小值是____________.17.(2022·湖南湘一芙蓉第二中学初二月考)在如图所示的平面直角坐标系中,点P 是直线y x =上的动点,1,0A ,()3,0B 是x 轴上的两点,则PA PB +的最小值为_________.18.(2022·北京初一期末)A (a ,0),B (3,4)是平面直角坐标系中的两点,线段AB 长度的最小值为_____.19.(2022·全国初三单元测试)菱形ABCD 在平面直角坐标系中的位置如图所示,顶点()B 2,0,点P 是对角线OC 上一个动点,()E 0,1-,则EP BP +的最小值是________.20.(2022·河北初一月考)如图,在平面直角坐标系中A (3,0),B (0,4),AB =5,P 是线段AB 上的一个动点,则OP 的最小值是______.21.(2022·广东初二月考)如图,在平面直角坐标系中,Rt OAB ∆的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,点C 的坐标为()10,,点P 为斜边OB 上的一个动点,则PA PC +的最小值为__________.22.(2022·福建初三)已知等边三角形ABC 是边长为4,两顶点A 、B 分别在平面直角坐标系的x 轴负半轴、y 轴的正半轴上滑动,点C 在第四象限,连接OC ,则线段OC 的长的最小值是_____.23.(2022·四川树德中学初二期末)如图,在平面直角坐标系中,A 1),B (20),点P 为线段OB 上一动点,将△AOP 沿AO 翻折得到△AOC ,将△ABP 沿AB 翻折得到△ABD ,则△ACD 面积的最小值为_____.24.(2022·天津南开翔宇学校初三开学考试)菱形OBCD 在平面直角坐标系中的位置如图所示,顶点()2,0B ,120D ∠=︒,点P 是对角线OC 上一个动点,E(0,,则EP BP +的最小值为_______.25.(2022·江苏南通田家炳中学初一期中)在平面直角坐标系中,点()3,2A -,()3,4B ,(),C x y ,直线l 过点A 且平行于x 轴,点C 是直线l 上的动点,当线段BC 的长度取最小值时,点C 的坐标为__________.26.(2022·江苏初三)在平面直角坐标系中,已知,A (,0),C (0,﹣1),若P 为线段OA 上一动点,则CP +13AP 的最小值为_____. 27.(2022·四川初二月考)在如图所示的平面直角坐标系中,点P 是直线y=x 上的动点,A (2,0),B (6,0)是x 轴上的两点,则PA+PB 的最小值为_____.28.(2022·全国初三单元测试)如图,点A(2,,0), ∠AON=60°,点M 为平面直角坐标系内一点,且MO=MA,则MN 的最小值为_______.三、解答题29.(2022·全国初三中考数学复习考点知识讲解与练习 专题练习)如图,在平面直角坐标系中,()0,2A 、()2,0B -、()2,2C ,点E 、F 分别是直线AB 和x 轴上的动点,求CEF △周长的最小值.30.(2022·全国初三中考数学复习考点知识讲解与练习 专题练习)如图,在平面直角坐标系中,()0,1A 、()2,0B 、()0,2C -,连接BC ,点P 是x 轴上任意一点,连接AP ,求PA PB +的最小值.31.(2015·北京市第六十六中学初二期中)在平面直角坐标系中,P 点坐标为(2,6),Q 点坐标为(2,2),点M 为y 轴上的动点.(1)在平面直角坐标系内画出当△PMQ 的周长取最小值时点M 的位置(保留作图痕迹);(2)写出点M 的坐标__________________.32.(2022·全国初三中考数学复习考点知识讲解与练习 专题练习)如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,3A 、()2,0B -、()2,0C ,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是线段BD 、BC 上的动点,求CE EF +的最小值.33.(2022·全国初三中考数学复习考点知识讲解与练习 专题练习)如图,在平面直角坐标系中,点B 的坐标为()3,0-,OB OC =,点A 是y 轴正半轴上的点,且60ABC ∠=︒,点M 、N 分别为线段OA 、AB 上的动点,求BM MN +的最小值.。

初中数学“最值问题”集锦 曲老师 用

初中数学“最值问题”集锦 曲老师 用

曲老师推荐中考数学专题之:初中数学“最值问题”集锦目录:●平面几何中的最值问题 (01)●几何的定值与最值 (07)●最短路线问题 (14)●对称问题 (18)●巧作“对称点”妙解最值题 (22)●数学最值题的常用解法 (26)●求最值问题 (29)●有理数的一题多解 (34)●4道经典题 (37)●平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。

取点A关于直线L的对称点A’,则AP’= AP,在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。

1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有???????2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3. 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC ≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以??∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以 S△ABC ≥S△AKL.5. 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则 PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则 PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则 P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.6. 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.7. 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB 为边作等边△APC和等边△BPD,则CD长度的最小值为.思路点拨如图,作CC′⊥AB于C,DD′⊥AB于D′,DQ⊥CC′,CD2=DQ2+CQ2,DQ=21AB一常数,当CQ越小,CD越小,本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 . 2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点, ⌒ ⌒⊙O 的半径为1,则AP+BP 的最小值为( ) A .1 B .22 C .2 D .13- 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A .22+B .21+C .23+D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD 是一个边长为1的正方形,U 、V 分别是AB 、CD 上的点,AV 与DU 相交于点P ,BV 与CU 相交于点Q .求四边形PUQV 面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ 与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x (米),AM=y (米),用含x 的代数式表示y 为 .(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S 关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短”为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上A、B二点之间的最短路线如何求呢?我们用过A、B两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上A、B两点之间不超过半个圆周的弧线就是所求的A、B两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从A地出发,去B地取情报.在去B地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点A关于河岸的对称点 A′,即作 AA′垂直于河岸,与河岸交于点C,且使AC=A′C,连接A′B交河岸于一点P,这时 P点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P点的另一点P′,连接P′A,P′B, P′A′.∵P′A+P′B=P′A′+P′B>A′B=PA′+PB=PA+PB,而这里不等式 P′A′+P′B>A′B成立的理由是连接两点的折线段大于直线段,所以PA+PB是最短路线.此例利用对称性把折线APB化成了易求的另一条最短路线即直线段A′B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上A点,爬到邻近的另一面墙壁β上的B点捕蛾,它可以沿许多路径到达,但哪一条是最近的路线呢?解:我们假想把含B点的墙β顺时针旋转90°(如下页右图),使它和含A点的墙α处在同一平面上,此时β转过来的位置记为β′,B点的位置记为B′,则A、B′之间最短路线应该是线段AB′,设这条线段与墙棱线交于一点P,那么,折线4PB就是从A点沿着两扇墙面走到B点的最短路线.证明:在墙棱上任取异于P点的P′点,若沿折线AP′B走,也就是沿在墙转90°后的路线AP′B′走都比直线段APB′长,所以折线APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体ABCD—A′B′C′D′中,AB=4,A′A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到B点,问这只小虫怎样爬距离最短?(见图(1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、B两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D′B间的最短路线就是连结这两点的直线段,这样,从D′点出发,到B点共有六条路线供选择.①从D′点出发,经过上底面然后进入前侧面到达B点,将这两个面摊开在一个平面上(上页图(2)),这时在这个平面上D′、B间的最短路线距离就是连接D′、B两点的直线段,它是直角三角形ABD′的斜边,根据勾股定理,D′B2=D′A2+AB2=(1+2)2+42=25,∴D′B=5.②容易知道,从D′出发经过后侧面再进入下底面到达B点的最短距离也是5.③从D′点出发,经过左侧面,然后进入前侧面到达B点.将这两个面摊开在同一平面上,同理求得在这个平面上D′、B两点间的最短路线(上页图(3)),有:D′B2=22+(1+4)2=29.④容易知道,从D′出发经过后侧面再进入右侧面到达B点的最短距离的平方也是29.⑤从D′点出发,经过左侧面,然后进入下底面到达B点,将这两个平面摊开在同一平面上,同理可求得在这个平面上D′、B两点间的最短路线(见图),D′B2=(2+4)2+12=37.⑥容易知道,从D′出发经过上侧面再进入右侧面到达B点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D′点出发,经过上底面然后进入前侧面到达B点(上页图(2)),或者经过后侧面然后进入下底面到达B点的路线是最短路线,它的长度是5个单位长度.利用例2、例3中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上A和B两点之间的最短路线问题(下左图),同样可以把A、B两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接A、B成线段AP1P2B,P1、P2是线段AB与两条侧棱线的交点,则折线AP1P2B就是AB间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在A点,绕一周之后终点为B点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线AB剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时,A′、B′分别与A、B重合),连接AB′,再将上页右图还原成上页左图的形状,则AB′在圆柱面上形成的曲线就是连接AB且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图,A、B在同一母线上,B为AO的中点,试求以A为起点,以B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时,A′、B′分别与A、B重合),在扇形中连AB′,则将扇形还原成圆锥之后,AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的A点爬到桶内的B点去寻找食物,已知A点沿母线到桶口C点的距离是12厘米, B点沿母线到桶口 D点的距离是8厘米,而C、D两点之间的(桶口)弧长是15厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于B点在里面,不便于作图,设想将BD延长到F,使DF=BD,即以直线CD为对称轴,作出点B的对称点F,用F代替B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长BD到F,使DF=BD,即作点B关于直线CD 的对称点F,连结AF,交桶口沿线CD于O.因为桶口沿线CD是 B、F的对称轴,所以OB=OF,而A、F之间的最短线路是直线段AF,又AF=AO+OF,那么A、B之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O点后,转向桶内B点爬去.延长AC到E,使CE=DF,易知△AEF是直角三角形,AF是斜边,EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2 =(12+8)2+152=625=252,解得AF=25.即蚂蚁爬行的最短路程是25厘米.例7 A、B两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使A、B两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从A点作河岸的垂线,并在垂线上取AC等于河宽,就相当于把河宽预先扣除,找出B、C两点之间的最短路线,问题就可以解决.解:如上图,过A点作河岸的垂线,在垂线上截取AC的长为河宽,连结BC交河岸于D点,作DE垂直于河岸,交对岸于E点,D、E两点就是使两村行程最短的架桥地点.即两村的最短路程是AE+ED+DB.例8 在河中有A、B两岛(如下图),六年级一班组织一次划船比赛,规则要求船从A岛出发,必须先划到甲岸,又到乙岸,再到B岛,最后回到A岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作A、B关于甲岸线、乙岸线的对称点A′和B′,连结A′、B′分别交甲岸线、乙岸线于E、F两点,则A→E→F→B→A是最短路线,即最短路程为:AE +EF+FB+BA.证明:由对称性可知路线A→E→F→B的长度恰等于线段A′B′的长度.而从A岛到甲岸,又到乙岸,再到B岛的任意的另一条路线,利用对称方法都可以化成一条连接A′、B′之间的折线,它们的长度都大于线段 A′B′,例如上图中用“·—·—·”表示的路线A→E′→F′→B的长度等于折线AE′F′B的长度,它大于A′B′的长度,所以A→E →F→B→A是最短路线.●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。

专题5二次函数与面积最值定值问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(原卷版)

专题5二次函数与面积最值定值问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(原卷版)

