人教版《实数》1
人教版《实数》优秀课件初中数学ppt

二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。
”他认为宇宙间的一切事物都归为整数或整数的比。
问:整数的比是什么数?答:分数。
问:整数和分数统称为什么数?答:有理数。
〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。
最新人教版七年级数学下册第六章 《实数》教案(第1课时)

本章复习整体设计第一课时教学目标1.结合实际理解算术平方根以及平方根、立方根的概念.2.掌握平方根及算术平方根的区别与联系.3.了解平方根及立方根的工具求法(用数学表、计算器等).教学重难点教学重点:1.平方根、算术平方根和立方根的概念及性质.2.理解实数的有关概念及实数的运算.教学难点:灵活运用算术平方根的非负性解题.教学过程一、平方根设计说明算术平方根、平方根是本章的重点和难点之一,这其中算术平方根、平方根与平方的互逆关系部分学生可能有不适应的地方,实际上逆向思维本身就有难度,再加上平方根与平方不是一对一的数字往来,无形中增加了思维的跨度.本环节的复习围绕着这一点展开,使基础知识更明确,计算更熟练.知识点一:平方根例1 144的算术平方根是________.解析:利用算术平方根的意义求解,得144=12.答案:12例2 169的平方根是________.解析:因为(±13)2=169,所以169的平方根为±13,即±169=±13.用计算器计算.例3 求下列各数的平方根及算术平方根:(1)0.64;(2)3625;(3)0;(4)⎝ ⎛⎭⎪⎫-322. 解:(1)∵(±0.8)2=0.64, ∴0.64的平方根为±0.8,即±0.64=±0.8.0.64的算术平方根是0.8,即0.64=0.8. (2)∵⎝ ⎛⎭⎪⎫±652=3625, ∴3625的平方根为±65,即±3625=±65. 3625的算术平方根为65,即3625=65. (3)∵02=0,∴0的平方根是0,0的算术平方根是0,即0=0.(4)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32, 即±⎝ ⎛⎭⎪⎫-322=±32,⎝ ⎛⎭⎪⎫-322的算术平方根为32,即⎝ ⎛⎭⎪⎫-322=32. 例4 求(-7)的平方的平方根.分析:错解:(-7)的平方的平方根为-7.习惯地认为(-7)2的平方根为-7,没有进一步想到(-7)2=49,求(-7)2的平方根,就是求49的平方根. 解:(-7)的平方是49,而±7的平方等于49,则(-7)的平方的平方根是±7.例5 求81的平方根和算术平方根.分析:错解:81的平方根为±9,算术平方根为9.事实上,81表示的是81的算术平方根9.因此问题实质上是求9的平方根和算术平方根.解:81=9,所以81的平方根为±3,81的算术平方根为3.拓展探究1.25的算术平方根是( ).A .5 B. 5 C .-5 D .±5答案:A2.已知a +2+|b -1|=0,那么(a +b )2 007的值为( ).A .-1B .1C .32 007D .-32 007答案:A3.下列计算正确的是( ).A .(-2)0=0B .3-2=-9 C.9=3 D.2+3= 5答案:C4.计算:(3)2=__________.答案:3课堂练习1.如果一个数的算术平方根等于它本身,则这个数是( ).A .0B .1C .0或1D .除0和1外,还有其他数2.已知数a =3,b =1.732,c =1367500,则它们的大小关系是( ). A .a <b <c B .b <a <c C .b <c <a D .a <c <b3.利用计算器判断下列数,最接近5的数是( ).A.24B.245C.26D.2654.已知一个自然数的算术平方根等于a ,则下一个自然数的算术平方根等于( ).A .a +1 B.a 2+1 C.a +1 D .a 2+15.已知5=a ,则0.05等于( ).A .10aB .aC .0.1aD .非上述答案6.如果13是m 的一个平方根,那么m 的另一个平方根是__________.7.181的算术平方根为__________,(-5)2的平方根是__________. 8.( )2≈3,( )2≈10.(可借助于计算器,结果是近似数,保留4个有效数字)9.若a 的算术平方根等于a 的立方根,则3a 2+1=__________.10.若2≤x ≤3,化简(x -2)2+(x -3)2=__________.11.一个正方形的面积是24 cm 2,则这个正方形的周长大约是多少?(精确到0.01)12.已知x 2-9+y +3=0,求x +y 的值.答案:1.C 2.B 3.C 4.B 5.C 6.-13 7.13±5 8.±1.732 ±3.1629.1或4 10.111.设正方形的边长为x cm ,则x 2=24,所以x =24(负的平方根舍去).则正方形的周长为424≈19.60(cm).12.0或-6.教学说明在教学中无论是例题讲解,还是课堂练习,可以采取口答、小组互评、教师评价等方式来进行教学,出现问题时集中交流,讨论,明确症结所在,达到查缺补漏、共同提高的目的.二、立方根设计说明由平方根作为基础,学生接受起立方根来要轻松的多,但是平方根与立方根有明显的差别,首先被开方数的符号,再者结果的个数不同,复习要围绕着这两点来展开,对学生中存在的模糊认识,及时地讨论清楚.知识点一:立方根例1 下列说法正确的是( ). A.64的立方根是2 B.125216的立方根是±56C .(-1)2的立方根是-1D .-3是27的负立方根解析:因为正数的立方根只有一个且为正数,所以B ,C 是错误的,-3是27的立方根的相反数,所以D 错.求一个数立方根的运算,叫做开立方.开立方与立方是互逆运算,因此,可根据这种关系求一个数的立方根.注意:开平方时,被开方数是非负数,开立方时,可以是正数、负数,也可以是0. 两个重要的公式:①(3a )3=a ,②3-a =-3a . 根据3-a =-3a ,可将求负数的立方根问题转化为求正数的立方根问题,这种转化的数学思想,同学们在学习中要注意体会和运用.例2 求下列各式的值:(1)3-0.008;(2)(-30.5)3;(3)334327. 解:(1)3-0.008=-30.008=-0.2.(2)(-30.5)3=-0.5. (3)334327=3⎝ ⎛⎭⎪⎫733=73. 点评:(1)可利用3-a =-3a 进行计算.(2)(3)可利用公式(3a )3=a 计算.与立方根有关的计算问题,应根据题目的特点,灵活选择计算方法.同时,要注意符号的确定.例3 一个圆柱的体积是10 m 3,且底面圆的直径与圆柱的高相等,求这个圆柱底面的半径.(π取3.14,结果保留两个有效数字)解:设圆柱底面圆的半径是r m ,则圆柱的高为2r m ,根据题意,得πr 2·2r =10,3.14r 3=5,即r 3=1.592,所以r =31.592≈1.2(m).答:这个圆柱底面圆的半径约是1.2 m.点评:要求圆柱底面圆的半径,可设其底面圆的半径为r m ,根据体积列出关于r 的等式,进而通过开立方运算解决.在已知正方体的体积求边长、已知球的体积求半径时,常用到求立方根的知识.解决此1.求下列各式中x 的值.(1)4x 3+2716=0;(2)⎝⎛⎭⎪⎫18-12x 3=-0.125. 解:(1)∵4x 3+2716=0,∴x 3=-2764. ∴x =3-2764=-34. (2)∵⎝ ⎛⎭⎪⎫18-12x 3=-0.125, ∴18-12x =3-0.125. ∴18-12x =-0.5. ∴12x =18.5.∴x =37. 2.已知A =m -n m +n +10是m +n +10的算术平方根,B =m -2n +34m +6n -1是4m+6n -1的立方根,求B -A 的立方根.分析:因为A 是m +n +10的算术平方根,可知m -n =2,B 是4m +6n -1的立方根,可知m -2n +3=3,进而求得m ,n 的值,再求出A ,B ,问题得以解决.解:由题意,得m -n =2,即m =n +2,m -2n +3=3,有m =2n .∴n =2,m =4.∴A =16=4,B =327=3.∴B -A =3-4=-1.∴3B -A =3-1=-1.真题精析:1.-27的立方根是________.解析:∵(-3)3=27,∴-27的立方根为-3. 答案:-32.如果x 3=8,那么x =________.解析:∵x 3=8,∴x =38=2.答案:2课堂练习1.给出下面四个结论:①-0.064的立方根是0.4;②81的立方根是±3;③-27的立方根是-3;④116的平方根是14.其中正确的是( ). A .①②③④ B .②③④ C .③ D .④2.下面命题正确的是( ). A.9的平方根是±3 B .平方根等于它本身的数是1C .立方根等于它本身的数是0和±1D .平方根等于立方根的数是1 3.3-32和3-(-3)2( ).A .相等B .互为相反数C .互为倒数D .以上都不对4.使3-2|a |+9为最大的负整数,则a 的值为( ).A .5B .-5C .±5D .不存在5.已知315≈2.466,则3-0.000 015约等于( ).A .-0.246 6B .-0.024 66C .-0.002 466D .-0.000 246 66.已知x 3=125,那么x =__________;已知(x -1)3=8,则x =__________.7.一个正方体形状的木箱子里装满了2立方米的沙子,这个木箱的棱长是__________米(精确到0.01米). 8.64的立方根是__________.9.解方程125x 3-27=0,得x =__________.10.若x 的立方根是-12,则x =__________. 11.计算: (1)3-64;(2)30.000 125;(3)-3338. 12.若一个偶数的立方根比2大,平方根比4小,则这个数是多少?答案:1.C 2.C 3.A 4.C 5.B 6.5 3 7.1.26 8.2 9.35 10.-1811.(1)-4;(2)0.05;(3)-32. 12.10或12或14. 小结与作业复习了平方根与立方根的有关知识.作业整理易错题.评价与反思 本节设计有两个特点:1.平方根与立方根尽管知识点少,但是考点较多,变化较多,因此本节安排了大量的练习题目,便于学生开阔视野,全面地把握问题,同时学会从各个角度、各个侧面认识问题,解决问题,这对培养学生严谨的思维习惯大有好处.2.本节安排了一些最新的中考题,方便教师和学生选择使用,也利于掌握本章内容在中考中考察的深度和广度,同时能提高学生的学习兴趣,积极的应对考试.(设计者:孙长智)。
(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。
本节内容主要包括实数的定义、实数的分类和实数的性质。
通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但是,对于实数的定义和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。
三. 教学目标1.理解实数的概念,掌握实数的分类和性质。
2.能够运用实数的概念和性质解决一些简单的实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
五. 教学方法采用讲授法、引导法、讨论法等教学方法。
通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。
六. 教学准备1.教师准备教案、PPT等教学资料。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。
2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。
引导学生理解和记忆实数的概念和性质,掌握实数的分类。
3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。
通过练习,巩固学生对实数的理解和掌握。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。
5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。
6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。
7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。
人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。
本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。
通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。
二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。
但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.能够对实数进行分类,了解实数的丰富性和广泛性。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.实数的定义和实数与数轴的关系。
2.实数的分类和各类实数的特征。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。
六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。
2.准备实数的分类表格,方便学生理解和记忆。
3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。
同时,结合案例和图片,使学生直观地理解实数的概念。
例如:“同学们,今天我们要学习的是实数。
实数包括有理数和无理数,它们都可以用数轴上的点来表示。
请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。
”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。
人教版七年级下册第六章实数第一讲平方根讲义(解析版)

