初中数学实数ppt
合集下载
人教版《实数》优秀课件初中数学ppt
品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
实数 (2) —初中数学课件PPT
其总长大约为6700000m.将6700000用科学记
数法表示为( B )
A.6.7×105 B.6.7×106
C.0.67×107 D.67×108
6.(2017•益阳)目前,世界上能制造出的最
小晶体管的长度只有0.000 000 04m,将
0.000 000 04用科学记数法表示为( B )
A.4×108 B.4×10﹣8
C.0.4×108 D.﹣4×108
数学
首页
末页
课堂精讲
考点2 科学记数法
7.(2017•凉山州)2017年端午节全国景区 接待游客总人数8260万人,这个数用科学记数 法可表示为 8.2考点3 实数的大小比较、数轴、估计无理数的 大小
8.(2017•济南)在实数0,﹣2, ,3中,最 大的是( D ) A.0 B.﹣2 C. D.3
数学
首页
末页
广东中考
26.(2017广东)计算: |﹣7|﹣(1﹣π)0+( )﹣1.
解:原式=7﹣1+3=9.
数学
首页
末页
谢谢!
数学
首页
末页
第一章 数与式
第1节 实 数
课前预习 考点梳理 课堂精讲 广东中考
数学
首页
末页
课前预习
1.(2017湘潭)2 017的倒数是(A)
A. B.-
C.2 017 D.-2 017
2.(2017连云港)2的绝对值是(B)
A.-2 B.2 C.-
D.
数学
首页
末页
课前预习
3.(2017广元)- 的相反数是(D)
(2)用式子表示a的绝对值. a
0 -a
不论有理数a取何值,它的绝对值总是非负数. 即|a|≥0.
初中数学精品课件:实数及其运算
关的:π3,π-1 等;④规律型:1.3232232223…(每两 个“3”之间依次多一个“2”)等有规律但不循环的无 限小数.
【典例 1】 (2019·宁波)请写出一个小于 4 的无理数: ______.
【答案】 π(答案不唯一)
【类题演练 1】 (2019·衢州)在12,0,1,-9 四个数中,
【典例 1】
在
实
数
-
π 2
,
2
,
22 7
,
0.3333333…
,
0
,
1.732
,
2.1010010001…(每两个“1”之间依次多一个“0”) 中,是无理数的
是
.
【错解】 2,272,2.1010010001…(每两个“1”之间依次多一个“0”)
【析错】 无理数是无限不循环小数,而有理数可以写成 分母不为 0 的分数形式,所以272是有理数,-π2是无理数. 【正解】 -π2, 2,2.1010010001…(每两个“1”之 间依次多一个“0”)
2.初中数学中常见的非负数有:①实数的绝对值:|a|≥0; ②实数的平方:a2≥0;③非负实数的算术平方根: a ≥0(a≥0).如果 a,b,c 都是实数,且满足 a2+|b|+ c =0,那么根据非负数的性质,有 a=b=c=0.由非负 数的性质可以求出多个未知数的值.
易错点1 平方根与算术平方根概念的混淆
数,则 ab= 1 .
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这个数 的绝对值.
a(a>0), |a|=0(a=0), 以上三条反之亦成立.
-a(a<0).
|a|是一个非负数,即|a|≥0.
(5)科学记数法: 科学记数法就是把一个数表示成 a×10n(反数,则和为 0;若两数互为倒数,则积 为 1.反之亦成立.
【典例 1】 (2019·宁波)请写出一个小于 4 的无理数: ______.
【答案】 π(答案不唯一)
【类题演练 1】 (2019·衢州)在12,0,1,-9 四个数中,
【典例 1】
在
实
数
-
π 2
,
2
,
22 7
,
0.3333333…
,
0
,
1.732
,
2.1010010001…(每两个“1”之间依次多一个“0”) 中,是无理数的
是
.
【错解】 2,272,2.1010010001…(每两个“1”之间依次多一个“0”)
【析错】 无理数是无限不循环小数,而有理数可以写成 分母不为 0 的分数形式,所以272是有理数,-π2是无理数. 【正解】 -π2, 2,2.1010010001…(每两个“1”之 间依次多一个“0”)
2.初中数学中常见的非负数有:①实数的绝对值:|a|≥0; ②实数的平方:a2≥0;③非负实数的算术平方根: a ≥0(a≥0).如果 a,b,c 都是实数,且满足 a2+|b|+ c =0,那么根据非负数的性质,有 a=b=c=0.由非负 数的性质可以求出多个未知数的值.
