变化率与导数及计算
15导数的概念及计算
导数的概念及计算一、知识概述导数的概念及其基本运算是本周学习的重点内容,导数有着丰富的实际背景和广泛应用,通过对平均变化率的分析入手,层层深入,展现了从平均变化率到瞬时变化率的过程,指明了瞬时变化率就是导数,介绍了导数的一般定义.并借助函数图象,运用观察与直观分析阐明了曲线的切线斜率和导数间的关系.导数的计算主要包括两个方面,首先是几个常见函数的导数,然后是基本初等函数的导数公式和导数的运算法则,关键在于使用这些公式与法则求简单函数的导数.二、重难点知识归纳1.变化率与导数(1)平均变化率通常把式子称为函数f(x)从x1到x2的平均变化率.令,,则平均变化率可表示为(2)导数的概念一般地,函数y=f(x)在x=x0处的瞬时变化率是则称它为函数y=f(x)在x=x0处的导数(derivative),记作或,即当x变化时,便是x的一个函数,则称它为f(x)的导函数(derivative funtion)(简称导数),记作或,则.(3)注意事项:弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别与联系,可以从以下几个方面来认识.①函数在一点处的导数,就是在该点的函数改变量与自变量的改变量之比的极限,它是一个常数,不是变数.②导函数(导数)是一个特殊的函数,它的引出和定义始终贯穿着函数思想,对于每一个确定的值x0,都对应着一个确定的导数,根据函数的定义,在某一区间内就构成了一个新函数,即导数.③函数y=f(x)在点x0处的导数就是导函数在x=x0处的函数值,即=.这也是求函数在x=x0处的导数的方法之一.(4)导数的几何意义函数y=f(x)在点x0处的导数就是曲线y=f(x)在点处的切线的斜率k,即.2.导数的计算(1)基本初等函数的导数公式①若f(x)=c,则;②若,则;③若f(x)sinx,则;④若f(x)=cosx,则;⑤若f(x),则(a>0);⑥若f(x),则;⑦若f(x),则(a〉0,且a1);⑧若f(x),则.(2)导数运算法则①;②;③(3)复合函数的求导法则(难点)设函数在点x处有导数,函数y=f(u)在点x的对应点u处有导数或写作.复合函数求导法则:复合函数对自变量的导数等于已知函数对中间变量的导数乘以中间变量对自变量的导数,即.三、典型例题剖析例1.利用导数的定义,求出函数y=x+的导数,并据此求函数在x=1处的导数.[解析]例2.求等边双曲线在点处的切线斜率,并写出切线方程.[解析]例3.设f(x)是定义在R上的函数,且对任何x1,x2R都有f(x1+x2)=f(x1)·f(x2).若f(0)0,。
导数与函数的变化率
导数与函数的变化率在微积分中,导数是一个十分重要且常见的概念。
导数可用于描述函数在某一点处的变化率,如何计算导数、导数的应用以及导数与函数的关系是微积分学习中的基本内容。
在本文中,我们将探讨导数与函数的变化率。
一、导数的定义及计算方法导数的定义可描述为函数$f(x)$在某一点$x_0$处的变化率,它表示函数在该点处的瞬时变化率。
一般来说,导数的计算包括以下几种方法:1.使用导数定义公式$$f'(x_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$其中,$\Delta x$取极限时表示函数$f(x)$在$x_0$处的微小增量,即无穷小。
它也可以表达为$\frac{dy}{dx}$ 或$\frac{df}{dx}$。
2.使用常用导数公式,这是一些几乎所有微积分学生都需要熟记的公式。
例如:$$\frac{d}{dx}(c)=0$$$$\frac{d}{dx}(x^n)=nx^{n-1}$$$$\frac{d}{dx}(\sin x)=\cos x$$$$\frac{d}{dx}(\ln x)=\frac{1}{x}$$其中 $c$ 为常数,$n$ 为整数,$\sin$ 和 $\ln$ 分别表示正弦函数和自然对数。
3.使用基本的微积分运算法则,包括链式法则、求导法则和反求导法则等。
二、导数的应用导数在其他学科中也有许多应用,例如:1.物理学中,利用导数可以求解物体的速度和加速度。
2.经济学中,利用导数可以求解生产函数和边际收益。
3.生命科学中,利用导数可以解决动力学问题,例如药物的生物利用度和峰浓度时刻。
三、导数与函数的关系导数和函数之间的关系也十分重要,它们之间存在很多有趣的特性,例如:1.导数可以揭示函数的增长趋势和极值,帮助人们了解函数的行为。
2.函数的导数是连续的,导数为0的点对应着函数的极值(局部极大值或局部极小值)。
第一节 变化率与导数、导数的计算-高考状元之路
第三章 导数及其应用复习备考资讯考纲点击1.变化率与导数、导数的计算(1)了解导数概念的实际背景.(2)理解导数的几何意义.(3)能根据导数定义求函数xy x y x y c y 1,,,2====的导数. (4)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.2.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(3)会利用导数解决某些实际问题.考情分析1.导数的运算是导数的基本内容,在高考中每年必考,一般一单独命题,而在考查导数应用的同时考查.2.导数的几何意义是高考考查的重点内容,常与解析几何知识交汇命题,多以选择题、填空题的形式出现,有时也出现在解答题中关键的一步.3.利用导数研究函数的单调性、极值、最值以及解决生活中的优化问题,巳成为近几年高考炙手可热的考点。
4.选择题、填空题,侧重于利用导数确定函数的单调性和极值;解答题,侧重于导数与函数、解析几何、不等式、数列的综合应用,一般难度较大,属中高档题,第一节 变化率与导数、导数的计算预习设计 基础备考知识梳理1.函数)(x f y =从1x 到2x 的平均变化率函数)(x f y =从1x 到2x 的平均变化率为若),()(,1212x f x f y x x x -=∆-=∆则平均变化率可表示为2.函数)(x f y =在0x x =处的导数(1)定义;称函数0)(x x x f y ==在处的瞬时变化率 = 为函数)(x f y =在0x x =处的导数,记作,|)(0/0/x x y x f =或即=∆=---ΛAxy x r lim )(0 (2)几何意义:函数)(x f 在点0x 处的导数)(0/x f 的几何意义是在曲线)(x f y =上点 处的 .相应地,切线方程为3.函数)(x f 的导函数称函数=)(/x f 为)(x f 的导函数,导函数有时也记作/y4.基本初等函数的导数公式5.导数运算法则=±/)]()]()[1(x g x f=/)]()()[2(x g x f=/])()()[3(x g x f ).0)((=/x g典题热身1.设,ln )(x x x f =若,2)(0/=x f 则=0x ( )2.e A e B . 22ln .c 2ln .D2.(2011.山东高考)曲线113+=x y 在点P(l ,12)处的切线与y 轴交点的纵坐标是( )9.-A 3.-B 9.C 15.D3.(2010.全国课标卷)曲线123+-=x x y 在点(1,O)处的切线方程为( )1-=⋅x y A 1+-=⋅x y B 22-=⋅x y C 22+-=⋅x y D4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a1.A 21.B 21.-c 1.-D5.(2011.湖南高考)曲线21cos sin sin -+=x x x y 在点)0,4(πM 处的切线的斜率为 ( ) 21.-A 21.B 22.-c 22.D 课堂设计 方法备考【例1】 已知P ,Q 为抛物线y x 22=上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__ __.【例2】已知曲线 ⋅+=34313x y (1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程.例3已知函数)(x f y =的图象是折线段ABC ,其中).0,1().5,21()0,0(C B A 函数x x xf y ≤=0)(()1≤的图象与x 轴围成的图形的面积为解题思路解析 由已知可得⎪⎪⎩⎪⎪⎨⎧∈+-∈=],1,21(,1010],21,0[,10)(x x x x x f 则⎪⎩⎪⎨⎧∈+-∈==],1,21(,1010],21,0[,10)(22x x x x x x xf y 画出函数图象,如图所示,所求面积+=⎰+dx x s )10(20+=+-⎰++0321|310)1010(x dx x x +=+-+125|)5310(123x x )41581310()5310(⨯+⨯--+-⋅=45题型三 导数的几何意义及其应用【例3】设函数),,(1a )(z b a bx x x f ∈++=曲线)(x f y =在点(2,,f(2))处的切线方程为.3=y (1)求)(x f 的解析式;(2)证明函数)(x f y =的图像是一个中心对称图形,并求其对技法巧点1.函数求导的方法和步骤求导数时,先化简再求导是运算的基本方法.一般地,分式函数的求导,要先观察函数的结构特征,可否化为整式函数或较简单的分式函数;对数函数的求导,先化为和、差形式,再求导;三角函数求导,先应用三角公式转化为和或差的形式.2.与导数的几何意义有关的两类问题有关导数几何意义的题目一般有两类:一类是求曲线韵切线方程,这类题目要注意审好题,看到底是在某点处的切线还是过某点的切线,在某点处的切线一般有一条,过某点的切线可能有两条或更多;另一类是已知曲线的切线求字母的题目,已知曲线的切线一般转化为两个条件,即原函数一个条件,导函数一个条件,导函数的条件一般不会忽视,但原函数的条件很容易被忽视。
函数的导数与变化率
函数的导数与变化率函数的导数是微积分中的基础概念之一,它描述了函数在某一点上的变化率。
在实际问题中,我们经常需要了解一个函数在某一点的变化情况,以便更好地理解问题的本质和解决方法。
本文将详细介绍函数的导数的概念、性质以及在实际应用中的意义和计算方法。
一、导数的概念函数的导数是函数变化率的度量,表示了函数在某一点上的变化速度。
形式上,设函数y=f(x),若该函数在点x处的导数存在,则导数被定义为:f'(x)=lim(h→0)[f(x+h)-f(x)]/h其中,f'(x)表示函数在点x处的导数,h表示自变量x的变化量。
导数的定义是一个极限的概念,表示了自变量逐渐接近某一点时,函数变化的趋势。
二、导数的性质1. 导数的存在性函数在某一点上的导数存在的充分条件是函数在该点附近连续,并且左右导数相等。
2. 导数与函数图像的关系函数的导数可以反映函数图像的一些特征,比如导数正值表示函数在该点上升,导数负值表示函数在该点下降,导数等于零表示函数在该点取得极值。
3. 导数的计算法则导数具有一组计算法则,可以用于计算各种复杂函数的导数。
常见的导数运算法则包括常数法则、幂法则、和差法则、乘积法则和商数法则等。
三、变化率与导数的关系函数的导数即为函数在某一点上的变化率。
当自变量的变化量很小时,导数可以近似地表示函数的变化率。
函数的变化率可以分为平均变化率和瞬时变化率两种。
平均变化率是指函数在两个点之间的变化率,可以通过函数的增量和自变量的增量来计算。
瞬时变化率是指函数在某一点上的瞬时变化率,可以通过函数的导数来求得。
四、导数在实际应用中的意义导数在实际问题中有着广泛的应用。
以物理学为例,速度即为位移对时间的导数,加速度即为速度对时间的导数。
在经济学中,边际成本和边际收益也可以通过导数来计算和分析。
导数还可以用于优化问题、曲线拟合和图像处理等领域。
五、导数的计算方法为了计算导数,我们可以利用导数的定义进行计算,也可以利用导数的运算法则简化计算过程。
导数与变化率的概念与计算方法
瞬时变化率
定义:瞬时变化 率是指在某一时 刻附近,函数值 随自变量变化的
趋势和快慢
计算方法:通 过求导数来计 算瞬时变化率
几何意义:瞬 时变化率可以 理解为函数图 像在该点的切程学等领域有广 泛的应用,如速 度、加速度等物
理量的计算
变化率的几何意义
变化率描述的是函数图像上两点间距离的相对变化 变化率等于函数图像上切线斜率 变化率可用于分析函数图像的形状和趋势 变化率的概念在导数定义中有着基础地位
热传导:导数可以用来描述热量的传递过程,例如物体温度随时间的变化规律和热传导方程的求 解。
电磁学:导数可以用来描述电场和磁场的变化规律,例如电场强度和磁场强度的计算。
导数在经济分析中的应用
边际分析:导数 用于研究经济活 动中各变量的变 化趋势和极限状 态,帮助决策者 做出最优决策。
弹性分析:导数 用于计算各种经 济指标的弹性, 从而分析各因素 对经济指标的影 响程度。
利用导数求瞬时变化率
定义:导数描述 了函数在某一点 处的切线的斜率
计算方法:通过 求导公式或导数 定义进行计算
应用场景:在物理学、 工程学等领域中,利 用导数求瞬时变化率 具有广泛的应用
注意事项:导数在 某些点可能不存在, 需要注意函数的可 导性
导数与变化率的 应用
导数在几何中的应用
导数在研究曲线上某点的切线 斜率中应用
经济分析:在经济学中, 变化率用于分析经济增 长、通货膨胀和利率等 经济指标的变化情况。
预测模型:在气象学 和统计学中,变化率 用于建立预测模型, 例如预测股票价格和 天气变化趋势。
控制系统:在控制工 程中,变化率用于设 计和分析控制系统, 例如调节汽车发动机 的油门和温度。