实数第一讲平方根【学习目标】1. 了解平方根、算术平方根的概念,会用根号表示数的平方根.2. 了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 考点一、算术根知识讲解定义:如果一个正数x的平方等于a ,即x2 a ,那么这个正数x叫做a的算术平方根;a的算术平方根记作几,读作“ a的算术平方根〞,a 补充:1 .当式子V a有意义时,a 一定表示一个非负数,即2 .规定0的算术平方根还是0.3 .算术平方根等于他自己本身的有0和1.课堂稳固1 .以下说法正确的选项是〔〕C.由于〔±5〕2=25所以5和-5者B是25的算术平方根.D.以上说法都不对.【答案】A2 .以下各式正确的选项是3 .算术平方根等于它本身的数是【答案】0和1例2.求以下各数的算术平方根叫做被开方数. n >0, a >0.典型例题例1.以下说法正确的选项是〔A.0的算术平方根是0C. 士是9的算术平方根【答案】A 〕B.9是3的算术平方根D.-3是9的算术平方根A.由于52 =25,所以B.由于〔-5〕2=25,所以5是-5是2525的算术平方根.的算术平方根.A 3= 3B. 32= 3 C.、32= 3(1) 100 (2) 0.04 (3)1681(4) (5) 0 (6 ) 10【答案】2,-3 例3.估计与 底 最接近的整数 【答案】6【解析】解:: 25V35V36,25 35 36即5V 扁<6 .「35比拟接近36,・•. J 35最接近的整数是6.课堂同步1 .估计商的值在〔〕A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间 【答案】C2..估计与1 芯 最接近的整数【答案】〔1〕 10 〔2〕 0.2 (3)(4) 2 (5) 0(6) 1W课堂稳固1.求以下各数的算术平方根 (1) 121(2) 169(3)9 64(4 )1 121(5) 0.01 (6)【答案】〔1〕 11 (2) 13 (3)(4) 111⑸0.1(6) (7 )2.求以下各式的值(1) J000000(3) ,0.81 .. 0.04(4) ,412 402【答案】1000 (2)(3) 0.7 (4) 9【点睛】算术平方根为正数3. , 〔 4〕2的算术平方根是;病的算术平方根的相反数是(2 )5163.比拟以下各数的大小综上,a +b=12 ,7课堂稳固1 .出5的整数局部是a ,小数局部是 b,求a2 b 的值.【答案】20 .. 35解析:国为5<序<6.所以后的第数局部是5,即所以后的小数局部是库-5. 即b 二—5,所以/+小=5± +J^-5 = 20+2 .设4 限4 76的小数局部分别为a, b,求a +b 的值.【答案】1解析:由于2V R<3,所以4十几的整数局部是6,小数局部是4 + J5—6 =&—2. 即n =几一2,由于1<4 —疾]2 ,所以4一次的整数局部是1,小数局部是4 — — 1 — 3 — -^6 , b — 3 - b 所以 A + /> — ,%/6 —2 + 3 — — 1(1)炉与 g(2)衽与" (3) 5 与 J 24(4)金与02 2【答案】〔1〕而<幅〔2〕非> 币 〔3〕 5>V 24【解析】〔4〕 Q 庖4;724 1 3;那么疝1>322(4)'.五 1 322例4."7的a , 7 币的小数局部是b,求a +b 的值【答案】a +b=12 ,7 【解析】Q2 " 3,用的整数局部是2 ;"7的整数局部是9 ;即a =9Q4 7.7 5, 7 ,.7的小数局部是7 77 4=3 V 7 ;即 b=3 日.3 .:m 与n 互为相反数,c 与d 互为倒数,a 是 强 的整数局部,那么 \ cd 2 m n a 的值是【答案】-1解H 心由于m 与n 互为相反数.所以加斗注二°:出为.与d 互为例数,所以〃二1;因 为2V 旧<3,所以行的整数局部是 2 ,即白:2 , 所以 Ted + 2(m + ?r) - A - 1 + 2 x 0 - 2 - -1例5 (1)使代数式 必F 有意义的x 的取值范围是 【答案】x > 1;【解析】X + 1 >0,解得x > 1 .【点睛】当式子 指有意义时,a 一定表示一个非负数,即 ja >0, a >0.2021,一 .......... 一 一 - X ⑵假设x, y 为实数,且| x +1| + Jy 1 =0,那么一 的值是()yA.0B.1C. -1D. —2021【答案】C;2021x【解析】x + 1 = 0, y — 1 = 0,解得 x = — 1 ; y=1.—=- 1.y2(3)y J x 7V 7 x 9,求xy 64 的算术平方根.【答案】1旧—64/=(7乂9 —64『=1 ,其R 术平方根为1,故(◎ —64)」的算术平方根为1课堂稳固 2----------1 . x 8 J y 4 0,那么 xy【答案】-322 . y V x _2 J 2 x 2x ,贝U x y =v-2^0答案哪:根据被开方数为非负数.得A -7>0〞心..踊凯=7解析:根据被开方数为非负数,W l2-.T>O1解狎?=2.故1 = 4,所以工二2」=163 .Ji 3a和8b 3互为相反数,求ab 2的值.64解析:由于与।8卜一3」互为相反数,所以,田+|86-"二0,被开方数和绝对值都工--. ( v_ J 力_ 1是非负数.得Mb-3」.,斛得1b・最所以便'3X8)<54例6按要求填空填表(2)根据你发现的规律填空:J72=2.638 ,那么720==; 00.00072=70.0038=0.06164 ,361.64,那么x=【答案】【总结】被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位课堂同步1 /3.456=L 859 ,由4.56二5, 739 ,那么0345600=.【答案】578.9 ;【解析】解:: 丁34.56=5. 789,,而嬴而=578.9 .故答案为:578.9 .2 .J5.217 2.284,7521.7 22.84.填空:1 ,0.05217 1 52170(2)假设而 0.02284,那么 x【答案】(1 ) 0.2284,228.4(2) 0.0005217【点睛】被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动 1 位.例如:J62500 250 , 底5 25,褥25 2.5 , J0.0625 0.25.考点二、平方根 知识点讲解定义:如果x 2 a ,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方 与开平方互为逆运算.a ( a >0)的平方根的符号表达为 Va(a 0),其中 Q 是a 的算术平方根.平方根和算术平方根的区别与联系1 .区别:(1)定义不同;(2)结果不同:ja 和j a2 .联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;3 3) 0的平方根和算术平方根均为 0.补充:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负 数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方 根.因此,我们可以利用算术平方根来研究平方根 a a 0 0 a 0 aa 0a 0典型例题例1、以下说法错误的选项是()A.5是25的算术平方根B.l 2 __ _ _______C. 4 的平万根是一4D.0【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.由于,25 =5,所以本说法正确;B.由于土 J i =± 1,所以l 是l 的一个平方根说法正确;C.由于土 4 42=±方6 = ±4,所以本说法错误;平方根的性质是l 的一个平方根的平方根与算术平方根都是 0D.由于J0=0, J0=0,所以本说法正确;课堂稳固1 .判断以下各题正误,并将错误改正:(1) 9没有平方根.( )⑵田6 4.( ),、,1、2 ,一、… 1 ' 、(3)( --------- )的平方根—.( )10 102 1 4 ,一, 一、,(4) 一是—的算术平方根.( )5 25【答案】,;x; V;乂,【点睛】被开方数都是非负数2、填空:(1) 4是的负平方根.(2) J工表示的算术平方根,..16 ------ - 16 ------(3) J—的算术平方根为.81 ------(4)假设豉3,那么X ,假设& 3,那么X .111【答案】(1)16 ; (2) —; - (3) - (4) 9 ; ±316 4 3例2以下各数有平方根的是()A 1 3B. .4 C.m2 1 D.a2【答案】D课堂稳固判断以下各数是否有平方根,假设有,求其平方根,假设没有,请说明理由2 2 2 (1) 3 (2) 4 (3) 625 (4) a 1【答案】(1) Y (-3> =9>.,,(凸))『平方根,即* J ⑶二⑵・・・f =-16<0,负数没宥平方根,二没有平方根(3) T625>0.,625行平方根.即:屈?=±25⑷,.・<二+1)<0负数没有平方根 :4/+1)没仃平方根(5)Ym 不确定是负数还是正数,二当m>0时।有平方根.即;土而;当m3时, 役有平方根例3求以下各数的平方根 _____ 八9 1(1) 0.81 (2) -96⑶ 121 (4)—3【答案】(1) 0.9; (2) - ;(3) 11 ; (4)4【点睛】一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有 平方根.课堂稳固1求以下各数的平方根(1) 81; (2) 0.0009; (3) 空;(4) 7; (5)100;(6)0;(7)包; (8)169.9255— 3【答案】(1)9; (2) 0.03; (3)—; (4)77; (5) 10; (6) 0; (7)—;35(8)13.2.求以下各数的平方根、算术平方根,并用式子表示出来 ^(1) I 225|; ⑵ |T |1;⑶ J0.0016 ; (4)J ( 0.2)2 .咯案】⑴N 15,癖5 15;⑵屑土用子⑶ 山0.0016 0.2,770,0016 0.2; (4) Jj ( 0.2)2 而2,\ \( 0.2)2 .0,2 .(5) 49 (6) 0.251 ,、,“、一—;(5) ± 7; (6) 土 0.5.83.求以下各式的值:(1) 土49166T ;(3) V0.125;(4) 3 41727【答案】〔1〕4'(2) 6; (3) -0. 