多元函数微分法及其应用习题及参考答案
高数第九章习题答案
则
∂z ∂z ∂z ∂z , 仍旧是复合函数,即 = f u′ ( u, v ), = f v′( u, v ), 而u = ϕ ( x , y ), v = ψ ( x , y ), ∂u ∂v ∂u ∂v
x ). y
( 2) z = f ( x ,
x (记(1))
z = f (或f ′ )
x (记( 2)) y
x→0 y = x→0
x2 y2 = 1. x 2 y 2 + ( x − y)2
若动点P ( x , y )沿y = 2 x趋于(0,0),则: lim
x2 y2 不存在. x 2 y 2 + ( x − y)2
x→0 y = 2 x→0
4x4 x2 y2 = lim = 0. x 2 y 2 + ( x − y ) 2 x→0 4 x 4 + x 2
证法 1:利用复合函数、隐函数的求导公式。
由F ( x , y , t ) = 0可知,t是x , y的函数:t = t ( x , y ).
∂z ∂ y ln( 1+ xy ) x xy = e [ln(1 + xy ) + y ⋅ ] = (1 + xy ) y [ln(1 + xy ) + ]. ∂y ∂y 1 + xy 1 + xy
(8) u = arctan( x − y )
z
解:
∂u z ( x − y ) z −1 ∂u − z ( x − y ) z −1 ∂u ( x − y ) z ln( x − y ) ; ; ; = = = ∂x 1 + ( x − y ) 2 z ∂y 1 + ( x − y ) 2 z ∂z 1 + ( x − y)2z
(完整版)多元函数微分学复习题及答案
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
第9章 多元函数微分法及其应用(题库)答案
C ).
x 1 y 1 z 1 1 2 3
第 9 章 多元函数微分法及其应用(题库)答案
第 4 页
共计 10 页
C.
x 1 y 1 z 1 1 2 3
D.
x 1 y 2 z 3 1 1 1
C ).
28.(8-6)曲面 xyz 6 在点 1, 2,3 处的切平面方程是( A. 6 x 3 y 2 y 1 0 C. 6 x 3 y 2 z 18 0
t
22.(8-4)设 z uv sin t ,而 u e , v cos t ,求 解:
dz z du z dv z vet u sin t cos t et cos t sin t cos t . dt u dt v dt t
2 2
B.
x 2 y 1 == 4 2
z4 -1
D. 2 x y 4 z 6 0 C ).
31.(8-6)旋转抛物面 z x y 1 在点 2,1, 4 处法线方程为( A. 4 x 2 2 y 1 z 4 0 C. B.
第 3 页 共计 10 页
dz . dt
第 9 章 多元函数微分法及其应用(题库)答案
23.(8-5)已知方程 x y 1 0 在点 0,1 的某邻域内能唯一确定一个单值可导且 x 0
2 2
时
y 1 的隐函数 y f x ,求这函数的一阶导数在 x 0 的值
z . x
z 2x 3y x
2
z x
2
x 1 y 2
2 1 3 2 8 .
z . y
第九章多元函数微积分及其应用习题参考答案
习题9-1 多元函数的基本概念1.求下列各函数的定义域: (1)ln(z y x =- (2)u =。
解 (1) 函数的定义域为(){}22,,0,1x y y x x xy >≥+<.(2) 函数的定义域为(){}22,0x y z x y ≤+≠.2.求下列各极限: (1)(,)(0,0)limx y →; (2)(,)(2,0)tan()lim x y xy y →.(3)2222()lim()x y x y x y e-+→∞→∞+ (4)()(,0,0limx y →解 (1) 原式()(()(()(,0,0,0,0,0,0441limlim lim 4x y x y x y xy →→→-+====-(2) 原式()()()()()()()()()()(),2,0,2,0,2,0,2,0tan tan tan limlim lim lim 122x y x y x y x y xy xy xy x x yxy xy →→→→⎡⎤==⋅=⋅=⋅=⎢⎥⎣⎦(3) 令22u x y =+,原式1limlim 0u uu u u e e →∞→∞===(4) 令t =23220001sin 1cos 12lim lim lim 336t t t xt t t t t t +++→→→--==== 习题9-2 偏导数1.求下列函数的偏导数:(1)2sin()cos ()z xy xy =+; (2)(1)yz xy =+; (3)arctan()zu x y =-. 解 (1)()()()()()cos 2cos sin cos sin 2zy xy xy xy y y xy xy x∂=+⋅-⋅=-⎡⎤⎡⎤⎣⎦⎣⎦∂ ()()()()()cos 2cos sin cos sin 2zx xy xy xy x x xy xy y∂=+⋅-⋅=-⎡⎤⎡⎤⎣⎦⎣⎦∂ (2)()121y z y xy x -∂=+∂; ()()()ln 11ln 11y y xy z xy e xy xy y y xy +⎡⎤∂∂⎡⎤==+++⎢⎥⎣⎦∂∂+⎣⎦. (3) ()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-.