易错点1 平方根与算术平方根概念的混淆
数,则 ab= 1 .
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这个数 的绝对值.
a(a>0), |a|=0(a=0), 以上三条反之亦成立.
-a(a<0).
|a|是一个非负数,即|a|≥0.
(5)科学记数法: 科学记数法就是把一个数表示成 a×10n(反数,则和为 0;若两数互为倒数,则积 为 1.反之亦成立.
人教版七年级下册数学第六章实数课件:6.3 实数
正有理数
正实数
实数
正无理数
0 负实数
负有理数
负无理数
4.实数与数轴上的点是一一对应的.
教学课件 七年级数学下册(RJ)
第六章 实数
6.3 实根(2)
课前预习
带着问题自学课本P54“思考”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示? 3.有倒数吗?怎么表示?
探究新知
(1) 2的相反数是 ____2___ -π的相反数是____π_____ 0的相反数是____0_____
无理数的概念
所有的数都可以写成有限小数和无限循 环小数的形式吗?
2 =1.41421356237309504880168… 3 5 =1.70997594667669698935310…
π=3.1415926535897932384626…
1.01001000100001…(两个1之间依次多一个0)
解:- 的相反数是 π -3.14的相反数是3.14-π
(2)指出 - 5 ,1- 3 3 分别是什么数的相反数;
(2)- 是 的相反数; 1- 是 -1 的相反数;
例题讲解
(3)求 3 64 的绝对值;
|
|=|-4|=4.
(4)已知一个数的绝对值是 3 ,求这个数。
绝对值为 的数是 或-
实数的运算
35
9
3 4
0.6
(6)实数集合: 9 3 5
0.6
3 4
3 9 3 0.13
64
0.6
3
3
4
0.13
3 9
64 3
3 9
人教版初中数学实数第1课时课件(共26张PPT)
2019/2/23
9
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Teaching Process
无理数的诞生
2、探究新知
2019/2/23
10
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Teaching Process
Teaching Process
2、探究新知
2019/2/23
13
教学过程
单击此处编辑母版标题样式
Teaching Process
2、探究新知
有理数
初中阶段对数的认识范围扩充为 单击此处编辑母版文本样式 第二级 新加入 第三级 第四级 第五级
实数
无理数
有理数和无理数统称实数
思考:实数如何分类?
2019/2/23 14
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
单击此处编辑母版标 实 题样式 数(第1课时)
单击此处编辑母版副标题样式
2019/2/23
1
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
2019/2/23
2
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
单击此处编辑母版标题样式
Teaching Process
3、运用新知
2单击此处编辑母版文本样式 下列这些数找不到位置,请你帮它找一找
第二级 第三级 第四级 第五级
2019/2/23
有理数集合
无理数集合
17
《实数》Ppt精品实用课件初中数学5
一个数的n次方根只有一个.0的n次方根是0. 9如.果已一知个实数数的an,(nb是,大c在于数1的轴整上数的)位次置方如等图于所a,示这,个化数简就|a叫+做b|-a的|cn-次b方|的根结,果即是x_n_=__a_,_则__x.叫做a的n次方根.如:
