2020高考复习选讲《随机抽样与概率》【含2019高考原题及部分地区月考题】

合集下载

《随机抽样》高考题

《随机抽样》高考题

《随机抽样》高考题精选1.(2015北京文)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中, 青年教师有320人,则该样本的老年教师人数为( C ) A .90 B .100C .180D .3002.(2015福建文)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.253.(2015四川文)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( C )(A )抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法4.(2015陕西理)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( B )A .167B .137C .123D .935. (2014四川文)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是( A )A 、总体B 、个体C 、样本的容量D 、从总体中抽取的一个样本6. (2014广东文)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,类别 人数 老年教师 中年教师 青年教师合计则分段的间隔为(B)7. (2014上海文)某校高一、高二、高三分别有学生1600名、1200名、800名。

为了了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样。

若高三抽取20名学生,则高一、高二共需抽取的学生数为___________.708.(2007全国Ⅱ文)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .120 9. (2013湖南理)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是(D)A .抽签法B .随机数法C .系统抽样法D .分层抽样法10. (2014湖南理)对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则( D )A. 321p p p <=B. 132p p p <=C. 231p p p <=D. 321p p p ==11. (2014重庆文)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本。

专题09 概率与统计 2020版19届高三百强校冲刺模拟试题分项汇编题库(学生版)

专题09 概率与统计  2020版19届高三百强校冲刺模拟试题分项汇编题库(学生版)

专题09 概率与统计一、单选题1.(2019·山东高考模拟(文))某中学高一年级560人,高二年级540人,高三年级520人,用分层抽样的方法抽取部分样本,若从高一年级抽取28人,则从高二、高三年级分别抽取的人数是( )A .27 26B .26 27C .26 28D .27 282.(2019·安徽高考模拟(理))某企业的一种商品的产量与单位成本数据如下表: 产量x (万件) 14 16 1820 22 单位成本y (元/件)12 10 7 a 3若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( ) A .4.5 B .5 C .5.5 D .63.(2019·陕西高考模拟(文))某小区计划在一正六边形花园内均匀地栽种株花卉,如图所示,则阴影部分能栽种的株数为( )A .B .C .D .4. (2019·河北高考模拟(文))某工厂生产A 、B 、C 三种不同型号的产品,其中某月生产的产品数量之比依次为:3:2m ,现用分层抽样的方法抽取一个容量为120的样本,已知A 种型号产品抽取了45件,则m =( )A .1B .2C .3D .4 5.(2019·安徽高考模拟(理))已知()()511x ax +-的展开式中2x 的系数为58-,则a =( )A .1B .12C .13D .146.(2019·安徽高考模拟(理))谢尔宾斯基三角形(Sierpinski triangle )是一种分形,由波兰数学家谢尔宾斯基在1915年提出.在一个正三角形中,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的部分,黑色三角形为剩下的部分,我们称此三角形为谢尔宾斯基三角形.若在图(3)内随机取一点,则此点取自谢尔宾斯基三角形的概率是()A.B.C.D.7.(2019·辽宁高考模拟(理))我国古代有着辉煌的数学研究成果.《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这l0部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为().A.1415B.115C.29D.8.(2019·江西高考模拟(文))将参加数学竞赛决赛的500名同学编号为:001,002,,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽到的号码为005,这500名学生分别在三个考点考试,从001到200在第一考点,从201到365在第二考点,从366到500在第三考点,则第二考点被抽中的人数为( ) A.15 B.16 C.17 D.189.(2019·山东高考模拟(理))下图所示茎叶图中数据的平均数为89,则x的值为( )A.6 B.7 C.8 D.910.(2019·河北高考模拟(文))某班全体学生测试成绩的频率分布直方图如图,数据的分组依次为:[)20,40,[)40,60,[)60,80,[]80,100.若高于80分的人数是15,则该班的学生人数是()A .40B .45C .50D .6011.(2019·江西高考模拟(文))如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设33DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边角形的概率是( )A .37B 21C .413D 21312.(2019·辽宁高考模拟(文))《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 ( )A .215πB .320πC .2115π-D .3120π- 13.(2019·山东高考模拟(文))某产品近期销售情况如下表: 月份x2 3 4 5 6销售额y (万元) 15.116.3 17.0 17.2 18.4 根据上表可得回归方程为 3.8ˆ1ˆybx =+,据此估计,该公司8月份该产品的销售额为( ) A .19.05 B .19.25 C .19.5 D .19.814.(2019·广东高考模拟(理))一试验田某种作物一株生长果个数x 服从正态分布()290,N σ,且()700.2P x <=,从试验田中随机抽取10株,果实个数在[]90,110的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( )A .3B .2.1C .0.3D .0.2115.(2019·山西高考模拟(理))某公司将20名员工工作五年以来的迟到次数统计后得到如下的茎叶图,则从中任取1名员工,迟到次数在[)20,30的概率为( )A .35B .720C .310D .1216.(2019·江西高考模拟(理))261(1)(1)x x+-的展开式中,常数项为( ) A .-15 B .16 C .15D .-16 17. (2019·江西高考模拟(理))若二项式32n x x ⎛- ⎪⎝⎭的展开式中第m 项为常数项,则,m n 应满足( )A .()341n m =+B .()431n m =+C .()341n m =-D .()431n m =-18.(2019·江西高考模拟(理))如图,在半径为π的圆内,有一条以圆心为中心,以2π为周期的曲线sin()2y x πωϕ=+,若在圆内任取一点,则此点取自阴影部分的概率是( )A .1π B .21π C .22π D .无法确定19.(2019·湖北高考模拟(理))()73111x x ⎛⎫-+ ⎪⎝⎭展开式中3x 的系数为( ) A .-7 B .28 C .35 D .4220.(2019·湖北高考模拟(理))现有10名学生排成一排,其中4名男生,6名女生,若有且只有3名男生相邻排在一起,则不同的排法共有( )种。

2020届高考数学(理)一轮必刷题 专题64 随机抽样(解析版)

2020届高考数学(理)一轮必刷题 专题64 随机抽样(解析版)

考点64 随机抽样1.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3【答案】D【解析】由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167【答案】C【解析】初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.3.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40 B .36 C .30 D .20 【答案】C【解析】利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90,解得n =30.4.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( ) A .5,10,15,20,25,30 B .2,4,8,16,32,48 C .5,15,25,35,45,55 D .1,12,34,47,51,60【答案】C【解析】从60枚新型导弹中随机抽取6枚,采用系统抽样间隔应为606=10,只有C 选项中导弹的编号间隔为10.5.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A .1,2,3,4,5,6 B .6,16,26,36,46,56 C .1,2,4,8,16,32 D .3,9,13,27,36,54【答案】B【解析】由系统抽样知识可知,所取学生编号之间的间距相等且为10,所以应选B.6.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 A .23 B .09 C .02 D .16【答案】D【解析】从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.7.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9 D .24,17,9 【答案】B【解析】由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1). 令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.故选B.8.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 成等差数列,则二车间生产的产品数为( ) A .800 B .1 000 C .1 200D .1 500【答案】C【解析】因为a 、b 、c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3 600×13=1 200.故选C.9.从一个容量为N 的总体中抽取一个容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3【答案】D【解析】根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p 1=p 2=p 3.10.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 45 0744 38 15 51 00 13 42 99 66 02 79 54第9行A .07B .25C .42D .52【答案】D【解析】依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D. 11.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( ) A .9 B .8 C .10 D .7【答案】A【解析】由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.12.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( ) A .7,11,18 B .6,12,18 C .6,13,17 D .7,14,21【答案】D【解析】因为该单位共有27+54+81=162(人),样本容量为42,所以应当按42162=727的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是7,14,21.故选D.13.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =( ) A .660 B .720 C .780 D .800【答案】B【解析】由已知可得,抽样比为13780=160,从而35600+780+n =160,解得n =720.14.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( ) A .480 B .481 C .482 D .483 【答案】C【解析】根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500.所以n ≤20.72,故最大编号为7+25×(20-1)=482.15.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n 的样本.已知从讲师中抽取的人数为16,那么n =________. 【答案】72【解析】依题意得,80120+100+80+60=16n,由此解得n =72.16.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________. 【答案】40【解析】在系统抽样中,确定分段间隔k ,对编号进行分段,k =Nn (N 为总体的容量,n 为样本的容量),所以k =N n =1 20030=40.17.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =8,则在第8组中抽取的号码是________. 【答案】76【解析】由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.18.一汽车制造厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆,则z 的值为________. 【答案】400【解析】设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400.19.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________. 【答案】1 211【解析】由题意知,抽样比为k =3 000150=20,又第一组抽出的号码是11,则11+60×20=1 211,故第六十一组抽出的号码为1 211.20.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. 【答案】45【解析】分组间隔为648=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.21.某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生. 【答案】32【解析】从高一年级抽取的学生人数为80×44+3+3=32.22.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 【答案】12【解析】抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈[1,20]),在[481,720]之间抽取的号码记为20k +x 0,则481≤20k +x 0≤720,k ∈N *.∴24120≤k +x 020≤36.∵x 020∈⎣⎡⎦⎤120,1,∴k =24,25,26,…,35, ∴k 值共有35-24+1=12(个),即所求人数为12.23.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________. 【答案】2【解析】系统抽样的间隔为186=3.设抽到最小编号为x ,则x +(3+x )+(6+x )+(9+x )+(12+x )+(15+x )=57.解得x =2.24.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人. 【答案】36【解析】根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36(人).25.某校高中三年级的295名学生已经编号为1,2,3,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,请写出抽样过程. 【解析】按1∶5的比例抽样,295÷5=59.第一步,把295名同学分成59组,每组5人.第一组是编号为1~5的5名学生,第二组是编号为6~10的5名学生,…,依次类推,第59组是编号为291~295的5名学生.第二步,采用简单随机抽样,从第一组5名学生中随机抽取1名,不妨设其编号为k (1≤k ≤5).第三步,从以后各段中依次抽取编号为k +5i (i =1,2,3,…,58)的学生,再加上从第一段中抽取的编号为k 的学生,得到一个容量为59的样本.26.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.根据统计图所提供的信息,解答下列问题:(1)本次共调查了________名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.【答案】(1)2 000.(2)(3)96(万)【解析】(1)本次共调查的市民人数为800÷40%=2 000.(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400. 将条形统计图补充完整,如图所示.(3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).。