感谢您的观看
《2.11变化率与导数、导数的计算》 教案
教学过程一、课堂导入1.从近几年的高考试题来看,导数的几何意义是高考的热点.2.题型既有选择题、填空题,又有解答题,难度中档左右.3.命题切入点:在考查导数的概念及其运算的基础上,又注重考查与解析几何结合的相关知识.二、复习预习导数的概念、几何意义及其运算是运用导数解决问题以及导数在实际生活中的应用的基础,虽然相关知识点的考查为A,B级,但是在许多综合题目中都会涉及本节知识点,需要学生在运用本节知识点理解题意的基础上进一步的运用导数。
对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的作用,在实施化简时,要注意变换的等价性,避免不必要的失误.对于某些不满足求导法则条件的函数,可适当进行恒等变形,步步为营,使解决问题水到渠成.三、知识讲解考点1 导数的概念函数)(x f y =在0x x =处的导数一般地,函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,称其为函数)(x f y =在0x x =处的导数,记作)(0x f '.考点2 导函数当x 变化时,)(x f '称为)(x f 的导函数,则xx f x x f y x f x ∆-∆+='='→∆)()(lim)(000特别提醒:注意)(x f '与)(0x f '的区别,)(x f '是一个函数,)(0x f '是常数,)(0x f '是函数)(x f '在点0x 处的函数值.考点3 导数的几何意义函数)(x f y =在0x x =处的导数的几何意义,就是曲线)(x f y =在点),(00y x P 处的切线的斜率,过点P 的切线方程为:))((000x x x f y y -'=-.特别提醒:求函数)(x f y =在点),(00y x P 处的切线方程与求函数)(x f y =过点),(00y x P 的切线方程意义不同,前者切线有且只有一条,且方程为))((000x x x f y y -'=-,后者可能不只一条.考点4 几种常见函数的导数考点5 导数运算法则(1))()(])()([x g x f x g x f '±'='±; (2))()()()(])()([x g x f x g x f x g x f '+'='; (3))()()()()(])()([2x g x g x f x g x f x g x f '-'=',)0)((≠x g考点6 复合函数的导数(理)设函数)(x ϕμ=在点x 处有导数)(x ϕμ'=',函数)(μf y =在点x 的对应点μ处有导数)(μf y '=', 则复合函数))((x f y ϕ=在点x 处也有导数,且x x y y μμ'⋅'='四、例题精析【例题1】【题干】求下列函数的导数(1)y=x+x5+sin xx2;(2)y=(x+1)(x+2)(x+3);(3)y=11-x+11+x;(4)y=cos 2xsin x+cos x.【解析】(1)∵y =x 12+x 5+sin x x 2=x 32-+x 3+sin xx 2,∴y ′=(x 32-)′+(x 3)′+(x -2sin x )′=-32x 52-+3x 2-2x -3sin x +x -2cos x .(2)y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.(3)∵y =11-x +11+x =21-x ,∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2.(4)y =cos 2xsin x +cos x =cos x -sin x ,∴y ′=-sin x -cos x .【例题2】【题干】求下列复合函数的导数:(1)y=(1+sin x)2;(2)y=ln x2+1;(3)y=1(1-3x)4;(4)y=x1+x2.【解析】(1)y ′=2(1+sin x )·(1+sin x )′=2(1+sin x )·cos x .(2)y ′=(ln x 2+1)′ =1x 2+1·( x 2+1)′ =1x 2+1·12(x 2+1)12-·(x 2+1)′=xx 2+1.(3)设u =1-3x ,y =u -4.则y x ′=y u ′·u x ′=-4u -5·(-3)=12(1-3x )5. (4)y ′=(x 1+x 2)′=x ′·1+x 2+x () 1+x 2′=1+x 2+x 21+x 2=1+2x21+x 2 .【例题3】【题干】已知函数f (x )=2 x +1(x >-1),曲线y =f (x )在点P (x 0,f (x 0))处的切线l 分别交x 轴和y 轴于A ,B 两点,O 为坐标原点.(1)求x 0=1时,切线l 的方程;(2)若P 点为⎝ ⎛⎭⎪⎫-23,233,求△AOB 的面积.【解析】(1)f′(x)=1x+1,则f′(x0)=1x0+1,则曲线y=f(x)在点P(x0,f(x0))的切线方程为y-f(x0)=1x0+1(x-x0),即y=xx0+1+x0+2x0+1.所以当x0=1时,切线l的方程为x-2y+3=0.(2)当x=0时,y=x0+2x0+1;当y=0时,x=-x0-2.S△AOB=12⎪⎪⎪⎪⎪⎪x0+2x0+1·(x0+2)=(x0+2)22 x0+1,∴S△AOB =⎝⎛⎭⎪⎫-23+222 -23+1=839.【例题4】【题干】若函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ(0<θ<π),且f (x )+f ′(x )是奇函数,则θ=________.【答案】 π2【解析】∵f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ, ∴f ′(x )=3cos ⎝ ⎛⎭⎪⎫3x +π6+θ. 于是y =f ′(x )+f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ+3cos ⎝ ⎛⎭⎪⎫3x +π6+θ =2sin ⎝ ⎛⎭⎪⎫3x +π6+θ+π3=2sin ⎝ ⎛⎭⎪⎫3x +θ+π2 =2cos(3x +θ),由于y =f (x )+f ′(x )=2cos(3x +θ)是奇函数,∴θ=k π+π2(k ∈Z ).又0<θ<π,∴θ=π2.四、课堂运用【基础】1.(2013·永康模拟)函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是()解析:选D据函数的图象易知,x<0时恒有f′(x)>0,当x>0时,恒有f′(x)<0.2.已知t为实数,f(x)=(x2-4)(x-t)且f′(-1)=0,则t等于() A.0 B.-1C.12D.2解析:选C f′(x)=3x2-2tx-4,f′(-1)=3+2t-4=0,t=1 2.3.(2013·大庆模拟)已知直线y=kx与曲线y=ln x有公共点,则k的最大值为()A.1 B.1 eC.2e D.2e解析:选B从函数图象知在直线y=kx与曲线y=ln x相切时,k取最大值.y′=(ln x)′=1x =k,x=1k(k≠0),切线方程为y-ln 1k =k⎝⎛⎭⎪⎫x-1k,又切线过原点(0,0),代入方程解得ln k=-1,k=1e.【巩固】4.已知f(x)=x2+2xf′(1),则f′(0)=________.解析:f′(x)=2x+2f′(1),∴f′(1)=2+2f′(1),即f′(1)=-2. ∴f′(x)=2x-4.∴f′(0)=-4.答案:-45.若曲线f(x)=ax5+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x =0有正实数解.∴5ax 5=-1有正实数解.∴a <0.故实数a 的取值范围是(-∞,0).答案:(-∞,0)【拔高】6.求下列各函数的导数: (1)(x )′=12x 12-;(2)(a x )′=a 2ln x ;(3)(x cos x )′=cos x +x sin x ;(4)⎝ ⎛⎭⎪⎫x x +1′=1x +1,其中正确的有( )A .0个B .1个C .2个D .3个解析:选B根据函数的求导公式知只有(1)正确.7.函数y=x2(x>0)的图象在点(a k,a2k)处的切线与x轴的交点的横坐标为a k+1,其中k∈N*.若a1=16,则a1+a3+a5的值是________.解析:∵y ′=2x ,∴点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点为(a k +1,0),∴a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12.∴a 3=4,a 5=1.∴a 1+a 3+a 5=21.答案:218.如图,从点P1(0,0)作x轴的垂线交曲线y=e x于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2作x 轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2;…;P n,Q n,记P k点的坐标为(x k,0)(k=1,2,…,n).(1)试求x k与x k-1的关系(k=2,…,n);(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|.解:(1)设点P k -1的坐标是(x k -1,0),∵y =e x ,∴y ′=e x ,∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1=e x k -1(x -x k -1),令y =0,则x k =x k -1-1(k =2,…,n ).(2)∵x 1=0,x k -x k -1=-1,∴x k =-(k -1),∴|P k Q k |=e x k =e -(k -1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-ne -1,即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-ne -1.课程小结1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别与联系(1)曲线y=f(x)在点P(x0,y0)处的切线是指P为切点,切线斜率为k=f′(x0)的切线,是唯一的一条切线.(2)曲线y=f(x)过点P(x0,y0)的切线,是指切线经过P点.点P可以是切点,也可以不是切点,而且这样的直线可能有多条.。
2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文
第十节变化率与导数、导数的运算授课提示:对应学生用书第37页[基础梳理]1.导数的概念(1)函数y=f(x)在x=x0处导数的定义称函数y=f(x)在x=x0处的瞬时变化率=错误!为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=错误!=.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=错误!为f(x)的导函数.2原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x(a>0,且a≠1)f′(x)=a x ln__af(x)=e x f′(x)=e x f(x)=log a x(a>0,且a≠1)f′(x)=错误!f(x)=ln x f′(x)=错误!3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)错误!′=错误!(g(x)≠0).1.求导其实质是一种数学运算即求导运算,有公式和法则,也有相应的适用范围或成立条件,要注意这一点,如(x n)′=nx n-1中,n≠0且n∈Q*.错误!′=错误!,要满足“=”前后各代数式有意义,且导数都存在.2.(1)f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.(2)f′(x)是一个函数,与f′(x0)不同.3.(1)“过”与“在”:曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.(2)“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.[四基自测]1.(基础点:求导数值)若f(x)=x·e x,则f′(1)等于()A.0B.eC.2e D.e2答案:C2.(易错点:导数的运算)已知f(x)=x·ln x,则f′(x)=() A。
变化率与导数
导数的概念
一般地, 函数 y=f(x) 在点x=x0处的瞬时变 化率是
f ( x0 + Dx ) f ( x 0 ) Dy lim lim Dx 0 D x Dx 0 Dx
我们称它为函数 y = f (x)在点x=x0处的导数, 记为 f '(x0)或 y'| x=x0 ,即
f ( x0 + Dx ) f ( x0 ) Dy f ( x0 ) lim lim Dx 0 Dx Dx 0 Dx
Dx 0
曲线在点(x0 , f(x0))处的切线的方程为: y-f (x0) = f '(x0)(x-x0)
例2 求曲线y=f(x)=x2+1在点P(1,2)处的 切线方程.