专题5二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。

有时也要根据题目的动点问题产生解的不确定性或多样性。

解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法.面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4 图5 图6【例1】(2021•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方,连接P A、PD,求当△P AD面积最大时点P的坐标及该面积的最大值;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.【例2】(2021•西宁)如图,在平面直角坐标系xOy中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,点C的坐标为(﹣2,0),抛物线经过A,B,C三点.(1)求抛物线的解析式;(2)直线AD与y轴负半轴交于点D,且∠BAO=∠DAO,求证:OB=OD;(3)在(2)的条件下,若直线AD与抛物线的对称轴l交于点E,连接BE,在第一象限内的抛物线上是否存在一点P,使四边形BEAP的面积最大?若存在,请求出点P的坐标及四边形BEAP面积的最大值;若不存在,请说明理由.【例3】(2021•贵港)如图,已知抛物线y=ax2+bx+c与x轴相交于A(﹣3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x=﹣1,连接AC.(1)求该抛物线的表达式;(2)若过点B的直线l与抛物线相交于另一点D,当∠ABD=∠BAC时,求直线l的表达式;(3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使S△BDP=S△ABD.请直接写出所有符合条件的点P的坐标.【例4】(2021•襄阳)如图,直线y=x+1与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.(1)求出点A,B的坐标及c的值;(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;(3)连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.①直接写出S关于a的函数关系式及a的取值范围;②结合S与a的函数图象,直接写出S>时a的取值范围.【题组一】1.(2021•沈河区二模)如图,在直角坐标系xOy中,抛物线y=ax2+bx+2(a≠0)与x轴交于点A(﹣1,0)和B(4,0),与y轴交于点C,点P是抛物线上的动点(不与点A,B,C重合).(1)求抛物线的解析式;(2)当点P在第一象限时,设△ACP的面积为S1,△ABP的面积为S2,当S1=S2时,求点P的坐标;(3)过点O作直线l∥BC,点Q是直线l上的动点,当BQ⊥PQ,且∠BPQ=∠CAB时,请直接写出点P的坐标.2.(2021•泰兴市模拟)抛物线y=ax2+c的顶点为C(0,1),与直线y=kx+3(k为常数)相交于A(x1,y1),B(x2,y2)两点.当k=0时,点B的横坐标恰好为2(如图1).(1)求a、c的值;(2)当k=0时,若点P是抛物线上异于A、C的一点,且满足2PC2=AB2+2AP2,试判断△P AC的形状,并说明理由;(3)若直线y=﹣1交y轴于点F,过点A、B分别作该直线的垂线,垂足分别为D、E,连接AF、BF(如图2).设△ADF、△ABF、△BEF的面积分别为S1、S2、S3,是否存在常数t,使S22=t•S1S3?若存在,求出t的值;若不存在,请说明理由.3.(2021•雁塔区校级模拟)如图,抛物线C1的图象与x轴交A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3),点D为抛物线的顶点.(1)求抛物线C1的表达式及点D坐标;(2)将抛物线C1平移到抛物线C2,点B,C对应的点分别是B′,C′,此时以B,C,B′,C′为顶点的四边形是面积为24的矩形,请求出抛物线C2的表达式,并写出平移过程.4.(2021•丽江模拟)已知抛物线y=x2﹣2mx+m2﹣3(m是常数),抛物线的顶点为A.(1)求抛物线顶点A的坐标(用含m的式子表示);(2)求证:无论m取何值,该抛物线与x轴都有两个交点;(3)该抛物线与x轴的两个交点分别为B,D,点B在点D的右侧,与y轴的交点为C.当|m|≤,m≠0时,△ABC的面积是否有最大值?如果有,请求出最大值;如果没有,请说明理由.【题组二】5.(2020•大庆)如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)6.(2020•湘阴县一模)平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.7.(2020•江都区校级一模)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.8.(2020•南宁模拟)如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B的左边)AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点.(1)求抛物线的解析式;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q 作QN⊥x轴于点N,可得矩形PQNM,如图1,点P在点Q左边,当矩形PQNM的周长最大时,求m的值,并求出此时的△AEM的面积;(3)已知H(0,﹣1),点G在抛物线上,连HG,直线HG⊥CF,垂足为F,若BF=BC,求点G的坐标.【题组三】9.(2020•浙江自主招生)如图①,抛物线y=﹣x2+(m﹣2)x+3与y轴交于点C,与直线y=mx交于A,B两点(点A,B分别在第一,三象限),连结AC.(1)当AC⊥AB时,求m的值;(2)如图②,D是y轴负半轴上一点,且满足∠BDO=∠ACO,连结DA,DB,CB,求四边形DACB的面积.10.(2020•鼓楼区校级模拟)如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在B 左边),与y轴交于点C.(1)若A(﹣1,0),B(3,0)两点,求该抛物线的解析式;(2)在(1)中位于第四象限内的抛物线上是否存在点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由;(3)直线y=1与抛物线y=x2+bx+c交于抛物线对称轴右侧的点为点D,点E与点D关于x轴对称.试判断直线DB与直线AE的位置关系,并证明你的结论.11.(2020•驻马店二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与直线y=x﹣2交于点A(m,0)和点B(﹣2,n),与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)若向下平移抛物线,使顶点D落在x轴上,原来的抛物线上的点P平移后的对应点为P′,若OP′=OP,求点P的坐标;(3)在抛物线上是否存在点Q,使△QAB的面积是△ABC面积的一半?若存在,直接写出点Q的坐标;若不存在,请说明理由.12.(2020•三水区校级二模)如图(1),抛物线y=ax2+bx经过A和B(3,﹣3)两点,点A在x轴的正半轴,且OA=4.(1)求抛物线的解析式;(2)若点M是抛物线上一动点,且在直线OB的下方(不与O、B重合),过M作MK ⊥x轴,交直线BO于点N,过M作MP∥x轴,交直线BO于点P,求出△MNP周长的最大值及周长取得最大值时点M的坐标;(3)如图(2),过B作BD⊥y轴于点D,交抛物线于点C,连接OC,在抛物线上是否存在点Q使得S△OCD:S△OCQ=3:2,若存在,请求出点Q的坐标,若不存在,请说明理由.【题组四】13.(2020•临清市二模)如图,抛物线y=−12x2+bx+c与x轴交于A、B两点,与y轴交于点C,OB=2OC=4.(1)求抛物线的解析式;(2)如图1,点P为第一象限抛物线上一点,连接P A,PC,设点P的横坐标为t,△P AC 的面积为S,求S与t的函数关系式;(3)如图2,若点M是抛物线上任意一点,过点M作x轴的垂线,交直线BC于点N,当MN=2时,求点M的坐标.14.(2020•黄冈模拟)如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是第二象限内抛物线上一动点.F点坐标为(﹣4,0).(1)求这条抛物线的解析式;并写出顶点坐标;(2)当D为抛物线的顶点时,求△ACD的面积;(3)连接OD交线段AC于点E.当△AOE与△ABC相似时,求点D的坐标;(4)在x轴上方作正方形AFMN,将正方形AFMN沿x轴下方向向右平移t个单位,其中0≤t≤4,设正方形AFMN与△ABC的重叠部分面积为S,直接写出S关于t的函数解析式.15.(2020•东胜区模拟)如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.16.(2020•郓城县模拟)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【题组五】17.(2020•简阳市一模)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.18.(2020•靖远县二模)如图,抛物线y=ax2+(4a﹣1)x﹣4与x轴交于点A、B,与y轴交于点C,且OC=2OB,点D为线段OB上一动点(不与点B重合),过点D作矩形DEFH,点H、F在抛物线上,点E在x轴上.(1)求抛物线的解析式;(2)当矩形DEFH的周长最大时,求矩形DEFH的面积;(3)在(2)的条件下,矩形DEFH不动,将抛物线沿着x轴向左平移m个单位,抛物线与矩形DEFH的边交于点M、N,连接M、N.若MN恰好平分矩形DEFH的面积,求m的值.19.(2021•天心区二模)如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.(1)求点C的坐标和抛物线的解析式;(2)点P是第一象限抛物线上的一个动点,连接P A,交直线BC于点D.①若sin∠P AB=,试求四边形OBPC的面积S;②设△PDC的面积为S1,△ADC的面积为S2,求的最大值.20.(2021•北辰区二模)如图,在平面直角坐标系中,O为原点,抛物线y=x2+bx+c(b,c为常数)经过点A(﹣4,0)和点B(0,﹣2).(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线上是否存在一点P,使S△P AB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;(Ⅲ)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,直接写出2MN+ON的最小值.【题组六】21.(2021•安徽三模)如图1,已知抛物线y=ax2+bx+3经过点A(﹣1,0)和点B(3,0),与y轴交于点C,点P为第一象限内抛物线上的动点.连接OP交BC于点D,连接PC.(1)试确定抛物线的解析式;(2)当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,连接AC,设P点横坐标为m(0<m<3),求当m为何值时,四边形BACP 的面积最大?并求出点P的坐标.22.(2021•深圳模拟)如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是第二象限内抛物线上一动点.点F的坐标为(﹣4,0).(1)求这条抛物线的解析式;(2)连接OD交线段AC于点E.当△AOE与△ABC相似时,求点D的坐标;(3)在x轴上方作正方形AFMN将正方形AFMN沿x轴方向向右平移t个单位,其中0≤t≤4,设正方形AFMN与△ABC的重叠部分面积为S,直接写出S关于t的函数解析式.23.(2021•江岸区模拟)如图1,抛物线y=x2+bx+c与x轴交于点A、B,OB=3OA=3.(1)求抛物线解析式;(2)如图2,直线y=kx+n与抛物线交于点C、D,若△ACD的内心落在x轴上,求k 的值;(3)如图3,直线l与抛物线有且只有一个公共点E,l与抛物线对称轴交于点F,若△AEF的面积为,求点E的坐标.24.(2021•江北区校级模拟)如图,在平面直角坐标系中,已知抛物线y=x2+2x﹣3交x轴于点A、B,交y轴于点C.(1)如图1,连接BC,过点A作y轴的平行线交直线BC于点E,求线段BE的长;(2)如图1,点P为第三象限内抛物线上一点,连接AP交BC于点D,连接BP,记△BDP的面积为S1,△ABD的面积为S2,当的值最大时,求出这个最大值和点P的坐标;(3)在(2)的条件下,将抛物线y=x2+2x﹣3沿射线BC方向平移个单位,平移后的抛物线与原抛物线交于点G,点M为平移后的抛物线对称轴上一点,N为平面内一点,是否存在以点D、G、M、N为顶点的四边形是菱形,若存在,直接写出点N的坐标,若不存在,则请说明理由.【题组七】25.(2021•峨眉山市模拟)如图,已知直线y=与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)求抛物线的解析式;(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.26.(2021•醴陵市模拟)已知:抛物线y=﹣x2+2(m﹣1)x+m+1.(1)当m=﹣1时,求抛物线与x轴的交点坐标.(2)设该抛物线与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,若线段AO,BO,CO的长度满足,请解决下列问题:①求这个抛物线的解析式.②作直线y=kx+b交①中的抛物线于点P和点Q,交y轴于点D,请问是否存在直线y=kx+b,使△CDP的面积和△CDQ的面积相等?若存在,求出k和b要满足的条件.若不存在,请说明理由.27.(2021•武汉模拟)点A,B在抛物线y=ax2(a>0)上,AB交y轴于点C.(1)过点C作DC⊥y轴交抛物线于点D,若AB∥OD,AB的解析式为y=x+2,求a的值;(2)过点B作BG⊥x轴交x轴于点G,BG的延长线交AO的延长线于点H,连接AG 交y轴于点K,求OK•BH的值;(3)若a=1,将抛物线平移后交x轴于点A(﹣1,0),B(2,0)两点,点P为y轴正半轴上一点,AP,BP交抛物线于点M,N,设△PNA的面积为S1,△PMB的面积为S2,△PBA的面积为S3,若,求点P的坐标.28.(2021•章丘区模拟)如图1,抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),与y轴交于点C.M是抛物线任意一点,过点M作直线l⊥x轴,交x轴于点E,设M的横坐标为m(0<m<3).(1)求抛物线的解析式及tan∠OBC的值;(2)当m=1时,P是直线l上的点且在第一象限内,若△ACP是直角三角形时,求点P 的坐标;(3)如图2,连接BC,连接AM交y轴于点N,交BC于点D,连接BM,设△BDM的面积为S1,△CDN的面积为S2,求S1﹣S2的最大值.。

2020年中考数学压轴解答题13 几何中的最值与定值问题 (学生版)

2020年中考数学压轴解答题13 几何中的最值与定值问题 (学生版)

备战2020中考数学之解密压轴解答题命题规律专题13 几何中的最值与定值问题【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短”结合“垂线段最短”.【方法揭秘】两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1 图2 图3如图4,正方形ABCD的边长为4,AE平分∠BAC交BC于E.点P在AE上,点Q在AB上,那么△BPQ周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE是河流,但是点Q不确定啊.第一步,应用“两点之间,线段最短”.如图5,设点B关于“河流AE”的对称点为F,那么此刻PF+PQ的最小值是线段FQ.第二步,应用“垂线段最短”.如图6,在点Q运动过程中,FQ的最小值是垂线段FH.这样,因为点B和河流是确定的,所以点F是确定的,于是垂线段FH也是确定的.图4 图5 图6【典例分析】【例1】如图1,△ABC是边长为8的等边三角形,AD⊥BC于点D,DE⊥AB于点E.(1)求证:AE=3EB(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF的最小值及此时BP 的长;(3)在(2)的条件下,连接EF,当PE+PF取最小值时,△PEF的面积是______.【例2】问题探究()1请在图①的正方形ABCD的对角线BD上作一点P,使PA PC+最小;()2如图②,点P为矩形ABCD的对角线BD上一动点,AB2=,BC3=点E为BC边的中点,请作一点+最小,并求这个最小值;P,使PE PC问题解决()3如图③,李师傅有一块边长为1000米的菱形采摘园ABCD,AC1200=米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离;若不存在,请说明理由.【例3】在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ;(3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【例4】如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.【例5】如图,在平面直角坐标系中,抛物线y =﹣235333x x ++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求出△ABC 的周长.(2)在直线BC 上方有一点Q ,连接QC 、QB ,当△QBC 面积最大时,一动点P 从Q 出发,沿适当路径到达y 轴上的M 点,再沿与对称轴垂直的方向到达对称轴上的N 点,连接BN ,求QM +MN +BN 的最小值.(3)在直线BC 上找点G ,K 是平面内一点,在平面内是否存在点G ,使以O 、C 、G 、K 为顶点的四边形是菱形?若存在,求出K 的坐标;若不存在,请说明理由.【例6】在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B ,C ,已知A (﹣1,0),C (0,3).【变式训练】一、单选题1.如图,APB △中,4,3AP BP ==,在AB 的同侧作正ABD △、正APE V 和正BPC △,则四边形PCDE 面积的最大值是( )A .12B .15C .20D .252.如图,在Rt ABC ∆中, 90BAC =︒∠,45ACB ∠=︒,22AB =,点P 为BC 上任意一点,连结PA ,以PA ,PC 为邻边作平行四边形PAQC ,连结PQ ,则PQ 的最小值为( )A .2B .2C .22D .43.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.已知:AB 是O e 的直径,AD ,BC 是O e 的切线,P 是O e 上一动点,若10AD =,4OA =,16BC =,则PCD ∆的面积的最小值是( )A .36B .32C .24D .10.45.⊙O 是半径为1的圆,点O 到直线L 的距离为3,过直线L 上的任一点P 作⊙O 的切线,切点为Q ;若以PQ 为边作正方形PQRS,则正方形PQRS 的面积最小为( )A .7B .8C .9D .106.在△ABC 中,AB=BC,点D 在AC 上,BD=6cm,E ,F 分别是AB ,BC 边上的动点,△DEF 周长的最小值为6 cm,则ABC ∠=( )A .20°B .25°C .30°D .35°7.如图,已知点(1,3)A -,(5,1)B -,点(,0)P m 是x 轴上一动点,点Q 是y 轴上一动点,要使四边形ABPQ 的周长最小,m 的值为( )A .3.5B .4C .7D .2.58.如图,四边形ABCD 中,∠BAD=130°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N,使三角形AMN 周长最小时,则∠AMN+∠ANM 的度数为( )A .80°B .90°C .100°D .130°二、填空题9.如图,ABC ∆是等边三角形,13AD AB =,点E 、F 分别为边AC 、BC 上的动点,当DEF ∆的周长最小时,FDE ∠的度数是______________.10.如图,△ABC 中,AB=8,AC=5,BC=7,点D 在AB 上一动点,线段CD 绕点C 逆时针旋转60°得到线段CE,AE 的最小值为________11.在Rt △ABC 中,∠BAC =90,AB =AC ,AD ⊥BC 于点D ,P 是线段AD 上的一个动点,以点P 为直角的顶点,向上作等腰直角三角形PBE ,连接DE ,若在点P 的运动过程中,DE 的最小值为3,则AD 的长为____.12.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.13.如图,在半径为2的⊙O 中,弦AB ⊥直径CD ,垂足为E ,∠ACD =30°,点P 为⊙O 上一动点,CF ⊥AP 于点F . ①弦AB 的长度为_____;②点P 在⊙O 上运动的过程中,线段OF 长度的最小值为_____.14.如图,矩形ABCD 中,6AB =,8BC =,M 是AD 边上的一点,且2AM =,点P 在矩形ABCD 所在的平面中,且90BPD ∠=︒,则PM 的最大值是_________.三、解答题15.如图,在平面直角坐标系中,矩形OABC 的两边OA OC 、分别在x 轴、y 轴的正半轴上,8,4OA OC ==.点P 从点O 出发,沿x 轴以每秒2个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段CP 的中点绕点P 按顺时针方向旋转90o ,得点D ,点D 随点P 的运动而运动,连接DP DA 、.(1)请用含t 的代数式表示出点D 的坐标. (2)求t 为何值时,DPA ∆的面积最大,最大为多少?(3)在点P 从O 向A 运动的过程中,DPA ∆能否成为直角三角形?若能,求t 的值:若不能,请说明理由. (4)请直接写出整个运动过程中,点D 所经过的长度.16.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。