2020高考数学(理)专项复习《概率统计》含答案解析

2020高考数学(理)专项复习《概率统计》含答案解析

概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法. 统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型,学习某些离散型随机变量分布列及其期望、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§11-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例nm 为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间.3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A ,满足P (A )=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且⋅=nA P i 1)( 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=试验的基本事件总数包含的基本事件数事件A ,即⋅=)()()(Ωn A n A P 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:ΩA A P μμ=)(,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量.随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.6.条件概率与事件的独立性条件概率:一般的,设A 、B 为两个事件,且P (A )>0,称P (B |A )=)()(A P B A P I 为在事件A 发生的条件下,事件B 发生的概率.一般把P (B |A )读作“A 发生的条件下B 发生的概率”.在古典概型中,用n (A )表示事件A 中基本事件的个数,则有P (B |A )=)()(A n B A n I .事件的独立性:设A 、B 为两个事件,如果P (B |A )=P (B ),则称事件A 与事件B 相互独立,并称事件A 、B 为相互独立事件.若A 、B 为两个相互独立事件,则A 与A 、A 与B 、A 与B 也都相互独立.若事件A 与事件B 相互独立,则P (A ∩B )=P (A )·P (B ).【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,了解几何概型的意义.5.在具体情境中,了解条件概率,了解两个事件相互独立的概念及独立事件的概率乘法公式,并能解决一些简单的实际问题.【例题分析】例1(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P (A )求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,则P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则P (B )=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式)()()(Ωn A n A P =求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)} 由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而⋅==31186)(M P(Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成, 所以61183)(==N P ,由对立事件的概率公式得⋅=-=-=65611)(1)(N P N P 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为⋅31例3 一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;(2)连续摸球2次,在第一次摸到黑球的条件下,求第二次摸到白球的概率;(3)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.【分析】本题是一个古典概型问题,因为基本事件空间中所含基本事件的个数较多,宜用排列组合公式计算,当然也可利用两个计数原理计数.本题第二问是条件概率问题.做第三问时,要分为三个事件:“第一次摸到红球”,“第一次摸到不是红球,第二次摸到红球”,“前两次摸到不是红球,第三次摸到红球”,显然三个事件是互斥事件.解:(1)从袋中依次摸出2个球共有29A 种结果,第一次摸出黑球、第二次摸出白球有3×4=12种结果,则所求概率6112291==A P (或6184931=⨯=P ). (2)设“第一次摸到黑球”为事件A ,“第二次摸到白球”为事件B ,则“第一次摸到黑球,且第二次摸到白球”为事件A ∩B ,又31)(=A P ,P (A ∩B )61=,所以或⋅==213161)|(A B P (或2184)|(==A B P ). (3)第一次摸出红球的概率为1912A A ,第二次摸出红球的概率为291217A A A ,第三次摸出红球的概率为391227A A A ,则摸球次数不超过3次的概率为⋅=++=12739122729121719122A A A A A A A A P 【评析】利用古典概型求解时,求基本事件的个数和事件发生的总数时求法要一致,若无序则都无序,若有序则都有序,分子和分母的标准要相同.在求事件个数时常用列举法(画树状图、列表、坐标系法),有时也与排列组合联系紧密,计算时灵活多变,但要注意分类讨论,做到不重不漏.要正确识别条件概率问题,理解P (A),P (A ∩B ),P (B |A )的含义.例4 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得⋅=31P (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得⋅=167)(A P (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得⋅=6πP 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式)()()(ΩA A P μμ=计算.常用的几何度量包括:长度、面积、体积.例5 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为⋅==43129)(A P (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为⋅=⨯⨯-⨯=3223221232 【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.例6 如图,用A 、B 、C 三类不同的元件连结成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,已知元件A 、B 、C 正常工作的概率为0.80、0.90、0.90,分别求系统N 1、N 2正常工作的概率.【分析】三个元件能否正常工作相互独立.当元件A 、B 、C 同时正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,而B 、C 至少有一个正常工作的概率可通过其对立事件计算.解:设元件A 、B 、C 正常工作为事件A 、B 、C ,则P (A )=0.8,P (B)=0.9,P (C)=0.9,且事件A 、B 、C 相互独立.(1)系统N 1正常工作的概率为p 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648.(2)元件B 、C 至少有一个正常工作的概率为1-P (B ·C )=1-P (B )·P (C )=1-0.1×0.1=0.99,所以系统N 2正常工作的概率为p 2=P (A )·(1-P (B ·C ))=0.80×0.99=0.792.【评析】本题以串、并联为背景,重点在正确理解题意.在计算几个事件同时发生的概率时,要先判断各个事件之间是否相互独立.独立事件、互斥事件、对立事件的概率各有要求,要依据题目特点,巧妙地选用相关方法.例7 每次抛掷一枚质地均匀的骰子(六个面上分别标以数字1,2,3,4,5,6).(1)连续抛掷3次,求向上的点数之和为3的倍数的概率;(2)连续抛掷6次,求向上的点数为奇数且恰好出现4次的概率.【分析】向上点数之和为3的倍数共有6种情况,计数时要不重不漏;向上点数为奇数的概率为21,连续抛掷6次是独立重复试验. 解:(1)向上的点数之和为3的结果有1种情况,为6的结果共10种情况,为9的结果共25种情况,为12的结果共25种情况,为15的结果共10种情况,为18的结果共1种情况.所以⋅=⨯⨯+++++=3166611025251012P(2)因为每次抛掷骰子,向上的点数为奇数的概率为P =21, 根据独立重复试验概率公式有⋅==⋅⋅6415)21()21(24463C P 【评析】独立重复试验是一类重要的概率问题,要善于分析模型的特点,正确合理的解题.例8 某学校进行交通安全教育,设计了如下游戏,如图,一辆车模要直行通过十字路口,此时前方交通灯为红灯,且该车模前面已有4辆车模依次在同一车道上排队等候(该车道只可以直行或左转行驶).已知每辆车模直行的概率是53,左转行驶的概率是52,该路口红绿灯转换间隔时间均为1分钟.假设该车道上一辆直行去东向的车模驶出停车线需要10秒钟,一辆左转去北向的车模驶出停车线需要20秒钟,求:(1)前4辆车模中恰有2辆车左转行驶的概率;(2)该车模在第一次绿灯亮起时的1分钟内通过该路口的概率(汽车驶出停车线就算通过路口).【分析】该车模1分钟内通过路口包含2种情况:4辆车都直行,3辆车直行1辆车左转.解:(1)设前4辆车模中恰有2辆左转行驶为事件A ,则⋅=⨯=625216)52()53()(2224C A P (2)设该车在第一次绿灯亮起时的1分钟内通过该路口为事件B ,其中4辆车模均 直行通过路口为事件B 1,3辆直行1辆左转为事件B 2,则事件B 1、B 2互斥.=+=+=)()()()(2121B B P B B P B P ⋅=⨯+62529752)53()53(334444C C 【评析】善于从复杂的背景中发现线索,体会其实质.善于转化问题的叙述,恰当的分类.练习11-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个白球,都是白球B .至少有一个白球,至少有一个红球C .恰有一个白球,恰有两个白球D .至少有一个白球,都是红球3.独立工作的两套报警系统遇危险报警的概率均为0.4,则遇危险时至少有一套报警系统报警的概率是( )A .0.16B .0.36C .0.48D .0.644.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .751B .752C .753D .754 二、填空题5.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.6.设每门高射炮命中飞机的概率都是0.6.今有一敌机来犯,要有99%的把握击中敌机,至少需要______门高射炮.7.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.8.