解:
y
△y
因此,切线方程为
y-2=2(x-1),
P △x
即 y = 2x.
O
1
x
【总结提升】 求曲线在某点处的切线方程的基本步骤: ①求出切点P的坐标;
变化率与导数
平均变化率
我们把式子
f ( x2 ) f ( x1 ) 称为函数 x2 x1
y=f (x)从x1到 x2的平均变化率.
令△x = x2-x1 , △ y = f (x2) -f (x1) ,则
△y f ( x 2 ) f ( x1 ) = △x x 2 x1
平均变化率
例题分析
例2 将原油精练为汽油、柴油、塑胶等各 种不同产品, 需要对原油进冷却和加热. 如果第 x h时, 原油的温度(单位: oC) 为 f(x)=x2-7x+15 (0≤x≤8). 计算第2h 与低6h时原油温度的瞬时变化 率,并说明它们的意义。
解:
变化率与导数、导数的运算
畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP邀请码NJBHKZO,高佣联盟官方正版APP邀请码2548643第十节变化率与导数、导数的运算1.导数的概念(1)函数y=f(x)在x=x0处的导数:函数y=f(x)在x=x0处的瞬时变化率lim Δx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数:称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式3.(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)因为(ln x )′=1x ,所以⎝⎛⎭⎫1x ′=ln x .( ) 答案:(1)× (2)√ (3)√ (4)×2.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( ) A .e 2 B .e C.ln 22D .ln 2解析:选B f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.3.下列求导运算正确的是( ) A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(3x )′=3x log 3eD .(x 2cos x )′=-2sin x解析:选B ⎝⎛⎭⎫x +1x ′=x ′+⎝⎛⎭⎫1x ′=1-1x 2;(3x )′=3x ln 3;(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x .4.曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3D .y =-2x -2解析:选A 因为y =1-2x +2=x x +2,所以y ′=x +2-x (x +2)2=2(x +2)2,y ′|x =-1=2, 所以曲线在点(-1,-1)处的切线斜率为2, 所以所求切线方程为y +1=2(x +1),即y =2x +1.5.(2017·全国卷Ⅰ)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析:因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1,所以切线方程为y -2=x -1,即x -y +1=0.畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643答案:x -y +1=06.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________. 解析:设切点为(x 0,y 0),则f ′(x 0)=-1a ·e x 0=-1, ∴e x 0=a ,又-1a ·e x 0=-x 0+1, ∴x 0=2,a =e 2. 答案:e 2考点一 导数的运算 (基础送分型考点——自主练透)[考什么·怎么考]A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x , 得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ; (3)y =cos xe x; 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x . [怎样快解·准解]1.谨记1个原则先化简解析式,使之变成能用求导公式求导的函数的和、差、积、商,再求导. 2.熟记求导函数的5种形式及解法(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. 考点二 导数的几何意义 (题点多变型考点——追根溯源)角度(一) 求曲线的切线方程 1.已知函数f (x )=ln x -8x -1x +1,则函数f (x )的图象在⎝⎛⎭⎫1,-72处的切线方程为________. 解析:由f (x )=ln x -8x -1x +1,得f ′(x )=1x -9(x +1)2, 则f ′(1)=1-9(1+1)2=1-94=-54, 故所求切线方程为y -⎝⎛⎭⎫-72=-54(x -1), 即5x +4y +9=0. 答案:5x +4y +9=0 角度(二) 求切点坐标2.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.角度(三) 求参数的值(范围)3.(2018·成都诊断)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP邀请码NJBHKZO,高佣联盟官方正版APP邀请码2548643解析:选D f′(x)=1x+2ax=2ax2+1x(x>0),根据题意有f′(x)≥0(x>0)恒成立,所以2ax2+1≥0(x>0)恒成立,即2a≥-1x2(x>0)恒成立,所以a≥0,故实数a的取值范围为[0,+∞).[题“根”探求]1.曲线y=sin x+e x在点(0,1)处的切线方程是()A.x-3y+3=0 B.x-2y+2=0C.2x-y+1=0 D.3x-y+1=0解析:选C因为y=sin x+e x,所以y′=cos x+e x,所以y′|x=0=cos 0+e0=2,所以曲线y=sin x+e x在点(0,1)处的切线方程为y-1=2(x-0),即2x-y+1=0.2.(2017·天津高考)已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为________.解析:因为f′(x)=a-1x,所以f′(1)=a-1.又f(1)=a,所以切线l的方程为y-a=(a-1)(x-1).令x=0,得y=1.答案:13.(2018·云南一检)已知函数f(x)=ax ln x+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4.答案:4(一)普通高中适用作业A 级——基础小题练熟练快1.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.2.已知函数f (x )=log a x (a >0且a ≠1),若f ′(1)=-1,则a =( ) A .e B.1e C.1e2 D.12解析:选B 因为f ′(x )=1x ln a ,所以f ′(1)=1ln a =-1,所以ln a =-1,所以a =1e. 3.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.4.曲线f (x )=2x -e x 与y 轴的交点为P ,则曲线在点P 处的切线方程为( ) A .x -y +1=0 B .x +y +1=0 C .x -y -1=0D .x +y -1=0解析:选C 曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x ,所以f ′(0)=1.所以所求切线方程为y +1=x ,即x -y -1=0.5.函数g (x )=x 3+52x 2+3ln x +b (b ∈R)在x =1处的切线过点(0,-5),则b 的值为( )A.72B.52C.32D.12畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643解析:选B 当x =1时,g (1)=1+52+b =72+b ,又g ′(x )=3x 2+5x +3x ,所以切线斜率k =g ′(1)=3+5+3=11, 从而切线方程为y =11x -5, 由于点⎝⎛⎭⎫1,72+b 在切线上, 所以72+b =11-5,解得b =52.故选B.6.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x=3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又g (x )=xf (x ),g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 7.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x -1x sin x ,∴f (π)+f ′⎝⎛⎭⎫π2=-1π-2π=-3π. 答案:-3π8.(2018·东北四市联考)函数f (x )=e x sin x 的图象在点(0,f (0))处的切线方程是________. 解析:由f (x )=e x sin x ,得f ′(x )=e x sin x +e x cos x ,所以f (0)=0且f ′(0)=1,则切线的斜率为1,切点坐标为(0,0),所以切线方程为y =x .答案:y =x9.若函数f (x )在R 上可导,f (x )=e x ln x +x 3f ′(1),则f ′(1)=________. 解析:由已知可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x +3x 2f ′(1), 故f ′(1)=e ()ln 1+1+3f ′(1),解得f ′(1)=-e2.答案:-e210.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________.解析:因为y ′=-1-cos xsin 2x,所以y ′| x =π2=-1,由条件知1a =-1,所以a =-1. 答案:-1B 级——中档题目练通抓牢1.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1eD .-1e解析:选C y =ln x 的定义域为(0,+∞),设切点为(x 0,y 0),则k =y ′|x =x 0=1x 0,所以切线方程为y -y 0=1x 0(x -x 0),又切线过点(0,0),代入切线方程得y 0=1,则x 0=e ,所以k =y ′|x =x 0=1x 0=1e.2.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上, 所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax +2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.故选D.3.在直角坐标系xOy 中,设P 是曲线C :xy =1(x >0)上任意一点,l 是曲线C 在点P 处的切线,且l 交坐标轴于A ,B 两点,则下列结论正确的是( )A .△OAB 的面积为定值2 B .△OAB 的面积有最小值为3C .△OAB 的面积有最大值为4D .△OAB 的面积的取值范围是[3,4]畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643解析:选A 由题意知,y =1x (x >0),则y ′=-1x2.设P ⎝⎛⎭⎫a ,1a ,则曲线C 在点P 处的切线方程为y -1a =-1a 2(x -a ), 令x =0可得y =2a ;令y =0可得x =2a , 所以△OAB 的面积为12×2a ×2a =2,即定值2.故选A.4.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则a =________,切点坐标为________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ).则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1.解得x 0=-1,a =-12,切点坐标为(-1,0).答案:-12(-1,0)5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为_______. 解析:由y =x 2-ln x ,得y ′=2x -1x (x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点,则y ′x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去). ∴点P 0的坐标为(1,1).∴所求的最小距离=|1-1-2|2= 2.答案: 26.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1, ∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 7.设抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)因为y ′=-2x +92,设切点P 的坐标为(x 1,y 1),则⎩⎪⎨⎪⎧ -2x 1+92=k ,y 1=kx 1,y 1=-x 21+92x 1-4,解得⎩⎪⎨⎪⎧ x 1=2,y 1=1,k =12或⎩⎪⎨⎪⎧x 1=-2,y 1=-17,k =172.因为切点P 在第一象限,所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5. 