中考数学“最值问题”集锦

中考数学“最值问题”集锦

中考数学“最值问题”集锦平面几何中的最值问题 (01)●几何的定值与最值 (07)●最短路线问题 (14)●对称问题 (18)●巧作“对称点”妙解最值题 (22)●数学最值题的常用解法 (26)●求最值问题 (29)●有理数的一题多解 (34)●4道经典题 (37)●平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。

取点A关于直线L的对称点A’,则AP’=AP,在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+P B最小。

1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2R y,所以所以求u的最大值,只须求-x2+2R x+2R2最大值即可.-x2+2R x+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有 2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3. 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB 是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以S△ABC≥S△AKL.5. 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.6. 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A的直线l 或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.7. 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC′⊥AB 于C ,DD′⊥AB 于D′, DQ ⊥CC′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等; (2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变 思路点拨 先考虑当圆心在正三角形的顶点C 时, 其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下, 动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK·BN 与AB 有关,从图知AB 为 △ABM 与△ANB 的公共边,作一个大胆的猜想,AK·BN=AB 2, 从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XY Z 是直角边长为1的等腰直角三角形(∠Z=90°),它的三⌒⌒个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设C X =x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值; (2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为 ,最小值为 .2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22C .2D .13- 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.(1)求证:MN∥AB;(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.9.已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F.(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( )25D.14A.8 B.12 C.211.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( )A.23+2+B.23+D.21+C.212.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,A V与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短”为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上A、B二点之间的最短路线如何求呢?我们用过A、B两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上A、B两点之间不超过半个圆周的弧线就是所求的A、B两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从A地出发,去B地取情报.在去B地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点A关于河岸的对称点A′,即作AA′垂直于河岸,与河岸交于点C,且使AC=A′C,连接A′B交河岸于一点P,这时P点就是饮马的最好位置,连接PA,此时PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P点的另一点P′,连接P′A,P′B,P′A′.∵P′A+P′B=P′A′+P′B>A′B=PA′+PB=PA+PB,而这里不等式P′A′+P′B>A′B成立的理由是连接两点的折线段大于直线段,所以PA+PB是最短路线.此例利用对称性把折线APB化成了易求的另一条最短路线即直线段A′B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上A点,爬到邻近的另一面墙壁β上的B点捕蛾,它可以沿许多路径到达,但哪一条是最近的路线呢?解:我们假想把含B点的墙β顺时针旋转90°(如下页右图),使它和含A 点的墙α处在同一平面上,此时β转过来的位置记为β′,B点的位置记为B′,则A、B′之间最短路线应该是线段AB′,设这条线段与墙棱线交于一点P,那么,折线4PB就是从A点沿着两扇墙面走到B点的最短路线.证明:在墙棱上任取异于P点的P′点,若沿折线AP′B走,也就是沿在墙转90°后的路线AP′B′走都比直线段APB′长,所以折线APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体ABCD—A′B′C′D′中,AB=4,A′A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到B点,问这只小虫怎样爬距离最短?(见图(1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、B两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上D′B间的最短路线就是连结这两点的直线段,这样,从D′点出发,到B点共有六条路线供选择.①从D′点出发,经过上底面然后进入前侧面到达B点,将这两个面摊开在一个平面上(上页图(2)),这时在这个平面上D′、B间的最短路线距离就是连接D′、B两点的直线段,它是直角三角形ABD′的斜边,根据勾股定理,D′B2=D′A2+AB2=(1+2)2+42=25,∴D′B=5.②容易知道,从D′出发经过后侧面再进入下底面到达B点的最短距离也是5.③从D′点出发,经过左侧面,然后进入前侧面到达B点.将这两个面摊开在同一平面上,同理求得在这个平面上D′、B两点间的最短路线(上页图(3)),有:D′B2=22+(1+4)2=29.④容易知道,从D′出发经过后侧面再进入右侧面到达B点的最短距离的平方也是29.⑤从D′点出发,经过左侧面,然后进入下底面到达B点,将这两个平面摊开在同一平面上,同理可求得在这个平面上D′、B两点间的最短路线(见图),D′B2=(2+4)2+12=37.⑥容易知道,从D′出发经过上侧面再进入右侧面到达B点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D′点出发,经过上底面然后进入前侧面到达B点(上页图(2)),或者经过后侧面然后进入下底面到达B点的路线是最短路线,它的长度是5个单位长度.利用例2、例3中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上A和B两点之间的最短路线问题(下左图),同样可以把A、B两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接A、B成线段AP1P2B,P1、P2是线段AB与两条侧棱线的交点,则折线AP1P2B就是AB间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在A点,绕一周之后终点为B点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线AB剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时,A′、B′分别与A、B重合),连接AB′,再将上页右图还原成上页左图的形状,则AB′在圆柱面上形成的曲线就是连接AB且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图,A、B在同一母线上,B为AO的中点,试求以A为起点,以B为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时,A′、B′分别与A、B重合),在扇形中连AB′,则将扇形还原成圆锥之后,AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的A点爬到桶内的B 点去寻找食物,已知A点沿母线到桶口C点的距离是12厘米,B点沿母线到桶口D点的距离是8厘米,而C、D两点之间的(桶口)弧长是15厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于B点在里面,不便于作图,设想将BD延长到F,使DF=BD,即以直线CD为对称轴,作出点B的对称点F,用F代替B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长BD到F,使DF=BD,即作点B 关于直线CD的对称点F,连结AF,交桶口沿线CD于O.因为桶口沿线CD是B、F的对称轴,所以OB=OF,而A、F之间的最短线路是直线段AF,又AF=AO+OF,那么A、B之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O点后,转向桶内B点爬去.延长AC到E,使CE=DF,易知△AEF是直角三角形,AF是斜边,EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2 =(12+8)2+152=625=252,解得AF=25.即蚂蚁爬行的最短路程是25厘米.例7 A、B两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使A、B两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从A点作河岸的垂线,并在垂线上取AC等于河宽,就相当于把河宽预先扣除,找出B、C两点之间的最短路线,问题就可以解决.解:如上图,过A点作河岸的垂线,在垂线上截取AC的长为河宽,连结BC交河岸于D点,作DE垂直于河岸,交对岸于E点,D、E两点就是使两村行程最短的架桥地点.即两村的最短路程是AE+ED+DB.例8 在河中有A、B两岛(如下图),六年级一班组织一次划船比赛,规则要求船从A岛出发,必须先划到甲岸,又到乙岸,再到B岛,最后回到A岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作A、B关于甲岸线、乙岸线的对称点A′和B′,连结A′、B′分别交甲岸线、乙岸线于E、F两点,则A→E→F→B→A是最短路线,即最短路程为:AE+EF+FB+BA.证明:由对称性可知路线A→E→F→B的长度恰等于线段A′B′的长度.而从A岛到甲岸,又到乙岸,再到B岛的任意的另一条路线,利用对称方法都可以化成一条连接A′、B′之间的折线,它们的长度都大于线段A′B′,例如上图中用“·—·—·”表示的路线A→E′→F′→B的长度等于折线AE′F′B的长度,它大于A′B′的长度,所以A→E→F→B→A是最短路线.●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。

二次函数中的线段最值问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数

 二次函数中的线段最值问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲【例1】.如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B左侧),与y 轴交于点C,连接BC,点P是线段BC上方抛物线上一点,过点P作PM⊥BC于点M,求线段PM的最大值.变式训练【变1-1】.如图,抛物线y=x2+bx+c经过点B(3,0)、C(0,﹣2),直线L:y=﹣x﹣交y轴于点E,且与抛物线交于A、D两点,P为抛物线上一动点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线L下方时,过点P作PN∥y轴交L于点N,求PN的最大值.(3)当点P在直线L下方时,过点P作PM∥x轴交L于点M,求PM的最大值.【变1-2】.如图,抛物线y=+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)线段BC上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值.【例2】.已知:如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求此函数的关系式;(2)在对称轴上找一点P,使△BCP的周长最小,求出P点坐标;(3)在AC下方的抛物线上有一点N,过点N作直线l∥y轴,交AC与点M,当点N坐标为多少时,线段MN的长度最大?最大是多少?变式训练【变2-1】.如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.【变2-2】.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,直接写出点Q的坐标;若不存在,请说明理由.1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.2.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.3.已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M 的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.4.在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.5.如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO =BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.6.如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m 的代数式表示n,并求出n的最大值.7.已知二次函数y=x2﹣x﹣2的图象和x轴相交于点A、B,与y轴相交于点C,过直线BC 的下方抛物线上一动点P作PQ∥AC交线段BC于点Q,再过P作PE⊥x轴于点E,交BC于点D.(1)求直线AC的解析式;(2)求△PQD周长的最大值;(3)当△PQD的周长最大时,在y轴上有两个动点M、N(M在N的上方),且MN=1,求PN+MN+AM的最小值.8.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.9.如图所示,二次函数y=ax2﹣x+c的图象经过点A(0,1),B(﹣3,),A点在y 轴上,过点B作BC⊥x轴,垂足为点C.(1)求直线AB的解析式和二次函数的解析式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)点N是二次函数图象上一点(点N在AB上方),是否存在点N,使得BM与NC 相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.10.如图所示,抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图,直线BC下方的抛物线上有一点D,过点D作DE⊥BC于点E,作DF平行x轴交直线BC点F,求△DEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线对称轴的右侧,是否存在以点P、M、N、Q为顶点且以PM为边的正方形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.11.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(2)在抛物线上是否存在点Q,使得△BDQ中BD边上的高为.若存在,请求出点Q的坐标;若不存在,请说明理由;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.12.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与直线y=﹣x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C 是直角三角形时,直接写出点F的坐标.13.如图①,已知抛物线C1:y=a(x+1)2﹣4的顶点为C,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求点C的坐标及a的值;(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P 作y轴的平行线,交CE于点F.①求线段PF长的最大值;②若PE=EF,求点P的坐标.14.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B (3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.15.已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.。

二次函数中求线段,线段和,面积等最值问题—备战2024年中考数学(全国通用)(解析版)

二次函数中求线段,线段和,面积等最值问题—备战2024年中考数学(全国通用)(解析版)

二次函数中求线段,线段和,面积等最值问题(压轴通关) 目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数中求线段,线段和,面积等最值问题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,二次函数的图象和性质是考查的基础,也是高频考点、必考点。