5; (4)例4求以下各式中的(1) (x-1)2 16;x-3(4) 289(1) X1,X2 3; (2) X -2 (3) 3; (4) x1 6.5 ,x2 10.5解: (1) (x-1)216 x-1 5, 又23;(2) 3x-3 x-3 -125 x-3 -5 (3)x 124x26.5 , x228910.5 .72.25 8.5课堂稳固求以下各式中x的值:(1) 25(x—1)2=49 (2) (x +2)2-36=0;(3) 2 __(x 1) 729 0 (4) 16x2 = 25 (5) (x-3) 2=4(6) 3x⑺(9)2x2 72;4(x 2)2162(8) 4x2 !(10) 25x2【答案】〔1〕x 12一或x2[;(2) X '550.36=0.22 =16.,x2 8;(3) x1=28, x2=-26. (4)【详解】解:: 2a —1的平方根是22a 13 9.2解得:3a b 1416±弓3a+ b —1的平方根是±4a 5b 2Ja 2b <5 2 23即a+ 2b 的平方根为:3 .5 2-—;(5) x= 5或 1. (6) x=—或 x=-2. (7) x 6; (8) x 4 3 —.(9) x=0 或 x=-24 (10) x= ±—.5 【详解】 一 c 一 249 (1)解:25(x — 1)2=49 即:(x 1)2 -25••(x 1)2 - 12 2 斛得:x 一或x 一. 5 5 2(2)解:.. (x 2) 36 0 , • . x 2 6, ,X 4 , x 2 8 ; (3)由题意可知:x-1=±27,,x 1=28 或 x 2=-26 , 一 c 一 2 25 5 (4)解:由于:16x 2=25,所以:x ——,所以:x —; 16 4 (5)由于:(x 3)24,那么 x 3 2或 x 3 2,故乂= 5 或 1. 2 — . 一2八 八(6)斛:由于 3x 2 =16,开方得 3x+2=4 或 3x+2= - 4,解得:x=5或x =-2. ⑺解:2x 2 72,系数化为1,得x 236 .开平方得x 6 . ⑻4x 2 9 0 ,移项,得4x 2 9 .系数化为1,得x 2 9.开平方,得x -. 4 22 (9) 4 x 2 16 (x+2)2=4 x+2=±2 解得 x=0 或 x=-4. (10)整理得,x 2= — , x= ±6 .故答案为 x= ±6 例52a — 1的平方根是±3, 3a+ b-1的平方根是±4求a+ 2b 的平方根. 【答案】 31 .假设5a+1和a- 19是数m 的平方根.求a 和m 的值. 【答案】a=3, m=256 .【详解】解:根据题意得: (5a+1) + (a-19) =0,解得:a=3,那么m= (5a+1)2=162=256.2 .如果一个正数 x 的平方根是a+6和2a - 15, (1)求a 的值? ( 2)求正数x ? 【答案】(1) 3; (2) 81【详解】(1)二•一个正数的平方根有两个,且互为相反数,a 6 (2a 15) 0,解得 a 3 ; (2)当 a 3时,a 6 9, .. x 92 81 .3 .正实数x 的平方根是a 和a+b.(1)当 b= 6 时,求 a; (2)假设 a 2x + (a + b)2x = 6,求 【答案】(1) a=-3; (2) x 志Qb 6, 2a 60, a 3;(2) .•.正实数x 的平方根是a 和a+b,(a b)2Q a 2x (a b)2x 6, x 2 x 2 6,3,0, x .34. 一个正数x 的两个不同的平方根分别是2aa 2.(1)求a 和x 的值;(2)化简2 a J2]3a【答案】(1) -1 ; 9(2)2.2【详解】(1)根据题意知,2a .解得a1 ,所以-a+2=3 ,可得x 9,故答案为:-1; 9;x 9代入-2| 3a2 2.28 2衣,故答案为: 8 2五x 的值.【详解】解:(1)二.正实数x 的平方根是a 和 a+b,、单项选择题 1 . 9的算术平方根是〔 〕 A. 3 B. 3C. 3【答案】A2 .以下计算正确的选项是〔 〕A.而 3B. 32 9C. | 5| 5 【答案】C 【详解】3 .假设 J10404 =102,.衣=10.2,贝U x 等于〔 A. 1040.4 C. 104.04 【答案】C4.以下说法不正确的选项是〔 〕A. —2是4的一个平方根C.平方根等于它本身的数只有B. 10.404 D. 1.0404B.立方根等于它本身的数只有 1和0 D.平方等于它本身的数只有0和1解:A 、4的一个平方根有 ±Z 故一2是4的一个平方根,故 A 正确; B 、立方根等于它本身的数有 ±1和0,故B 选项的说法不正确; C 、平方根等于本身的数只有 0,故C 正确; D 、平方等于它本身的数只有 0和1,故D 正确;5 .如果一个实数的算术平方根与它的立方根相等,那么这个数是〔 〕 A. 0B,正整数C. 0和1D. 16 .以下五个命题:①只有正数才有平方根;② -2是4的平方根;③5的平方根是 Jg ;解:A 、J9 3,故本项错误;B 、 32 9,故本项错误;C 、| 5| 5,故本项正确;D 、32 8 ,故本项错误;D. 813D. 28④土邪都是3的平方根;⑤〔-2〕2的平方根是-2 ;其中正确的命题是〔〕A.①②③B.③④⑤C.③④D.②④【答案】D【详解】解:① 由于0有平方根,故此选项错误;0-2是4的一个平方根,此选项正确;①、5的平方根式土石,此选项错误;①土J3都是3的平方根,此选项正确;①〔—2〕2的平方根是土2,此选项错误.故正确的命题是①①7 .以下说法正确的选项是〔〕A. 一个数的算术平方根-一定是正数C. .. 25 5【答案】D【详解】A、一个数的算术平方根一定是正数,错误,B、1的立方根是1,错误;C、病58 .以下各式中,正确的选项是〔〕A. '〔 2〕2 = - 2B. ^"9 = -3【答案】D9 . 的平方根是〔〕.16A. ±1B. ±12 4【答案】A10 .假设x使〔x-1〕2=4成立,那么x的值是〔A. 3B. - 1【答案】C【解析】:①x-1 0=4成立,x-1= ±2夕二、填空题11 .假设J x 2 y 3 2 0,贝ux y=1的立方根是B.2是4的平方根D.0的算术平方根是0;例如D、2是4的平方根,正确;D.32 =3C.C. D.C. D. ±2:x[=3 ① x2=-1 ①【答案】12 2【详解】J x 2 y 3 0 J x 2 0, y 3 0・•. x 2, y 3 x y 2 3 1 故答案为1.12 .81.732, 廊5.477,贝U V0?3 .【答案】0.5477【详解】解:Q J30 5.477, J03 J30 0.01 0.5477 故答案为:0.5477.13 .假设J25.36 ①5.036 5/253.6 ①15.906,那么J253600 ① _____ .【答案】503.6【详解】解①J253600 = 425.36 10000 =5.036 X 100=503.6故将案为503.6 ①14 .如果a+3和2a -6是一个数的平方根,这个数为 .【答案】16或144【详解】解:根据题意得:a+3+2a-6=0,或a+3=2a-6,移项、合并同类项得:或-a=- 9,解得:a=1 或a=9,那么这个数为〔1+3〕2= 16 或〔9+3〕2= 144, 故答案为:16或144.15 .假设1 2a与3a 4是同一个数的平方根,那么a的值为.【答案】3或1 .【详解】解:依题意可知:1- 2a+ 〔3a- 4〕 = 0或1- 2a = 3a- 4 ,解得:a 3或a 1.故答案为:3或1 .16 .2x2+3 = 35,那么x=.【答案】土 4.【详解】2x2 3 35, ••• 2x2 32,贝U x2 16,解得:x=±4.故答案为:士三、解做题17,&~1与,2 y互为相反教,Z是64的方根,求x y z的平方根【答案】土石【详解】解:; &一彳与J2 y互为相反数,••• j x―1 + J2 y =0,• -x+1=0,2-y=0 ,解得x=-1 , y=2 , 丁z 是64 的方根,,z=8所以,x y Z=-1-2+8=5 ,所以,x y z的平方根是土卮18.探索与应用.先填写下表,通过观察后再答复以下问题:3a=3 4.(1)表格中x=; y=;(2)从表格中探究a与后数位的规律,并利用这个规律解决下面两个问题:① J10~3.16那么#000';② J3五=1.8,假设石=180,贝U a=(3)拓展:筑2 2.289,假设正 0.2289 ,贝U b=.【答案】(1) 0.1 , 10; (2) 31.6 , 32400; (3) 0.012.【详解】(1) x=0.1 , y=10,故答案为:0.1 , 10;(2)①.一加~ 3.16 ••• J1000 =31.6,②Q J3.24=1.8, . . a=32400,故答案为:31.6, 32400;(4) •••痈2.289,b=0.012,故答案为:0.012.19.2a—1的平方根是±3, 3a+ b- 1的平方根是±4求a+ 2b的平方根.【答案】3【详解】22a 1 3 9解:2a—1的平万根是±3, 3a+ b—1的平万根是±4 --- 23a b 1 4 16a 5 ____ __________解得:J a 2b 75 2 2 3即a +2b的平方根为:3.b 2 120.x-2和y - 2互为相反数,求x+y的平方根.【答案】±2【详解】解:x — 2和y ― 2互为相反数,,x— 2+y—2 = 0,• -x+y=4, 4的平方根是±2故x+y的平方根是±2.21.计算:(1) | 2| ( 3)2(2) 2x 1 2 25【答案】(1) 9; (2) x 3或x 2【详解】(1)| 2| ( 3)2# 2 9 2 9 ;2(2) 2x 1 25, 2x 1 5, 2x 1 5或2x 1 5,x 3或x 2.22.阅读以下解答过程,在横线上填入恰当内容.(x 1)2 42(x 1)2 4 (1)x 1 2 (2)x 3 (3)上述过程中有没有错误?假设有,错在步骤 (填序号)原因是________________________________________请写出正确的解答过程.【答案】(2),正数的平方根有两个,它们互为相反数,解答过程见解析【详解】•••一个正数有两个平方根,它们互为相反数,・♦・上述解答过程有错误,步骤(2)出现了错误;故答案为:(2),正数的平方根有两个,它们互为相反数 ,正确的解答过程如下:(x 1)2 4,x 1 2 ,. .x=3 或x=-1.。
人教版初中数学实数第1课时课件(共26张PPT)