一个口袋中有4个白球,2个黑球.有放回的取出3个球,如果第一次取出的是白球,则第三次取出的是黑球的概率为______;不放回的取出3个球,在第一次取出的是白球的条件下,第二次取出的是黑球的概率为______.三、解答题9.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M 恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域⎪⎩⎪⎨⎧>>>-+0008y x y x 上的概率.10.某个高中研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1人作为代表发言.设每人每次被选中与否均互不影响;(1)求两次汇报活动都是由小组成员甲发言的概率;(2)求男生发言次数不少于女生发言次数的概率.11.3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求(1)这3名志愿者中在10月1日都参加社区服务工作的概率;(2)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.§11-2 概率(二)【知识要点】1.离散型随机变量及其分布列随机变量:如果随机试验的可能结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量.离散型随机变量的分布列:设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,X 取到i i ii 12+…+p n =1.离散型随机变量在某个范围取值的概率等于它取这个范围内各个值的概率和.其中0<p <1,q =1-,则称离散型随机变量服从参数为p 的二点分布.二项分布:一般的,在相同条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验.在n 次独立重复试验中,事件A 恰好发生k 次的概率为==)(k X P k n k k n q p C -(其中p 为在一次试验中事件A 发生的概率,q =1-p ,k =0,1,…,n ).若将n次独立重复试验中事件A 发生的次数设为X ,则X 的分布列为超几何分布:一般的,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件(n ≤N ),这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为m C C C m X P n Nm n M N m M ≤==--0()(≤l ,其中l 为n 和M中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N 、M 、n 的超几何分布.2.随机变量的数字特征及正态分布1122i i n n 了离散型随机变量的平均取值水平.称i i n i p X E xX D ⋅-=∑=21))(()(为随机变量X 的方差,它反映了离散型随机变量X 相对于期望的平均波动大小(或说离散程度),其算数平方根)(X D 为随机变量X 的标准差,记作σ (X ),方差(或标准差)越小表明X 的取值相对于期望越集中,否则越分散.均值与方差的性质:①E (aX +b )=aE (X )+b ②D (aX +b )=a 2D (X )若X 服从两点分布,则E (X )=p ,D (X )=pq ;若X ~B (n ,p ),则E (X )=np ,D (X )=npq . 正态曲线:函数),((21)(222)(+∞∝-∈=--x e x x σμσπϕ,其中μ ∈R ,σ >0)的图象为正态分布密度曲线,简称正态曲线.其特点有:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于x =μ 对称;③曲线在x =μ 处达到峰值σ2π1;④曲线与x 轴之间的面积为1;⑤当σ 一定时,曲线随着μ 的变化而沿x 轴平移;⑥当μ 一定时,曲线的形状由σ 决定.σ 越小,曲线越“瘦高”,表示总体的分布越集中;σ 越大,曲线越“矮胖”,表示总体的分布越分散.正态分布:如果对于任意实数a <b ,随机变量X 满足=≤<)(b X a P dx x ba )(ϕ⎰,则称X 的分布为正态分布;随机变量X 服从参数μ 、σ 的正态分布,记作N ~(μ ,σ 2).正态分布的三个常用数据:①P (μ -σ <X <μ +σ )=68.3%;②P (μ -2σ <X <μ +2σ )=95.4%;③P (μ -3σ <X <μ +3σ )=99.7%.【复习要求】①在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.②通过实例,理解超几何分布及其导出过程,并能进行简单的应用.③通过实例,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. ④通过实例,理解取有限值的离散型随机变量期望、方差的概念,能计算简单离散型随机变量的期望、方差,并能解决一些实际问题.⑤通过实际问题,认识正态分布曲线的特点及曲线所表示的意义.【例题分析】例1 一袋中装有编号为1、2、3、4、5、6的6个大小相同的小球,现从中随机取出3个球,以X 表示取出球的最大号码,(1)求X 的分布列;(2)求X >4的概率;(3)求E (X ).【分析】随机变量X 可能取的值为3、4、5、6,应用古典概型求得X 取每一个值的概率,就可以写出分布列.解:(1)随机变量X 可能取的值为3、4、5、6,且,203)4(,2011)3(362336======C C X P C X P 3624)5(C C X P ==103206==,212010)6(3625====C C X P ,所求X 的分布列为(2)==+==>)6()5()4(X P X P X P ⋅54 (3).25.5216103520342013)(=⨯+⨯+⨯+⨯=X E 【评析】离散型随机变量的分布列反映了一次试验的所有可能结果(X 的所有可能取值),以及取得每个结果(X 的每一个值)的概率.书写分布列首先要根据具体情况正确分析X 可取的所有值,然后利用排列组合及概率的有关知识求得每个x i 所对应的概率p i ,最后列成表格.要注意不同的X 值所对应的事件之间是互斥的,求离散型随机变量在某一范围的概率等于它取这个范围内各个值的概率和.例2 袋中装有大小相同的5个红球、5个白球,现从中任取4个球,其中所含红球的个数为X ,写出X 的分布列,并求X 的期望.【分析】袋中共有10个球,从中任取4个,所含红球的个数为0、1、2、3、4,每个事件的概率可以利用古典概型求解.解:随机变量X 可取的值有0、1、2、3、4,)0(=X P =,42121054104505==⋅C C C )1(=X P =215210504103515==⋅C C C ,)2(=X P 21102101004102525===⋅C C C ,===⋅4101535)3(C C C X P 21050 215=,4212105)4(4100545==⋅==C C C X P , 分布列为2424213212211420)(=⨯+⨯-+⨯+⨯+⨯=X E 【评析】本题的随机变量X 服从参数为N ,M ,n 的超几何分布,其中N =10,M =5,n =4.例3 某人练习射击,每次击中目标的概率为31. (1)用X 表示击中目标的次数.①若射击1次,求X 的分布列和期望;②若射击6次,求X 的分布列和期望;(2)若他连续射击6次,设ξ为他第一次击中目标前没有击中目标的次数,求ξ的分布列;(3)他一共只有6发子弹,若击中目标,则不再射击,否则子弹打完为止,求他射击次数η 的分布列.【分析】射击问题常被看做是独立重复试验.ξ的取值为0到6,η 的取值为1到6. 解:(1)①X 服从二点分布⋅=31)(X E ②X 服从二项分布)6,,1,0()2()1()(),1,6(~66Λ===-k C k X P B k k k ,分布列为.236)(=⨯=X E (2)ξ的取值为0到6,ξ=k (k =0,1,…,5)表示第k +1次击中目标,前k 次都没击中目标,则P (ξ=k )=)5,,1,0(31)32(.Λ=k k ,ξ=6表示射击6次都未击中目标,==)6(ξP6)2(.ξ的分布列为(3)η 的取值为1到6.η =k (k =1,2,…,5)表示第k 次时第一次击中目标,==)(k P η 6;1)2(.1=-ηk 表示前5次都没有击中目标,5)2()6(==ξP .η 的分布列为“X =k ”.在计算满足二点分布和二项分布的随机变量的期望和方差时,可直接应用公式计算.例4 甲乙两名射手在一次射击中的得分为两个相互独立的随机变量X 和Y ,且X 和Y 的分布列为计算X 和Y 【分析】先由分布列所提供的数据用期望和方差公式计算,再根据实际意义作出分析. 解:E (X )=8.85,D (X )=2.2275;E (Y )=5.6,D (Y )=10.24.由于E (X )>E (Y ),说明甲射击的平均水平比乙高;由于D (X )<D (Y ),说明甲射击的环数比较集中,发挥比较稳定,乙射击的环数比较分散,技术波动较大,不稳定,由此可以看出甲比乙的技术好.【评析】正确记忆期望和方差的公式,在分布列中,期望是每个变量乘以它所对应的概率再相加,求方差要先求期望,再作差、平方、乘以相应概率再相加.科学对待计算结果,正确分析数据所表达的实际意义.例5 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率;(3)若η =2ξ+1,求ξ、η 的数学期望和方差;【分析】本题概率问题是古典概型,要分别求出事件中所含元素的个数,第一问事件“二次方程有实根”等价于“∆=b 2-4c ≥0”,b 、c 的值都取自{1,2,3,4,5,6};第二问是条件概率问题;第三问先求ξ的期望和方差,再由公式求η 的期望和方差.解:(1)由题意知:设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实数”为事件C ,Ω中基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个.又因为B ,C 是互斥事件,故所求概率⋅=+=+=36193617362)()(C B B P P (2)记“先后两次出现的点数中有5”为事件D ,“方程x 2+bx +c =0有实数”为事件E ,由上面分析得D P D P (,3611)(=∩367)=E ,∴⋅==117)()()|(D P E D P D E P I (Ⅱ)由题意ξ的可能取值为0,1,2,则,3617}2{,181}1{,3617}0{======&ξξξP P P 故ξ的分布列为:所以.18173617·)12(181·)11(3617·(0-0-,136172181136170222=-+-+==⨯+⨯+⨯=ξξD E 9342)12(,312)12(2==+==+=+=ξξξξηηD D D E E E 【评析】本题是一道概率的综合题,由07山东卷改编而得.在古典概型中解决条件概率问题时,概率公式是=)|(A B P )()()()(A n B A n A P B A P I I =.具有线性关系的两个随机变量的期望和方差之间的关系是b X aE b aX E +=+)()(,)()(2X D a b aX D =+.例6 (1)设两个正态分布N (μ 1,21σ)(σ 1>0)和N (μ 2,22σ)(σ 2>0)的密度函数图象如图所示.则有( )。