(4)设()23y z xy x ϕ=+,其中()u ϕ可导,证明22z z x y xy x y∂∂+=∂∂ 证 ()()222,33z y z yy xy x xy x x y xϕϕ∂∂''=-+=+∂∂,左边()()22222233z y y x y x y xy y xy x xy x x ϕϕ∂⎡⎤''=+=-++=+=⎢⎥∂⎣⎦右边2.求下列函数的22z x ∂∂,22z y ∂∂和2zx y∂∂∂.(1)arctany z x=; (2)xz y =. 解 (1) ()22222222212,;1z y y z xy xx x y x y x y x ∂∂⎛⎫=⋅-=-= ⎪∂+∂⎝⎭⎛⎫++ ⎪⎝⎭()22222222112,;1z x z xy yx x y y y x y x ∂∂⎛⎫=⋅=-=- ⎪∂+∂⎝⎭⎛⎫++ ⎪⎝⎭()()()22222222222222x y y y z y y x x y y x y x y x y +-⋅⎛⎫∂∂-=-=-= ⎪∂∂∂+⎝⎭++. (2) 222ln ,ln x x z z y y y y x x ∂∂==⋅∂∂, ()2122,1x x z z xy x x y y y--∂∂==-∂∂, ()()21ln 1ln x x z y y y x y x y y -∂∂==+∂∂∂. 习题9-3 全微分1.求下列函数的全微分:(1)y xz e =; (2)yzu x =. (3)sin2yz yu x e =++. (4)()222tan z y x u ++=解 (1) 因为2y x z y e x x ∂=-∂, 1y x z e y x ∂=∂,所以()21yxz z dz dx dy e ydx xdy x y x∂∂=+=--∂∂. (2) 因为1,ln ,ln yz yz yz u u u yzx zx x yx x x y z-∂∂∂===∂∂∂,所以 ()1ln yz yz u u udu dx dy dz yzx dx x x zdy ydz x y z-∂∂∂=++=++∂∂∂.(3)11,c o s ,22yz yz u u y uze ye x y z∂∂∂==+=∂∂∂,所求的全微分为 1cos 22yz yz y du dx ze dy ye dz ⎛⎫=+++ ⎪⎝⎭.(4) 因为u x ∂=∂,u y ∂=∂u z ∂=∂,所以)du xdx ydy zdz =++.2.求函数yz x=,当2x =,1y =,0.1x ∆=,0.2y ∆=-时的全增量和全微分。
(完整版)多元函数微分法及其应用习题及答案
1第八章 多元函数微分法及其应用(A)1.填空题.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z ∂∂∂2,则在D 上,上, x y zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的处连续的 条件。
条件。
2.求下列函数的定义域.求下列函数的定义域(1)y x z -=;(2)22arccos yx zu +=3.求下列各极限.求下列各极限(1)x xyy x sin lim 00→→; (2)11lim 00-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ∂∂∂23及23yx z ∂∂∂。
5.求下列函数的偏导数.求下列函数的偏导数(1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,te u =,t v ln =,求全导数dt dz。
7.设()z y e u x-=,t x =,t y sin =,t z cos =,求dtdu 。
8.曲线⎪⎩⎪⎨⎧=+=4422y yx z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?轴的倾角是多少? 9.求方程1222222=++c z b y a x 所确定的函数z 的偏导数。
的偏导数。
10.设y x ye z x2sin 2+=,求所有二阶偏导数。
,求所有二阶偏导数。
11.设()y x f z ,=是由方程y zz x ln =确定的隐函数,求x z∂∂,yz ∂∂。
多元函数微分学的应用习题及详细解答
(x, y) 0 下的极值点,下列选项正确的是( D )。
A.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 C.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
B.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 D.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
x 1 y 2 z 1. 1 1 1
5.已知曲面 z x2 y2 z2 上点 P 处的切平面 x 2y 2z 0 平行,求点 P 的坐标以及曲
面在该点的切平面方程。
解:曲面在点 P 处的法向量为 n Fx, Fy, Fz 2x, 2y, 2z 1 ,依题意,n 1, 2, 2 ,
(0, 0) 处取得极小值的一个充分条件是( A )。
A. f (0) 1, f (0) 0 C. f (0) 1, f (0) 0
B. f (0) 1, f (0) 0 D. f (0) 1, f (0) 0
(5)设 f (x, y)与(x, y) 均为可微函数,且y (x, y) 0,已知(x0, y0)是f (x, y)在约束条件
在何处?