将其代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4. C 级——重难题目自主选做1.已知f (x )=14x 2+sin ⎝⎛⎭⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是( )解析:选A ∵f (x )=14x 2+sin ⎝⎛⎭⎫π2+x =14x 2+cos x ,∴f ′(x )=12x -sin x ,它是一个奇函数,其图象关于原点对称,故排除B ,D.又f ″(x )=12-cos x ,当-π3<x <π3时,cos x >12,∴f ″(x )<0,故函数y =f ′(x )在区间⎝⎛⎭⎫-π3,π3上单调递减,故排除C ,选A. 2.若函数f (x )=2sin x (x ∈[0,π))的图象在切点P 处的切线平行于函数g (x )=2x ⎝⎛⎭⎫x 3+1的图象在切点Q 处的切线,则直线PQ 的斜率为()畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643A.83 B .2 C.73D.33解析:选A 由题意得f ′(x )=2cos x ,g ′(x )=x 12+x -12.设P (x 1,f (x 1)),Q (x 2,g (x 2)),f ′(x 1)=g ′(x 2),即2cos x 1=x 122+x -122,故4cos 2x 1=x 2+x -12+2,所以-4+4cos 2x 1=x 2+x -12-2,即-4sin 2x 1=x 122-x -1222,所以sin x 1=0,x 1=0,x122=x -122,x 2=1,故P (0,0),Q ⎝⎛⎭⎫1,83,故k PQ =83. (二)重点高中适用作业A 级——保分题目巧做快做1.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.3.已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .1D.12解析:选B 因为y =x 24-3ln x (x >0),所以y ′=x 2-3x .再由导数的几何意义,令x 2-3x =-12,解得x =2或x =-3(舍去).故切点的横坐标为2. 4.(2018·湖北百所重点高中联考)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .1B .-1C .2D .-2解析:选A f (x +1)=2(x +1)-1x +1,故f (x )=2x -1x ,即f (x )=2-1x ,对f (x )求导得f ′(x )=1x2,则f ′(1)=1,故所求切线的斜率为1,故选A. 5.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上, 所以f (1)=1,即a ln 1+b =1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.故选D.6.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x -1x sin x ,∴f (π)+f ′⎝⎛⎭⎫π2=-1π-2π=-3π. 答案:-3π7.若函数f (x )在R 上可导,f (x )=e x ln x +x 3f ′(1),则f ′(1)=________. 解析:由已知可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x +3x 2f ′(1), 故f ′(1)=e ()ln 1+1+3×f ′(1),解得f ′(1)=-e2.答案:-e28.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则a =________,切点坐标为________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ).则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1.畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643解得x 0=-1,a =-12,切点坐标为(-1,0).答案:-12 (-1,0)9.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (3)∵y =(x 2+3x +2)(x +3),∴y ′=(x 2+3x +2)′(x +3)+(x 2+3x +2)(x +3)′ =(2x +3)(x +3)+x 2+3x +2 =2x 2+9x +9+x 2+3x +2 =3x 2+12x +11.10.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1, ∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级——拔高题目稳做准做1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又g (x )=xf (x ),g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1. ∵g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有⎩⎪⎨⎪⎧x 0+m =1,y 0=x 0-1,y 0=12x 2+mx 0+72,m <0,解得m =-2.3.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 解析:由y =x 2-ln x ,得y ′=2x -1x (x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点,则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离=|1-1-2|2= 2.答案: 24.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.畅享淘宝天猫京东拼多多百万张大额内部优惠券,先领券后购物!手机应用市场/应用宝下载花生日记APP 邀请码NJBHKZO ,高佣联盟官方正版APP 邀请码2548643解析:由f (x )=x 3+ax +14得,f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x ,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34, ∴a =-1e34=-e-34.答案:-e -345.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 6.设抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解:(1)因为y ′=-2x +92,设切点P 的坐标为(x 1,y 1),则⎩⎪⎨⎪⎧ -2x 1+92=k ,y 1=kx 1,y 1=-x 21+92x 1-4,解得⎩⎪⎨⎪⎧ x 1=2,y 1=1,k =12或⎩⎪⎨⎪⎧x 1=-2,y 1=-17,k =172,因为切点P 在第一象限,所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5. 将其代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4.。
变化率与导数的概念、导数的运算
03 高阶导数及其应用
高阶导数的定义与计算
高阶导数的定义
函数一阶导数的导数称为二阶导数,二阶导 数的导数称为三阶导数,以此类推,n-1阶 导数的导数称为n阶导数。
高阶导数的计算
高阶导数的计算可以通过连续求导得到,每 求一次导,阶数增加一阶。对于常见的基本 初等函数,其高阶导数有特定的公式或规律 可循。
导数在几何上表示曲线在某一点处的切线斜率。当函数在某一点处的导数大于0时,表示函数在该点处单调增加; 当导数小于0时,表示函数在该点处单调减少;当导数等于0时,表示函数在该点处可能达到极值点或拐点。
可导与连续的关系
可导必连续
如果一个函数在某一点处可导,则该函数在该点处必定连续。这是因为可导的定义中已经包含了函数 在该点处的极限存在且等于函数值这一条件。
成本最小化
企业在给定产量下追求成本最小化时,需要找到使得边际 成本等于平均成本的产量,即求解成本函数的一阶导数等 于零的点。
效用最大化
消费者追求效用最,即求解效用函数的一阶导数等于 零的点。
05 导数在工程学中的应用
曲线拟合与最小二乘法中的导数应用
工程优化问题中的导数应用
优化算法
在工程设计和制造过程中,经常需要解决各种优化问 题,如最小化成本、最大化效率等。导数在这些优化 算法中发挥着重要作用,它们被用来计算目标函数的 梯度或方向导数,以确定搜索方向或步长。
敏感性分析
在工程经济学中,敏感性分析是一种评估项目风险的 方法。它通过计算项目效益指标(如净现值、内部收 益率等)对于各个不确定因素的导数或偏导数,来量 化各因素对项目效益的影响程度。
变化率与导数的概念、导数的运算
目 录
• 变化率与导数的基本概念 • 导数的运算规则 • 高阶导数及其应用 • 导数在经济学中的应用 • 导数在工程学中的应用 • 数值计算中的导数逼近方法
2011年高考试题分类考点9 变化率与导数、导数的计算
考点9 变化率与导数、导数的计算选择题1.(2011·山东高考文科·T4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A )-9 (B )-3 (C )9 (D )15【思路点拨】本题先求导,再由导数意义求切线方程,最后求切线与y 轴交点的纵坐标.【精讲精析】选C.因为y /=3x 2,切点为P (1,12),所以切线的斜率为3,故切线方程为3x-y+9=0,令x=0,得y=9,故选C.2.(2011·山东高考文科·T10)函数2sin 2x y x =-的图象大致是( )【思路点拨】本题先求导数,根据导数与函数单调性的关系判断函数图象的形状.【精讲精析】选C.因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得C 正确. 3.(2011·湖南高考文科T7)曲线y=sin x 1M(,0)sin x cos x 24π-+在点处的切线的斜率为( ) (A )21- (B )21 (C )22- (D )22 【思路点拨】本题考查导数的运算,导数的几何意义是:切线的斜率.【精讲精析】选B.首先求出函数的导数,再求出在点M 处的导数,得到该点处的切线的斜率.4.(2011·江西高考理科·T4)若()224ln f x x x x =--,则()'f x >0的解集为( )(A )()0,+∞ (B )()()1,02,-⋃+∞(C )()2,+∞ (D )()1,0-【思路点拨】首先求出f(x)的导数,再解分式不等式.【精讲精析】选C.{}44f (x)2x 2,f (x)0,2x 20,x x x 1)(x 2)0,1x 0x 2,f (x)x x x 0,x 2.=-->-->+-><<>>>''-由条件得:令即(整理得:解得:或又因为的定义域为所以5.(2011·江西高考文科·T4)曲线=xy e 在点A (0,1)处的切线斜率为( ) (A )1 (B )2 (C )e (D )1e【思路点拨】首先求函数的导数,再根据导数的几何意义即得.【精讲精析】选A.'x '0x 0y e ,e 1.====由条件得:根据导数的几何意义可得,k=y。
变化率与导数导数的计算
变化率与导数导数的计算一、变化率与导数的关系在数学中,变化率是指一个量相对于另一个量的变化程度,常用来衡量两个变量之间的关系。
而导数则是描述函数在其中一点上的变化率的概念。
在一个数学函数中,比如说y=f(x),x和y分别代表自变量和因变量。
那么,当x发生微小变化Δx时,对应的y值也会发生一定的变化Δy。
这时,我们可以计算出y随着x的变化而变化的速率,也就是变化率。
变化率可以通过求平均变化率和瞬时变化率来进行计算。
平均变化率指的是通过两个点之间的变化率来计算,可以用Δy/Δx来表示。
而瞬时变化率则是在其中一点上的变化率,通过取Δx趋近于0时的极限来计算,也就是导数。
二、导数的定义与计算导数是用来衡量函数在其中一点上的变化率的数值,用dy/dx来表示。
导数的定义是:f'(x) = lim(Δx→0) (f(x+Δx) - f(x))/Δx导数表示函数f(x)在x点处的瞬时变化率。
导数可以用各种方法进行计算,其中最常用的方法包括求导法则和导数的性质。
1.求导法则(1)常数法则:如果c是一个常数,那么d(c)/dx = 0。
(2)幂法则:如果f(x) = x^n,那么d(f(x))/dx = nx^(n-1)。
(3)和差法则:如果f(x)=u(x) ± v(x),那么d(f(x))/dx =d(u(x))/dx ± d(v(x))/dx。
(4)乘法法则:如果f(x) = u(x)v(x),那么d(f(x))/dx =u(x)d(v(x))/dx + v(x)d(u(x))/dx。
(5)除法法则:如果f(x) = u(x)/v(x),那么d(f(x))/dx =(v(x)d(u(x))/dx - u(x)d(v(x))/dx)/v(x)^2(6)复合函数法则:如果f(x) = g(u(x)),那么d(f(x))/dx =g'(u(x))d(u(x))/dx。
2.导数的性质(1)导数的和差性:(f(x)±g(x))'=f'(x)±g'(x)。
计算变化率公式范文
计算变化率公式范文变化率是指其中一变量在一段时间内的变化程度。
它可以帮助我们了解事物的增长或减少的速度,以及变化的幅度。
在各个领域中,变化率都有着广泛的应用,如经济学中的经济增长率、物理学中的速度等。
变化率的计算公式可以根据具体情况而定,下面将介绍几个常见的计算变化率的公式。