高考数学-2020年高考数学一轮复习第九章概率与统计第9讲随机抽样课件理.ppt

高考数学-2020年高考数学一轮复习第九章概率与统计第9讲随机抽样课件理.ppt
答案:B
【规律方法】简单随机抽样,也叫做纯随机抽样.就是从 总体中不加任何分组、划类、排队等,完全随机地抽取调查单 位.简单随机抽样是其他各种抽样形式的基础.通常只是在总体 单位之间差异程度较小和数目较少时,才采用这种方法.特点 是:每个样本单位被抽中的可能性相同(概率相等),样本的每 个单位完全独立,彼此间无一定的关联性和排斥性.简单随机 抽样常用的方法有:①抽签法;②随机数表法;③计算机模拟 法;④使用统计软件直接抽取.
04 74 47 67 21 76 33 50 25 83 92 12 06
A.23
B.09
C.02
D.16
解析:从随机数表第 1 行的第 6 列和第 7 列数字 35 开始, 由 左 到 右 依 次 选 取 两 个 数 字 中 小 于 35 的 编 号 依 次 为 21,32,09,16,其中第 4 个为 16.故选 D.
解析:第一组用简单随机抽样抽取的号码为 443 -(18-
1)×104000=18.故选 C.
答案:C
(2)(2018 年湖北襄阳联考)将参加夏令营的600 名学生编号
为 001,002,…,600.采用系统抽样方法抽取一个容量为 50 的
样本,且随机抽得的号码为 003.这 600 名学生分住在三个营区.
从 001 到 300 在第Ⅰ营区,从 301 到 495 在第Ⅱ营区,从 496
到 600 在第Ⅲ营区,则三个营区被抽中的人数依次为( )
A.25,17,8 C.26,16,8
பைடு நூலகம்
B.25,16,9 D.24,17,9
解析:总体数为 600,样本的容量是 50,600÷50=12.因此, 每隔 12 个号码能抽到一名.由于随机抽得第一个号码为 003,按 照系统抽样的操作步骤在第Ⅰ营区应抽到 25 人,第Ⅱ营区应抽 到 17 人,第Ⅲ营区应抽到 8 人.故选 A.

2020版高考数学(理)新精准大一轮课标通用版刷好题练能力:第十一章 1 第1讲 随机抽样 含解析

2020版高考数学(理)新精准大一轮课标通用版刷好题练能力:第十一章 1 第1讲 随机抽样 含解析

[基础题组练]1.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则 ( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析:选D.由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3. 2.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A ,B ,C 三所中学抽取60名教师进行调查,已知A ,B ,C 三所学校中分别有180,270,90名教师,则从C 学校中应抽取的人数为( )A .10B .12C .18D .24解析:选A.根据分层抽样的特征,从C 学校中应抽取的人数为90180+270+90×60=10.3.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .2,4,8,16,32,48C .5,15,25,35,45,55D .1,12,34,47,51,60解析:选C.从60枚新型导弹中随机抽取6枚,采用系统抽样间隔应为606=10,只有C 选项中导弹的编号间隔为10.4.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54第9行A .07B .25C .42D .52解析:选D.依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D.5.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A .3B .4C .5D .6解析:选B.35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取一人,共取4人.6.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________.解析:在系统抽样中,确定分段间隔k ,对编号进行分段,k =Nn (N 为总体的容量,n 为样本的容量),所以k =N n =1 20030=40.答案:407.某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n 的样本.已知从讲师中抽取的人数为16,那么n =________.解析:依题意得,80120+100+80+60=16n ,由此解得n =72.答案:728.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C 舒适型 100 150 z 标准型300450600A 类轿车10辆,则z 的值为________.解析:设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400. 答案:4009.最新高考改革方案已在上海和浙江实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:赞成改革 不赞成改革无所谓 教师 120 y 40 学生xz130z =2y .(1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?(2)在(1)中所抽取的“不赞成改革”的人中,随机选出3人进行座谈,求至少有1名教师被选出的概率.解:(1)由题意知x500=0.3,所以x =150,所以y +z =60.因为z =2y ,所以y =20,z =40.则应抽取“不赞成改革”的教师人数为50500×20=2,应抽取“不赞成改革”的学生人数为50500×40=4.(2)至少有1名教师被选出的概率P =C 12C 24+C 22C 14C 36=12+420=45. 10.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历 35岁以下35~50岁50岁以上本科 80 30 20 研究生x20y(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取1人,此人的年龄为50岁以上的概率为539,求x ,y 的值.解:(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,所以3050=m5,解得m =3.抽取的样本中有研究生2人,本科生3人,分别记作S 1,S 2;B 1,B 2,B 3.从中任取2人的所有等可能基本事件共有10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 1,B 3),(B 2,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).所以从中任取2人,至少有1人学历为研究生的概率为710.(2)由题意,得10N =539,解得N =78.所以35~50岁中被抽取的人数为78-48-10=20,所以4880+x =2050=1020+y ,解得x =40,y =5. 即x ,y 的值分别为40,5.[综合题组练]1.某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为( )A .8,14,18B .9,13,18C .10,14,16D .9,14,17解析:选C.因为25+35+40=100, 用分层抽样的方法从中抽取40人,所以每个个体被抽到的概率是P =40100=25=0.4,所以体育特长生25人应抽25×0.4=10(人), 美术特长生35人应抽35×0.4=14(人), 音乐特长生40人应抽40×0.4=16(人).2.一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m ,那么在第k 组中抽取的号码的个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是( )A .63B .64C .65D .66 解析:选A.由题设知,若m =6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中数字编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.故选A.3.北京某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________.解析:系统抽样的间隔为186=3.设抽到的最小编号为x ,则x +(3+x )+(6+x )+(9+x )+(12+x )+(15+x )=57.解得x =2. 答案:24.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多________人.解析:设班里“喜欢”摄影的同学有y 人,“一般”的有x 人,“不喜欢”的有(x -12)人,则⎩⎨⎧x -12x =13,y x =53,解得⎩⎪⎨⎪⎧x =18,y =30.所以全班共有30+18+6=54(人),又30-542=3(人).所以“喜欢”摄影的比全班人数的一半还多3人.答案:35.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.根据统计图所提供的信息,解答下列问题: (1)本次共调查了________名市民; (2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数. 解:(1)本次共调查的市民人数为800÷40%=2 000.故填2 000.(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%,故该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).6.据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:态度 调查人群 应该取消 应该保留 无所谓 在校学生 2 100人 120人 y 人 社会人士600人x 人z 人0.05.(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流.求第一组中在校学生人数ξ的分布列和数学期望.解:(1)因为抽到持“应该保留”态度的人的概率为0.05, 所以120+x 3 600=0.05,解得x =60.所以持“无所谓”态度的人数共有3 600-2 100-120-600-60=720, 所以应在持“无所谓”态度的人中抽取720×3603 600=72(人).(2)由(1)知持“应该保留”态度的一共有180人,所以在所抽取的6人中,在校学生为120180×6=4(人),社会人士为60180×6=2(人),于是第一组在校学生人数ξ=1,2,3,P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,ξ的分布列为 所以E (ξ)=1×15+2×35+3×15=2.。