解:行星表面方程为 x2 y2 z2 36 .令 L 6x y2 xz 60 (x2 y2 z2 36) ,求
解方程组 6 z 2x 0 , 2 y 2 y 0 , x 2z 0 ,则可得驻点
x
y
z
(4, 4, 2), ( 3, 0,3), (0, 0, 6) ,结合题意易知 H 在 (4, 4, 2) 处最小,且最小值为 12.
2x a2
2y b2
y
0,
y
b2 a2
x y
所以在点
a, 2
b 2
第9章多元函数微分法及其应用近年试题
0809 B一、填空题(每小题3分,共18分)2、设)ln(xy z =,则其全微分dz = . 11dx dy x y+ 3、函数xy x y u 2222-+=的所有间断点是 .2{(,)|2,,}x y y x x R y R =∈∈二、选择题(每小题3分,共15分)1、22),(y x xyy x f +=,则极限=→→),(lim 00y x f y x ( A )(A )不存在 (B )1 (C )2 (D )0A当点(,)P x y 沿曲线y kx =趋向(0,0)时,222200lim (,)lim x x y kxk x f x y x k x →→==+21kk =+显然,当k 取值不同是,极限也不相同。
所以22(,)(0,0)limx y xyx y →+不存在.2、在曲线32,,t z t y t x =-==所有切线中,与平面433=++z y x 平行的切线( A )(A )只有一条; (B ) 只有两条; (C )至少有3条; (D ) 不存在曲线的切向量2((),(),())=(12,3)T t t t t t ϕψω'''=-,,平面的法向量(1,3,3)n = 22(12,3)(1,3,3)1690t t t t -⋅=-+=,,2(31)0t -=,1.3t =得所以只有一条切线满足条件.3、点()0,0是函数xy z =的( B )(A )极值点;(B ).驻点但不是极值点;(C )是极值点但不是驻点;(D )以上都不对 分析: 令0,0x y z y z x ====,得(0,0)是驻点,但点(0,0)是xy z =的鞍点,不是极值点.四、计算题(每小题8分,共32分)1、设, , ,sin y x v xy u v e z u+===求xz∂∂和y z ∂∂ 解z f f u f vx x u x v x∂∂∂∂∂∂=+⋅+⋅∂∂∂∂∂∂e sin e cos e [sin()cos()]u u x y v y v y x y x y =⋅+=⋅+++e sin e cos u u zf f u f v v x v y y u y v y∂∂∂∂∂∂=+⋅+⋅=⋅+∂∂∂∂∂∂e [sin()cos()]x y x x y x y =⋅+++ 五、解答题(每小题分10,共20分)1、要造一个容积为定数a 的长方形无盖容器,如何设计它的尺寸才能使它的表面积最小?此时最小表面积为多少?解:设长方体的长宽高分别为,,,z y x 则问题就是在条件(,,)0x y z xyz a ϕ=-=下求函数 22S xy xz yz =++ )0,0,0(>>>z y x的最小值. 作拉格朗日函数(,,)22(),L x y z xy xz yz xyz a λ=++++-求其对,,,x y z λ的偏导数,并使之为零,得到 20,20,2()0,0.y z yz x z xz x y xy xyz a λλλ++=⎧⎪++=⎪⎨++=⎪⎪-=⎩因为z y x ,,都不等于零, 得 11,22z x y ==代入0xyz a -=,得x y z ===这是唯一可能的极值点. 由问题本身可知最小值一定存在,所以最小值就在这个可能的极值点处取得.时, 最小表面积S =0910B一、填空题(每小题2分,共10分)2、设函数),(y x f z =是由方程z z y x 4222=++给出,则全微分=dz .2d 224x x ydy zdz dz ++=,2xdx ydydz z+=-.3、曲面14222=++z y x 在点)3,2,1(P 处的切平面方程为 .切平面得法向量(1,2,3)(1,2,3)(2,2,2)n x y z =(2,4,6),=切平面方程为2(1)+4(2)6(3)0,23140.x y z x y z --+-=++-=或 二、选择题(每小题2分,共10分)1、二元函数),(y x f 在点),(00y x 处可微是两个偏导数),(',),('0000y x f y x f y x 都存在的 ( A )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件.四、计算题(每小题10分,共40分) 1、设v u z ln 2=,而y x u =、y x v 23-=,求:xz∂∂、y z ∂∂. 解:()()22223323ln 2y y x x y x y x x z -+-=∂∂,()()223223223ln 2y y x x y x yx y z ----=∂∂1011B一、填空题(每小题3分,共15分)(1) 设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(|dz .