1.相对变化率(或百分比变化率)相对变化率是指一个量相对于原始状态的变化幅度的百分比。
它用于比较两个不同时间点或两个不同条件下的数量变化程度。
相对变化率的计算公式如下:相对变化率=(新状态值-原始状态值)/原始状态值×100%例如,假设公司的销售额在去年是100万美元,在今年增加到120万美元。
那么相对变化率可以通过以下公式计算:相对变化率=(120-100)/100×100%=20%2.平均变化率平均变化率表示一个变量在一段时间内的平均增长或减少速度。
它是根据起始和终止状态的变量值计算得出的。
平均变化率的计算公式如下:平均变化率=(终止状态值-起始状态值)/时间间隔例如,公司在2024年底的总资产是100万美元,在2024年底增加到120万美元。
那么平均变化率可以通过以下公式计算:平均变化率=(120-100)/(2024年-2024年)=20万美元/年3.比例变化率比例变化率用于比较两个变量之间的比例变化程度。
它可以帮助我们了解两个变量在变化过程中的相对关系。
比例变化率的计算公式如下:比例变化率=新变量/原变量例如,假设城市的人口在2000年是100万人,在2024年增加到120万人。
那么比例变化率可以通过以下公式计算:比例变化率=120/100=1.24.导数变化率在微积分中,导数是变化率的一个重要概念。
导数可以用来求解函数在其中一点的变化率,即函数在该点的切线的斜率。
导数变化率的计算公式如下:导数变化率 = dy / dx其中,dy表示变量y的微小变化量,dx表示变量x的微小变化量。
例如,假设物体的位移函数为s(t)=2t^2+3t+1(其中t为时间)。
0变化率与导数、导数的计算
fx0+Δx-fx0 lim Δx→0 Δx ________________________ .
3.导函数
当x变化时,f′(x)称为f(x)的导函数,则f′(x)= y′=
fx+Δx-fx limx0)相同吗?
提示:f′(x)是一个函数,f′(x0)是常数,f′(x0)是函数f′(x)在点 x0处的函数值.
(理)运用导数公式和导数的运算法则及复合函数求导法则求
导. (文)运用导数公式和导数的运算法则求导即可.
x′1-x+x2-x1-x+x2′ 解:(1)y′= 1-x+x22 1-x+x2-x0-1+2x 1-x2 = = 2 2 2 2. 1-x+x 1-x+x (2)y′=(3xex)′-(2x)′+e′ =(3x)′ex+3x(ex)′-(2x)′+0 =(3xln 3)· ex+3xex-2xln 2 =(3e)xln(3e)-2xln 2.
考纲要求 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数的定义求函数y =c,y=x,y=x2,y= 1 的 x 导数. 4.能利用给出的基本初等函数 的导数公式和导数的四则运 算法则求简单函数的导数.
考情分析 1.导数是高考命题的热点,是
必考内容,主要考查导数的
概念、导数的几何意义、导 数的计算等. 2.考查形式以选择题、填空题 为主,在解答题中通常出现
(1)根据导数的概念求函数的导数是求导的基本方法.确定y =f(x)在x=x0处的导数有两种方法:一是导数定义法,二是导函 数的函数值法. (2)求函数y=f(x)在x=x0处的导数的求解步骤
【考向探寻】 1.利用基本初等函数的导数公式及导数运算法则求导数.
2.求复合函数的导数.(理)
【典例剖析】 求下列函数的导数: x (1)y= ; 1-x+x2 (2)y=3xex-2x+e; ln x (3)y= 2 ; x +1 (4)y=xcos x-sin x; ( 理) (5)y=(3-2x)5;(6)y=ln(x2+1).
函数的导数与变化率知识点总结
函数的导数与变化率知识点总结函数的导数是微积分中一个重要的概念,它在研究函数的性质和变化规律时起到了重要的作用。
导数可以用于求函数的切线方程、最值、极值等性质,因此在许多实际问题中都有广泛的应用。
本文将对函数的导数与变化率的知识点进行总结,并介绍其基本概念、计算方法以及几个典型应用。
1. 导数的基本概念导数表示了函数在某一点的瞬时变化率,也可以理解为函数的斜率。
对于函数f(x),其在某一点x=a处的导数记为f'(a),可以通过下式进行计算:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中,h表示变化的增量。
导数的计算实际上是求取函数在某一点的极限。
若导数存在,则说明函数在该点可微,也就是函数在该点的图像是光滑的。
2. 导数的计算方法导数的计算方法有多种,根据函数的性质和表达式的不同而有所不同。
以下是几种常见的导数计算方法:2.1 基本初等函数的导数计算对于多项式函数、指数函数、对数函数、三角函数等基本初等函数,都有相应的导数公式可以直接使用。
例如,多项式函数f(x)=ax^n的导数为f'(x)=anx^(n-1),指数函数f(x)=e^x的导数为f'(x)=e^x,对数函数f(x)=ln(x)的导数为f'(x)=1/x,三角函数如sin(x)、cos(x)的导数分别为cos(x)和-sin(x)等。
2.2 导数的基本运算法则导数的计算还可以利用导数的基本运算法则,如和差法则、积法则、商法则等。
通过将复杂函数分解为基本初等函数的求导结果,并利用这些基本运算法则进行运算,可以较容易地求得复合函数的导数。
2.3 链式法则链式法则是求复合函数导数的常用方法。
对于函数y=f(u),u=g(x),则复合函数y=f(g(x))的导数可以通过以下公式进行计算:dy/dx = dy/du * du/dx3. 变化率与导数的关系导数不仅表示了函数在某一点的瞬时变化率,还可以用于描述函数在整个定义域上的变化规律。
(完整版)变化率与导数及导数的计算
第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。
第1节变化率与导数导数的计算
第1节变化率与导数导数的计算导数是微积分中的重要概念之一,它描述了函数在其中一点的变化率。
导数的概念最早由牛顿和莱布尼茨在17世纪提出,是微积分研究的基石之一、在实际问题中,导数的概念有着广泛的应用,如物理学中的速度、加速度、斜率等都是变化率的概念。
导数的定义是函数在其中一点的变化率,用极限表示,即:如果函数f(x)在点x=a处存在导数,则称函数在点x=a处可导,导数的值记为f'(a),即:f'(a) = lim(x→a) (f(x)-f(a))/(x-a)对于一个实函数来说,导数被定义为函数变化的斜率,表示的是函数在其中一点的瞬时变化速率。
在应用中,导数有许多计算方法,这里列举一些常用的计算方法:1.基本导数公式基本导数公式是指常用的函数的导数公式,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
熟练掌握这些公式,可以快速计算函数的导数。
2.导数的基本性质导数有一些基本的性质,如积差、和差、复合函数的导数规则。
这些性质可以简化复杂函数的导数计算。
3.高阶导数高阶导数是指导数的导数。
如果一个函数的导数可导,则可以继续对导数求导,得到高阶导数。
高阶导数可以描述函数的凹凸性、拐点等特性。
4.隐函数求导有时函数的表达式不显含自变量,而是通过一个方程来描述函数与自变量之间的关系。
这种情况下,要通过隐函数求导的方法来计算导数。
5.参数方程求导对于参数方程描述的曲线,可以通过参数对函数进行求导,得到曲线的切线方程、法线方程等。
通过以上方法,可以计算得到函数在其中一点的导数值,进而研究函数的性质、变化规律等。
在实际问题中,导数的应用非常广泛。
例如,在物理学中,加速度是速度的导数,速度是位移的导数;在经济学中,边际成本、边际收益等概念都是导数的应用;在工程学中,导数是电路中信号变化的关键指标。
总之,导数是微积分中的重要概念,可以描述函数的变化率,通过导数的计算可以研究函数的性质和变化规律,并在实际问题中得到广泛应用。
变化率与导数及导数的计算
变化率与导数及导数的计算变化率是指其中一物理量在一定时间或空间上的变化幅度。
导数是微积分中用来描述函数变化率的概念。
导数的定义是函数在其中一点的变化率。
在微积分中,导数用于刻画函数曲线上一点的斜率,即曲线在该点的切线的斜率。
导数表示了函数在该点附近的局部变化情况。
若函数y=f(x),则函数f(x)在x=a的导数表示为f'(a)或dy/dx,_x=a。
导数表示了函数y=f(x)在x=a点附近的变化率。
导数可以通过几何方法、物理方法、以及代数方法进行求解。
一、几何解释法通过对函数对应的图像进行观察,可以直观地看出导数的几何意义。
函数y=f(x)在x=a点的导数f'(a)等于函数曲线在x=a点处的切线的斜率。
二、平均变化率和瞬时变化率平均变化率表示了函数的两个点之间的变化情况。
若函数f(x)在区间[a,b]上是连续的,则函数在该区间上的平均变化率为(f(b)-f(a))/(b-a)。
瞬时变化率表示了函数在其中一点的瞬时变化情况。
当间隔变得非常短小,即b趋近于a时,平均变化率趋近于瞬时变化率,即瞬时变化率等于导数。
三、导数的计算方法1.基本导数公式常见的基本导数公式如下:(1)常数函数的导数为零,即d(c)/dx=0,其中c为常数;(2)x的导数为1,即d(x)/dx=1;(3)可加性,即d(u+v)/dx=du/dx+dv/dx,其中u和v是函数;(4)乘性,即d(uv)/dx=udv/dx+vdu/dx,其中u和v是函数。
2.基本函数的导数(1)幂函数的导数:若f(x)=x^n,则f'(x)=nx^(n-1),其中n为常数;(2)指数函数的导数:若f(x)=a^x,则f'(x)=a^x * ln(a),其中a为常数,ln(a)为a的自然对数;(3)对数函数的导数:若f(x)=log_a(x),则f'(x)=1/(x*ln(a)),其中a为常数,ln(a)为a的自然对数;(4)三角函数的导数:若f(x)=sin(x),则f'(x)=cos(x);若f(x)=cos(x),则f'(x)=-sin(x);若f(x)=tan(x),则f'(x)=sec^2(x),其中sec(x)为x的余切。
变化率与导数导数的计算
导数与积分是互逆运算,一个函数的导数与其积分之间的关系可以通过微积分基本定理来表示。
04 导数的应用
导数在几何中的应用
求切线斜率
导数可以用来求曲线在某一点的切线斜率,从而了解曲线在该点的 变化趋势。
研究函数极值
通过求导数并令其为零,可以找到函数的极值点,进而研究函数的 最大值和最小值。
莱布尼茨法则
对于复合函数的 $n$ 阶导数,可以利用莱布尼 茨法则进行计算。
幂级数展开法
对于复杂的函数,可以利用幂级数展开法求得高阶导数。
THANKS FOR WATCHING
感谢您的观看
曲线的凹凸性判断
通过求二阶导数,可以判断曲线的凹凸性,进而了解曲线的弯曲程度。
导数在物理中的应用
速度和加速度的研究
在物理学中,导数可以用来研究物体的速度和加速度, 例如瞬时速度和瞬时加速度。
斜抛运动的研究
通过导数可以研究斜抛物体的运动轨迹,例如研究射 程、射高等。
振动和波动的研究
导数可以用来研究振动和波动的规律,例如振幅、频 率等。
03
导数可以用来研究函数的单调性、极值、拐点等性质。
导数的几何意义
导数的几何意义是函数在某一 点处的切线斜率,即切线与x
轴正方向的夹角正切值。
当导数大于0时,函数在该点 处单调递增;当导数小于0时,
函数在该点处单调递减。
导数的符号变化点为函数的拐 点,即函数图像的凹凸分界点。
导数的计算方法
定义法
隐函数的导数计算
对数求导法
对于形如 $y = f(x)$ 的隐函数,可以通 过两边取对数,转化为显函数进行求导 。
VS
参数方程法
对于参数方程 $x = x(t), y = y(t)$,可以 通过对参数 $t$ 求导来求得隐函数的导数。
高考数学一轮复习变化率与导数、导数的计算
第1讲 变化率与导数、导数的计算最新考纲考向预测1.了解导数概念的实际背景,通过函数图象直观理解导数的几何意义. 2.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2的导数. 3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.命题趋势 本讲主要考查导数的运算、求导法则以及导数的几何意义.常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等.核心素养数学运算、数学抽象1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =limΔx →0f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln a f (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.常见误区1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现以下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.1.判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(多选)下列求导运算正确的有( ) A .(sin x )′=cos x B .⎝ ⎛⎭⎪⎫1x ′=1x 2C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD.因为(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A ,D 正确.3.(2020·高考全国卷Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解析:选B.因为f (x )=x 4-2x 3,所以f ′(x )=4x 3-6x 2,f ′(1)=-2,所以切线的斜率为-2,排除C ,D.又f (1)=1-2=-1,所以切线过点(1,-1),排除A.故选B.4.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3;因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 45.