2020版高考数学一轮复习课后限时集训54随机抽样理含解析北师大版2

2020版高考数学一轮复习课后限时集训54随机抽样理含解析北师大版2

课后限时集训(五十四) 随机抽样(建议用时:40分钟)A 组 基础达标一、选择题1.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样 B .按性别分层抽样C .按年龄段分层抽样D .系统抽样C [由题可知各年龄段人员活动情况层次差异明显而性别对活动情况差异不大,故需要按年龄段分层抽样,故选C.]2.从1 008名学生中抽取20人参加义务劳动,规定采用下列方法选取:先用简单随机抽样的方法从1 008人中剔除8人,剩下1 000人再按系统抽样的方法抽取,那么这1 008人中每个人入选的概率是( )A .都相等且等于B .都相等且等于1505252C .不全相等D .均不相等B [在抽取时,每个人被抽到的概率均为=.故选B .]201 00852523.(2019·湖北模拟)某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( )A .16B .17C .18D .19C [∵从1 000名学生中抽取一个容量为40的样本,∴系统抽样的分段间隔为=25.1 00040设第一组随机抽取一个号码为x ,则第18组的抽取编号为x +17×25=443,∴x =18.]4.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800双B .1 000双C .1 200双D .1 500双C [因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1 200双皮靴.]5.一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,如果在第一组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是( )A .63B .64C .65D .66A [若m =6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中的编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.]6.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )A .101B .808C .1 212D .2 012B [甲社区每个个体被抽取的概率为=,样本容量为12+21+25+43=101,所以四129618个社区中驾驶员的总人数N ==808.]101187.(2019·绵阳诊断)我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”其意思为:“今有某地北面若干人,西面有7 488人,南面有6 912人,这三面要征调300人,而北面共征调108人(用分层抽样的方法),则北面共有( )A .8 100人B .5 184人C .6 200人D .9 200人A [设北面人数为x ,则有=,xx +7 488+6 912108300解得x =8 100,故选A.]二、填空题8.某校高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.45 [依题意,分组间隔为=8,因为在第1组中随机抽取的号码为5,所以在第6组648中抽取的号码为5+5×8=45.]9.利用随机数表法对一个容量为500,编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,选取方法是从随机数表第12行第5列、第6列、第7列数字开始由左到右依次选取三个数字(下面摘取了随机数表中的第11行至第12行),根据下表,读出的第3个数是________.18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71114 [最先读到的数据的编号是389,向右读下一个数是775,775大于499,故舍去,再下一个数是841,舍去,再下一个数是607,舍去,再下一个数是449,再下一个数是983,舍去,再下一个数是114.故读出的第3个数是114.]10.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别A B C产品数量(件)1 300样本容量(件)130由于不小心,表格中A ,C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是________.800 [设样本容量为x ,则×1 300=130,所以x =300.所以A 产品和C 产品在样x3 000本中共有300-130=170(件).设C 产品的样本容量为y ,则y +y +10=170,所以y =80.所以C 产品的数量为×80=800.]3 000300B 组 能力提升1.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.]2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300住在A 营区,从301到495住在B 营区,从496到600住在C 营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9B [依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤,因此A 1034营区被抽中的人数是25;令300<3+12(k -1)≤495,得<k ≤42,因此B 营区被抽中的1034人数是42-25=17,故C 营区被抽中的人数为50-25-17=8.]3.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:高一年级高二年级高三年级跑步a b c 登山x y z其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的.为了了解学生对本次活动的25满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.36 [根据题意可知样本中参与跑步的人数为200×=120,所以从高二年级参与跑步的35学生中应抽取的人数为120×=36.]32+3+54.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.37 20 [将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则=,解得x =20.]40200x 100。

2024届高考数学学业水平测试复习专题八第28讲随机抽样

2024届高考数学学业水平测试复习专题八第28讲随机抽样
共 3 种.所以 P(B)=135=15.
________件.
解:(1)抽取的高一年级学生的人数为 50×350000=30(人), 故选 C. (2)设乙设备生产的产品总数为 x 件,则甲设备生产的产品总数为 (4 800-x)件.由分层抽样特点,结合题意可得5800=4 480800-0 x,解 得 x=1 800.
答案:(1)C (2)1 800
37 97
第6行:67 46 07 14 73 94 70 34
85 22 79 53 48 09 76 54 13 49
93 76
若从表中第5行第9列开始自左向右依次读取两位数字,则抽取
的第5个个体的编号是( )
A.13
B.09
C.46
D.20
(2)下列调查中属于抽样调查的是( )
①每隔5年进行一次人口普查
B 因为125∶280∶95=25∶56∶19, 所以抽取人数分别为25,56,19.
3.某新闻机构想了解全国人民对某部电影的评价,决定从某
市3个区按人口数用分层抽样的方法抽取一个样本.若3个区人
口数之比为2∶3∶5,且人口最多的一个区抽出100人,则这个
样本的容量等于( )
A.100
B.160
C.200
剖析:简单的随机抽样包括:放回简单随机抽样和不放回简单 随机抽样,无论哪一种方法,必需要满足的条件是: (1)总体中的个体数是有限的. (2)从总体中逐个抽取. (3)每次抽取时,总体中的每个个体被抽到的机会都相等.
2.用样本的平均数估计总体的平均数 为了调查某校高一学生每天午餐消费情况,从该校高一学
剖析:分层抽样问题类型及解题思路 (1)求某层应抽个体数量:按该层所占总体的比例计算. (2)已知某层个体数量,求总体容量或反之:根据分层抽样就 是按比例抽样,列比例式进行计算. (3)确定是否应用分层抽样:分层抽样适用于总体中个体差异 较大的情况.

2020届高考数学(理)一轮复习精品特训专题十一:概率与统计(6)随机抽样与用样本估计总体.pdf

2020届高考数学(理)一轮复习精品特训专题十一:概率与统计(6)随机抽样与用样本估计总体.pdf

2,
2
x
,
y 这 4 个数据的平均数为
1,
则y
1
的最小值为 __________
x
14、如图是某班级 10 名男生引体向上的测试成绩的茎叶图,
则这组数据的方差是 ________.
15、“累积净化量( CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开
始使用到净化效率为 50%时对颗粒物的累积净化量,以克表示,根据
计图,假设该月温度的中位数为 mc ,众数为 m0 ,平均数为 x ,则( )
A. mc m0 x B. mc m0 x
C. mc m0 x D. m0 mc x
10、某校进行了一次创新作文大赛, 共有 100 名同学参赛,经过评判, 这 100 名参赛者的得
分都在 [40,90] 之间,其得分的频率分布直方图如图,则下列结论错误的是(
5、某校数学教研组为了解学生学习数学的情况
, 采用分层抽样的方法从高一 600 人、高二
780 人、高三 n 人中 , 抽取 35人进行问卷调查 , 已知高二被抽取的人数为 13 人 , 则 n 等于
()
A.660
B.720
C.780
D.800
6、某校选修乒乓球课程的学生中 , 高一年级有 30 名 , 高二年级有 40 名 , 现用分层抽样的方法
3204 9234 4935 8200 3623 4869 6938 7481
A.08
B.07
C.02
D.01
2、某中学有高中生 3500人 , 初中生 1500人 , 为了解学生的学习情况 , 用分层抽样的方法从
该校学生中抽取一个容量为 n 的样本 , 已知从高中生中抽取 70 人 , 则 n 为 (