29.4=已1知6,实(数-a2),4=b,16c,在则数2轴,上-的2位是置16如的图4次所方示根,,化或简者|a说+1b6|-的|4c次-方b|的根结是果2和是-__2_;_____. 9如.果已一知个实数数的an,(nb是,大c在于数1的轴整上数的)位次置方如等图于所a,示这,个化数简就|a叫+做b|-a的|cn-次b方|的根结,果即是x_n_=__a_,_则__x.叫做a的n次方根.如: 第9.6课已知实数的a,性b质,及c在运数算轴上的位置如图所示,化简|a+b|-|c-b|的结果是________. 2再4如=(1-6,2)5(-=2-)43=2,16则,-则22叫,做--2是321的6的5次4次方方根根,,或或者者说说-1362的的45次次方方根根是是2-和2-. 2; 解如:果当 一n个为数偶的数n时(n是,大一于个1负的数整没数有)次n次方方等根于,a,一这个个正数数就的叫n次做方a的根n有次两方个根,,它即们xn互=为a,相则反x数叫;做a的n次方根.如: 再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2. 如9.果已一知个实数数的an,(nb是,大c在于数1的轴整上数的)位次置方如等图于所a,示这,个化数简就|a叫+做b|-a的|cn-次b方|的根结,果即是x_n_=__a_,_则__x.叫做a的n次方根.如: (1)64的6次方根是______,-243的5次方根是______,0的10次方根是______; 如再果如一 (-个2)数5=的-n(3n2是,大则于-12的叫整做数-)次32方的等5次于方a,根这,个或数者就说叫-做32a的的5n次次方方根根是,-即2x.n=a,则x叫做a的n次方根.如: 如24果=一16个,数(-的2n)4(n=是1大6,于则1的2,整-数2)是次1方6的等4于次a方,根这,个或数者就说叫1做6a的的4n次次方方根根是,2即和x-n=2;a,则x叫做a的n次方根.如:
29.4=已1知6,实(数-a2),4=b,16c,在则数2轴,上-的2位是置16如的图4次所方示根,,化或简者|a说+1b6|-的|4c次-方b|的根结是果2和是-__2_;_____. 9如.果已一知个实数数的an,(nb是,大c在于数1的轴整上数的)位次置方如等图于所a,示这,个化数简就|a叫+做b|-a的|cn-次b方|的根结,果即是x_n_=__a_,_则__x.叫做a的n次方根.如: 第9.6课已知实数的a,性b质,及c在运数算轴上的位置如图所示,化简|a+b|-|c-b|的结果是________. 2再4如=(1-6,2)5(-=2-)43=2,16则,-则22叫,做--2是321的6的5次4次方方根根,,或或者者说说-1362的的45次次方方根根是是2-和2-. 2; 解如:果当 一n个为数偶的数n时(n是,大一于个1负的数整没数有)次n次方方等根于,a,一这个个正数数就的叫n次做方a的根n有次两方个根,,它即们xn互=为a,相则反x数叫;做a的n次方根.如: 再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2. 如9.果已一知个实数数的an,(nb是,大c在于数1的轴整上数的)位次置方如等图于所a,示这,个化数简就|a叫+做b|-a的|cn-次b方|的根结,果即是x_n_=__a_,_则__x.叫做a的n次方根.如: (1)64的6次方根是______,-243的5次方根是______,0的10次方根是______; 如再果如一 (-个2)数5=的-n(3n2是,大则于-12的叫整做数-)次32方的等5次于方a,根这,个或数者就说叫-做32a的的5n次次方方根根是,-即2x.n=a,则x叫做a的n次方根.如: 如24果=一16个,数(-的2n)4(n=是1大6,于则1的2,整-数2)是次1方6的等4于次a方,根这,个或数者就说叫1做6a的的4n次次方方根根是,2即和x-n=2;a,则x叫做a的n次方根.如:
初中数学实数 PPT
A、2-3之间 B、3-4之间 C、4-5之间 D、5-6之
例题 B
A 、6-7之间 B、 7-7、5之间 C、 7、5-8之间 D、 8-8、5之间
C
A 、1-2之间 B 、2-3之间 C 、3-4之间 D 、4-5之间
C
A 7~8之间 B 8、0~8、5之间 C 8、5~9、0之间 D 9~10之间
数轴上右边得点表示得实数总比左边 得点表示得实数大、
平面直角坐标系中得点与有序实数 对也就是一一对应得、
C 1、与数轴上得点建立一一对应得就是( )
A、全体有理数 B、全体无理数C、全体实数 D、全体整数
思考
0得相反数就是 0 0
实数与有理数
(1)有理数得大小比较法则在实数范围内 仍成立,有理数得一些概念,如相反数、绝 对值、倒数在实数范围内仍适用、
(4)放缩法
要证明A<B,有时可将它得一边放大或缩小, 找到一个中间量,如将A放大成C,即A<C, 后证C<B即可。