2019/2/23
9
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Teaching Process
无理数的诞生
2、探究新知
2019/2/23
10
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Teaching Process
Teaching Process
2、探究新知
2019/2/23
13
教学过程
单击此处编辑母版标题样式
Teaching Process
2、探究新知
有理数
初中阶段对数的认识范围扩充为 单击此处编辑母版文本样式 第二级 新加入 第三级 第四级 第五级
实数
无理数
有理数和无理数统称实数
思考:实数如何分类?
2019/2/23 14
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
单击此处编辑母版标 实 题样式 数(第1课时)
单击此处编辑母版副标题样式
2019/2/23
1
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
2019/2/23
2
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
单击此处编辑母版标题样式
Teaching Process
3、运用新知
2单击此处编辑母版文本样式 下列这些数找不到位置,请你帮它找一找
第二级 第三级 第四级 第五级
2019/2/23
有理数集合
无理数集合
17
人教版七年级数学下册第六章《实数》公开课 课件1

Z
L
lb
神奇的π
阿基米德(古希腊)
神奇的π
祖冲之 (南北朝)
刘徽 (魏晋时期)
至2002年底,科学家们用超级计算机已把 的值算到小数点后12411亿位. zxxk
π----无限不循环的数字,无限不循环的 神秘,无限不循环的樂趣,无限不循环 的享受。
很早很早以前,人们就看出,圆的周长 和直经的比是个与圆的大小无关的常 数,并称之为圆周率.
15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/202021/7/202021/7/207/20/2021
16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/202021/7/20July 20, 2021
继续探索:
因为
π=3.1415926535897932384626…
, , 2 1
所以像
2
即π的某种形式
的数都是什么数?
常见的一类无理数是:
2. 圆周率π及一些含有π的数
例如: , , 2 1
2
那这种形式的数呢?你们认识他们吗?
1. 0.101001000… (两个“1”之间依次多一个0), 2. 7.2121121112… (两个“2”之间依次多一个1) 3. 5.123112233111222333-----(依次多个123)
17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/202021/7/202021/7/202021/7/20
2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
实数(第1课时)-七年级数学下册讲练课件(人教版)