2020版高考数学一轮复习课后限时集训53抽样方法文含解析北师大版201906272117

2020版高考数学一轮复习课后限时集训53抽样方法文含解析北师大版201906272117

课后限时集训(五十三)(建议用时:60分钟)A 组 基础达标一、选择题1.(2019·佛山质检)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为 ( )A .50B .40C .25D .20C [根据系统抽样的特点分段间隔为1 00040=25.] 2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 ( )A .93B .123C .137D .167C [初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C .]3.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 3520 96 43 84 26 34 91 64 57 24 55 0688 77 04 74 47 67 21 76 33 50 25 8392 12 06A .22B .09C .02D .16D [从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.]4.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生、6名女生,则下列命题正确的是 ( )A .这次抽样可能采用的是简单随机抽样B .这次抽样一定没有采用系统抽样C .这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D .这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率A [利用排除法求解.这次抽样可能采用的是简单随机抽样,A 正确;这次抽样可能采用系统抽样,男生编号为01~20,女生编号为21~50,间隔为5,依次抽取01号,06号,…,46号便可,B 错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C 和D 均错误,故选A .]5.(2018·长沙一中测试)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250 A [法一:由题意可得70n -70=3 5001 500,解得n =100. 法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.]6.(2018·广东肇庆模拟)一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m ,那么在第k 组中抽取的号码的个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是( )A .63B .64C .65D .66A [由题设知,若m =6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中数字编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.故选A .]7.某工厂的一、二、三车间在2018年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 成等差数列,则二车间生产的产品数为 ( )A .300B .1 000C .1 200D .1 500C [因为a 、b 、c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3 600×13=1 200.故选C .] 二、填空题8.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.16,28,40,52 [编号组数为5,间隔为605=12, 因为在第一组抽得04号:4+12=16,16+12=28,28+12=40,40+12=52,所以其余4个号码依次为16,28,40,52.]9.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.四 [由于所分段码的位数和读数的位数要一致,因此所分段码的位数最少是四位.从0000到1 000,或者是从0 001到1 001等.]10.某高中在校学生有2 000人,为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的5.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.36 [根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.] B 组 能力提升1.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为 ( )A .101B .808C .1 212D .2 012B [甲社区每个个体被抽到的概率为1296=18,样本容量为12+21+25+43=101,所以四个社区中驾驶员的总人数N =10118=808.] 2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在A 营区,从301到495在B 营区,从496到600在C 营区,则三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9B [依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此A 营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此B 营区被抽中的人数是42-25=17,故C 营区被抽中的人数为50-25-17=8.]3.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为________.482 [根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,d =25,所以7+25(n -1)≤500,所以n ≤20,最大编号为7+25×19=482.]4.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是________件.800 [设样本容量为x ,则x3 000×1 300=130, ∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件).设C 产品的样本容量为y ,则y +y +10=170,∴y =80.∴C 产品的数量为3 000300×80=800(件).]。

备考2020年高考数学复习:54随机抽样

备考2020年高考数学复习:54随机抽样

备考2020年高考数学复习:54随机抽样一、单选题(共10题;共20分)1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A. 1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是1002. (2019.卷I)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。

从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生3.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是()A. 13B. 23C. 33D. 434.总体由编号为01, 02,…,19, 20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7包16罐02U144弘907283204-见449358200362374815.某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:——结伴步行,一一自行乘车,一一家人接送,一一其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.根据图中信息,求得本次抽查的学生中类人数是()A. 30B. 40C. 42D. 486.某公司生产,,三种不同型号的轿车,产量之比依次为,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为的样本,若样本中种型号的轿车比种型号的轿车少8辆,贝U ()A. 96B. 72C. 48D. 367.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为从中抽取个样本,如下提供随机数表的第行到第行:若从表中第行第列开始向右依次读取个数据,则得到的第个样本编号()A. B. C. D.8.一支由学生组成的校乐团有男同学人,女同学人,若用分层抽样的方法从该乐团的全体同学中抽取人参加某项活动,则抽取到的男同学人数为()A. B. C. D.9.某校有高中生1470人,现采用系统抽样法抽取49人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、493人、482人)按1,2,3,…,14编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为()A. 15B. 16C. 17D. 1810.某校共有学生2000名,各年级男、女生人数如右表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的女学生人数为()A. 24B. 16C. 12D. 8二、填空题(共8题;共8分)11.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有人12.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4, 12, 8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为。

高三数学随机抽样试题

高三数学随机抽样试题

高三数学随机抽样试题1.某私立校共有3600人,其中高中部、初中部、小学部的学生人数成等差数列递增,已知公差为600,现在按1:100的抽样比,用分层抽样的方法抽取样本,则应抽取小学部学生人数为 .【答案】18【解析】根据等差数列的性质可知,公差为600,连续的三项何为3600,可知中间的初中部的学生为1200,那么高中部为600,小学部为1800,则可知按照比例1:100的抽样比,那么小学生抽取的人数为1800,答案为18.【考点】分层抽样点评:考查了分层抽样的概念和等比例性质的运用,属于基础题。

2.某高中学校有高一学生400人,高二学生300人,高三学生300人,现通过分层抽样抽取一个容量为n的样本,已知每个学生被抽到的概率为0.2,则n=;【答案】200【解析】由,得.【考点】分层抽样.点评:本题考查分层抽样方法,涉及等可能事件的概率计算,是简单题;熟悉分层抽样方法的定义即可.3.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人.【答案】8【解析】男女运动员人数的比是,所以要抽取14人,需要抽取男运动员人.【考点】本小题主要考查分层抽样.点评:应用分层抽样抽取样本时,关键是找出各层的比例,按比例抽取即可.4.(本小题满分13分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答下列问题:(Ⅰ)求全班人数及分数在之间的频数;(Ⅱ)不看茎叶图中的具体分数,仅根据频率分布直方图估计该班的平均分数;(Ⅲ)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.【答案】(Ⅰ)全班人数为25人,分数在之间频数为4;Ⅱ);Ⅲ). 【解析】(Ⅰ),即全班人数为25人,分数在之间频数为4 4分(Ⅱ)平均分数估计值 8分(Ⅲ)记这6份试卷代号分别为1,2,3,4,5,6.其中5,6是之间的两份,则所有可能的抽取情况有: 1,2 1,3 1,4 1,5 1,62,3 2,4 2,5 2,63,4 3,5 3,64,5 4,65,6 10分其中含有5或6的有9个,故. 13分【考点】本题考查了概率求法、统计.茎叶图、频率分布直方图的认识与应用点评:此类问题常常考查统计学知识,包括茎叶图,频率分布直方图,统计案例(线性回归分析和独立性检验).他们之间的综合问题更应引起重视,以及与概率等知识综合在一起进行设计试题是近几年高考的一种命题趋势5.某校有教师160人,男学生960人,女学生800人,现用分层抽样的方法从所有教师中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n的值为。

2020版高考数学一轮复习(六十五)随机抽样与用样本估计总体(含解析)

2020版高考数学一轮复习(六十五)随机抽样与用样本估计总体(含解析)

课时跟踪检测(六十五)随机抽样与用样本估计总体一、题点全面练1。

(2018·石家庄模拟)某校一年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为140的样本,则此样本中男生人数为()A。

80 B。

120C。

160 D。

240解析:选A 因为男生和女生的比例为560∶420=4∶3,样本容量为140,所以应该抽取男生的人数为140×错误!=80,故选A.2。

一个总体中有600个个体,随机编号为001,002, (600)利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为( )A。

056,080,104 B。

054,078,102C.054,079,104D.056,081,106解析:选D 系统抽样的间隔为错误!=25,编号为051~125之间抽得的编号为006+2×25=056,006+3×25=081,006+4×25=106.3。