(易错题)函数y =ln xe x 的导函数为________. 解析:y ′=1x e x -e xln x (e x )2=1-x ln xx e x .答案:y ′=1-x ln xx e x导数的运算 角度一 求已知函数的导数求下列函数的导数: (1)y =ln x +1x ;(2)f (x )=sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =3x e x -2x +e.【解】 (1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(2)因为f (x )=sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,所以f ′(x )=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.[注意]求导之前,应利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则先化简,这样可避免使用商的求导法则,减少运算量.角度二求抽象函数的导数值已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.【解析】因为f(x)=x2+3xf′(2)+ln x,所以f′(x)=2x+3f′(2)+1x,所以f′(2)=4+3f′(2)+12=3f′(2)+92,所以f′(2)=-94.【答案】-9 4对解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f′(x0)是常数,其导数值为0.因此先求导数f′(x),令x=x0,即可得到f′(x0)的值,进而得到函数解析式,求得所求导数值.1.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=() A.2B.4C.6D.8解析:选C.由已知得,f′(x)=6x+2f′(2),令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=30-24=6.2.(2020·成都摸底考试)设函数f(x)的导函数为f′(x),若f(x)=e x ln x+1x-1,则f′(1)=()A.e-3 B.e-2 C.e-1 D.e解析:选C.由题意,得f ′(x )=(e xln x )′-1x 2=e xln x +e x x -1x 2,所以f ′(1)=0+e-1=e -1,故选C.3.求下列函数的导数: (1)y =x (ln x +cos x ); (2)y =sin x +x x ;(3)y =x ln x .解:(1)y ′=ln x +cos x +x ⎝ ⎛⎭⎪⎫1x -sin x =ln x +cos x -x sin x +1.(2)y ′=(cos x +1)x -(sin x +x )x 2=x cos x -sin xx 2.(3)y ′=⎝⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .导数的几何意义 角度一 求切线方程(1)(2021·广州调研检测)已知f (x )=x ⎝ ⎛⎭⎪⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为___________________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________________________.【解析】 (1)因为f (x )为奇函数,所以f (-1)+f (1)=0,即e +a e -1e -a e =0.解得a =1,所以f (x )=x ⎝ ⎛⎭⎪⎫e x +1e x ,所以f ′(x )=⎝ ⎛⎭⎪⎫e x +1e x +x ⎝ ⎛⎭⎪⎫e x -1e x ,所以曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,所以曲线y =f (x )在x =0处的切线的方程为2x -y =0.(2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x , 所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1,即x -y -1=0. 【答案】 (1)2x -y =0 (2)x -y -1=0求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.(2)由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[注意] “过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.角度二 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)【引申探究】 (变条件、变问法)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为____________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,所以y 0=0,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度三 已知切线方程(或斜率)求参数(1)(2021·西安五校联考)已知函数f (x )=a e x +b (a ,b ∈R )的图象在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.【解析】 (1)方法一:由题意,得f ′(x )=a e x ,则f ′(0)=a ,又f (0)=a +b ,所以函数f (x )的图象在点(0,f (0))处的切线方程为y -(a +b )=a (x -0),即y =ax +a +b .又该切线方程为y =2x +1,所以⎩⎨⎧a =2,a +b =1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.方法二:由题意,得f ′(x )=a e x ,则f ′(0)=a .因为函数f (x )的图象在点(0,f (0))处的切线方程为y =2x +1,所以⎩⎨⎧a =2,f (0)=a +b =2×0+1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.(2)由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以实数a 的取值范围是(-∞,2). 【答案】 (1)3 (2)(-∞,2)利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.1.(2020·高考全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =⎝ ⎛⎭⎪⎫1x +1|x =x 0=1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:y =2x2.如图,已知直线l 是曲线y =f (x )在点(2,f (2))处的切线,则直线l 的方程是________;f (2)+f ′(2)的值为________.解析:由题图可得直线l 经过点(2,3)和(0,4),则直线l 的斜率为k =4-30-2=-12,可得直线l 的方程为y =-12x +4,即为x +2y -8=0;由导数的几何意义可得f ′(2)=-12, 则f (2)+f ′(2)=3-12=52. 答案:x +2y -8=0 52[A 级 基础练]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A.因为f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (高度单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( )A .9.1米/秒B .6.75米/秒C .3.1米/秒D .2.75米/秒解析:选C.因为函数关系式是h (t )=10-4.9t 2+8t ,所以h ′(t )=-9.8t +8,所以在t =0.5秒的瞬时速度为-9.8×0.5+8=3.1(米/秒).3.已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx=( )A .f ′(x )B .f ′(2)C .f (x )D .f (2)解析:选B.因为函数f (x )可导, 所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,所以lim Δx →0f (2+2Δx )-f (2)2Δx =f ′(2).4.(2021·广东广州综合测试一)已知点P (x 0,y 0)是曲线C :y =x 3-x 2+1上的点,曲线C 在点P 处的切线与直线y =8x -11平行,则( )A .x 0=2B .x 0=-43 C .x 0=2或x 0=-43D .x 0=-2或x 0=43解析:选B.由y =x 3-x 2+1可得y ′=3x 2-2x ,则切线斜率k =y ′|x =x 0=3x 20-2x 0,又切线平行于直线y =8x -11,所以3x 20-2x 0=8,所以x 0=2或x 0=-43.①当x 0=2时,切点为(2,5),切线方程为y -5=8(x -2),即8x -y -11=0,与已知直线重合,不合题意,舍去;②当x 0=-43时,切点为⎝ ⎛⎭⎪⎫-43,-8527,切线方程为y +8527=8⎝ ⎛⎭⎪⎫x +43,即y =8x +20327,与直线y =8x -11平行,故选B.5.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x解析:选BC.对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.6.(2020·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2021·四川绵阳一诊改编)若函数f (x )=x 3+(t -1)x -1的图象在点(-1,f (-1))处的切线平行于x 轴,则t =________,切线方程为________.解析:因为函数f (x )=x 3+(t -1)x -1,所以f ′(x )=3x 2+t -1.因为函数f (x )的图象在点(-1,f (-1))处的切线平行于x 轴,所以f ′(-1)=3×(-1)2+t -1=2+t =0,解得t =-2.此时f (x )=x 3-3x -1,f (-1)=1,切线方程为y =1.答案:-2 y =18.(2021·江西重点中学4月联考)已知曲线y =1x +ln xa 在x =1处的切线l 与直线2x +3y =0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a .由于切线l 与直线2x +3y =0垂直,所以⎝ ⎛⎭⎪⎫-1+1a ·⎝ ⎛⎭⎪⎫-23=-1,解得a =25. 答案:259.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ; (2)y =x ·tan x ; (3)y =cos xe x .解:(1)因为y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,所以y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x .(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1. 令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又点P 0在第三象限,所以切点P 0的坐标为(-1,-4). (2)因为直线l ⊥l 1,l 1的斜率为4, 所以直线l 的斜率为-14.因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 综合练]11.已知函数f (x )在R 上可导,其部分图象如图所示,设f (2)-f (1)2-1=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B.由题图可知,在(0,+∞)上,函数f (x )为增函数,且曲线切线的斜率越来越大,因为f (2)-f (1)2-1=a ,所以易知f ′(1)<a <f ′(2).12.(多选)(2021·山东青岛三模)已知曲线f (x )=23x 3-x 2+ax -1上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 的取值可能为( )A.196 B .3 C.103D.92解析:选AC.f ′(x )=2x 2-2x +a ,因为曲线y =f (x )上存在两条斜率为3的不同切线,所以f ′(x )=3有两个不相等的实数根,即2x 2-2x +a -3=0有两个不相等的实数根,所以Δ=(-2)2-4×2×(a -3)>0,① 设两切点的横坐标分别为x 1,x 2. 因为切点的横坐标都大于零, 所以x 1>0,x 2>0,所以⎩⎪⎨⎪⎧x 1+x 2=--22=1>0,x 1·x 2=a -32>0,②联立①②解得3<a <72, 故选AC.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 14.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x ,所以f ′(1)=2-1=1,则所求切线方程为y -1=1×(x -1),即y =x .(2)存在.