2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一 二次函数中求线段的最值问题【例1】(2024·安徽滁州·一模)已知抛物线()22131y x n x n =−++++交x 轴于点()10A −,和点B ,交y 轴于点C .(1)求抛物线的函数解析式;(2)如图1,已知点P 是位于BC 上方的抛物线上的一点,作PM BC ⊥,垂足为M ,求线段PM 长度的最大值;(3)如图2,已知点Q 是第四象限抛物线上一点,45ACQ ∠=︒,求点Q 的坐标.【答案】(1)234y x x =−++;(2)PM 的最大值为(3)点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【分析】(1)将点()10A −,代入()22131y x n x n =−++++,求得1n =,即可得解;(2)求得点B 和C 的坐标,推出45OAB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,得到PEM △是等腰直角三角形,2PM PE =,设()234P m m m −++,,求得PM 关于m 的二次函数,利用二次函数的性质求解即可;(3)作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,求得BC =ACO GCB ∠=∠,利用正切函数的定义求得BG ,证明HBG 是等腰直角三角形,求得()31G −,,再求得直线CG 的解析式,据此求解即可.【详解】(1)解:∵抛物线()22131y x n x n =−++++交x 轴于点()10A −,, ∴()121310n n −−+++=,解得1n =,∴抛物线的函数解析式为234y x x =−++; (2)解:当0x =时,4y =;当0y =时,2340x x −++=,解得4x =或=1x −;∴()40B ,,()04C ,,∴4OA OB ==,∴45OCB OBC ∠=∠=︒,作PF x ⊥轴于点F ,交BC 于点E ,∴9045PEM BEF OBC ∠=∠=︒−∠=︒,∴PEM △是等腰直角三角形,∴PM =,设直线BC 的解析式为4y kx =+,把()40B ,代入得044k =+,解得1k =−,∴直线BC 的解析式为4y x =−+,设()234P m m m −++,,则()4E m m −+,,∴))223442PM PE m m m m ==−+++−=−+∵0>,∴PM 有最大值,最大值为(3)解:作BG CQ ⊥轴于点G ,作GH x ⊥轴于点H ,∵()10A −,,()40B ,,()04C ,,∴1OA =,4OB OC ==,BC =∵45ACQ ∠=︒,45OCB ∠=︒,∴ACO GCB ∠=∠,∴tan tan ACO GCB ∠=∠,即OA BG OC BC =,∴14=∴BG ,∵45OBC ∠=︒,∴45HBG ∠=︒,∴HBG 是等腰直角三角形,∴1BH GH ==,∴413OH =−=,∴()31G −,,同理直线CG 的解析式为543y x =−+, 联立得235434x x x =−+++−,解得0x =或143x =; 当143x =时,514344339y =−⨯+=−, ∴点Q 的坐标为143439⎛⎫− ⎪⎝⎭,.【例2】(2024·江苏淮安·二模)如图,在平而直角坐标系中,二次函数2y =+的图象与x 轴分别交于点,O A ,顶点为B .连接,OB AB ,将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,连接BC .点,D E 分别在线段,OB BC 上,连接,,,AD DE EA DE 与AB 交于点,60F DEA ∠=︒.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【答案】(1)()20A ,,(B ;(2)①EDA ∠的大小不变,理由见解析;②线段BF 的长度存在最大值为12【分析】(1)0y =得20+=,解方程即可求得A 的坐标,把2y =+化为顶点式即可求得点B 的坐标;(2)①在AB 上取点M ,使得BM BE =,连接EM ,证明AED △是等边三角形即可得出结论;②证BDF OAD ∽,利用相似三角形的性质得BD BF OA OD =即22x BF x −=,解得()211122BF x =−−+进而利用二次函数的性质即可得解.【详解】(1)解:∵)221y x =+=−+∴顶点为(B ,令0y =,20+=,解得0x =或2x =,∴()20A ,;(2)解:①EDA ∠的大小不变,理由如下:在AB 上取点M ,使得BM BE =,连接EM ,∵)21y x =−∴抛物线对称轴为1x =,即1ON =,∵将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,∴60BAC ∠=︒,AB AC =,∴BAC 是等边三角形,∴AB AC BC ==,60C ∠=︒,∵()20A ,,(B ,()00O ,,1ON =,∴2OA =,OB =2,AB =2=,∴OA OB AB ==,∴OAB 是等边三角形,2OA OB AC BC ====,∴60∠=∠=∠=︒OAB OBA AOB ,∵60MBE ∠=︒,BM BE =,∴BME 是等边三角形,∴60BME ABE ∠∠=︒=,ME BE BM ==,∴180120AME BME ∠∠=︒−=︒,BD EM ∥,∵120DBE ABO ABC ∠∠∠=+=︒,∴DBE AME ∠∠=,∵BD EM ∥,∴18012060FEM BED AEF MEA FEM ∠∠∠∠∠+=︒−︒=︒==+,∴BED MEA ∠∠=,∴BED MEA ≌,∴DE EA =,又60AED ∠=︒,∴AED △是等边三角形,∴60ADE ∠=︒,即ADE ∠的大小不变;②设OD x =,则2BD x =−,∵OAB 是等边三角形,60ADE ∠=︒,∴60DOA FBD ADE ∠∠∠===︒,∵BDA BDF ADE DOA OAD ∠∠∠∠∠=+=+,∴BDF OAD ∠∠=,∴BDF OAD ∽,∴BD BF OA OD =即22x BF x −=, ∴()211122BF x =−−+,∴当1x =时,BF 有最大值为12.【点睛】本题主要考查了二次函数的图像及性质,全等三角形的判定及性质,相似三角形的判定及性质以及等边三角形的判定及性质,题目综合性较强,熟练掌握各知识点是解题的关键.1.(2024·四川南充·一模)如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)−.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于第四象限内一动点,PD BC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,点E 是抛物线的顶点,点M 是线段BE 上的动点(点M 不与B 重合),过点M 作MN x ⊥轴于N ,是否存在点M ,使CMN 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−(2)当32m =时,PD取得最大值为.此时315,24P ⎛⎫− ⎪⎝⎭ (3)CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12【分析】(1)把点,A C 坐标代入函数的解析式,利用待定系数法求解即可;(2)先求线BC 的解析式,设点p 的横坐标为m ,再用m 的代数式表示PD 的长度建立二次函数求解即可;(3)先求直线BE 的解析式,再分三种情况,根据相似三角形的判定和性质求解即可.【详解】(1)由题意得103b c c −+=⎧⎨=−⎩,解得:23b c =−⎧⎨=−⎩.则抛物线的解析式为:223y x x =−−;(2)过点P 作PH x ⊥轴于点H ,交BC 于点G当0y =时,2230x x −−=,解得=1x −或3,∴(3,0)B设直线BC 的解析式为:1y kx b =+,则11303k b b +=⎧⎨=−⎩,解得:113k b =⎧⎨=−⎩∴3y x =−设点()2,23P m m m −−(03m <<),则3G m m −(,), ∴()()223233PG m m m m m =−−−−=−, ∵OB OC =,∴45OBC OCB ∠=∠=︒,∴45BGH ∠=︒∴45PGD BGH ∠=∠=︒,∴PD =.)22332228PD m m m ⎫=−+=−−+⎪⎝⎭ ∴当32m =时,PD取得最大值为8.此时315,24P ⎛⎫− ⎪⎝⎭. (3)在EB 上存在点M ,使CMN 为直角三角形.抛物线顶点(1,4)E −,设直线BE 的解析式为:22y k x b =+,则2222430k b k b +=−⎧⎨+=⎩,解得:2226k b =⎧⎨=−⎩,∴26y x =−.设26M n n −(,)13n ≤<(),①∵90CNM ONC ∠=︒−∠,∴90CNM ∠<︒,不可能为直角;②当90CMN ∠=︒时,则90CMN MNB ∠=∠=︒ ∴//MC x 轴,则263n −=−,∴32n =,∴3,32M ⎛⎫− ⎪⎝⎭. ③当90MCN ∠=︒时,过点M 作MF y ⊥轴于点F .∵90MCF NCO ∠+∠=︒,90CNO NCO ∠+∠=︒,∴MCF CNO ∠=∠,又90MFC CON ∠=∠=︒,∴MFC CON ∽, ∴CF MF NO CO =, ∴()3263n nn −−−=,∴2690n n +−=,解得:123,3n n ==−.∵13n ≤<,∴23n =−不合题意,应舍去,∴3n =∴()12M综上所述,CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫− ⎪⎝⎭或()12.【点睛】本题考查用待定系数法求二次函数的解析式,构造二次函数求线段的最值,二次函数与直角三角形的存在性问题,相似三角形的判定和性质,难度较大,是中考的压轴题,解题的关键是数形结合,提高综合运用的能力.2.(23-24九年级下·江苏宿迁·阶段练习)如图,在平面直角坐标系中抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.求出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标.【答案】(1)211344y x x =+−;(2)PD 的最大值为45,此时点52,2P ⎛⎫−− ⎪⎝⎭; (3)Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭,()0,2F ,勾股定理分别表示出2EF ,2QE ,2QF 进而分类讨论即可求解. 【详解】(1)解:将点()3,0B ,()0,3C −,代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=−⎩,解得:143b c ⎧=⎪⎨⎪=−⎩,∴抛物线解析式为:211344y x x =+−; (2)∵211344y x x =+−与x 轴交于点A ,B ,当0y =时,2113044x x +−=,解得:124,3x x =−=, ∴()4,0A −, ∵()0,3C −, 设直线AC 的解析式为3y kx =−,∴430k −−=, 解得:34k =−,∴直线AC 的解析式为334y x =−−,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+− ⎪⎝⎭,则3,34Q t t ⎛⎫−− ⎪⎝⎭, ∴223111334444PQ t t t t t ⎛⎫=−−−+−=−− ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ⎛⎫==−−=−−=−++ ⎪⎝⎭, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=⨯−+⨯−−=−, ∴52,2P ⎛⎫−− ⎪⎝⎭; (3)∵抛物线211344y x x =+−211494216x ⎛⎫=+− ⎪⎝⎭, 将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=−− ⎪⎝⎭,对称轴为直线92x =, 点52,2P ⎛⎫−− ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫− ⎪⎝⎭, ∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯−= ⎪⎝⎭, ∴()0,2F , ∴22251173224EF ⎛⎫=++= ⎪⎝⎭, ∵Q 为平移后的抛物线的对称轴上任意一点,则Q 点的横坐标为92, 设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+− ⎪⎝⎭, 当QF EF =时,()229117224m ⎛⎫+−= ⎪⎝⎭, 解得:1m =−或5m =,当QE QF =时,()222295932222m m ⎛⎫⎛⎫⎛⎫−++=+− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 解得:74m =, 综上所述,Q 点的坐标为9,12⎛⎫− ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.3.(2024·山西阳泉·一模)综合与探究 如图,二次函数213442y x x =−−的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,连接AC ,作直线BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的表达式;(2)如图1,若点P 是第四象限内二次函数图象上的一个动点,其横坐标为m ,过点P 分别作x 轴、y 轴的垂线,交直线BC 于点M ,N ,试探究线段MN 长的最大值;(3)如图2,若点Q 是二次函数图象上的一个动点,直线BQ 与y 轴交于点H ,连接CD ,在点Q 运动的过程中,是否存在点H ,使以H ,C ,B 为顶点的三角形与ACD 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)()20A −,,()80B ,,()04C −,,直线BC 的表达式为1y x 42=−;(2)线段MN长的最大值为(3)点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【分析】(1)令0y =,求得x 的值,令0x =,求得y 的值,可求得A ,B ,C 三点的坐标,利用待定系数法即可求得直线BC 的表达式;(2)设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,证明PNM OBC ∠=∠,利用正切函数的定义推出2PN PM =,求得MN ,得到MN 关于m 的二次函数,利用二次函数的性质求解即可;(3)利用勾股定理求得AC =,5AD OC ==,作DG AC ⊥于点G ,用正切函数的定义推出OCA BCH ∠=∠,分BC BH =和BH CH =两种情况讨论,分别求得点H 的坐标,求得直线BH 的表达式,与二次函数的表达式联立求解即可.【详解】(1)解:令0y =,则2134042x x −−=,解得12x =−,28x =,令0x =,则4y =−,∴()20A −,,()80B ,,()04C −,,设直线BC 的表达式为4y kx =−,代入()80B ,得084k =−,解得12k =, ∴直线BC 的表达式为1y x 42=−; (2)解:∵()20A −,,()80B ,,()04C −,,∴2OA =,8OB =,4OC =, 设213442P m m m ⎛⎫−− ⎪⎝⎭,,则142M m m ⎛⎫− ⎪⎝⎭,,2211314422424PM m m m m m ⎛⎫=−−−−=−+ ⎪⎝⎭,∵PN OB ∥,PM OC ∥,∴PNM OBC ∠=∠, ∴41tan tan 82OC PNM OBC OB ∠=∠===,∴2PN PM =,MN ,∴)221244MN m m m ⎫=−+=−+⎪⎭∵0<,∴当4m =时,线段MN 长的最大值为 (3)解:∵()20A −,,()80B ,,()04C −,, ∴对称轴为直线2832x −+==, ∴()30D ,,∴()325AD =−−=,5CD ==,AC == ∴5AD DC ==,作DG AC ⊥于点G ,∴12AG CG AC ===∴DG == ∴tan 2DG DCA CG ∠==, ∵tan 2OB BCO OC ∠==,∴DCA BCH ∠=∠,以H ,C ,B 为顶点的三角形与ACD 相似,则分BC BH =和BH CH =两种情况讨论,①当BC BH =时,∵BO CH ⊥,∴OH OC =,∴()04H ,,同理求得直线BH 的表达式为142y x =−+, 联立得241234412x x x −−−+=,解得14x =−,28x =(舍去),()14462y =−⨯−+=,∴点Q 的坐标为()46−,;①当BH CH =时,设()0H t ,,则2264BH t =+,()2224816CH t t t =+=++,∴2264816t t t +=++,解得6t =,∴()06H ,,同理求得直线BH 的表达式为364y x =−+, 联立得261434432x x x −−−+=,解得15x =−,28x =(舍去),()3395644y =−⨯−+=,∴点Q 的坐标为3954⎛⎫− ⎪⎝⎭,; 综上,点Q 的坐标为3954⎛⎫− ⎪⎝⎭,或()46−,.