(2019·天水模拟)甲、乙两名同学6次考试的成绩统计如图所示,甲、乙两组数据的平均数分别为x甲,x乙,标准差分别为s甲,s乙,则( )A。

错误!甲<错误!乙,s甲<s乙B.错误!甲<错误!乙,s甲>s乙C.错误!甲>错误!乙,s甲<s乙D。

错误!甲>错误!乙,s甲>s乙解析:选C 由图可知,甲同学除第二次考试成绩略低于乙同学外,其他考试成绩都远高于乙同学,可知错误!甲>x乙。

图中数据显示甲同学的成绩比乙同学稳定,故s甲<s乙.4.(2019·中山模拟)某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为( )A。

10万元 B.12万元C。

15万元D。

30万元解析:选D 由图知,9时至10时的销售额频率为0。

2020版高考数学一轮复习课后限时集训56随机事件的概率文含解析北师大版201906272120

2020版高考数学一轮复习课后限时集训56随机事件的概率文含解析北师大版201906272120

课后限时集训(五十六)(建议用时:60分钟)A组基础达标一、选择题1.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:A.0.53 B.0.5C.0.47 D.0.37A[取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53 100=0.53.故选A.]2.(2019·钦州月考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有一个黑球与都是黑球B.至少有一个黑球与都是红球C.至少有一个黑球与至少有一个红球D.恰有一个黑球与恰有两个黑球D[对于A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,∴A不正确;对于B:事件:“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴B不正确;对于C:事件:“至少有一个黑球”与事件:“至少有一个红球”可以同时发生,如:一个红球与一个黑球,∴C不正确;对于D:事件:“恰有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能两个都是红球,∴两个事件是互斥事件但不是对立事件,∴D正确.]3.根据某医疗研究所的调查,某地区居民血型的分布为O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )A.15% B.20%C.45% D.65%D[∵某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%,故选D.]4.对一批产品的长度(单位:mm)进行抽样检测,如图为检测结果的频率分布直方图,根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A .0.09B .0.20C .0.25D .0.45D [利用统计图表可知在区间[25,30)上的频率为1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为0.04×5=0.2,故所求二等品的概率为0.45.]5.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫54,2B .⎝ ⎛⎭⎪⎫54,32C .⎣⎢⎡⎦⎥⎤54,32 D .⎝ ⎛⎦⎥⎤54,43 D [由题意可得⎩⎪⎨⎪⎧0<P A <1,0<P B <1,P A +P B ,即⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1,解得54<a ≤43.]二、填空题6.容量为20的样本数据,分组后的频率如下表:920 [样本数据落在区间[10,40)的频数为9,故频率为920.] 7.(2019·武汉调研)甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则乙不输的概率是________.56 [乙不输的概率为12+13=56.]8.(2019·泰安模拟)某城市2018年的空气质量状况如下表所示:时,空气质量为轻微污染,则该城市2018年空气质量达到良或优的概率为________.35 [由题意可知2018年空气质量达到良或优的概率为P =110+16+13=35.] 三、解答题9.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? [解] (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.10.(2019·福建四地六校联考)现有7名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2通晓俄语,C 1、C 2通晓韩语.从中随机选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.[解] (1)从7人中选出通晓日语、俄语和韩语志愿者各1名,所有基本事件数为3×2×2=12.用M 表示“A 1恰被选中”这一事件,则它包含的基本事件有1×2×2=4.P (M )=412=13.(2)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”,由于N 包含的基本事件:(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1),事件N 有3个基本事件组成,所以P (N )=312=14, 由对立事件的概率公式得P (N )=1-14=34.B 组 能力提升1.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .1C [设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一色的概率为1735.] 2.(2019·青岛模拟)设条件甲:“事件A 与B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.投掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.]3.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.815 1415[(1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815.(2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.]4.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率). [解] (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)设A 表示事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”、“该顾客一次购物的结算时间为1.5分钟”、“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P(A1)=15100=320,P(A2)=30100=310,P(A3)=25100=14.因为A=A1∪A2∪A3,且A1,A2,A3是互斥事件,所以P(A)=P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=320+310+14=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考复习1.〖2019·西安调考〗下列随机变量X服从二项分布的是()①重复抛掷一枚骰子n次,出现点数是3的倍数的次数X;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数X;③一批产品共有N件,其中M件为次品,采用有放回的抽取方法,X表示n次抽取中出现次品的件数(M<N);④一批产品共有N件,其中M件为次品,采用不放回的抽取方法,X表示n次抽取中出现次品的件数(M<N).A.②③B.①④C.③④D.①③2.〖2019·东北三省四市教研联合体高考模拟〗将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为P(P≥1516),则n的最小值为()A.4 B.5 C.6 D.73.〖2019·河北承德二中入学考试〗用电脑每次可以自动生成一个(0,1)内的实数,且每次生成每个实数都是等可能的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为()A.127B.23C.827D.494.〖2019·南昌月考〗已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机抽取一球,则两次都取到红球的概率是()A.1127B.1124C.827D.9245.〖2019·洛阳模拟〗在某次人才招聘会上,假定某毕业生赢得甲公司面试机会的概率为23,赢得乙、丙两公司面试机会的概率均为14,且三个公司是否让其面试是相互独立的.则该毕业生只赢得甲、乙两个公司面试机会的概率为()A.116B.18C.14D.126.〖2019·长沙调研〗某次数学摸底考试共有10道选择题,每道题给的四个选项中有且只有一个选项是正确的;张三同学每道题都随意地从中选了一个答案,记该同学至少答对9道题的概率为P,则下列数据中与P的值最接近的是()A.3×10-4B.3×10-5C.3×10-6D.3×10-7思路由“随意”两字知道这是个独立重复试验问题.7.〖2019·武汉调研〗如图所示,圆通快递公司送货员从公司A处准备开车送货到某单位B处,有A→C→D→B,A→E→F→B两条路线.若该地各路段发生堵车与否是相互独立的,且各路段发生堵车事件的概率如图所示(例如A→C→D算作两个路段,路段AC发生堵车事件的概率为16,路段CD发生堵车事件的概率为110).若使途中发生堵车事件的概率较小,则由A到B应选择的路线是____.8.〖2019·益阳湘潭联合调研〗某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列和数学期望E (ξ). 9.〖2019·湖北省七市高三联考〗某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.(1)求进入决赛的人数;(2)若从该校学生(人数很多)中随机抽取2人,记X 表示2人中进入决赛的人数,求X 的分布列及数学期望; (3)经过多次测试后发现,甲的成绩均匀分布在8~10米,乙的成绩均匀分布在9.5~10.5米,现甲、乙各跳一次,求甲比乙跳得远的概率.10.〖2019·衡水中学调研卷〗已知一次试验成功的概率为p ,进行100次独立重复试验,当成功次数的标准差的值最大时,p 及标准差的最大值分别为( ) A .12,5B .45,25C .45,5D .12,2511.〖2019·山东潍坊模拟〗已知甲、乙两台自动车床生产同种标准件,X 表示甲车床生产1000件产品中的次品数,Y 表示乙车床生产1000件产品中的次品数,经考察一段时间,X ,Y 的分布列分别是:据此判定( ) A .甲比乙质量好B .乙比甲质量好C .甲与乙质量相同D .无法判定12.〖2019·合肥一模〗已知袋中有3个白球,2个红球,现从中随机取出3个球,其中每个白球计1分,每个红球计2分,记X 为取出3个球的总分值,则E (X )=( )A .185 B .215C .4D .24513.〖2019·山东潍坊期末〗某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是( ) A .3B .83C .2D .5314.〖2019·《高考调研》原创题〗为了评估天气对某市运动会的影响,制定相应预案,衡水市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是该市雷电天气高峰期,在31天中平均发生雷电14.57天(如图).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在该市运动会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01); (2)设运动会期间(8月12日至23日,共12天),发生雷电天气的天数为X ,求X 的数学期望和方差. 15.