假设存在两点满足题意,设切点坐标为(x 1,y 1),(x 2,y 2),则x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝ ⎛⎭⎪⎫2x 1-1x 1⎝ ⎛⎭⎪⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,函数的值域为[-1,1],故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝ ⎛⎭⎪⎫x 1=-1,x 2=-12舍去, 故存在两点⎝ ⎛⎭⎪⎫12,ln 2+14,(1,1)满足题意.[C 级 创新练]15.(多选)已知函数f (x )及其导数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.给出下列四个函数,其中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x解析:选AC.对于A ,若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,这个方程显然有解,得x =0或x =2,故A 符合要求;对于B ,若f (x )=e -x ,则f ′(x )=-e -x ,即e -x =-e -x ,此方程无解,B 不符合要求;对于C ,若f (x )=ln x ,则f ′(x )=1x ,若ln x =1x ,利用数形结合法可知该方程存在实数解,C 符合要求;对于D ,若f (x )=tan x ,则f ′(x )=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,令f (x )=f ′(x ),即sin x cos x =1,变形可得sin 2x=2,无解,D 不符合要求.16.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,如果函数g (x )=x ,h (x )=ln x ,φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α>β>γB .β>γ>αC .γ>α>βD .γ>β>α解析:选D.由题意,得g ′(α)=1=g (α),所以α=1.由h (x )=ln x ,得h ′(x )=1x .令r (x )=ln x -1x ,可得r (1)<0,r (2)>0,故1<β<2.由φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π,得φ′(γ)=-sin γ=cos γ,所以cos γ+sin γ=0,且γ∈⎣⎢⎡⎦⎥⎤π2,π,所以γ=3π4.综上可知,γ>β>α.故选D.第1讲 变化率与导数、导数的计算最新考纲考向预测1.了解导数概念的实际背景,通过函数图象直观理解导数的几何意义. 2.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2的导数. 3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.命题趋势 本讲主要考查导数的运算、求导法则以及导数的几何意义.常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等.核心素养数学运算、数学抽象1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =limΔx →0f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln a f (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.常见误区1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现以下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.1.判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(多选)下列求导运算正确的有( ) A .(sin x )′=cos x B .⎝ ⎛⎭⎪⎫1x ′=1x 2C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD.因为(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A ,D 正确.3.(2020·高考全国卷Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解析:选B.因为f (x )=x 4-2x 3,所以f ′(x )=4x 3-6x 2,f ′(1)=-2,所以切线的斜率为-2,排除C ,D.又f (1)=1-2=-1,所以切线过点(1,-1),排除A.故选B.4.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3;因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 45.(易错题)函数y =ln xe x 的导函数为________. 解析:y ′=1x e x -e xln x (e x )2=1-x ln xx e x .答案:y ′=1-x ln xx e x导数的运算 角度一 求已知函数的导数求下列函数的导数: (1)y =ln x +1x ;(2)f (x )=sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =3x e x -2x +e.【解】 (1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(2)因为f (x )=sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,所以f ′(x )=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.[注意]求导之前,应利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则先化简,这样可避免使用商的求导法则,减少运算量.角度二求抽象函数的导数值已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.【解析】因为f(x)=x2+3xf′(2)+ln x,所以f′(x)=2x+3f′(2)+1x,所以f′(2)=4+3f′(2)+12=3f′(2)+92,所以f′(2)=-94.【答案】-9 4对解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f′(x0)是常数,其导数值为0.因此先求导数f′(x),令x=x0,即可得到f′(x0)的值,进而得到函数解析式,求得所求导数值.1.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=() A.2B.4C.6D.8解析:选C.由已知得,f′(x)=6x+2f′(2),令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=30-24=6.2.(2020·成都摸底考试)设函数f(x)的导函数为f′(x),若f(x)=e x ln x+1x-1,则f′(1)=()A.e-3 B.e-2 C.e-1 D.e解析:选C.由题意,得f ′(x )=(e xln x )′-1x 2=e xln x +e x x -1x 2,所以f ′(1)=0+e-1=e -1,故选C.3.求下列函数的导数: (1)y =x (ln x +cos x ); (2)y =sin x +x x ;(3)y =x ln x .解:(1)y ′=ln x +cos x +x ⎝ ⎛⎭⎪⎫1x -sin x =ln x +cos x -x sin x +1.(2)y ′=(cos x +1)x -(sin x +x )x 2=x cos x -sin xx 2.(3)y ′=⎝⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .导数的几何意义 角度一 求切线方程(1)(2021·广州调研检测)已知f (x )=x ⎝ ⎛⎭⎪⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为___________________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________________________.【解析】 (1)因为f (x )为奇函数,所以f (-1)+f (1)=0,即e +a e -1e -a e =0.解得a =1,所以f (x )=x ⎝ ⎛⎭⎪⎫e x +1e x ,所以f ′(x )=⎝ ⎛⎭⎪⎫e x +1e x +x ⎝ ⎛⎭⎪⎫e x -1e x ,所以曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,所以曲线y =f (x )在x =0处的切线的方程为2x -y =0.(2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x , 所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1,即x -y -1=0. 【答案】 (1)2x -y =0 (2)x -y -1=0求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.(2)由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[注意] “过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.角度二 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)【引申探究】 (变条件、变问法)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为____________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,所以y 0=0,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度三 已知切线方程(或斜率)求参数(1)(2021·西安五校联考)已知函数f (x )=a e x +b (a ,b ∈R )的图象在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.【解析】 (1)方法一:由题意,得f ′(x )=a e x ,则f ′(0)=a ,又f (0)=a +b ,所以函数f (x )的图象在点(0,f (0))处的切线方程为y -(a +b )=a (x -0),即y =ax +a +b .又该切线方程为y =2x +1,所以⎩⎨⎧a =2,a +b =1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.方法二:由题意,得f ′(x )=a e x ,则f ′(0)=a .因为函数f (x )的图象在点(0,f (0))处的切线方程为y =2x +1,所以⎩⎨⎧a =2,f (0)=a +b =2×0+1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.(2)由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以实数a 的取值范围是(-∞,2). 【答案】 (1)3 (2)(-∞,2)利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.1.(2020·高考全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =⎝ ⎛⎭⎪⎫1x +1|x =x 0=1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:y =2x2.如图,已知直线l 是曲线y =f (x )在点(2,f (2))处的切线,则直线l 的方程是________;f (2)+f ′(2)的值为________.解析:由题图可得直线l 经过点(2,3)和(0,4),则直线l 的斜率为k =4-30-2=-12,可得直线l 的方程为y =-12x +4,即为x +2y -8=0;由导数的几何意义可得f ′(2)=-12, 则f (2)+f ′(2)=3-12=52. 答案:x +2y -8=0 52[A 级 基础练]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A.因为f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (高度单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( )A .9.1米/秒B .6.75米/秒C .3.1米/秒D .2.75米/秒解析:选C.因为函数关系式是h (t )=10-4.9t 2+8t ,所以h ′(t )=-9.8t +8,所以在t =0.5秒的瞬时速度为-9.8×0.5+8=3.1(米/秒).3.已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx=( )A .f ′(x )B .f ′(2)C .f (x )D .f (2)解析:选B.因为函数f (x )可导, 所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,所以lim Δx →0f (2+2Δx )-f (2)2Δx =f ′(2).4.