【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,点的坐标表示三角形的面积,勾股定理,正切函数,解方程,熟练掌握待定系数法,勾股定理,正切函数是解题的关键.题型二 将军饮马河求二次函数中线段和最值问题【例1】(2024·天津津南·一模)综合与探究:如图,抛物线2y x bx c =−++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;(2)点P 是抛物线位于第一象限图象上的动点,连接AP ,CP ,当PAC ACM S S =△△时,求点P 的坐标;(3)将抛物线沿x 轴的负方向平移得到新抛物线,点A 的对应点为点A ',点C 的对应点为点C ',当MA MC ''+的值最小时,新抛物线的顶点坐标为 ,MA MC ''+的最小值为 .【答案】(1)()0,2M −,2722y x x =−++ (2)()2,5P(3)1181,1216⎛⎫− ⎪⎝⎭,【分析】(1)根据点M 在y 轴负半轴且2OM =可得点M 的坐标为()0,2M −,利用待定系数法可得抛物线的解析式为2722y x x =−++;(2)过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,用待定系数法求得直线AC 的解析式为122y x =−+,设点P 的横坐标为()04p p <<,则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭,故24(04)PE p p p =−+<<,先求得8ACM S =△,从而得到212882PAC S PE OC p p =⋅=−+=△,解出p 的值,从而得出点P 的坐标;(3)设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 右平移m 个单位长度得到点M ',由平移的性质可知,,MA M A MC M C ''''==,MA MC ''+的值最小就是M A M C ''+最小值,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,利用两点间的距离公式求这个长度,用待定系数法求出直线AC ''的解析式,从而确定M '的坐标,继而确定平移距离,将原抛物线的解析式化为顶点式,从而得到其顶点,继而确定新抛物线的顶点.【详解】(1)解:∵点M 在y 轴负半轴且2OM =,∴()0,2M −将()0,2A ,()4,0C 代入2y x bx c =−++,得:21640c b c =⎧⎨−++=⎩,解得722b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为2722y x x =−++(2)解:过点P 作PF x ⊥轴于点F ,交线段AC 于点E ,设直线AC 的解析式为()0y kx m k =+≠,将()0,2A ,()4,0C 代入y kx m =+,得:240m k m =⎧⎨+=⎩,解得122k m ⎧=−⎪⎨⎪=⎩,∴直线AC 的解析式为122y x =−+ 设点P 的横坐标为()04p p << 则27,22P p p p ⎛⎫−++ ⎪⎝⎭,1,22E p p ⎛⎫−+ ⎪⎝⎭, ∴2271224(04)22PE p p p p p p ⎛⎫=−++−−+=−+<< ⎪⎝⎭∵8ACM S =△,∴212882PAC S PE OC p p =⋅=−+=△,解得122p p ==, ∴()2,5P ;(3)1181,1216⎛⎫− ⎪⎝⎭,补充求解过程如下:设抛物线沿x 轴的负方向平移m 个单位长度得到新抛物线,将点M 向右平移m 个单位长度得到点M ',作出图形如下:由平移的性质可知,,MA M A MC M C ''''==,∴MA MC ''+的值最小就是M A M C ''+最小值, 显然点M '在直线=2y −上运用,作出点C 关于直线=2y −对称的对称点C '',连接AC ''交直线=2y −于点M ',连接M C '则此时M A M C ''+取得最小值,即为AC ''的长度,∵点C 关于直线=2y −C '',()4,0C ∴()4,4C ''−,∴()()min min MA MC M A M C AC ''''''+=+== 设直线AC ''的解析式是:11y k x b =+将点()0,2A ,()4,4C ''−代入得:111244b k b =⎧⎨+=−⎩,解得:11322k b ⎧=−⎪⎨⎪=⎩直线AC ''的解析式是:322y x =−+令3222y x =−+=−,解得:83x =, ∴8,23M ⎛⎫'− ⎪⎝⎭,∴平移的距离是83m = 又∵22778122416y x x x ⎛⎫=−++=−−+ ⎪⎝⎭, ∴平移前的抛物线的坐标是781416,⎛⎫ ⎪⎝⎭∴新抛物线的顶点坐标为7881,4316⎛⎫− ⎪⎝⎭即1181,1216⎛⎫− ⎪⎝⎭ 故答案是:1181,1216⎛⎫− ⎪⎝⎭,【例2】(2024·江苏宿迁·模拟预测)如图1,抛物线2y x bx =−+与x 轴交于点A ,与直线y x =−交于点()4,4B −,点()0,4C −在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =−+的表达式;(2)当BP =1中过点P 作PD OA ⊥交抛物线于点D ,连接PC OD ,,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ PC ,,求CP BQ +的最小值.【答案】(1)抛物线的表达式为23y x x =−+ (2)平行四边形,见解析(3)【分析】(1)利用待定系数法将B 点坐标代入抛物线2y x bx =−+中,即可求解.(2)作辅助线,根据题意,求出PD 的长,PD OC =,PD OC ∥,利用一组对边平行且相等的四边形是平行四边形即可得证.(3)作出图,证明()SAS CBP MOQ ≌,CP BQ +的最小值为MB ,根据勾股定理求出MB 即可解答. 【详解】(1)解: 抛物线2y x bx =−+过点(4,4)B −,1644b ∴−+=−,3b ∴=,23y x x ∴=−+.即抛物线的表达式为23y x x =−+. (2)解:四边形OCPD 是平行四边形,理由如下:如图1,作PD OA ⊥交x 轴于点H ,连接PC 、OD ,点P 在y x =−上,OH PH ∴=,45POH ∠=︒,连接BC ,4OC BC ==,OB ∴= 2BP =OP OB BP ∴=−=2OH PH ∴===,当2D x =时,4322D DH y ==−+⨯=,224PD DH PH ∴=+=+=, (0,4)C −,4OC ∴=,PD OC ∴=,OC x ⊥Q 轴,PD x ⊥轴,PD OC ∴∥,∴四边形OCPD 是平行四边形.(3)如图2,由题意得,BP OQ =,连接BC ,在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,4OC BC ==,BC OC ⊥,45CBP ∴∠=︒,CBP MOQ ∴∠=∠,BP OQ =,CBP MOQ ∠=∠,BC OM ,(SAS)CBP MOQ ∴△≌△,CP MQ ∴=,CP BQ MQ BQ MB ∴+=+≥(当M ,Q ,B 三点共线时最短),CP BQ ∴+的最小值为MB ,454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,MB ∴即CP BQ +的最小值为答:CP BQ +的最小值为【点睛】本题主要考查待定系数法,二次函数图象与性质,平等四边形的判定,全等三角形的判定与性质以及勾股定理等知识,正确作出辅助线是解答醒的关键.1.(2024·宁夏银川·一模)如图,已经抛物线经过点()00O ,,()55A ,,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时;求点B 的坐标.(3)在(2)的条件下,P 是抛物线上的动点,求P 的坐标以及PA PB −的最大值.【答案】(1)24.y x x =- (2)()2,8B (3)()2,12,P - PA PB −的最大值为【分析】(1)根据题意可设抛物线为2,y ax bx =+再利用待定系数法求解抛物线的解析式即可; (2)设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx = 解得:1,k = 可得直线OA 为:,y x = 则()2,2,Q 利用()12OAB BOQ ABQ A O S S S BQ x x =+=⨯⨯−列方程,再解方程即可;(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,由勾股定理可得最小值,再利用待定系数法求解AB 的解析式,联立一次函数与二次函数的解析式,解方程组可得P 的坐标.【详解】(1)解: 抛物线经过点(0,0)O ,∴设抛物线为:2,y ax bx =+抛物线过(5,5)A ,且它的对称轴为2x =.2555,22a b b a +=⎧⎪∴⎨−=⎪⎩ 解得:1,4a b =⎧⎨=−⎩∴抛物线为:24.y x x =-(2)解:如图,点B 是抛物线对称轴上的一点,且点B 在第一象限,设()2,,B y 且0,y > 记OA 与对称轴的交点为Q ,设直线OA 为:,y kx =55,k \= 解得:1,k =∴ 直线OA 为:,y x =()2,2,Q ∴ ()12OAB BOQ ABQ A O SS S BQ x x ∴=+=⨯⨯− 12515,2y =−⨯=解得:8y =或4,y =−∵0,y > 则8,y =()2,8.B ∴(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB −=最大,()()5,5,2,8,A BAB ∴=设AB 为:,y k x b ''=+ 代入A 、B 两点坐标,55,28k b k b '''+=⎧∴⎨+=⎩' ,解得:1,10k b =−⎧⎨='⎩'∴AB 为:10,y x =-+210,4y x y x x =−+⎧∴⎨=−⎩ 解得:52,,512x x y y ==−⎧⎧⎨⎨==⎩⎩()2,12.P ∴−【点睛】本题考查的是利用待定系数法求解二次函数的解析式,坐标与图形面积,三角形三边关系的应用,勾股定理的应用,确定PA PB −最大时P 的位置是解本题的关键.2.(2024·湖南怀化·一模)如图1,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,5OB OC ==,顶点为D ,对称轴交x 轴于点E .图1 图2 图3(1)求抛物线的解析式、对称轴及顶点D 的坐标;(2)如图2,点Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC △的周长;(3)如图3,在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:直线MN 恒过定点,并求出定点坐标.【答案】(1)245y x x =−++,对称轴为直线2x =,顶点D 的坐标为()29,;(2)QAC △(3)直线MN 恒过定点,定点坐标为()28,.【分析】(1)求得点B 的坐标为()50,,点C 的坐标为()05,,利用待定系数法求解,再配成顶点式,即可得解;(2)先求得直线BC 的解析式,再求直线BC 与对称轴交点Q ,将AQ CQ +转化为BC ,在Rt AOC 中求AC ,在Rt BOC 中求BC 即可求解;(3)如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,证明MDH DNG ∽△△,求得()250mn m n −++=,再利用待定系数法求得直线MN 的解析式为()45y m n x mn =−−+++,据此求解即可. 【详解】(1)解:∵5OB OC ==,∴点B 的坐标为()50,,点C 的坐标为()05,,∴25505b c c −++=⎧⎨=⎩,解得4b =,∴抛物线的解析式为245y x x =−++, ∵()224529y x x x =−++=−−+,∴对称轴为直线2x =,顶点D 的坐标为()29,; (2)解:∵点A 与点()50B ,关于直线2x =对称,∴直线BC 与对称轴的交点为Q ,则Q 为QA QC +最小时位置,设直线BC 的解析式为5y kx =+,代入点()50B ,得055k =+,解得1k =−,∴直线BC 的解析式为5y x =−+,当2x =,253y =−+=,∴()23Q ,,∵点()10A −,,∵ACAQ CQ CB +===∴QAC △(3)解:如图,过点D 作直线l 垂直y 轴,再过点M ,N 分别作直线l 的垂线,垂足分别为H ,G ,设点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,∵顶点D 的坐标为()29,, ∴()()222945442MH m m m m m =−−++=−+=−,2DH m =−,()()222945442GN n n n n n =−−++=−+=−,2DG n =−,由题意得90H G MDN ∠=∠=∠=︒,∴90MDH NDG DNG ∠=︒−∠=∠, ∴MDH DNG ∽△△, ∴MH HD DG NG =,即()()222222m mn n −−=−−,∴()()221m n −−=−, ∴()250mn m n −++=,∵点M 的坐标为()245m m m −++,,点N 的坐标为()245n n n −++,,设直线MN 的解析式为11y k x b =+,∴2112114545mk b m m nk b n n ⎧+=−++⎨+=−++⎩①②,−①②得()()()2214m n k m n m n −=−−+−, ∵m n ≠,∴14k m n =−−+,将14k m n =−−+代入①得()21445m m n b m m −−++=−++,求得15b mn =+;∴直线MN 的解析式为()45y m n x mn =−−+++, ∵()250mn m n −++=,即()25m n mn +=+, ∴()()428y m n x =−−+−+, ∴当20x −=即2x =时,8y =,∴无论m n 、为何值,直线MN 总会经过定点()28,, ∴直线MN 恒过定点,定点坐标为()28,.【点睛】本题考查了二次函数的综合运用.考查了待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握二次函数的图象与性质、轴对称的性质,添加适当的辅助线,是解题的关键.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2Ly ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.【答案】(1)3y x =−+,223y x x =−++;(2)点P 的横坐标为时,PD AD +有最大值; (3)2154y x x =−−+.【分析】(1)利用待定系数法解答即可求解;(2)设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+,先证明ACD 为等腰直角三角形,得到)AD t =−,进而得到2PD AD t ⎛+=−+ ⎝⎭,根据二次函数的性质即可求解;(3)设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得23()4x x m −+=−−+,整理得,22(21)10x m x m −++−=,设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,由B 为MN 的中点可得210m +=,求出m 即可求解;本题考查了二次函数与一次函数的交点问题,待定系数法求函数解析式,二次函数的性质,二次函数图象的平移,掌握二次函数的图象和性质是解题的关键.