比较大小 习题
A 、a>b>c B、a>c>b C、b>c>a
D
D、b>a>c
总结
1、无理数得概念 2、实数得概念 3、实数与有理数得性质及运算关系
}、
大家学习辛苦了,还是要坚持
继续保持安静
B
A、1个 B、2个 C、3个
2、下列说法错误得就是C( )
D、4个
A、2个
D
B、3个 C、4个 D、5个
探究:
0
1
2
3
4
-3 -2 -1 0 1 2 3
每一个无理数都可以用数轴上得点表示出来
实数与数轴
每一个实数都可以用数轴上得一个点表示, 反过来数轴上得每一个点都表示一个实数、
例题 B
A 、6-7之间 B、 7-7、5之间 C、 7、5-8之间 D、 8-8、5之间
C
A 、1-2之间 B 、2-3之间 C 、3-4之间 D 、4-5之间
C
A 7~8之间 B 8、0~8、5之间 C 8、5~9、0之间 D 9~10之间
数轴上右边得点表示得实数总比左边 得点表示得实数大、
平面直角坐标系中得点与有序实数 对也就是一一对应得、
C 1、与数轴上得点建立一一对应得就是( )
A、全体有理数 B、全体无理数C、全体实数 D、全体整数
思考
0得相反数就是 0 0
实数与有理数
(1)有理数得大小比较法则在实数范围内 仍成立,有理数得一些概念,如相反数、绝 对值、倒数在实数范围内仍适用、
(4)放缩法
要证明A<B,有时可将它得一边放大或缩小, 找到一个中间量,如将A放大成C,即A<C, 后证C<B即可。
比较大小 习题
A 、a>b>c B、a>c>b C、b>c>a
D
D、b>a>c
总结
1、无理数得概念 2、实数得概念 3、实数与有理数得性质及运算关系
}、
大家学习辛苦了,还是要坚持
继续保持安静
B
A、1个 B、2个 C、3个
2、下列说法错误得就是C( )
D、4个
A、2个
D
B、3个 C、4个 D、5个
探究:
0
1
2
3
4
-3 -2 -1 0 1 2 3
每一个无理数都可以用数轴上得点表示出来
实数与数轴
每一个实数都可以用数轴上得一个点表示, 反过来数轴上得每一个点都表示一个实数、
初中数学七年级数学第六章实数(全章节图文详解)
实 数
有理数
正整数 0 自然数 负整数 正分数
无理数
无限不循环小数
一般有三种情况
负分数 正无理数 负无理数 (1)含π 的数
2 开方开不尽的数
(3)有规律但不循环的无限小数
七年级数学第六章实数
也可以这样来分类: 正实数 实 数 0
负有理数 正有理数
正无理数
负实数
负无理数
七年级数学第六章实数
七年级数学第六章实数
几个基本公式:(注意字母 的取值范围)
a a =
2
a
0
a
3
2
a
a 0
a
a 0 a 0
(a 0)
a
3
a a
3
3
a为任何数 a为任何数 a为任何数
a
3
a =
-3 a
七年级数学第六章实数
区别
你知道算术平方根、平方根、立方根联系和区别吗?
3 47 9 11 5 3, , , , , 5 8 11 90 9
3 47 3 3.0, 0.6, 5.875, 5 8 9 11 5 0. 81, 0.1 2, 0. 5 11 90 9
事实上,任何一个有理数都可以写成有限小数或 无限循环小数。
4
3 0.13
(2)无理数集合: (3)整数集合: (4)负数集合: (5)分数集合: (6)实数集合: 9
3
5
64
3
3
9
9
3
3 4
9
3 4
0. 6
3
0.13
3 0. 6 4
初中数学七年级数学第六章实数(全章节图文详解)
实数七年级数学第六章实数实数实数有理数无理数分数整数正整数0负整数正分数负分数自然数正无理数负无理数无限不循环小数有限小数及无限循环小数一般有三种情况1含的数??2开方开不尽的数3有规律但不循环的无限小数实数的分类
七年级数学第六章实数
实数
七年级数学第六章实数
目录:
1.算术平方根 2.平方根 3.立方根 4.有理数 5.无理数 6.实数定义 7.实数的运算 8.实数的大小比较
七年级数学第六章实数
1.算术平方根的定义: 一般地,如果一个正数x的平方等于 2 a,即 x =a,那么这个正数x叫做a的 算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平方根是 0 。
记作:0 0
七年级数学第六章实数
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方 根).
注意:计算过程中要多保留一位!
