(完整word版)专题研究:全等三角形证明方法归纳及典型例题,推荐文档
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的证明
全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.
寻找对应边和对应角,常用到以下方法:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.
(3)有公共边的,公共边常是对应边.
(4)有公共角的,公共角常是对应角.
(5)有对顶角的,对顶角常是对应角.
(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).
要想正确地表示两个三角形全等,找出对应的元素是关键.
全等三角形的判定方法:
(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.
(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.
(3)边边边定理(SSS):三边对应相等的两个三角形全等.
(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.
(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.
拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.
专题1、常见辅助线的做法
典型例题
找全等三角形的方法:
(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;
(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;
(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;
(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:
①延长中线构造全等三角形;
②利用翻折,构造全等三角形;
③引平行线构造全等三角形;
④作连线构造等腰三角形。
常见辅助线的作法有以下几种:
(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。
思路分析:
1)题意分析:本题考查等腰三角形的三线合一定理的应用
2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。
解答过程:
证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,
∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,
∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。
又∠1+∠F=∠3+∠F=90°,故∠1=∠3。
在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,
∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。
解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。
(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。
思路分析:
1)题意分析:本题考查全等三角形常见辅助线的知识。
2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。
解答过程:
证明:延长AD到E,使DE=AD,连接BE。
又因为AD是BC边上的中线,∴BD=DC
又∠BDE=∠CDA
ΔBED≌ΔCAD,
故EB=AC,∠E=∠2,
∵AD是∠BAC的平分线
∴∠1=∠2,
∴∠1=∠E,
∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。
解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。
(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。
例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。
思路分析:
1)题意分析:本题考查角平分线定理的应用。
2)解题思路:因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。
解答过程:
证明:作CE⊥AB于E,CF⊥AD于F。
∵AC平分∠BAD,
∴CE=CF。
在Rt△CBE和Rt△CDF中,
∵CE=CF,CB=CD,
∴Rt△CBE≌Rt△CDF,
∴∠B=∠CDF,
∵∠CDF+∠ADC=180°,
∴∠B+∠ADC=180°。
解题后的思考:
①关于角平行线的问题,常用两种辅助线;
②见中点即联想到中位线。
(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”
例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF 交BC于D,若EB=CF。
求证:DE=DF。
思路分析:
1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。
2)解题思路:因为DE、DF所在的两个三角形ΔDEB与ΔDFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换:过E作EG//CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。
解答过程:
证明:过E作EG//AC交BC于G,
则∠EGB=∠ACB,