【详解】(1)解:抛物线2L y ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =,930312a b c c b a ⎧⎪++=⎪∴=⎨⎪⎪−=⎩,解得123a b c =−⎧⎪=⎨⎪=⎩,∴抛物线L 的解析式为223y x x =−++;设直线AB 的解析式为3(0)y kx k =+≠,把(3,0)A 代入得,330k +=,解得1k =−,∴直线AB 的解析式为3y x =−+;(2)解:设点P 的横坐标为t ,则()2,23P t t t −++,(,0)C t ,(,3)D t t −+, 3AC t ∴=−,23PD t t =−+,(3,0)A ,(0,3)B −,3OA OB ∴==,AOB ∴为等腰直角三角形,45OAB ∴∠=︒,PC x ⊥轴, ACD ∴为等腰直角三角形,)AD t ∴==−,∴223PD AD t t t ⎛+=−++=− ⎝⎭,∴当t =时,PD AD +有最大值,即点P的横坐标为32时,PD AD +有最大值;(3)解:由(1)可知,直线AB 的解析式为3y x =−+,抛物线L 为:2223(1)4y x x x =−++=−−+,∴设平移后抛物线L '的解析式2()4y x m =−−+,联立函数解析式得,()234y x y x m =−+⎧⎪⎨=−−+⎪⎩,23()4x x m ∴−+=−−+,整理得,22(21)10x m x m −++−=, 设()11,M x y ,()22,N x y ,则1x ,2x 是方程22(21)10x m x m −++−=的两根,1221x x m ∴+=+,∵B 为MN 的中点,∴120x x +=,∴210m +=, 解得12m =−,∴抛物线L '的解析式22115424y x x x ⎛⎫=−++=−−+ ⎪⎝⎭.题型三 胡不归求二次函数中线段和最值问题【例1】(新考法,拓视野)(2024·陕西西安·三模)已知抛物线2(,,y ax bx c a b c =++为常数,0)a ≠与x 轴交于点()A −、点B 两点,与y 轴交于点()0,2C,对称轴为x =(1)求抛物线的表达式;(2)M 是抛物线上的点且在第二象限,过M 作MN AC ⊥于点N,求AN 的最大值.【答案】(1)22y x =−+(2)496【分析】(1)用待定系数法求解即可;(2)过点M 作MF y ∥轴,交AC 于点E ,先求出一次函数AC 的解析式,用解直角三角形的方法求出30OAC ∠=︒,表示出MN =,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,分别表示出EF ME AE MN ,,,,最后得到249=26AN m ⎛−+ ⎝⎭,求出最后结果即可.【详解】(1)解:点()A −,对称轴为x =(2a c ∴−−+=,2c =,2b a −=解得:1a =−,b = ∴抛物线的表达式为:22y x =−+;(2)如图,过点M 作MF y ∥轴,交AC 于点E ,设AC 的解析式为y kx b =+,02b b ⎧−+=⎪∴⎨=⎪⎩,2k b ⎧=⎪⎨⎪=⎩,∴AC的解析式为2y =+,2AO =2CO =,tan CO OAC AO ∴∠==,30OAC ∴∠=︒,90AFE MNE ∠=︒=∠,AEF MEN ∠=∠, 30M OAC ∴∠=∠=︒,2AE EF ∴=,12EN ME =,sin MN ME ACO ∴=⋅∠=,设2,2M m m ⎛⎫−+ ⎪⎝⎭,2E m ⎛⎫+ ⎪ ⎪⎝⎭,2EF ∴=+,2222ME m m ∴=−+−=−−,24AE EF ∴==+,21122EN ME m ==−,23MN m==−,AN ∴,AE EN=+2213422m m =+−−−224m =−+24926m ⎛=−++ ⎝⎭,20−<,∴当m =时,AN 的最大值为496.【例2】(2024·浙江·一模)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫⎪⎝⎭,,点M 在x 轴上,点E 在平面内,BME AOM ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值. 【答案】(1)214433y x x =−−+(2)①()2,2E −−;②【分析】(1)将点B 、C 的坐标代入抛物线,利用待定系数法求得解析式;(2)①由Q 坐标求出BQ 解析式,然后根据四边形ANEM 是平行四边形和BME AOM ≌得出4BM OA ==,再分类讨论求得M 和E 的坐标;②求出AM 解析式,交点为P ,再求出H 坐标,然后由两点间距离公式求出BP 和BH 长度,因为旋转不改变长度,所以1BP长度不变,当H 旋转到x 轴上时,此时1OH 最短,所以此时1OH 等于BO BH −,然后代入计算即可.【详解】(1)解:①抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C , ∴366404240a b a b −+=⎧⎨++=⎩,解得:1343a b ⎧=−⎪⎪⎨⎪=−⎪⎩ ∴214433y x x =−−+;(2)解:214433y x x =−−+4∴=OA ,设直线BQ 的解析式为1y kx b =+, ()6,0B −,713Q ⎛⎫ ⎪⎝⎭,∴117360k b k b ⎧+=⎪⎨⎪−+=⎩,解得1132k b ⎧=⎪⎨⎪=⎩,∴直线BQ 的解析式为123=+y x ,N Q 为BQ 与y 轴交点, ()0,2N ∴,2AN ∴=,四边形ANEM 是平行四边形,∴AN EM ∥且2EM AN ==,且点E 在点M 下方, 点M 在x 轴上,点E 在平面内,BME AOM ≌,4BM OA ∴==, ()6,0B −, ()2,0M ∴−或()10,0−,若M 为()2,0−,90BME AOM ∠=∠=︒,故()2,2E −−, 若M 为()10,0−,2OM ME ==,此时10OM =,(矛盾,舍去),综上,点E 的坐标为()2,2−−;②如图,设AM 的解析式为,y kx b =+抛物线24y ax bx =++交y 轴于点A ,∴点A 的坐标为(0,4),将点()0,4A 、()2,0M −的坐标代入y kx b =+得:420b k b =⎧⎨−+=⎩,解得24k b =⎧⎨=⎩,AM ∴的解析式为24y x =+,AM 与BQ 相交于点P ,∴24123y x y x =+⎧⎪⎨=+⎪⎩,解得6585x y ⎧=−⎪⎪⎨⎪=⎪⎩, 所以点P 的坐标为68,55⎛⎫− ⎪⎝⎭,设直线BE 的解析式为y mx n =+,将点B 、E 的坐标代入直线BE 的解析式得:2260m n m n −+=−⎧⎨−+=⎩,解得123m n ⎧=−⎪⎨⎪=−⎩, 所以直线BE 的解析式为132y x =−−,BE 与AM 相交于点H ,∴24132y x y x =+⎧⎪⎨=−−⎪⎩,解得14585x y ⎧=−⎪⎪⎨⎪=−⎪⎩, ∴点H 的坐标为148,55⎛⎫−− ⎪⎝⎭,BP ∴==BH ==1BP ∴当H 旋转到x 轴上时,此时1OH 最短,∴16OH BO BH =−=116BP ∴==⎭∴11BP的最小值为1.(2024·河南洛阳·一模)在平面直角坐标系中,抛物线212y x bx c =−++交x 轴于()4,0A 、B 两点,交y 轴于点()0,4C .(1)求抛物线表达式中的b 、c ;(2)点P 是直数AC 上方抛物线上的一动点,过点F 作PF y 轴交AC 于点E ,作PE AC ∥交x 轴于点F ,求PE 的最大值及此时点P 的坐标; (3)将该抛物线沿射线CA方向平移1y ,请直接写出新抛物线1y 的表达式______.【答案】(1)1b =,4c =(2)PE 取得最大值为254,此时335,28P ⎛⎫ ⎪⎝⎭.(3)()2115322y x =−−+【分析】本题考查了二次函数的综合,待定系数法求函数解析式: (1)利用待定系数法即可求解;(2)延长PE 交x 轴于H ,根据题意求得直线AC 的解析式为4y x =−+,OC OA =,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p ,证得PHF是等腰直角三角形,从而求得232524PE PE PH p ⎛⎫=+=−−+⎪⎝⎭,即可求解; (3)先求得CA =,根据1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到,进而可求解;掌握待定系数法求函数解析式及利用数学结合是解题的关键.【详解】(1)解:抛物线212y x bx c =−++交于()4,0A 和()0,4C ,8404b c c −++=⎧∴⎨=⎩,解得:14b c =⎧⎨=⎩. (2)延长PE 交x 轴于H()4,0A ,()0,4C ,∴直线AC 的解析式为4y x =−+,OC OA =, PE y ∥Q 轴,PE x ∴⊥轴, 90AOC ∴∠=︒,45OAC ∴∠=︒,PFAC ,45OFP ∴∠=︒,2PH PF ∴=,PE PE PH ∴+=+,设点()21,4042P p p p p ⎛⎫−++<< ⎪⎝⎭,则(),4E p p −+,(),0H p , ()221144222PE p p p p p ∴=−++−−+=−+,2142PH p p =−++,222211325243422224PE PF PE PH p p p p p p p ⎛⎫∴+=+=−+−++=−++=−−+⎪⎝⎭,PE ∴+的最大值为254,此时点P 的坐标为325,24⎛⎫ ⎪⎝⎭.(3)()4,0A ,()0,4C ,CA ∴=将抛物线y 沿射线CA 方向平移1y ,∴1y 由抛物线()2211941222y x x x =−++=−−+,向右和向下分别平移2个单位长度得到, ()2115322y x ∴=−−+,故答案为:()2115322y x =−−+.2.(2024·海南海口·一模)如图,抛物线2y ax bx c =++过点()1,0A −,()3,0B ,()0,3C .(1)求抛物线的解析式;(2)设点P 是第一象限内的抛物线上的一个动点, ①当P 为抛物线的顶点时,求证:PBC 直角三角形; ②求出PBC 的最大面积及此时点P 的坐标;③过点P 作PN x ⊥轴,垂足为N ,PN 与BC 交于点E.当PE 的值最大时,求点P 的坐标.【答案】(1)223y x x =−++(2)①PBC 是直角三角形;②315,24P ⎛⎫ ⎪⎝⎭;③57,24P ⎛⎫ ⎪⎝⎭【分析】(1)把A 、B 、C 三点坐标代入2y ax bx c =++求解即可; (2)①作PH y ⊥轴于点H ,易证PCH △和BOC 是等腰直角三角形,即可求出90PCB ∠=︒; ②先求出直线BC 的解析式,过点P 作PD x ⊥轴于点D ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,23922PBC S x x ∆=−+,然后根据二次函数的性质求解即可; ③过点P 作PN x ⊥轴于点N ,交BC 于点E ,设点()2,23P x x x −++,则(),3E x x −+,故23PE x x =−+,判断BEN是等腰直角三角形得出BE =,即可求出25PE x x =−+,然后根据二次函数的性质求解即可. 【详解】(1)解:将点()1,0A −,()3,0B ,()0,3C 代入解析式得:09303a b c a b c c −+=⎧⎪++=⎨⎪=⎩,解得:123a b c =−⎧⎪=⎨⎪=⎩,∵抛物线的解析式为223y x x =−++;(2)解:①配方得()222314y x x x =−++−−+∴点P 的坐标为()1,4,作PH y ⊥轴于点H ,则1PH CH ==,∴45HCP ∠=︒又∵在Rt BOC 中,3OB OC ==, ∴45OCB ∠=︒, ∴90PCB ∠=︒∴PCB 是直角三角形②设直线BC 的解析式为y kx b =+,将点B 、C 代入得:303k b b +=⎧⎨=⎩,解得:13k b =−⎧⎨=⎩, ∴直线BC 的解析式为3y x =−+, ∵()3,0B ,∴3OB =, 设点()2,23P x x x −++(03x <<),过点P 作PD x ⊥轴于点D ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x=−++−−+=−+,∴()22211393327332222228PBCSPE OB x x x x x ⎛⎫=⨯⨯=⨯−+⨯=−+=−−+ ⎪⎝⎭,当32x =时,PBC 的最大面积为278,2915233344x x −++=−++=,∴315,24P ⎛⎫⎪⎝⎭③设点()2,23P x x x −++(03x <<),过点P 作PN x ⊥轴于点N ,交BC 于点E ,如图所示:∴(),3E x x −+,∴()222333PE x x x x x =−++−−+=−+, ∵()0,3C ,()3,0B ,∴3OC OB ==,3BN x =−,∴45OBC OCB ∠=∠=︒,∴45NEB OBC ∠=∠=︒,∴BE ==,∴()CE BC BE =−==,∴22525524PE x x x ⎛⎫=−+=−−+ ⎪⎝⎭, ∴当52x =时,PE 有最大值,此时57,24P ⎛⎫ ⎪⎝⎭. 【点睛】本题考查了二次函数综合问题,面积问题,线段问题,掌握二次函数的性质是解题的关键.3.(2023·山东济南·一模)抛物线()21122y x a x a =−+−+与x 轴交于(),0A b ,()4,0B 两点,与y 轴交于点()0,C c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若14PMB AMB S S =V V ,求点P 的坐标; (3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为9(0)0αα︒<<︒,连接E B ',E C ',求34E B E C ''+的最小值. 【答案】(1)2a =,2b =−,4c = (2)53,2P ⎛⎫ ⎪⎝⎭(3)【分析】(1)利用待定系数法求解即可;(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,求得BC l 的解析式,设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+,利用相似三角形的判定与性质可得答案; (3)在y 轴上取一点F ,使得94OF =,连接BF ,由相似三角形的判定与性质可得34FE CE ''=,可得34E B E C BE E F '''+'+=,即可解答.【详解】(1)解:将()4,0B 代入()21122y x a x a =−+−+,得()84120a a −+−+=,2a ∴=,∴抛物线的解析式为2142y x x =−++,令0x =,则4y =,4c ∴=,令0y =,则21042x x =−++,14x ∴=,22x =−,()2,0A ∴−,即2b =−; ∴2a =,2b =−,4c =(2)过点P 作PD x ⊥轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,设BC l :y kx b =+,将()0,4,()4,0代入得440b k b =⎧⎨+=⎩解得:4b =,1k =−,BC l ∴:4y x =−+, 设21,42P m m m ⎛⎫−++ ⎪⎝⎭,则(),4D m m −+, ()221144222P D PD y y m m m m m =−=−++−−+=−+,PD HA ∥,AMH PMD ∴∽,PM PD MA HA ∴=,将2x =−代入4y x =−+,6HA ∴=,112142PMB AMBPM h S PM S AM AM h ⋅===⋅, 164PD PD HA ∴==,32PD ∴=, 231222m m ∴=−+,11(m ∴=舍),23m =,53,2P ⎛⎫∴ ⎪⎝⎭;(3)在y 轴上取一点F ,使得94OF =,连接BF ,根据旋转得性质得出:3OE OE '==,∵9494OF OC ⋅=⨯=, 2OE OFOC '∴=⋅,∴OE OC OF OE '=',COE FOE ''∠=∠,∴FOE E OC ''∽,。