七年级数学第六章实数
3.实数运算
当数从有理数扩充到实数以后,实数之
间不仅可以进行加 减 乘 除 乘方运算,
又增加了非负数的开平方运算,任意实数
可以进行开立方运算。进行实数运算时, 有理数的运算法则及性质等同样适用。
七年级数学第六章实数
练习:
2 3 3 2 5 3 3 2
不 要 遗 漏
解: (3 y ) 4 9 4 3 y 9
2
解:
2 3 27 ( x ) 125 3
2 3 125 (x ) 3 27 2 5 x 3 3
2 3 125 x 3 27
1 2 y 2 或y 3 3 3
2 y 3 3
x 1
七年级数学第六章实数
实数
七年级数学第六章实数
目录:
1.算术平方根 2.平方根 3.立方根 4.有理数 5.无理数 6.实数定义 7.实数的运算 8.实数的大小比较
七年级数学第六章实数
1.算术平方根的定义: 一般地,如果一个正数x的平方等于 2 a,即 x =a,那么这个正数x叫做a的 算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平方根是 0 。
记作:0 0
七年级数学第六章实数
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方 根).
注意:计算过程中要多保留一位!
七年级数学第六章实数
3.实数运算
当数从有理数扩充到实数以后,实数之
间不仅可以进行加 减 乘 除 乘方运算,
又增加了非负数的开平方运算,任意实数
可以进行开立方运算。进行实数运算时, 有理数的运算法则及性质等同样适用。
七年级数学第六章实数
练习:
2 3 3 2 5 3 3 2
不 要 遗 漏
解: (3 y ) 4 9 4 3 y 9
2
解:
2 3 27 ( x ) 125 3
2 3 125 (x ) 3 27 2 5 x 3 3
2 3 125 x 3 27
1 2 y 2 或y 3 3 3
2 y 3 3
x 1
初中数学实数大小比较的10种方法讲解ppt
7.取中间值:当两个数都比较接近某一个中间数时,若一个数比中 间数大,另一个数比中间数小,就可以比较出两个数的大小;
8.二次根式:被开方数越大,二次根式的值越大; 9.取特值法 10.缩放法 11.其它放法。
实数大小比较10种中的隐含条件
解析:
小结:该法适用于被开方数中含有字母的二次 根式和三次根式的大小比较.实质上此题是运 用了一个基本事实,即正数>负数
基本思路是:要比较的两个数都接近于一 个中间数,其中一个数大于中间数,另一 个数小于中间数,就可以比较出两个数的 大小
456 748 例5:比较998 和 1084 的大小
456 1 748 1 解: 998 <2 , 1084 >2
456 748 所以:998 < 1084
平方法的基本是思路是先将要比较的两个数分别平方, 再根据
小数-大数<0, 即a-b<0,则a<b; 4.a、b都为正数,则两数的商与两数的大小有下面的关系:
a/b>1,则a>b; a/b=1,则a=b; a/b<1,则a<b; 5.分数大小的比较: 分母相同,分子越大分数越大;分子相同,分母越小分数越大。
6.倒数法:对于正数a、b倒数大的反而小。 即:a>0,b>0,若1/a>1/b,则a<b.
差值比较法的基本思路是设a,b为 任意两个实数,先求出a与b的差, 再根据
当a-b﹥0时,得到a﹥b; 当a-b﹤0时,得到a﹤b。 当a-b=0时,得到a=b。
商值比较法的基本思路是设a,b为任意两个正 实数,先求出a与b得商。
倒数法的基本思路是设a,b为任意 两个正实数,先分别求出a与b的倒 数,再根据
注:这种方法常用于比较无理数的大小
8.二次根式:被开方数越大,二次根式的值越大; 9.取特值法 10.缩放法 11.其它放法。
实数大小比较10种中的隐含条件
解析:
小结:该法适用于被开方数中含有字母的二次 根式和三次根式的大小比较.实质上此题是运 用了一个基本事实,即正数>负数
基本思路是:要比较的两个数都接近于一 个中间数,其中一个数大于中间数,另一 个数小于中间数,就可以比较出两个数的 大小
456 748 例5:比较998 和 1084 的大小
456 1 748 1 解: 998 <2 , 1084 >2
456 748 所以:998 < 1084
平方法的基本是思路是先将要比较的两个数分别平方, 再根据
小数-大数<0, 即a-b<0,则a<b; 4.a、b都为正数,则两数的商与两数的大小有下面的关系:
a/b>1,则a>b; a/b=1,则a=b; a/b<1,则a<b; 5.分数大小的比较: 分母相同,分子越大分数越大;分子相同,分母越小分数越大。
6.倒数法:对于正数a、b倒数大的反而小。 即:a>0,b>0,若1/a>1/b,则a<b.