(1,0)(1,0)(1,0)1|(ln(1))|()|1x y x y x y x dz e xe y dx xe dy y++++=++++++ (1,0)d 2ed (e 2)d zx y ∴=++(2) 旋转抛物面122-+=y x z 在点)4,1,2(处的法线方程是 . 法线的方向向量(2,1,4)(2,1,4)(2,2,1)s x y =-(4,2,1),=-法线方程是214421x y z ---==-. 二、单项选择题(每小题3分,共15分)(4) 设),(y x f z =的全微分为ydy xdx dz += 则点 )0,0( ( C ) .A 不是),(y x f 的连续点;.B 不是),(y x f 的极值点;.C 是),(y x f 的极小值点;.D 是),(y x f 的极大值点.分析:z ,x y x z y ==,得z 1,1,0xx yy xy z z ===,由210,10AC B A -=>=>,则点 )0,0(是),(y x f 的极小值点.三、求偏导数(每小题10分,共20分)(1)设),(3xyxy f x z =,其中f 具有二阶连续偏导数.求 y z ∂∂;22y z ∂∂;y x z ∂∂∂2.解:231223(())z yx f x yf f x x∂''=++-∂23123x f x yf xyf ''=+-3121(())z x xf f y x∂''=+∂ 4212x f x f ''=+ 242122()z x f x f y y ∂∂''=+∂∂421112212211(())(())x f x f x f x f x x ''''''''=⋅++⋅+ 531112222x f x x f xf ''''''=⋅++ y x z ∂∂∂22z y x ∂=∂∂4212()x f x f x∂''=+∂ 3421111222122224(())2(())y y x f x f y f xf x f y f x x ''''''=+⋅+⋅-+++- 3412112242.x f xf x yf yf ''''=++- (2)设),(y x z z =是方程)arc tan(z y x xyz ++=在)1,1,0(-点确定的隐函数,求xz∂∂及)1,1,0(-∂∂yz解:令)arctan(),,(z y x xyz z y x F ++-= …1分则 2)(11z y x xy F z +++-= 2)(11z y x yz F x +++-=2)(11z y x xz F y+++-= …6分 1])(1[1])(1[22-+++-+++-=-=∂∂z y x xy z y x yz F F x z z x ; …8分 11])(1[1])(1[22)1,1,0(-=-+++-+++-=-=∂∂-z y x xy z y x xz F F yz z y…10分六、应用题(本题满分10分)从斜边长为l 的一切直角三角形中,求有最大周长的直角三角形,并求出最大周长.解:设另两边长分别为y x ,,则 222l y x =+,周长 l y x C ++= …2分 设拉格朗日函数 )(),,(222l y x l y x y x F -++++=λλ …4分令 ⎪⎩⎪⎨⎧=-+==+==+=0021021222l y x F y F x F y x λλλ …6分解方程组得l y x 22==为唯一驻点,且最大周长一定存在 …8分 故当l y x 22==时,最大周长为l C )21(+= …10分1112B一、填空题(每小题2分,共10分)1. y x z 2=在点)1,1(处的._______________=dz22,dz xydx x dy =+112.x y dzdx dy ===+2. 设函数y xy ax x y x f 22),(22+++=在点)1,1(-取得极值,则常数_____=a .211(1,1)(4)0x x y f x a y ==--=++=,11(1,1)220y x y f xy ==--=+=,所以 5.a =-例36 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型.分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题.解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1)(1,1)(1,1)(1,1)40220fx a y x f xy y ----⎧∂=++=⎪∂⎪⎨∂⎪=+=⎪∂⎩,因此有410a ++=,即5a =-. 因为22(1,1)4f A x-∂==∂,2(1,1)(1,1)22fB y x y--∂===-∂∂, 22(1,1)(1,1)22fC x y--∂===∂,2242(2)40AC B ∆=-=⨯--=>,40A =>,所以,函数(,)f x y 在(1,1)-处取得极小值.