故选:C.
【点评】本题考查了实数的比较大小,绝对值,注意负数的绝对值等于它的相反数.
感受中考
4.(3分)(2021•天津6/25)估计 17 的值在(
A.2和3之间
B.3和4之间
)
C.4和5之间
D.5和6之间
【解答】解:∵ 17 4.12 ,
∴ 17 的值在4和5之间.
故选:C.
)
典例分析
例1:将下列各数分别填入下列相应的括号内:
3
1
9 , , 7 , π, 16, 5, 3 8,
4
4
25, 0.3232232223
, 0,
9
无理数: 9,
3
7, π, 5, 0.3232232223
1
4
,
3
, 0, 25
有理数: 4 16, 8,
9
1
4
为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点 A,那么点 A 表示的数
是
.
(3)如图 3,网格中每个小正方形的边长为 1,若能把阴影部分剪拼成一个新的正方形,
求新的正方形的面积和边长.
解:
(1)设拼成的正方形的边长为 a,
则 a2=5,
a= 5,
即拼成的正方形的边长为 5,
故答案为: 5;
整数
有理数:
有限小数或无限循环小数
实
数
分数
含开方开不尽的数
无理数:
无限不循环小数
含有
π 的数
有规律但不循环的小数
(2)按性质分:
=﹣3 5 +3;
(4)| 6 − 2|+| 2 −1|﹣|3− 6|
人教版八年级数学《实数》

3、相反数是本身的数是 0 ;绝对值是本身的数是 非负数 ;倒数是本身的数是 ±1 。
5、a、b互为相反数,c与d互为倒数则a+1+b+cd= 2 。 6、实数a,b,c,d在数轴上的对应点如图1-1所示,则 它们从小到大的顺序是 c<d<b<a 。
c d 0 b a
图1-1-1 其中:
a b
三、想一想
a是一个实数,它的相反数为 a; 绝对值为 | a | .如果 a 0 , 那么它的
倒数为
a .
1
1、-5的绝对值是 A.5 B. 1/5 C.-1/5
( A ) D.-5 (2003北京市中考试题)
2、下列各数中,负数是 ( B ) A.-(-3) B. - 3 C.(-3)2 D.-(-3)3 (2003山东省中考试题)
8、π的整数部分为3,则它 的小数部分是 π-3 ;
9、 5 的整数部分是 2 , 则它的小数部分是 5 2 ;
10、比较大小:
(1) 3 2 (2) 13 (3) 5 2 6 (4) 2 3
3 2
3 2
二、选择题:
1、(-3)2的算术平方根是( ) (A)无意义 (B)±3 (D) 3 (C)-3
无理数集合:{ π,-,tan30°,2.1010010001…
7
}。
2、下列说法中,错误的个数是
( C)
①无理数都是无限小数;②无理数都是开方开不尽的数; ③带根号的都是无理数;④无限小数都是无理数。 A.1个; B.2个; C.3个; D.4个。
3、数轴上的点与( D )一一对应。 A.整数; B.有理数; C.无理数; D.实数。
2
b a o x 解:由图知:b<a<0,∴a-b>0,a+b<0. ∴|a-b|+ ( a b) 2 =(a-b)+|a+b| =a-b+[-(a+b)] =a-b-a-b =-2b.
2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

6,
••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.
•
2
•
3
22
,7
36
无理数是: 6
,,
2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:
6.3.1实数-人教版七年级数学下册课件

你能求出下列各数的相反数、倒数和绝对值吗?
限 47 限 设点C表示的实数为x,则点A到点C的距离为-1-x,
5 . 8 7 5 2.会在实数范围内求一个数的相反数、倒数、绝对值.
小 8 循 思考: 是无理数吗?2.
反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
数 环 ⑤无理数一定都带根号.
(√) (√) (√) (× ) (× ) (√) (× ) (√)
2、把下列各数分别填在相应的集合里
22 , 3.1415926, 7, 8, 3 2 , 0.6, 0,
7 36 ,
,
3
..
1.652,
0.3131131113
有理数集合
无理数集合
4. 下列说法不正确的是 A.|3-π|= 3-π C.2的相反数是-2
|-π|=___π_____,|3-π|=__π_-__3___.
2.我们在有理数范围内学过的运算法则和运算律是 否在实数范围内还能继续用呢?
在实数范围内,相反数、倒数、绝对值的意义和有理 数范围内的相反数、倒数、绝对值的意义完全一样。
学以致用 知行并进
你能求出下列各数的相反数、 倒数和绝对值吗?
7.如图所示,数轴上A,B两点表示的数分别为-1 和 3 ,点B关于点A的对称点为C,求点C所表示的 实数.
解:∵数轴上A,B两点表示的数分别为-1和 3 , ∴点B到点A的距离为1+ 3 ,则点C到点A的距离为 1+ 3 , 设点C表示的实数为x,则点A到点C的距离为-1-x, ∴-1-x=1+ 3 , ∴x=-2- 3
02002000200002… 有理数和无理数统称为实数
它们都是无限不循环小数,是无理数
人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)(1)