类型6 二次函数的最值问题(精选20题)2020年中考数学三轮冲刺 难点题型突破(含答案)

类型6 二次函数的最值问题(精选20题)2020年中考数学三轮冲刺 难点题型突破(含答案)

二次函数的最值问题1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.43.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或25.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值88.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值39.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.11.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为cm.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x=;(3)设△ABC的面积的平方为W,求W的最大值.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.试题解析1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.解:连接BD,AC,∵菱形ABCD边长为4,∠BAD=60°;∴△ABD与△BCD为正三角形,∴∠FDB=∠EAB=60°,∵AE+CF=4,DF+CF=4,∴AE=DF,∵AB=BD,∴△BDF≌△BAE,∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形,∴当BE⊥AD时,△BEF的面积最小,此时BE=2△BEF面积的最小值=3.故选:B.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.4解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故选:A.3.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.5.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.解:如图,作HM⊥AB于M,∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°,∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH,∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则BD=2﹣x,∴S△BDH==BD•AD=x(2﹣x)=﹣(x﹣)2+,∴△BDH面积的最大值是,故选:C.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.解:设菱形的高为h,∵在边长为1的菱形ABCD中,∠ABC=120°,∴∠A=60°,∴h=,若设AP=x,则PB=1﹣x,∵PQ⊥AB,AQ=2x,PQ=x,∴DQ=1﹣2x,∴S△CPQ=S菱形ABCD﹣S△PBC﹣S△P AQ﹣S△CDQ=1×﹣(1﹣x)•﹣x•x﹣(1﹣2x)•=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴△CPQ面积有最大值为,故选:D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2﹣7x,∵A(7,0),B(0,﹣7),∴直线AB为:y=x﹣7,设C(x,x﹣7),则D(x,x2﹣7x),∴CD=x﹣7﹣(x2﹣7x)=﹣x2+8x﹣7=﹣(x﹣4)2+9,∴1<x<7范围内,有最大值9,故选:B.8.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值3解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.9.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为5或.解:分三种情况:当﹣a<﹣1,即a>1时,二次函数y=x2+2ax+a在﹣1≤x≤2上为增函数,所以当x=﹣1时,y有最小值为﹣4,把(﹣1,﹣4)代入y=x2+2ax+a中解得:a=5;当﹣a>2,即a<﹣2时,二次函数y=x2+2ax+a在﹣1≤x≤2上为减函数,所以当x=2时,y有最小值为﹣4,把(2,﹣4)代入y=x2+2ax+a中解得:a=﹣>﹣2,舍去;当﹣1≤﹣a≤2,即﹣2≤a≤1时,此时抛物线的顶点为最低点,所以顶点的纵坐标为=﹣4,解得:a=或a=>1,舍去.综上,a的值为5或.故答案为:5或10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;1811.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.解:在Rt△ABC中,∠C=90°,BC=4,BA=5,∴AC==3,设DC=x,则AD=3﹣x,∵DF∥AB,∴=,即=,∴CE=∴BE=4﹣,∵矩形CDGE和矩形HEBF,∴AD∥BF,∴四边形ABFD是平行四边形,∴BF=AD=3﹣x,则S阴=S矩形CDGE+S矩形HEBF=DC•CE+BE•BF=x•x+(3﹣x)(4﹣x)=x2﹣8x+12,∵>0,∴当x=﹣=时,有最小值,∴DC=,有最小值,即AD=3﹣=时,矩形CDGE和矩形HEBF的面积和最小,故答案为12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为15cm.解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15cm时,S取最大值.故答案为:15.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.解:设PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高为h,∵AD=3,BC=4,梯形ABCD面积为7,∴解得∵PE∥DQ,∴∠PEF=∠QFE,∠EPF=∠PFD,又∵PF∥AQ,∴∠PFD=∠EQF,∴∠EPF=∠EQF,∵EF=FE,∴△PEF≌△QFE(AAS),∵PE∥DQ,∴△AEP∽△AQD,同理,△DPF∽△DAQ,∴=,=()2,∵S△AQD=3,∴S△DPF=x2,S△APE=(3﹣x)2,∴S△PEF=(S△AQD﹣S△DPF﹣S△APE)÷2,∴y=[3﹣x2﹣(3﹣x)2]×=﹣x2+x,∵y最大值==,即y最大值=.∴△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.解:(1)∵CD∥AB,∴∠BAC=∠DCA又∵AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC.(2)Rt△ABC中,AC==8cm,∵△ACD∽△BAC,∴=,即,解得:DC=6.4cm.(3)过点E作AB的垂线,垂足为G,∵∠ACB=∠EGB=90°,∠B公共,∴△ACB∽△EGB,∴,即,故;y=S△ABC﹣S△BEF==;故当t=时,y的最小值为19.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.解:(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.∵S△ABC=48,BC=12,∴AM=8,∵DE∥BC,△ADE∽△ABC,∴,而AN=AM﹣MN=AM﹣DE,∴,解之得DE=4.8.∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8,(2)分两种情况:①当正方形DEFG在△ABC的内部时,如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,∵DE=x,∴y=x2,此时x的范围是0<x≤4.8,②当正方形DEFG的一部分在△ABC的外部时,如图(3),设DG与BC交于点Q,EF与BC交于点P,△ABC的高AM交DE于N,∵DE=x,DE∥BC,∴△ADE∽△ABC,即,而AN=AM﹣MN=AM﹣EP,∴,解得EP=8﹣x.所以y=x(8﹣x),即y=﹣x2+8x,由题意,x>4.8,且x<12,所以4.8<x<12;因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论,当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04,当4.8<x<12时,因为,所以当时,△ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大=﹣×62+8×6=24;因为24>23.04,所以△ABC与正方形DEFG重叠部分的面积的最大值为24.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x= 2.4或2.6;(3)设△ABC的面积的平方为W,求W的最大值.解:(1)∵AD=5,AB=x,BE垂直平分CD,∴BC=BD=5﹣x,在△ABC中,AC=1,∴(5﹣x)﹣1<x<1+(5﹣x),解得:2<x<3;(2)∵△ABC为直角三角形,若AB是斜边,则AB2=AC2+BC2,即x2=(5﹣x)2+1,∴x=2.6;若BC是斜边,则BC2=AB2+AC2,即(5﹣x)2=x2+1,∴x=2.4.故答案为:2.4或2.6.(3)在△ABC中,作CF⊥AB于F,设CF=h,AF=m,则W=(xh)2=x2h2,①如图,当2.4<x<3时,AC2﹣AF2=BC2﹣BF2,则1﹣m2=(5﹣x)2﹣(x﹣m)2,得:m=,∴h2=1﹣m2=,∴W=x2h2=﹣6x2+30x﹣36,即W=﹣6(x﹣)2+,当x=2.5时(满足2.4<x<3),W取最大值1.5;②当2<x≤2.4时,同理可得:W=﹣6x2+30x﹣36=﹣6(x﹣)2+,当x=2.4时,W取最大值1.44<1.5,综合①②得,W的最大值为1.5.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.解:(1)设OD=t,AD=4﹣t,AE=t,S△ODEBC=S△ABCD﹣S△DAE===(0≤t≤3)(2)∵∴∴当t=2时,S有最小值;此时:D(2,0)、E(4,2),①当P在x轴上时,设P(a,0),此时:DE2=AD2+EA2=22+22=8,EP2=(a﹣4)2+22=a2﹣8a+20,DP2=(a﹣2)2=a2﹣4a+4,∴当DE2=EP2时,8=a2﹣8a+20,∴a2﹣8a+12=0,(a﹣2)(a﹣6)=0,∴P(2,0),P1(6,0),∵P(2,0)与D重合∴舍去,当EP2=DP2时,a2﹣8a+20=a2﹣4a+4,16=4a,a=4,∴P2(4,0),当DE2=DP2时,8=a2﹣4a+4a2﹣4a﹣4=0,∴,②当P在y轴上时,设P(0,b),则DP2=22+b2=b2+4EP2=42+(b﹣2)2=16+b2﹣4b+4=b2﹣4b+20 DE2=8,∴当DP2=EP2时,b2+4=b2﹣4b+204b=16,b=4,∴P5(0,4),当EP2=DE2时,b2﹣4b+20=8b2﹣4b+12=0b2﹣4ac<0,∴无解.当DP2=DE2时,b2+4=8,b2=4,∴b=±2,∴P6(0,﹣2)(DEP三点共线,舍去),∴综上共有6个这样的P点,使得△PDE为等腰三角形.即P1(6,0),P2(4,0),,,P5(0,4),P6(0,2).(3)设AE=t,则BE=3﹣t.BF=BE=3﹣t,AD=4﹣t,∴CF=4﹣BF=t+1,过D作DP⊥BC于P.则:CP=OD=t,∴PF=1,又DP=3,∴,∴,∴在Rt△DAE中,AD2+AE2=DE2,∴(4﹣t)2+t2=10,∴t2﹣8t+16+t2=10,2t2﹣8t+6=0,t2﹣4t+3=0,∴t1=1,t2=3(舍),∴t=1(9分),∴E(4,1),F(2,3),∵E关于x轴的对称点E′(4,﹣1),F关于y轴的对称点F′(﹣2,3),则E′F′与x轴,y轴的交点即为M点,N点.设直线E′F′的解析式为y=kx+b(k≠0),则,∴,∴y=﹣x+.(10分)∴M(,0),N(0,).(12分)。

中考数学选择填空压轴题汇编 最值问题(含解析)-人教版初中九年级全册数学试题

中考数学选择填空压轴题汇编 最值问题(含解析)-人教版初中九年级全册数学试题

2020年中考数学选择填空压轴题汇编:最值问题1.(2020•某某)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2√5−2 .【解答】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,MN=2,∴BE=12∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.2.(2020•某某)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4B.0C.2D.6【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.3.(2020•某某)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BB̂于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为6√2+B3.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√BB2+BB′2=√22+22=2√2,BB̂的长l=30B×2180=B3,∴阴影部分周长的最小值为2√2+B3=6√2+B3.故答案为:6√2+B3.4.(2020•某某)如图,已知直线y=−√3x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为2√3.【解答】解:如图,在直线y=−√3x+4上,x=0时,y=4,当y=0时,x=4√33,∴OB=4,OA=4√33,∴tan∠OBA=BBBB =√33,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ=√BB2−BB2,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP=12OB=2,此时PQ=√22−12=√3,BP=√42−22=2√3,∴OQ=12OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP=12BP=√3,∴BE=√(2√3)2−(√3)2=3,∴OE=4﹣3=1,OP,∵OE=12∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2√3.故答案为:2√3.5.(2020•某某)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2√5B.2√10C.6√2D.3√5【解答】解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=√B2+22+√(B+2)2+42,∴要求AC+BD的最小值,相当于在x轴上找一点P(m,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,(PM+PN=√B2+22+√(B+2)2+42),如图1中,作点M关于原点O的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P′M+P′N的最小值=P′N+P′M=P′N+P′Q=NQ=√22+62=2√10,∴AC+BD的最小值为2√10.故选:B.6.(2020•某某)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为 2 .一动点,点C为弦AB的中点,直线y=34【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE=√32+42=5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴BBBB =BBBB,∴BB3=35,∴MN=95,当点C与C′重合时,△C′DE的面积最小,最小值=12×5×(95−1)=2,故答案为2.7.(2020•某某)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为9√2+9 .【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=12AB=12×6=3,∴OA=√BB2+BB2=3√2,∴CM=OC+OM=3√2+3,∴S△ABC=12AB•CM=12×6×(3√2+3)=9√2+9.故答案为:9√2+9.8.(2020•某某)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=14DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9√3.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴BBBB =BBBB=BBBB,∵DF=14DE,∴BBBB =45,∴BBBB =45,∴BBBB =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.9.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2√5.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE=√BB2+BB2=√22+42=2√5,∴最小周长的值=AC+BC+AE=4+2√5,故答案为:4+2√5.10.(2020•某某)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.√2+1B.√2+12C.2√2+1D.2√2−12【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2√2,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B.11.(2020•某某)如图,在平面直角坐标系中,直线y =﹣x 与双曲线y =B B交于A 、B 两点,P 是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .−12B .−32C .﹣2D .−14【解答】解:点O 是AB 的中点,则OQ 是△ABP 的中位线,当B 、C 、P 三点共线时,PB 最大,则OQ =12BP 最大,而OQ 的最大值为2,故BP 的最大值为4,则BC =BP ﹣PC =4﹣1=3,设点B (m ,﹣m ),则(m ﹣2)2+(﹣m ﹣2)2=32,解得:m 2=12,∴k =m (﹣m )=−12,故选:A .12.(2020•内江)如图,在矩形ABCD 中,BC =10,∠ABD =30°,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM+MN的最小值为15 .【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,=10√3,在Rt△ABD中,AB=BBBBB30°∵A′H⊥AB,∴AH=HB=5√3,∴A′H=√3AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.13.(2020•某某)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH=√3,AA'=2√3,∠C=30°,CD,即2DE=CD,∴Rt△CDE中,DE=12∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,×2√3=3,此时,Rt△AA'E中,A'E=sin60°×AA'=√32∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.。

反比例函数中的动点最值问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数

反比例函数中的动点最值问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲【例1】.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为________变式训练【变1-1】.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB 的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小【变1-2】.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点M在以C(2,0)为圆心,半径为1的⊙C上,N是AM的中点,已知ON长的最大值为,则k的值是.【例2】.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x 轴上,则PM+PN的最小值是.变式训练【变2-1】.已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P在反比例函数y=的图象上运动,当线段P A与线段PB之差的绝对值最大时,点P的坐标为.【变2-2】.如图,一次函数y1=mx+n(m≠0)的图象与双曲线y2=(k≠0)相交于A(﹣1,2)和B(2,b)两点,与y轴交于点C,与x轴交于点D.(1)求双曲线的解析式;(2)经研究发现:在y轴负半轴上存在若干个点P,使得△CPB为等腰三角形.请直接写出P点所有可能的坐标.1.如图,点N是反比例函数y=(x>0)图象上的一个动点,过点N作MN∥x轴,交直线y=﹣2x+4于点M,则△OMN面积的最小值是()A.1B.2C.3D.42.如图,在△ABC中,AB=AC=a,∠BAC=18°,动点P、Q分别在直线BC上运动,且始终保持∠PAQ=99°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A.B.C.D.3.如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM ⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.4.已知点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为一边作等边△ABC.随着点A的运动,点C的位置也不断变化,但始终在一个函数的图象上运动,则这个函数的表达式为.5.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连接OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是.6.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,则点P到直线AB距离最短时的坐标为.7.如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是(用含k的代数式表示).8.如图,点A是反比例函数y=在第一象限的图象上的一点,过点A作AB⊥y轴于点B.连接AO,以点A为圆心,分别以AB,AO为半径作直角扇形BAC和OAD,并连接CD,则阴影部分面积的最小值是.9.如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A作AB⊥x轴于B 点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连接CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,连接BC,△ACB是等腰直角三角形,则若S1﹣S2的值最大为1,则k的值为.10.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,P为x轴上一点,求使PA+PB的值最小时点P的坐标.11.如图,正比例函数y=2x的图象与反比例函数y=的图象交于A、B两点,过点A作AC垂直x轴于点C,连接BC,若△ABC面积为2.(1)求k的值(2)x轴上是否存在一点D,使△ABD是以AB为斜边的直角三角形?若存在,求出点D的坐标,若不存在,说明理由.12.如图,一次函数y=x+2的图象与反比例函数y=的图象交于点A(1,a),B两点.(1)求反比例函数的解析式及点B的坐标;(2)在x轴上找一点C,使|CA﹣CB|的值最大,求满足条件的点C的坐标及△ABC的面积.13.如图,一次函数y=2x﹣3的图象与反比例函数y=的图象相交于点A(﹣1,n),B 两点.(1)求反比例函数的解析式与点B的坐标;(2)连接AO、BO,求△AOB的面积;(3)点D是反比例函数图象上的一点,当∠BAD=90°时,求点D的坐标.14.如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.15.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(x>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该反比例函数的解析式和点E的坐标.(2)设过(1)中的直线EF的解析式为y=ax+b,直接写出不等式ax+b<的解集.(3)当k为何值时,△AEF的面积最大,最大面积是多少?16.如图,直线OA:y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.17.已知:如图,一次函数y=﹣2x+10的图象与反比例函数y=的图象相交于A、B两点(A在B的右侧),点A横坐标为4.(1)求反比例函数解析式及点B的坐标;(2)观察图象,直接写出关于x的不等式﹣2x+10﹣>0的解集;(3)反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.18.反比例函数(k为常数.且k≠0)的图象经过点A(1,3),B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,①求满足条件的点P的坐标;②求△PAB的面积.19.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.20.如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.21.如图,点A是反比例函数y=(x>0)的图象上的一个动点,AC⊥x轴于点C;E是线段AC的中点,过点E作AC的垂线,与y轴和反比例函数的图象分别交于点B、D两点;连接AB、BC、CD、DA.设点A的横坐标为m.(1)求点D的坐标(用含有m的代数式表示);(2)判断四边形ABCD的形状,并说明理由;(3)当m为何值时,四边形ABCD是正方形?并求出此时AD所在直线的解析式.22.如图,一次函数y=﹣x+2的图象与两坐标轴分别交于A,B两点,与反比例函数y=交于点C、D,且点C坐标为(﹣2,m).(1)求反比例函数的解析式;(2)若点M在y轴正半轴上,且与点B,C构成以BC为腰的等腰三角形,求点M的坐标.(3)点P在第二象限的反比例函数图象上,若tan∠OCP=3,求点P的坐标.。

2024年中考数学复习 加权逆等线最值模型(原卷版+答案解析)

2024年中考数学复习 加权逆等线最值模型(原卷版+答案解析)

大招--加权等线最值模型模型介绍【模型总结】在求形如“QB+kPA”(k≠1)的式子最值问题时,关键是要通过相似三角形构造出与kPA相等的线段(即kPA=QC),将QB+kPA”型问题转化为“QB+QC”型将军饮马问题.当k=1时,加权逆等线就变成了逆等线拼接最值模型,此种情况属于权为1的特殊情况,只需通过全等三角形构造出相等线段即可,然后将问题变为常见的将军饮马问题求解即可.需要注意的是这里的QB、PA两条线段的延长线方向必须要有交叉,方能通过相似或全等三角形得到kPA的等线段.【解题方法】利用比例线段构造相似三角形转化线段,把双动点问题转化为单动点将军饮马问题,利用“两点之间线段最短”从而解出答案.例题精讲考点一:直角三角形中的加权逆等线模型【例1】.如图,已知BC ⊥AB ,BC =AB =3,E 为BC 边上一动点,连接AE ,D 点在AB 延长线上,且CE=2BD ,则AE +2CD 的最小值为多少?变式训练【变式1-1】.如图,等腰直角△ABC 中,斜边BC =2,点D 、E 分别为线段A B 和B C 上的动点,BE =2AD ,求AE +2CD 的最小值.【变式1-2】.如图, 在Rt △ABC 中, AC =6,BC =8,∠ACB =90。