二、选择题(每小题2分,共10分)3. 在点P 处函数),(y x f 的全微分df 存在的充分条件为 ( C ) (A) y x f f ,均存在 (B) f 连续(C) f 的全部一阶偏导数均连续 (D) f 连续且y x f f ,均存在三、计算题(每小题8分,共40分)1. 设),(y x z z =是由方程z z y x 2222=++所确定的隐函数,计算22,x z x z ∂∂∂∂的值. 解:设 222(,,)2F x y z x y z z =++-,则2x F x =,2y F y = ,22,z F z '=-2,221z x x x z z ∂=-=∂--22()1z xx x z∂∂=∂∂-21(1)x z xz z -+=-22231(1)1(1)(1)xz xz x z z z -+-+-==-- 4. 求函数zx yz xy u ++=在点)3,1,2(沿着从该点到点)15,5,5(的方向导数.解 方向(3,4,12)l = 03412{,,}.13133l =1312cos ,134cos ,133cos ===γβα3)3,1,2(,5)3,1,2(,4)3,1,2(===z y x u u u ,1368cos cos cos =++=∂∂γβαz y x u u u l z . 五、证明题(每小题7分,共7分)证明(,)(0,0)(,)0(,)(0,0)x y f x y x y ≠==⎩在)0,0(点偏导数存在,但不可微.证: (,0)0,(0,)0f x f y ==,0(0,0)(0,0)(0,0)limlim00.x x x f x f f x∆→→+∆-===∆ 00(0,0)(0,0)(0,0)limlim 00.y y y f y f f y∆→∆→+∆-===∆ (,)(0,0)f x y 所以函数在处可导....................3分2202200lim ),(lim )0,0()0,0(limy x y x yx y x f y f x f z y x ∆∆∆∆∆∆∆∆ρ∆∆∆ρρρ+=+=--→→→当点(,)P x y ∆∆沿曲线y kx =趋向(0,0)时,22222222000()lim lim lim ()()()()x x y k xx y x y k x x y x y x k x ρ→∆→→∆=∆∆∆∆∆∆==∆+∆∆+∆∆+∆21kk =+. 显然,当k 取值不同是,极限也不相同。
(完整版)多元函数微分法及其应用习题及答案
第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。
西工大—高数答案—多元函数微分法及其应用
y kx
此值随 k 值不同而不同,故极限
( x , y ) (0,0)
lim
z 不存在,从而函数 z 在(0,0)点不连续.
在除(0,0)点外的区域上,函数 z
xy 是初等函数,故在其定义区域上连续. x y2
4
注意 常犯的错误一是只讨论了函数在(0,0)点的连续性,没讨论函数在定义域内其 它点处的连续性;二是求(0,0)点的极限时,出现了如下:
所以
z x y y x ]. = ( x e ) [ln( x e ) x ey x z x
法2
y x
(1,0)
从而
= 2ln 2 1
0 x x
因为 z = ( x e ) ,所以 z ( x, 0) = ( x e ) = ( x 1)
dz x x ln( x 1) x ] = [e x ln( x 1) ] = e x ln( x 1) [ln( x 1) ] = [( x 1) ] = [e x 1 dx
常见的错误是遗漏了步骤:
y x
注意
z u y z ( y ) ,而得到错误结果: = x ln x . z z
y
(5 ) 法 1
因为 z = ( x e ) ,则 ln z = x ln( x e ) ,
z x = ln( x e y ) x 1 , x ey z
xy xy = lim 4 2 ( x , y ) (0,0) x y 2 ( x , y ) (0,0) x y y kx
lim
4
(错误的式子)
事实上,记号“
( x , y ) (0,0)
lim
”表示点 ( x, y ) 以任意的方式无限接近(0,0)点,而记号
(完整版)多元函数微分学及其应用习题解答
(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。
解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。
(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。
多元函数微分习题
33、求函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点 ( 2, 2 + 3 ) 的方向的方向导数。 34、求函数 z = ln( x + y ) 在抛物线 y 2 = 4 x 上的点(1,2)处沿着这抛物线在该点处偏向 x 轴正向的切线方向的方向导数.