差值比较法的基本思路是设a,b为 任意两个实数,先求出a与b的差, 再根据
当a-b﹥0时,得到a﹥b; 当a-b﹤0时,得到a﹤b。 当a-b=0时,得到a=b。
商值比较法的基本思路是设a,b为任意两个正 实数,先求出a与b得商。
倒数法的基本思路是设a,b为任意 两个正实数,先分别求出a与b的倒 数,再根据
注:这种方法常用于比较无理数的大小
人教版初中数学七年级下册第六章实数复习课课件
14、已知:x、y、z
满足 4x-4y+1
+
1 5
2y+z
+(z-
1 2
)2=0
求:x-y+z 的平方根
15、已知:a、b为实数且 2a+6 + b- 2 =0 解关于x的方程(a+2)x+b2=a-1
x2 x2
=a,那么这个正数x叫 =a,那么这个正数x叫
做a的算术平方根”。
()
一般的,如果一个数X的平方等于a,即x2=a那么这个数X叫做a的平方根(也叫做二次方根)。
一般的,如果一个正数X的平方等于a,即x2=a那么这个正数X叫做a的算术平方根。
25的算术平方根是 ;
(3)0.
9、一个数的平方等于64,则这个数的立方根是
25的算术平方根是 ;
第六章:实复数习课 1(一(1(3((((9((( 做21(一(541、、、、1))般3231331a2般1、、02的)填))0))一) 练))x的 的若)若的2算空求个一0存000定 存定-,,两平的的的的)术题下数练在义 在义如如个方平平平平平=:列的条不 条不口0果果无根方方方方方各平件同 件同算一一<<理和根根根根根数方相: 相:下个个00数立和和和和”的等同同,,。““列数正之方算算算算如 如立于::则则各数X积根术术术术果 果方6的平平mm数X不4都平平平平一 一根平的,方方的的的一是方方方方个 个方平则根根取取平定0根根根根数 数等方这和和值值方是都都都都XX于等个算算为为的 的根无是是是是a于数术术平 平,理0000a的平平。。。。方 方即,数立方方等 等x即。2方根根于 于=x2a根都都aa那=, ,a是具具么那那 那有有这么么 么非非个这这 这负负数个个 个性性X正数 数叫数XX做叫 叫Xa叫做 做的做aa平的 的a方的平 平根算方 方(术根 根也平””, ,叫方做根““如 如二。果 果次一 一方个 个根正 正)数 数。xx的的平 平方 方等 等于 于aa,,即 即
七年级数学上册第3章实数3.3立方根课件(新版)浙教版
3
3
②已知 0.000 456≈0.076 97,则 456≈_7_._6_9_7_________.
19.我们知道当 a+b=0 时,a3+b3=0,若将 a 看成 a3 的立方 根,b 看成 b3 的立方根,我们能否得出这样的结论:若两个 数的立方根互为相反数,则这两个数也互为相反数. (1)试举一个例子来判断上述猜测结论是否成立; 解:因为 2+(-2)=0,23=8,(-2)3=-8, 8-8=0, 所以结论成立(举例子不唯一).所以“若两个数的立方根 互为相反数,则这两个数也互为相反数”是成立的.
D.-4
6.下列说法:①负数没有立方根; ②一个数的立方根不是正数就是负数; ③一个正数或负数的立方根和这个数同号,0的立方根是0; ④如果一个数的立方根是这个数本身,那么这个数必是1 或0. 其中错误的是( ) A.①②③ B.①②④ C.②③④ D.①③④
【点拨】任何数都有立方根,故①错误;一个数的立方根 可能是正数,也可能是负数,还可能是0,故②错误;③正 确;如果一个数的立方根是这个数本身,那么这个数必是 ±1或0,故④错误.故选B. 【答案】B
3
(3) 1.96× 1.728;
解:原式=1.4×1.2=1.68. (4) -132×3 -27;
解:原式=13×(-3)=-1.
3
3
(5) 25- -1- 144+ 64.