一、选择题1.给出下列各数①0.32,②227,③π,⑤0.2060060006(每两个6之间依次多个0), ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D .【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键. 2.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.3.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D .【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.4.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; )A .1B .2C .3D .4A 解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.下列实数中,是无理数的为( )A .3.14B .13CD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.,则571.34的平方根约为( )A .239.03B .±75.587C .23.903D .±23.903D 解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D .【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.7.下列实数中,属于无理数的是( )A .3.14B .227CD .πD 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .1D 解析:D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得. 【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;④497=的算术平方根是7,此命题是假命题;⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题; 综上,真命题的个数是1个,故选:D .【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.9.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68C 解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.【详解】当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.10.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣222n -.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.二、填空题11.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少? (2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值.(1)x =−13;(2)(2)x-y 的值为9或-1【分析】(1)将错就错把x =2代入计算求出a 的值即可确定出正确的解;(2)根据题意可以求得xy 的值从而可以求得x−y 的值【详解】(1)把x =2代入2解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 12.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.13.解方程:(1)2810x -=;(2)38(1)27x +=.(1);(2)【分析】(1)移项利用平方根的性质解方程;(2)方程两边同时除以8然后利用立方根的性质解方程【详解】(1)移项得:解得:;(2)方程两边同时除以8得:∴解得:【点睛】本题考查了平方根和解析:(1)9x =±;(2)12x =. 【分析】(1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 14.请你写出一个比3大且比4小的无理数,该无理数可以是:____.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.15.若|2|0a -=,则a b +=_________.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若|2|0x -=,则12xy -=_____.2【分析】根据非负数的性质进行解答即可【详解】解:故答案为:2【点睛】本题考查了非负数的性质掌握几个非负数的和为0这几个数都为0是解题的关键解析:2【分析】根据非负数的性质进行解答即可.【详解】解:|2|0x -=,20x ∴-=,0x y +=,2x ∴=,2y =-, ∴112(2)222xy -=-⨯⨯-=,故答案为:2.【点睛】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键. 17.我们知道,同底数幂的乘法法则为:•m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算填空:若()213h =,则(2)h =_____;若()()10h k k =≠,那么()(2020)h n h ⋅=______(用含n 和k 的代数式表示,其中n 位正整数)【分析】通过对所求式子变形然后根据同底数幂的乘法计算即可解答本题【详解】解:∵∴∵∴故答案是:【点睛】本题考查整式的混合运算化简求值新定义解答本题的关键是明确题意利用新运算求出所求的式子的值 解析:492012n k + 【分析】 通过对所求式子变形,()()()h m n h m h n +=⋅然后根据同底数幂的乘法计算即可解答本题.【详解】解:∵()213h = ∴224(2)(11)(1)(1)339h h h h =+=⨯=⨯= ∵()()10h k k =≠∴()(2020)h n h ⋅=20202020n n k k k +⨯=. 故答案是:49,2020n k + 【点睛】本题考查整式的混合运算化简求值、新定义,解答本题的关键是明确题意,利用新运算求出所求的式子的值.18.比较大小:-2.(填“>”“=”或“<”)>【分析】两个负数比较绝对值大的反而小由此得到答案【详解】∵∴故答案为:>【点睛】此题考查实数的大小比较:负实数都比0小正实数都比0大两个负实数比较大小绝对值大的反而小解析:>【分析】两个负数比较绝对值大的反而小,由此得到答案.【详解】 ∵2<,∴2>-,故答案为:>.【点睛】此题考查实数的大小比较:负实数都比0小,正实数都比0大,两个负实数比较大小,绝对值大的反而小.19.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.20.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<a<5,a为整数,∴16<a<25,∴整数a有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.三、解答题21.计算下列各题-+16﹣3﹣2;(1)38(2)23+5﹣100.04(结果保留2位有效数字).2-;(2)2.6解析:(1)3【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】-+16-3-2(1)38=-2+4-2-3=-3;-100.04(2)23+525=+-⨯23100.22≈⨯+÷-2 1.732 2.236222.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小. 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:30.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .解析:(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.24.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根.解析:【分析】先根据算术平方根的定义求得2x的值,再根据算术平方根的定义求出y,根据立方根的定义求z,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x+1的算术平方根是0,∴2x+1=0,∴2x=﹣1,∵=4,∴y=16,∵z是﹣27的立方根,∴z=﹣3,∴2x+y+z=﹣1+16﹣3=12,∴2x+y+z的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.25.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值;(2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值.故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.26.计算:3011(2)(200422-+-- 解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.27.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭ (4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】 (1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭=33231(8)()()()44343-⨯-+-⨯+-⨯-=11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3163⎫-⎪⎪⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.28.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数.解析:(1)3 3-;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34,∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.。
【核心素养目标】数学人教版七年级下册6.3 第1课时 实数 教案含反思(表格式)