〖2019·福建龙海二中摸底〗某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为14,不堵车的概率为34;汽车走公路②堵车的概率为p ,不堵车的概率为1-p 若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响. (1)若三辆汽车中恰有一辆汽车被堵的概率为716,求走公路②堵车的概率; (2)在(1)的条件下,求三辆汽车中被堵车辆的个数X 的分布列和数学期望. 16.〖2019·湖北潜江二模〗现有两种投资方案,一年后投资盈亏的情况如下表: 投资股市:购买基金:(1)当p =14时,求q 的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p =12,q =16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?结合结果并说明理由.17.〖2019·广东七校联考〗某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,下雨会影响药材品质,基地收益如下表所示:10万元.额外聘请工人的成本为a万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X的分布列及基地的预期收益;(2)该基地是否应该额外聘请工人,请说明理由.18.〖2019·武昌调研〗某机构随机询问了72名不同性别的大学生,调查其在购买食物时是否看营养说明,得到如下列联表:(1)(2)从被询问的28名不看营养说明的大学生中,随机抽取2名学生,求抽到女生的人数ξ的分布列及数学期望.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).19.〖2019·甘肃河西五市联考〗设随机变量ξ服从正态分布N(0,1),若P(ξ>2)=p,即P(-2<ξ<0)=()A.12+p B.1-p C.12-p D.1-2p20.〖2019·海南海口期末〗已知随机变量X服从正态分布N(a,4),且P(X>1)=0.5,P(X>2)=0.3,则P(X<0)=()A.0.2B.0.3 C.0.7 D.0.8 21.〖2019·山东济南期末〗在某项测量中,测量结果ξ服从正态分布N(0,σ2),若ξ在(-∞,-1)内取值的概率为0.1,则在(0,1)内取值的概率为()A.0.8 B.0.4 C.0.2 D.0.1 22.〖2019·福建永春一中、培元中学、季延中学、石光中学第一次联考〗某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩X近似服从正态分布N(100,a2)(a>0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为()A.400 B.500 C.600 D.800 23.〖2019·南昌调研〗某单位1000名青年职员的体重x(单位:kg)服从正态分布N(μ,22),且正态分布的密度曲线如图所示,若体重在58.5~62.5kg 属于正常,则这1000名青年职员中体重属于正常的人数约是( )A .683B .841C .341D .66724.〖2019·河南安阳专项训练〗已知某次数学考试的成绩服从正态分布N (116,64),则成绩在140分以上的考生所占的百分比为( ) A .0.3%B .0.23%C .1.5%D .0.15%25.〖2019·皖南十校联考〗在某市2017年1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( ) A .1500B .1700C .4500D .800026.〖2019·广东江门模拟〗已知随机变量ξ~N (1,4),且P (ξ<3)=0.84,则P (-1<ξ<1)=____.27.〖2019·云南高三统考〗某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N (90,σ2).若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70的人数为____.28.〖2019·武汉四月调研〗某市高中某学科竞赛中,某区4000名考生的竞赛成绩的频率分布直方图如图所示.(1)求这4000名考生的平均成绩x -(同一组中数据用该组区间中点值作代表);(2)认为考生竞赛成绩z 服从正态分布N (μ,σ2),其中μ,σ2分别取考生的平均成绩x -和考生成绩的方差s 2,那么该区4000名考生成绩超过84.81分(含84.81分)的人数大约为多少?(3)如果用该区参赛考生成绩的情况来估计全市参赛考生成绩的情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为ξ,求P (ξ≤3).(精确到0.001) 附:①s 2=204.75,204.75=14.31;②若z ~N (μ,σ2),则P (μ-σ<z <μ+σ)=0.6826,P (μ-2σ<z <μ+2σ)=0.9544; ③0.84134≈0.501.29.〖2019·广东汕头期末〗为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率):①P (μ-σ<X ≤μ+σ)≥0.6826; ②P (μ-2σ<X ≤μ+2σ)≥0.9544; ③P (μ-3σ<X ≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级. (2)将直径小于等于μ-2σ或直径大于μ+2σ的零件认为是次品.①从设备M 的生产流水线上随意抽取2件零件,计算其中次品个数Y 的数学期望E (Y ); ②从样本中随意抽取2件零件,计算其中次品个数Z 的数学期望E (Z ).30.〖2019·皖北协作区联考〗在极坐标系中,直线ρ(3cos θ-sinθ)=2与圆ρ=4sinθ的交点的极坐标为( ) A .(2,π6)B .(2,π3)C .(4,π6)D .(4,π3)31.〖2019·天津南开区模拟〗在极坐标系中,直线ρ(sinθ-cosθ)=a 与曲线ρ=2cosθ-4sinθ相交于A ,B 两点,若|AB |=23,则实数a 的值为____.32.〖2019·广东肇庆一模〗已知曲线C 的极坐标方程为ρ=2(ρ>0,0≤θ<2π),曲线C 在点(2,π4)处的切线为l ,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,则l 的直角坐标方程为____.33.〖2019·唐山模拟〗已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 的方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.34.〖2019·福州质量检测〗在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos (θ-π6)=2.已知点Q 为曲线C 1上的动点,点P 在线段OQ 上,且满足|OQ |·|OP |=4,动点P 的轨迹为C 2. (1)求C 2的直角坐标方程;(2)设点A 的极坐标为(2,π3),点B 在曲线C 2上,求△AOB 面积的最大值.35.〖2019·皖南八校联考〗若直线l :⎩⎪⎨⎪⎧x =2t ,y =1-4t ,(t 为参数)与曲线C :⎩⎨⎧x =5cosθ,y =m +5sinθ,(θ为参数)相切,则实数m 为( ) A .-4或6B .-6或4C .-1或9D .-9或136.〖2019·北京朝阳二模〗在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t ,(t 为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin (θ+π4),则直线l 和曲线C 的公共点有( ) A .0个B .1个C .2个D .无数个37.〖2019·人大附中模拟〗已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2-t ,y =1+3t ,(t 为参数),圆C 的极坐标方程为ρ+2sinθ=0,若在圆C 上存在一点P ,使得点P 到直线l 的距离最小,则点P 的直角坐标为____.38.〖2019·衡水中学调研〗已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+tcosα,y =tsinα,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sinθ-2cosθ. (1)求曲线C 的参数方程;(2)当α=π4时,求直线l 与曲线C 交点的极坐标.39.〖2019·南昌模拟〗在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cosφ,y =3sinφ,(φ为参数).以坐标原点O为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsinθ-kρcosθ+k =0(k ∈R ). (1)请写出曲线C 的普通方程与直线l 的一个参数方程;(2)若直线l 与曲线C 交于点A ,B ,且点M (1,0)为线段AB 的一个三等分点,求|AB |.40.〖2019·天星大联考〗在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =-1+22t ,(t 为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos (θ+π4),若直线l 与曲线C 交于A ,B两点.(1)若P (0,-1),求|P A |+|PB |;(2)若点M 是曲线C 上不同于A ,B 的动点,求△MAB 的面积的最大值.41.〖2019·石家庄质量检测〗在平面直角坐标系中,直线l 的参数方程是⎩⎪⎨⎪⎧x =t ,y =2t ,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ2+2ρsinθ-3=0. (1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求|AB |.42.〖2019·郑州质量预测〗在平面直角坐标系xOy 中,直线l 过点(1,0),倾斜角为α,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ=8cosθ1-cos 2θ.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若α=π4,设直线l 与曲线C 交于A ,B 两点,求△AOB 的面积.43.〖2019·广州综合测试〗已知过点P (m ,0)的直线l 的参数方程是⎩⎨⎧x =m +32t ,y =12t ,(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=2cosθ. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且|P A |·|PB |=2,求实数m 的值.44.〖2019·武汉二月调研〗在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cosθ,y =2sinθ,(θ为参数),直线l 的参数方程为⎩⎨⎧x =t +3,y =2t -23,(t 为参数),直线l 与曲线C 交于A ,B 两点.(1)求|AB |的值;(2)若F 为曲线C 的左焦点,求F A →·FB →的值.45.〖2019·福建质检〗在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =tcosα,y =1+tsinα,(t 为参数,α∈[0,π)).以原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系.设曲线C 的极坐标方程为ρcos 2θ=4sinθ. (1)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围; (2)若直线l 与曲线C 交于不同的两点A ,B ,求|AB |的最小值.审题 对于(1),利用极坐标与直角坐标的互化公式,将曲线C 的极坐标方程化为直角坐标方程,再通过代换及二次函数的性质,确定目标函数的取值范围;对于(2),将直线的参数方程代入到曲线C 的直角坐标方程,通过消元,借助根与系数的关系及参数的几何意义,将|AB |表示出来,再借助三角函数的性质确定其最值. 46.〖2019·南昌NCS 二模〗在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=4sinθ,曲线C 2的极坐标方程为ρsin (θ+π6)=2.(1)求曲线C 1,C 2的直角坐标方程;(2)设曲线C 1,C 2交于点A ,B ,曲线C 2与x 轴交于点E ,求线段AB 的中点到点E 的距离.。

相关文档
最新文档