,点E 、F 分别是A B 、B C 边上的动点, 且AE =2CF , 求12CE +AF 的最小值.考点二:特殊平行四边形中的加权逆等线模型【例2】.如图,在正方形ABCD中,AB=1,E、F分别为CB、DC上的动点,且BE=2DF,求DE+2AF 的最小值.变式训练【变式2-1】.如图,在矩形ABCD中,AD=4,AB=43,点E、F分别是BD,BC上的一动点,且BF= 2DE,则AF+2AE的最小值为多少?【变式2-2】.如图,在菱形ABCD中,∠BAD=120°,CD=4,M,N分别是边AB,AD的动点,满足AM=DN,连接CM、CN,E是边CM上的动点,F是CM上靠近C的四等分点,连接AE、BE、NF,当△CFN面积最小时,12BE+AE的最小值为 .课后创新培养1.如图,等腰△ABC ,∠BAC =120°,AB =AC =1,D 、E 分别是AB 、BC 边上的动点,且满足BE =3AD , 求AE +3CD 的最小值.2.如图,M 为矩形ABCD 中AD 边中点,E 、F 分别为BC 、CD 上的动点,且BE =2DF ,若AB =1,BC =2,则ME +2AF 的最小值为 .3.如图,在正方形ABCD 中,P 为AD 上一点,且AP PD =21,E 、F 分别为CD 、BC 上的动点,且BF =3DE ,若AD =3,求PF +3AE 的最小值.4.如图,在Rt△ACB,∠BCA=90°,∠A=30°,AC=3,点D在线段AB上,点E在线段AB的延长线上,且BE=AD,则CE+CD的最小值是 .5.如图,在矩形ABCD中,AB=4,AD=6,点P在边AD上,点Q在边BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值等于 10 .6.如图,平行四边形ABCD,AB>AD,AD=4,∠ADB=60°,点E、F为对角线BD上的动点,DE= 2BF,连接AE、CF,则AE+2CF的最小值为 .7.问题提出:(1)如图①,在正方形ABCD中,E为边AB上一点(点E不与点A、B重合),连接DE,过点A作AF⊥DE,交BC于点F,则DE与AF的数量关系是:DE AF;问题探究:(2)如图②,在矩形ABCD中,AB=4,AD=6,点E、F分别在边AB、CD上,点M为线段EF上一动点,过点M作EF的垂线分别交边AD、BC于点G、点H.若线段EF恰好平分矩形ABCD的面积,且DF=1,求GH的长;问题解决:(3)如图③,在正方形ABCD中,M为AD上一点,且AMMD=31,E、F分别为BC、CD上的动点,且BE=2DF,若AB=4,求ME+2AF的最小值.8.如图,在△ABC中,∠ABC=60°,BC=6,AC=8,D、E分别为边AC、AB上两个动点.(1)如图1,若D为AC中点,且DE平分△ABC的周长;ⅰ)求AE-BE的值;ⅱ)求证:∠AED=30°,并直接写出DE的值;(2)如图2,若AE=CD,连接BD、CE,求BD+CE的最小值.9.如图1,在▱ABCD中.AB=6.AC与BD交于点O,点E,F分别是线段AC,CD上的动点(点E,F不与A,C,D重合).AE=CF.设∠ACD=a,将线段AD绕点A按逆时针方向旋转a得到AP,连接PE,BE,BF.(1)求证:△APE≌△CBF:(2)如图2,若∠BOA=90°,∠ACD=40°,且点B、E、P在一条直线上,求BE+BF的值;(3)当OB=OC,∠ACD=60°时,BE+BF长的最小值是 .10.平行四边形ABCD中,N为线段CD上一动点.(1)如图1,已知∠ADC<90°.若DR=BN,求证:四边形DRBN为平行四边形;(2)如图2,已知∠ABC=60°.若BN为∠ABC的角平分线,T为线段BN上一点,DT的延长线交线段BC于点M,满足:tan∠BTM=12且DN=BM.请认真思考(1)中图形,探究MDAD的值.(3)如图3,平行四边形ABCD中,∠ABC=60°,AB=BC=2,P在线段BD上,Q在线段CD上,满足:BP=2CQ.直接写出(2QA+AP)的最小值为 .11.如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=3DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+3CF的值是否也最小?如果是,求CE+3CF的最小值;如果不是,请说明理由.大招--加权等线最值模型模型介绍【模型总结】在求形如“QB+kPA”(k≠1)的式子最值问题时,关键是要通过相似三角形构造出与kPA相等的线段(即kPA=QC),将QB+kPA”型问题转化为“QB+QC”型将军饮马问题.当k=1时,加权逆等线就变成了逆等线拼接最值模型,此种情况属于权为1的特殊情况,只需通过全等三角形构造出相等线段即可,然后将问题变为常见的将军饮马问题求解即可.需要注意的是这里的QB、PA两条线段的延长线方向必须要有交叉,方能通过相似或全等三角形得到kPA的等线段.【解题方法】利用比例线段构造相似三角形转化线段,把双动点问题转化为单动点将军饮马问题,利用“两点之间线段最短”从而解出答案.例题精讲考点一:直角三角形中的加权逆等线模型【例1】.如图,已知BC ⊥AB ,BC =AB =3,E 为BC 边上一动点,连接AE ,D 点在AB 延长线上,且CE=2BD ,则AE +2CD 的最小值为多少?解:作CF ⊥CB ,且使得CF =6,连接EF 过点A 做AG ⊥CF ,交FC 延长线于点G∵CF CB=CE BD =2 ,∴△FCE ∽△CBD ,EF =2CD∴AE +2CD =AE +EF当A 、E 、F 三点一线时,AE +EF 取到最小值,此时AE +EF =AF易知:四边形ABCG 为正方形 AG =3,CG =3FG =9 在Rt △FAG 中,由勾股定理得 AF =310AE +2CD 的最小值为310变式训练【变式1-1】.如图,等腰直角△ABC 中,斜边BC =2,点D 、E 分别为线段A B 和B C 上的动点,BE =2AD ,求AE +2CD 的最小值.解:作BF ⊥BC 并且使得BF =2,连接EF∵BE AD =BF AC =22=2∴△BEF ∽△ADC∴EF =2CD∴AE +2CD =AE +EF当A 、E 、F 三点共线时,AE +EF 取到最小值,此时AE +EF =AF反向延长BF ,过点A 作AH ⊥BF 于点H在Rt △AHF 中,由勾股定理易得:AF =10∴AE +2CD 的最小值为10【变式1-2】.如图, 在Rt△ABC中, AC=6,BC=8,∠ACB=90。

逆等线最值模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

逆等线最值模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍两线段和的最值问题,大家首先想到的都是“将军饮马”问题,即要求的两条线段有公共端点,或者平移后有公共端点.除了将军饮马问题外,还有一类两线段和的最值问题,两个动点的运动过程中,两条动线段始终保持着相等,我们可以在等线段处构造全等,从而将要求的两条线段拼接到一起,这就是今天咱们要说的逆等线最值问题.讲逆等线模型之前我们先来一波回忆:下图大家应该很熟:D 为动点!特殊化证明:DE+DF 的和为定值.一般化证明:DE+DF 的和为定值只要保证DE ,DF 与腰的夹角相等,总会有:DE+DF 的和为定值的结论!证明思路:作AG∥FD ,HD∥BC 易得红蓝全等,黄色平四∴DE +DF =AH +HG =AG (定长)另证易得:△DEA ∽△DFB ∵AD +BD 为定值∴DE +DF 为定值引申:D 在线段AB 外时差为定值(证明同理)然后将这个角一路的改变也相当于做腰的平行线!大招逆等线最值模型此图即产生了逆等线,所谓逆等线,逆向也相等!例题精讲考点一:等腰三角形中的逆等线模型【例1】.如图,在等腰△ABC中,AB=AC=5,BC=6,点D、E分别是AB、AC上两动点,且AD=CE,连接CD、BE,CD+BE最小值为.变式训练【变式1-1】.如图,在△ABC中,AB=AC=8,BC=4,D为BC边的中点,点E、F 分别是线段AC、AD上的动点,且AF=CE,则BE+CF的最小值是.【变式1-2】.如图,已知直线AB:y=分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE.当BD+BE的值最小时,则H点的坐标为()A.(0,4)B.(0,5)C.D.考点二:等边三角形中的逆等线模型【例2】.如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=°.变式训练【变式2-1】.如图,AH是正三角形ABC中BC边上的高,在点A,C处各有一只电子乌龟P和Q同时起步以相同的速度分别沿AH,CA向前匀速爬动.确定当两只电子乌龟到B 点距离之和PB+QB最小时,∠PBQ的度数为.【变式2-2】.在等边△ABC中,AB=4,点E在边BC上,点F在∠ACB的角平分线CD 上,CE=CF,则AE+AF的最小值为.考点三:直角三角形中逆等线模型【例3】.如图,在Rt△ABC中,∠ACB=90°,AB=6,BC=4,D,E分别是AC,AB上的动点,且AD=BE,连结BD,CE,则BD+CE的最小值为.变式训练【变式3-1】.如图,Rt△ABC中,∠ACB=90°,∠B=30°,D,E为AB边上的两个动点,且AD=BE,连接CD,CE,若AC=2,则CD+CE的最小值为.【变式3-2】.如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC 上的动点,且AN=CM,AB=.当AM+BN的值最小时,CM的长为.考点四:一般三角形中的逆等线模型【例4】.在△ABC中,∠ABC=60°,BC=8,AC=10,点D、E在AB、AC边上,且AD =CE,则CD+BE的最小值.变式训练【问题背景】(1)如图(1),E为△ABC的边AB上的一点,AE=BC,过点A作AD∥BC,且AD=AB,连接DE,求证:△ADE≌△BAC;【变式迁移】(2)如图(2),在△ABC中,AC=BC,BD平分∠ABC,点E在AB上,且AE=CD,若点C分别到AB,BD的距离之比为m,求证:;【拓展创新】(3)如图(3),在△ABC中,∠ABC=45°,,AC=6,D,E分别是AC,AB上的点,且AE=CD,直接写出CE+BD的最小值.考点五:正方形中的逆等线模型【例5】.如图,正方形ABCD的边长为6,点E、F分别在AB、BC上,且AE=BF,CE 与DF交于点P,连接BP,求BP的最小值.变式训练【5-1】已知正方形ABCD的边长为1,点E,F分别是边BC,CD上的两个动点,且满足BE=CF,连接AE,AF,则AE+AF的最小值为.考点六:矩形中的逆等线模型【例6】.如图,矩形ABCD中,AB=2,AD=3,点E、F分别为边AB、CD上的动点,且AE=CF,则BF+CE的最小值为.变式训练【6-1】.如图,矩形ABCD中,AB=3,AD=4,点E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值是.【6-2】.如图,在矩形ABCD中,AD=4,AB=4,E,F分别是BD,BC上的一动点,且BF=2DE,则AF+2AE的最小值是.考点七:菱形中的逆等线模型【例7】.如图,菱形ABCD中,∠ABC=60°,AB=2,E、F分别是边BC和对角线BD 上的动点,且BE=DF,则AE+AF的最小值为.实战演练变式训练【7-1】.如图,在菱形ABCD 中,∠BAD =120°,CD =4,M ,N 分别是边AB ,AD 的动点,满足AM =DN ,连接CM 、CN ,E 是边CM 上的动点,F 是CM 上靠近C 的四等分点,连接AE 、BE 、NF ,当△CFN面积最小时,BE +AE 的最小值为.【7-2】.如图,在菱形ABCD 中,∠BAD =120°,AB =6,连接BD .(1)求BD 的长;(2)点E 为线段BD 上一动点(不与点B ,D 重合),点F 在边AD 上,且BE =DF .①当CE ⊥AB 时,求四边形ABEF 的面积;②当四边形ABEF 的面积取得最小值时,CE+CF 的值是否也最小?如果是,求CE +CF的最小值;如果不是,请说明理由.1.如图,在边长为的等边△ABC 中,动点D ,E 分别在BC ,AC 边上,且保持AE =CD ,连接BE ,AD ,相交于点P ,则CP 的最小值为.2.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,动点D,E分别在AB,CB边上,且BE=AD.连接CD,AE相交于点P,连接BP,则△CAD∽△,BP的最小值为.3.如图,AD为等腰△ABC的高,AB=AC=5,BC=3,E、F分别为线段AD、AC上的动点,且AE=CF,则BF+CE的最小值为.4.如图,ABCD是⊙O内接矩形,半径r=2,AB=2,E,F分别是AC,CD上的动点,且AE=CF,则BE+BF的最小值是()A.B.2C.3D.45.如图,菱形ABCD中,∠ABC=60°,AB=3,E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值为.6.如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是.7.如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于点D,点E、F分别是线段AB、AD上的动点,且BE=AF,则BF+CE的最小值为.8.如图,等边△ABC内部有一点D,DB=3,DC=4,∠BDC=150°,在AB、AC上分别有一动点E、F,且AE=AF,则DE+DF的最小值是()A.5B.3C.2D.79.如图,△ABC是等边三角形,AB=6,过点C的⊙O分别交AC、BC于点D、E,且CD=BE,则OC的最小值为.10.如图,M为矩形ABCD中AD边中点,E、F分别为BC、CD上的动点,且BE=2DF,若AB=1,BC=2,则ME+2AF的最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最值问题集锦05
1.(2019•玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()
A.5B.6C.7D.8 2.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()
A.2B.4C.D.3.(2019•西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()
A.2B.2C.3D.4.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()
A.10B.6C.3D.2 5.(2019•南通)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+PD的最小值等于.
6.(2019•安顺)如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC 上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN 的最小值为.
7.(2019•眉山)如图,在Rt△AOB中,OA=OB=4.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为.
8.(2019•营口)如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为.
9.(2019•锦州)如图,在矩形ABCD中,AB=3,BC=2,M是AD边的中点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△A′MN,连接A′C,则A′C的最小值是.
10.(2019•鸡西)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.
11.如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.
12.(2019•武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.
问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内
一点,则点O到△MNG三个顶点的距离和的最小值是.。

相关文档
最新文档