6.3实数第1课时实数教学内容第1课时实数课时1核心素养目标1.会用数学的眼光观察现实世界:经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数,培养自主学习的习惯,发展理论与实践相结合的.2.会用数学的思维思考现实世界:进一步理解有理数和无理数的概念,会把实数进行分类,培养归纳、分类的实践能力,发展数据意识.3.会用数学的语言表示现实世界:理解实数与数轴的关系,并进行相关运用,初步培养数学结合思想,形成数学的表达能力.知识目标1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;2.进一步理解有理数和无理数的概念,会把实数进行分类;3.理解实数与数轴的关系,并进行相关运用.教学重点1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;2.进一步理解有理数和无理数的概念,会把实数进行分类.教学难点理解实数与数轴的关系,并进行相关运用.教学准备课件教学过程主要师生活动设计意图一、新课导入一、创设情境导入新知数学危机师生活动:教师播放课件准备的视频,并跟随视频介绍著名数学家毕达哥拉斯及他的伟大发现.填一填师生活动:学生独立思考共同完成填空.提问1:上表中所填的这些数都是有理数吗?预设:±1,±2,-1,1 都是有理数提问2:,也是有理数吗?设计意图:运用数学家的伟大发现吸引学生的注意力,感受本节课在数学研究历史中的重要地位,激发学习兴趣.设计意图:回顾平方和立方根的计算方法,引出无理数及实数的概念.33224 ,,二、探究新知二、探究新知知识点一:实数的概念和分类问题 1 我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,它们有什么特征?-师生活动:学生独立完成操作后,小组讨论,并派代表回答发现,教师总结——它们都可以化成有限小数或无限循环小数的形式.追问:把导入中的 , 以及我们学习过的π化成小数,你能发现什么?预设: , 和π都能化成无限不循环小数.总结:1.有理数(整数、分数)可以写成有限小数或无限循环小数;2.反过来,任何有限小数或无限循环小数也都是有理数;3.很多数的平方根和立方根都是无限不循环小数.无理数的概念 无限不循环小数叫做无理数. 例如导入中的 ,以及我们学习过的π. 思考1: 是无理数吗?2.020 020 002 000 02…是无理数吗?师生活动:学生独立思考并作答,教师完成总结.常见的一些无理数:(1) 化简后含有 π 的数;(2) 开不尽方的数开方所得结果;(3) 有规律但不循环的小数,如1.01001000…思考2:我们将有理数和无理数统称为实数.你能设计意图:层层深入,加强新旧知识之间的练习,让学生自主探究,感悟无理数的概念.设计意图:锻炼学生归纳总结的能力吗,培养迁移思想.254911-,,,,532711933224±,,33224±,33224±,,π2仿照有理数的分类给实数分类吗?师生活动:学生独立思考,在教师的引导下共同完成实数思维导图.合作交流因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小对实数分类吗?师生活动:学生独立思考,在教师的引导下共同完成实数思维导图.练习1.下列说法中,正确的是().A.实数分为正实数和负实数B.无限小数都是无理数C. 无理数都是无限小数D. 带根号的数都是无理数2.有一个数值转换器,原理如图所示,当输入的x 为81 时,输出的y是().A. 9B.C.3D.9393知识点二:实数与数轴上的点思考1:每个有理数都可以用数轴上的点来表示,无理数是否也能用数轴上的点表示出来呢?探究:能不能在数轴上找的表示π 的点呢?师生活动:学生独立思考,教师提示学生思考π在几何图形上的作用——π可以用于计算圆的周长和面积.教师播放课件,展示半径为 1 的圆上的点A滚动一周的运动路径,顺势指出——因为半径为 1 的圆的周长为π,所以数轴上点A表示的数是无理数π.思考2:你能在数轴上表示出和-吗?师生活动:学生独立思考,因为之前学习是利用正方形边长进行探究,学生容易联想到边长为1 的正方形的对角线长就是.教师引导学生利用尺规作图,自己在数轴上尝试画出和- 的点.追问:通过思考1、思考2你能发现什么呢?设计意图:从学生熟悉的无理数着手,让学生自主探究无理数在数轴上的表示方法;进一步发展数形结合思想,培养自主学习能力.设计意图:进一步发展数形结合思想,培养自主学习能力,发展学生的作图能力.2222222222师生活动:学生独立思考后小组讨论,选代表回答.预设1:每一个实数都可以用数轴上的一个点来表示;预设2:数轴上的每一点都表示一个实数.总结:实数和数轴上的点是一一对应的.例2如图所示,数轴上A,B两点表示的数分别为-1 和,点B关于点A的对称点为C,求点C所表示的实数.师生活动:学生独立思考解答问题,教师提示可以利用作图帮助计算,选一名学生板书,教师规范解题思路.例3如图所示,数轴上A,B两点表示的数分别为和5.1,则A,B两点之间表示整数的点共有()A.6 个B.5 个C.4 个D.3 个师生活动:数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.学生独立完成操作.比较大小教师叙述:与有理数一样,实数也可以比较大小:数轴上右边的点表示的实数比左边的点表示的实数大.与有理数一样,在实数范围内:正实数大于零,负实数小于零,正实数大于负实数.设计意图:掌握实数和数轴上的点是一一对应的的性质,培养总结归纳和交流合作能力.设计意图:提高学生的运用能力和解题能力,渗透数形结合思想.设计意图:进一步掌握实数和数轴上的点是一一对应的的性质,锻炼学生的运用能力和解题能力.设计意图:学习并掌握实数范围内比较大小的方法.三、当堂练习例4 在数轴上表示下列各点,比较它们的大小,并用“ < ”连接它们.师生活动:学生独立完成习题,选学生回答,其他同学判断正误,教师总结解题技巧:熟记常见数的算术平方根的约数值有助于解题. 三、当堂练习 1. 下列说法正确的是( )A. a 一定是正实数B. 是有理数C. 是有理数D. 数轴上任一点都对应一个有理数2.把下列各数填入相应的括号内: (1)有理数: (2)无理数: (3)整数: (4)负数: (5)分数: (6)实数:3. 比较下列各组数的大小. -3;设计意图:锻炼并掌握实数范围内比较大小的方法,提高解题能力.设计意图:考查学生对实数的概念及性质的掌握.设计意图:帮助学生巩固梳理有理数、无理数、正数、负数、分数、实数的概念.设计意图:考查学生运用立方根几何意义的进行计算的能力.板书设计第1课时 实数无限不循环小数叫做无理数.★实数和数轴上的点是一一对应的.正实数大于零,负实数小于零,正实数大于负实数.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.221722(1)π 3.146(2)31.731,;,;52(3)53223(4)23--,;,;(1)π 3.146(2)31.731,;,;52(3)53223(4)23--,;,;本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理。
新人教版数学七年级下册第六章《实数》全章教案

5.144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考1、2答案,提出疑难问题。
给学生充足的时间和空间,理解和感知算术平方根概念,通过讨论、交流,提出问题
师
生
互
动
归
纳
新
知
问题1:你能叙述算术平方根的概念吗?
一般地:如果一个正数 的平方等于a,即 =a,那么这个正数 叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。
年级
七年级
课题
6.1平方根(2)
课型
新授
教
学
目
标
知识
技能
1.用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.
2.用计算器求一个非负数的算术平方根.
过程
方法
通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
情感
态度
通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习的兴趣。
问题(四)
两种运算有什么不同?
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数a的平方根的运算,叫开平方,其中a叫被开方数.。
学生思考,小组讨论,个别回答
问题是知识能力生长点,通过富有实际意义的问题,激发学生原有认知,促使学生主动地进行探索和思考,让他们体会数学的韵味.。
尝
试
应
用
问题(五)
(2)0的平方根和算术平方根都是0。
区别
(1)定义不同:
“如果一个数 的平方等于a,那么这个数 叫做a的平方根”,
“如果一个正数x的平方等于a,即 ,那么这个正数x叫做a的算术平方根”。
人教版初中数学一年级下册《实数(1)》图文课件

这些分数都可以 写成有限小数或者无 限循环小数的形式.
如果把整数看成小数点后是0的小数,
例如将3看成3.0
那么
有限小数
有理数
无限循环小数
想 小数除了上述前的学习,我们知道. 很多数的平 方根和立方根都是无限不循环小数.
无限不循环小数又叫做无理数.
有理数和无理数统称为实数. 正有理数 有理数 0 负有理数 正无理数 无理数 无限不循环小数 有限小数或无 限循环小数
以单位长度为边长画一个正方形,以原点为 圆心,正方形的对角线为半径画弧.
2
-3
-2
-1
0
1
2 2
3
弧与正半轴的交点就表示 2 , 弧与负半轴的交点就表示 2.
基础巩固
随堂演练
1. 判断下列说法是否正确: (1)有限小数都是有理数; ( √) (2)无限小数都是无理数; ( ×) (3)所有有理数都可以用数轴上的点表示,反 过来,数轴上的所有点都表示有理数; ( ×) (4)所有实数都可以用数轴上的点表示,反过 来,数轴上的所有点都表示实数; ( √) (5)对于数轴上的任意两个点,右边的点表示 的实数总比左边的点表示的实数大. ( √)
实数
正无理数
非0有理数和无理数都有正负之分,实数也 有正负之分,所以实数还可以按大小分类如下: 正实数 实数 0 负实数
练习
1.下列实数中,哪些是有理数?哪些是无理数?
4 5,3.14,0, 3 , ,0.57 , 4 ,– π, 3
0.1010010001……(相邻两个1之间0的个数逐
次加1).
2
在数轴上表示实数
每个有理数都可以用数轴上的点来表示,那 么,无理数呢?
探究
人教版七年级数学下册6.3.1《实数的概念》教学设计

人教版七年级数学下册6.3.1《实数的概念》教学设计一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在掌握了有理数的基础上,进一步对实数进行学习。
本节内容主要介绍实数的概念,包括实数的定义、实数的性质等。
教材通过实例和问题,引导学生理解实数的意义,并能够运用实数进行简单的运算和解决问题。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的概念和运算方法,具备一定的数学基础。
但实数概念相对抽象,学生可能存在一定的理解难度。
因此,在教学过程中,需要结合学生的实际情况,通过实例和问题,引导学生理解和掌握实数的概念。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数进行简单的运算和解决问题。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生思考,实例帮助学生理解,小组合作促进学生交流和讨论。
六. 教学准备1.教材、PPT等相关教学资料。
2.实例和问题。
3.小组合作学习分组。
七. 教学过程1. 导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数,那么有理数能表示所有的数吗?还有哪些数是有理数无法表示的?”2. 呈现(15分钟)利用PPT展示实数的定义和性质,结合实例进行讲解。
例如,通过数轴展示实数,解释实数包括有理数和无理数,以及实数的性质如大小关系、加减乘除等。
3. 操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
例如,给出一些实数的运算题目,让学生独立完成,然后集体讲解答案。
4. 巩固(10分钟)通过问题和小测验的形式,巩固学生对实数的理解和掌握。
例如,提出一些关于实数的问题,让学生回答,或者让学生解决一些实际问题,运用实数进行计算。
5. 拓展(10分钟)引导学生思考实数在实际生活中的应用,拓展学生的思维。
人教版七年级数学下册第第六章实数第4课-实数(1)——无理数、有理数