解:原式=5-(-1)-12+4=-2.
14.已知4x-37的立方根为3,求2x+4的平方根.
3
解:由题意知 4x-37=3, 所以 4x-37=33=27,解得 x=16.
是( D )
A.0
B.-4
C.4 D.0 或-4
3
4.若 a,b 均为正整数,且 a> 11,b> 9,则 a+b
湘教版初中数学八年级上册实数ppt演讲教学
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学 湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
全力 攻 敌Biblioteka “僵 尸 来袭
”
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
2 ____2__ ______ 0 __0__
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
1、a是一个实数,
它的相反数为 -a. a
a﹥0 a =a a = 0 a =0 a﹤0 a =-a
2、一个正实数的绝对值是它本身;一个负实数 的绝对值是它的相反数;0的绝对值是0
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
2、把下列各数填入相应的集合内:
9 3 5 64
(1)有理数集合: 9
(2)无理数集合: 3 5
•
0.6 •
64 0.6
3
4
3 4
0
3
3 9 3 0.13 0.13
3 9
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
2
5
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
湘 教 版 初 中 数学八 年级上 册实数 ppt演讲 教学
合作探究三
带着问题自学课本117-118页内容和“例1”
《初中数学实数》课件
总结词
理解实数减法在数学中的重要性和应用,能够运用实数减 法解决实际问题。
详细描述
实数减法在数学中有广泛的应用,如计算差值、速度、加 速度等。通过掌握实数减法的运算法则和性质,可以更好 地解决实际问题。
实数的乘法运算
总结词
理解实数乘法的意义和性质,掌握实数乘法的运算法则 。
详细描述
实数的乘法运算与普通乘法运算类似,但需要考虑正负 数相乘的情况。实数乘法的意义是表示两个数在数轴上 的倍数关系,具有结合律和交换律。
实数的开方运算
04
平方根的定义和性质
平方根的定义
如果一个数的平方等于a,那么这个数就是a的平方根。例如,4的平方根是±2 。
平方根的性质
一个正数的平方根有两个值,一个正数和一个负数;0的平方根是0;负数没有 实数平方根。
立方根的定义和性质
立方根的定义
如果一个数的立方等于a,那么这个 数就是a的立方根。例如,8的立方 根是2。
无限性也是数学和物理学中许 多重要概念的基础,如无穷大 、无穷小等。
实数的运算
03
实数的加法运算
总结词
理解实数加法的意义和性质,掌握实数加法的运算法则 。
详细描述
实数的加法运算与普通加法运算类似,但需要考虑正负 数相加的情况。实数加法的意义是表示两个数在数轴上 的位移,具有结合律和交换律。
总结词
01
02
03
长度测量
实数可以用来表示物体的 长度,例如身高、体重等 。
时间计算
用实数表示时间,例如秒 、分、小时等。
货ห้องสมุดไป่ตู้计算
用实数表示货币,例如元 、角、分等。
实数在数学中的运用
代数运算
实数可以用于代数运算, 例如加、减、乘、除等。
理解实数减法在数学中的重要性和应用,能够运用实数减 法解决实际问题。
详细描述
实数减法在数学中有广泛的应用,如计算差值、速度、加 速度等。通过掌握实数减法的运算法则和性质,可以更好 地解决实际问题。
实数的乘法运算
总结词
理解实数乘法的意义和性质,掌握实数乘法的运算法则 。
详细描述
实数的乘法运算与普通乘法运算类似,但需要考虑正负 数相乘的情况。实数乘法的意义是表示两个数在数轴上 的倍数关系,具有结合律和交换律。
实数的开方运算
04
平方根的定义和性质
平方根的定义
如果一个数的平方等于a,那么这个数就是a的平方根。例如,4的平方根是±2 。
平方根的性质
一个正数的平方根有两个值,一个正数和一个负数;0的平方根是0;负数没有 实数平方根。
立方根的定义和性质
立方根的定义
如果一个数的立方等于a,那么这个 数就是a的立方根。例如,8的立方 根是2。
无限性也是数学和物理学中许 多重要概念的基础,如无穷大 、无穷小等。
实数的运算
03
实数的加法运算
总结词
理解实数加法的意义和性质,掌握实数加法的运算法则 。
详细描述
实数的加法运算与普通加法运算类似,但需要考虑正负 数相加的情况。实数加法的意义是表示两个数在数轴上 的位移,具有结合律和交换律。
总结词
01
02
03
长度测量
实数可以用来表示物体的 长度,例如身高、体重等 。
时间计算
用实数表示时间,例如秒 、分、小时等。
货ห้องสมุดไป่ตู้计算
用实数表示货币,例如元 、角、分等。
实数在数学中的运用
代数运算
实数可以用于代数运算, 例如加、减、乘、除等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.不数轴上的点建立一一对应的是(
C)
A、全体有理数 B、全体无理数C、全体实数 D、全体整数
思考
0的相反数是
0
0
实数不有理数
(1)有理数的大小比较法则在实数范围内 仍成立,有理数的一些概念,如相反数、绝 对值、倒数在实数范围内仍适用.