(2021·广东广州综合测试一)已知点P (x 0,y 0)是曲线C :y =x 3-x 2+1上的点,曲线C 在点P 处的切线与直线y =8x -11平行,则( )A .x 0=2B .x 0=-43 C .x 0=2或x 0=-43D .x 0=-2或x 0=43解析:选B.由y =x 3-x 2+1可得y ′=3x 2-2x ,则切线斜率k =y ′|x =x 0=3x 20-2x 0,又切线平行于直线y =8x -11,所以3x 20-2x 0=8,所以x 0=2或x 0=-43.①当x 0=2时,切点为(2,5),切线方程为y -5=8(x -2),即8x -y -11=0,与已知直线重合,不合题意,舍去;②当x 0=-43时,切点为⎝ ⎛⎭⎪⎫-43,-8527,切线方程为y +8527=8⎝ ⎛⎭⎪⎫x +43,即y =8x +20327,与直线y =8x -11平行,故选B.5.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x解析:选BC.对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.6.(2020·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2021·四川绵阳一诊改编)若函数f (x )=x 3+(t -1)x -1的图象在点(-1,f (-1))处的切线平行于x 轴,则t =________,切线方程为________.解析:因为函数f (x )=x 3+(t -1)x -1,所以f ′(x )=3x 2+t -1.因为函数f (x )的图象在点(-1,f (-1))处的切线平行于x 轴,所以f ′(-1)=3×(-1)2+t -1=2+t =0,解得t =-2.此时f (x )=x 3-3x -1,f (-1)=1,切线方程为y =1.答案:-2 y =18.(2021·江西重点中学4月联考)已知曲线y =1x +ln xa 在x =1处的切线l 与直线2x +3y =0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a .由于切线l 与直线2x +3y =0垂直,所以⎝ ⎛⎭⎪⎫-1+1a ·⎝ ⎛⎭⎪⎫-23=-1,解得a =25. 答案:259.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ; (2)y =x ·tan x ; (3)y =cos xe x .解:(1)因为y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,所以y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x .(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1. 令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又点P 0在第三象限,所以切点P 0的坐标为(-1,-4). (2)因为直线l ⊥l 1,l 1的斜率为4, 所以直线l 的斜率为-14.因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 综合练]11.已知函数f (x )在R 上可导,其部分图象如图所示,设f (2)-f (1)2-1=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B.由题图可知,在(0,+∞)上,函数f (x )为增函数,且曲线切线的斜率越来越大,因为f (2)-f (1)2-1=a ,所以易知f ′(1)<a <f ′(2).12.(多选)(2021·山东青岛三模)已知曲线f (x )=23x 3-x 2+ax -1上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 的取值可能为( )A.196 B .3 C.103D.92解析:选AC.f ′(x )=2x 2-2x +a ,因为曲线y =f (x )上存在两条斜率为3的不同切线,所以f ′(x )=3有两个不相等的实数根,即2x 2-2x +a -3=0有两个不相等的实数根,所以Δ=(-2)2-4×2×(a -3)>0,① 设两切点的横坐标分别为x 1,x 2. 因为切点的横坐标都大于零, 所以x 1>0,x 2>0,所以⎩⎪⎨⎪⎧x 1+x 2=--22=1>0,x 1·x 2=a -32>0,②联立①②解得3<a <72, 故选AC.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 14.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x ,所以f ′(1)=2-1=1,则所求切线方程为y -1=1×(x -1),即y =x .(2)存在.假设存在两点满足题意,设切点坐标为(x 1,y 1),(x 2,y 2),则x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝ ⎛⎭⎪⎫2x 1-1x 1⎝ ⎛⎭⎪⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,函数的值域为[-1,1],故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝ ⎛⎭⎪⎫x 1=-1,x 2=-12舍去, 故存在两点⎝ ⎛⎭⎪⎫12,ln 2+14,(1,1)满足题意.[C 级 创新练]15.(多选)已知函数f (x )及其导数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.给出下列四个函数,其中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x解析:选AC.对于A ,若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,这个方程显然有解,得x =0或x =2,故A 符合要求;对于B ,若f (x )=e -x ,则f ′(x )=-e -x ,即e -x =-e -x ,此方程无解,B 不符合要求;对于C ,若f (x )=ln x ,则f ′(x )=1x ,若ln x =1x ,利用数形结合法可知该方程存在实数解,C 符合要求;对于D ,若f (x )=tan x ,则f ′(x )=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,令f (x )=f ′(x ),即sin x cos x =1,变形可得sin 2x=2,无解,D 不符合要求.16.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,如果函数g (x )=x ,h (x )=ln x ,φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α>β>γB .β>γ>αC .γ>α>βD .γ>β>α解析:选D.由题意,得g ′(α)=1=g (α),所以α=1.由h (x )=ln x ,得h ′(x )=1x .令r (x )=ln x -1x ,可得r (1)<0,r (2)>0,故1<β<2.由φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π,得φ′(γ)=-sin γ=cos γ,所以cos γ+sin γ=0,且γ∈⎣⎢⎡⎦⎥⎤π2,π,所以γ=3π4.综上可知,γ>β>α.故选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.导数的概念
(1)f(x)在 x=x0 处的导数
函数 y=f(x)在 x=x0 处的瞬时变化率是
fx0+Δx-fx0= Δx
ΔΔxy,称其为函数 y=f(x)在 x=x0
处的导数,记作 f′(x0)=
fx0+ΔΔxx-fx0.
(2)导函数
如果一个函数 f(x)在区间(a,b)上的每一点 x 处都有导数,导数
f′(x)=ex f′(x)=xl1na
f′(x)=1x
4.导数运算法则 (1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); (3)gfxx′=f′xgx[g- xf]2xg′x(g(x)≠0).
【基础自测】
1.f′(x)是函数 f(x)=13x3+2x+1 的导函数,则 f′(-1)的值为
3x-y-3=0.
答案:C
3.已知函数 y=f(x)=2x2 图像上一点(1,2)及附近一点(1+Δx,2
+Δy),则ΔΔxy等于(
)
A.3+2Δx B.4+Δx C.4+2Δx D.3+Δx
解析:∵ቤተ መጻሕፍቲ ባይዱy=2(1+Δx)2-2=2Δx2+4Δx,
∴ΔΔxy=2Δx2Δ+x 4Δx=2Δx+4,故选 C.
第11课时 变化率与导数、导数的计算
1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y=c(c 为常数),y=x,y=x2,y=x3, y=1x,y= x的导数. 4.能利用给出的基本初等函数的导数公式和导数的四则运算法 则求简单函数的导数.
【知识梳理】 1.平均变化率及瞬时变化率 (1)f(x)从 x1 到 x2 的平均变化率是ΔΔxy=fxx22- -fx1x1.
考向一 导数的定义 用导数定义,求函数 y= x在 x=1 处的导数.
【审题视点】 利用导数定义求解.
【解】 ∵f(x)= x,
∴Δy=f(1+Δx)-f(1)= 1+Δx-1,
∴ΔΔxy= 1+ΔΔxx-1=Δx1+1+ΔxΔ2x-+112
= Δx
Δx 1+Δx+1
= 1+1Δx+1.
当 Δx→0 时,ΔΔxy→12,∴f′(1)=12.
◆一条原则 函数求导的原则: 对于函数求导,一般要遵循先化简,再求导的基本原则,求导 时,不但要重视求导法则的应用,而且要特别注意求导法则对求导 的制约作用,在实施化简时,首先必须注意变换的等价性,避免不 必要的运算失误.
◆两个关系 (1)“函数在一点处的导数”、“导函数”、“导数”的关系 ①函数 f(x)在点 x0 处的导数 f′(x0)是一个常数; ②函数 y=f(x)的导函数,是针对某一区间内任意点 x 而言的.如 果函数 y=f(x)在区间(a,b)内每一点 x 都可导,是指对于区间(a,b) 内的每一个确定的值 x0 都对应着一个确定的导数 f′(x0).这样就在 开区间(a,b)内构成了一个新函数,就是函数 f(x)的导函数 f′(x).在 不产生混淆的情况下,导函数也简称导数.
值记作 f′(x):f′(x)=
fx+ΔΔxx-fx,则 f′(x)是关于 x 的
函数,称 f′(x)为 f(x)的导函数,通常也简称为导数.
(3)导数的几何意义 函数 y=f(x)在 x0 处的导数,是曲线 y=f(x)在点(x0,f(x0))处的 切线的斜率. (3)导函数也简称导数.所以 “导数”f导x函在数一点x0处的导数个别与 一般 (4)函数 y=f(x)在 x=x0 处的导数 f′(x0)就是导函数 f′(x)在点 x =x0 处的函数值.
3.基本初等函数的导数公式 原函数
f(x)=c(c 为常数) f(x)=xα(α 是实数)
f(x)=sin x f(x)=cos x
f(x)=ax
f(x)=ex
f(x)=logax
f(x)=lnx
导函数 f′(x)=0 f′(x)=αxα-1 f′(x)=cos_x f′(x)=-sin_x f′(x)=axln_a
答案:C
4.(教材改编题)函数 f(x)=(x+2a)(x-a)2 的导数为________. 解析:f′(x)=(x-a)2+(x+2a)[2(x-a)]=3(x2-a2). 答案:3(x2-a2) 5.(2011·高考江西卷改编)若 f(x)=x2-2x-4ln x,则 f′(x)>0 的解集为________. 解析:令 f′(x)=2x-2-4x=2x-2xx+1>0,解得 x>2. 答案:(2,+∞)
【方法总结】 根据导数的定义,求函数 y=f(x)在 x=x0 处导 数的方法是:
(1)求函数值的增量 Δy=f(x0+Δx)-f(x0); (2)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0;
(3)计算导数 f′(x0)=liΔmx→0
Δy Δx.
1.用导数定义求函数 f(x)=x+1 2的导数. 解:ΔΔxy=fx+ΔΔxx-fx =x+21+ΔΔxx-x+1 2 =Δxx+x2+-2xx++22++ΔΔxx =x+2-x+12+Δx,
∴f′(x)=liΔmx→0
Δy Δx
=liΔmx→0
-1 x+2x+2+Δx
=-x+1 22.
考向二 导数的计算 求下列函数的导数.(1)y=(3x3-4x)(2x+1);
(2)y=x2sin x; (3)y=xl2n+x1; (4)y=ln(2x+5). 【审题视点】 观察所给的函数形式,化简变形后,利用导数 公式和求导法则求导.
(2)曲线 y=f(x)在“点 P(x0,y0)处的切线与”过点 P(x0,y0)的切 线的关系
曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,若切线斜率 存在时,切线斜率为 k=f′(x0),是唯一的一条切线;曲线 y=f(x) 过点 P(x0,y0)的切线,是指切线经过 P 点,点 P 可以是切点,也可 以不是切点,而且这样的直线可能有多条.
()
A.1
B.3
C.1 或 3
解析:∵f′(x)=x2+2,∴f′(-1)=3.
D.4
答案:B
2.曲线 y=x2-1x在点(1,0)处的切线方程为(
)
A.3x-y+3=0
B.x+3y-3=0
C.3x-y-3=0
D.x+3y-1=0
解析:∵k=f′(1)=2x+x12=3,∴切线方程为 y=3(x-1),即