17. 填空: (1)小于的 10 非负整数有________0_,__1_,__2_,__3___________; (2)在数轴上离原点的距离是的 5 点表示的数是__5_或__-__5_; (3)比较大小:22 ____>____π; (4)请你写出一7个大于0而小于2的无理数:____2____.
10. 无限不循环小数叫做__无__理__数__.
11. (2020期末)在0.25,π ,7,1 中,无理数有(
2 12
B
)
A.1个
B.2个
C.3个
D.4个
12. 如图,在数轴上标有字母的各点中,与实数 5 对应的点 可能是( C )
A.A
B.B
C.C
D.D
13. 下列说法正确的是( C ) A.无限小数都是无理数 B.带根号的数都是无理数 C.无理数都是无限小数 D.不循环的小数都是无理数
负有理数 负无理数
6. (例3)下列说法正确的是( D ) A.正整数和负整数统称整数 B.正数、0、负数统称有理数 C.开方开不尽的数和π统称无理数 D.有理数、无理数统称为实数
7. 下列说法错误的是( D ) A.有理数和无理数统称实数 B.实数包括正实数、0、负实数 C.整数和分数统称有理数 D.无理数包括正无理数、0、负无理数
14. 与数轴上的点一一对应的数是( D )
A.整数
B.有理数
C.无理数
D.实数
15. 有四个实数:3,- 2 ,π, 5 ,其中最大的是( C )
A.3
B.- 2
C.π
D. 5
16. 把下列各数分类:
π,-3.14,0,0.101 001…, 9,- 3 8,22 .
人教版《实数》_PPT-精美

【获奖课件ppt】人教版《实数》_ppt -精美1 -课件 分析下 载
探索新知
与有理数一样,实数也可以比较大小: 与有理数规定的大小一样,数轴上右边的点 表示的实数比左边的点表示的实数大.
负实数 原点 正实数 0
<
与有理数一样,在实数范围内:
2实30 , 数2.如1• 2何1, 分类119?6 ,
0.3737737773
【获奖课件ppt】人教版《实数》_ppt -精美1 -课件 分析下 载
...
有理数集合
...
无理数集合
【获奖课件ppt】人教版《实数》_ppt -精美1 -课件 分析下 载
探索新知
实数
有理数 无理数
正有理数 0
负有理数 实数
(1)无理数都是无限小数;( √ ) (2)实数包括正实数、0、负实数;( √ ) (3)实数不是有理数就是无理数;( √) (4)不带根号的数都是有理数;( × ) (5)带根号的数都是无理数; ( ×) (6)所有有理数都可以用数轴上的点表示, 反过来,数轴上所有的点都表示有理数。( × )
【获奖课件ppt】人教版《实数》_ppt -精美1 -课件 分析下 载
探索新知
无限不循环小数叫做 无理数
含 Π的一些数字
无理数
开不尽方的数
不循环的无限小数
【获奖课件ppt】人教版《实数》_ppt -精美1 -课件 分析下 载
【获奖课件ppt】人教版《实数》_ppt -精美1 -课件 分析下 载
探索新知
把下列各数分别填入相应的集合内:
有272理,数和3无, 理数3统8称, 实0数.101,3 , 3 9 , 64
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12) )
因为
3
(-2)
=-8,所以-8的立方根是(-2
)
因为(-
23)3
=-
2
8
7
,所以- 8 27
的立方(-
2 3
)
你能看出正数,0,负数的立方根各有什么特点?
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
(1)立方根的特征
正数有立方根吗?如果有,有几个? 负数呢?零呢?
(2)如果问题中正方体的体积为5cm3,正方 体的边长又该是多少?
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
1.立方根的定义
一般地,一个数的立方等于a,这个数就
叫做a的立方根,也叫做a的三次方根.记
作
3
a
.
1.如何表示一个数的立方根?
一个数a的立方根可以表示为:
根指数
3
a
人教版《实数》1(PPT优秀课件)
6.2 立 方 根
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
16的平方根是____4__
-16的平方根是_没_有__平__方__根 0的平方根是___0_____
一个正数有正负两个平方根,它们互为 相反数;零的平方根是零,负数没有平方根.
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
探究3 先填写下表,再回答问题:
a 0.000001 0.001 1 1000
1000000
3 a 0.01 0.1 1 10 100
从上面表格中你发现什么? 归纳:
被开方数扩大(缩小)1000倍时,它的立方根扩 大(缩小)10倍.
引伸探究2
因为 3 8 = -2 , 3 8 = -2 所以 3 8 = 3 8
因为 3 2 7 = -3 , 3 2 7 = -3
所以 3 2 7 = 3 2 7
互为相反数的数的 立方根也互为相反
猜一猜:
数
你能从上述问题中总结出互为相反数的两个数a与
-a的立方根的关系吗?
3
-a
3
a
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
5.跳一跳:已知半径为r 的球,其体积 r 的计 算公式为 V 4 3. 如果甲、乙两
3
球 体积的比为1 :8,则甲、乙两球的半径比
为1 : 2 .
r
R
人教版《实数》1(PPT优秀课件)
甲
乙
人教版《实数》1(PPT优秀课件)
立方
互逆
开立方
到现在我们学了几种运算?
+,-,x,÷,乘方,开方(开平方,开立方)
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
2.立方根的性质
探究1. 根据立方根的意义填空.
因为2 3 =8,所以8的立方根是( 2 )
因因为为((120)3)3
=0.125,所以0.125的立方是( =0,所以0的立方根是( 0
被开方数
读作:三次根号 a
其中a是被开方数,3是根指数,不能省略。
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
思考:如果正方体的体积为5cm3,正方体的边
长又该是多少?
设正方体的边长为X,则 x 3 5
所以正方体的边长是 3 5 ㎝.
2.求一个数的立方根的运算,叫做开立方
(1)
8 27
的立方根是 2 3
(2) 25的平方根是5
x x
(3) -64没有立方根
x
(4) -4的平方根是 2 x √ (5) 0的平方根和立方根都是0
想一想 立方根是它本身的数有那些? 有1, -1, 0
平方根是它本身的数呢? 只有0
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
问题:要做一个体积为27cm3的正方体模
型(如图),它的棱长要取多少?你是怎么知
道的?
设正方体的棱长为X㎝,则
x3 27
这就是要求一个数,使它的立方等于27.
因为
33 27
所以 X=3. 正方体的棱长为3㎝
思考:(1)什么数的立方等于-8? -2
课堂小结
1.立方根的定义,性质,计算. 2.立方根与平方根的异同
相同点: ①0的平方根、立方根都有一个是0 ②平方根、立方根都是开方的结果。
不同点: ①定义不同 ②个数不同 ③表示方法不同 ④被开方数的取值范围不同
人教版《实数》1(PPT优秀课件)
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。
讨论:你能归纳出平方根和立方根的异同点吗?
被开方数 正数 负数 零
平方根 有两个互为相反数
无平方根 零
立方根 有一个,是正数 有一个,是负数
零
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
练一练
1.判断下列说法是否正确,并说明理由
人教版《实数》1(PPT优秀课件)
人教版《实数》1(PPT优秀课件)
例:求下列各式的值
(1) 3 6 4
(2) 3 1 2 5
(3) 3 2 7 64
解: (1) 3 6 4 =4
(2) 3 1 2 5 = 3 1 2 5 =-5
(3) 3
2 7
64
=
3
27 64
பைடு நூலகம்
=-
3 4
方法指导:
求一个负数的立方根,可以先求出这个负数绝 对值的立方根,然后再取它的相反数.