对于实数a、b,有如下性质
1.下列说法错误的是(
D)
判断下列各数是有理数还是无理数
0.1234567
0.3030030003…
有理数
无理数
实数
实数:有理数和无理数统称实数;
① 按定义分
②按数的正负性分
例题
1.把下列各数分别填入相应的集合里:
-3.141
0.1010010001…
1.414
正有理数 {
负有理数 { 正无理数 { 负无理数 {
};
比较实数大小
(1)绝对值法 两数都为正,绝对值大的数大.两数都为 负,绝对值大的数反而小
(2)近似值估计法
估计出相比较的两个数的近似值,通过比较 近似值的大小迚而得到原来两个数的大小关系
(3)平方法 将要比较的两个数分别平方,若两数都为正数, 平方较大的数大.若两数都为负数,平方较大的 数反而小.
例题
B
A .6-7之间 B. 7-7.5之间 C. 7.5-8之间 D. 8-8.5之间
C
A .1-2之间 B .2-3之间 C .3-4之间 D .4-5之间
C
A 7~8之间 B 8.0~8.5之间 C 8.5~9.0之间 D 9~10之间
B
A.2 B.3 C.4 D.5
B
A 1<m<2 B 2<m<3 C 3<m<4 D 4<m<5
}; }; }.
B
A.1个 B.2个 C.3个 D.4个 2.下列说法错误的是(
C
)
D
A.2个 B.3个 C.4个 D.5个
探究:
0
1
2Hale Waihona Puke 34-3-2
-1
0
1
2
3
每一个无理数都可以用数轴上的点表示出来
实数不数轴
每一个实数都可以用数轴上的一个点表示, 反过来数轴上的每一个点都表示一个实数. 数轴上右边的点表示的实数总比左边 的点表示的实数大. 平面直角坐标系中的点不有序实数 对也是一一对应的.
计算下列各式的值:
解:
解:
≈2.236+3.142
解:
练一练
计算
=1
=1
y=1
估计带根号的无理数范围
估计一个带根号的无理数的范围,可以先把这个 根号平方,看哪两个数的平方离它的平方最近, 那这个无理数就在这两个数乊间的范围内。 A.2-3乊间 B.3-4乊间 C.4-5乊间 D.5-6乊间
0
0 5. 0的相反数是__________, 绝对值是__________.
0
2 9 3
上面性质题 选择填空 大题
(2)实数混合运算顺序和有理数运算顺 序基本相同;
先乘方、开方,在乘除,最后算加减,同级运算按 自左至右的顺序,有括号先算括号里的 加法结合律 :(a+b)+c=a+(b+c) 乘法分配律:ac+bc=(a+b)c 同样适用于实数混合运算
(4)放缩法 要证明A<B,有时可将它的一边放大或缩小, 找到一个中间量,如将A放大成C,即A<C, 后证C<B即可。
比较大小 习题
A .a>b>c
B.a>c>b
C.b>c>a
D.b>a>c
D
总结
1.无理数的概念 2.实数的概念 3.实数不有理数的性质及运算关系
实数
周文华
探究
使用计算器计算,把下列有理数写成小 数形式,你有什么发现?
3=3.0
有理数:整数不分数统称为有理数;
任何有理数都可以写成有限小数或 无限循环小数的形式;
无理数
无理数:无限丌循环小数又叫做无理数 注:①无理数并丌都是带根号的数;
②带根号的数也并丌都是无理数;
常见的无理数
3、类似于0.1010010001…这样的小数;