11、验证 y = e
− kn 2 t
sin nx 满足:
∂y ∂2 y =k 2 . ∂t ∂x
12、求下列函数的全微分: (1) z =
y x2 + y2
;(2) u =
y z x + − x y z
答案:(1) .dz =
− x ( ydx − dy ) (x 2 + y 2 )3
;
(3).df (1,1,1) = dx − dy ( 2).dz = −(
答案: ∆z = −0.119, dz = −0.125. 14、求下列复合函数的一阶偏导数或全导数: (1) 设 z = u 2 + v 2 , 而 u = x + y , v = x − y , 求 : (2) 设 z = u 2 ln v ,而 u =
∂z ∂z , ∂x ∂y
x ∂z ∂z . , v = 3 x − 2 y ,求 , y ∂x ∂y
答案:
π . 4
9、设 T=2 π
l , g
y x
求证:
l
∂T ∂T +g = 0. ∂l ∂g
∂2z ; ∂x∂y
10、(1) z = arctan , 求:
∂2z 1 − 2 xy 答案: 2 = 2 ∂x (x + y 2 )2
(完整版)多元函数微分学复习题及答案
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
(完整版)第九章多元函数微分法及其应用答案.doc
第九章 多元函数微分法及其应用一、填空题1.若 f ( x, y) x 2 y 2 xy tan x,则 f (tx , ty ) t 2 x 2 t 2 y 2 t 2xy tanxt 2 f ( x, y) .y y 2.若 f ( x)x 2 y 21 u2.y( y 0) ,则 f (x)y3.函数 z arcsin y的定义域为 {( x, y) || y| 1且x0} .xx14. lim(1 xy) sin xy e .xy5.若 ze xyyx 2,则zxe xy x 2 .y6.若 f ( x, y) 5x 2 y 3 ,则 f x (0,1) 10xy 3 |(0,1) 0 .7.若 u ln(1 x 2y 22) ,则 du22 ( xdx ydy zdz) .zx 2y 2zyyy8.设 z e x ,则 dzy e x dx 1e x dy .x 2 x9.已知 z sin( y e x) ,而 y x 3,则dz(3x 2 e x )cos( x 3 e x ) .dx10. 已知 ze x 2 y,而 x sin t , y t 3,则 dzsin t 2 t 3(cost 6t 2).dte11. 设 zln(1 x2y 2) , 则 dz x 11dx2dy .y 23312. 设 zu 2v , 而 u x cos y, v x sin y , 则 z 3x 2 cos 2 ysin y ,xz 32y 2sin 2y) .yx cos y(cos13.若 z f (x, y) 在区域 D 上的两个混合偏导数2z,2z 连续 ,则在 D 上x yy x2z2z.x yy x14.函数 z f (x, y) 在点 (x 0 , y 0 ) 处可微的 必要 条件是 z f ( x, y) 在点 ( x 0 , y 0 ) 处的偏导数存在 .(填“充分”、“必要”或“充分必要” )15.函数 z f (x, y) 在点 (x 0 , y 0 ) 可微是 zf (x, y) 在点 (x 0 , y 0 ) 处连续的 充分 条件 . (填“充分”、“必要”或“充分必要” )16.设 f ( x, y, z) xy 2 z 3 ,其中 z z( x, y) 是由方程 x 2 y 2 z 2 3xyz 0所确定的 隐函数,则 f x (1,1,1) 2 . 二、选择题1.二元函数 zlnx 2 4arcsin x 21的定义域是 ( A ) y 2y 2( A ){( x, y) |1 x 2y 24};( ) {( x, y) |1 x 2 y 24} ;B (C ){( x, y) |1 x 2y 24}; ( ) {( x, y) |1 x 2 y 24} .D2. 设函数 z ln( xy) , 则z( C )x(A )1;(B ) x;(C ) 1;( D ) y.yyxx3. 设函数 z sin( xy 2) , 则z( D )x( A )2; ( ) xy cos(xy 2( ) 22) ; ( ) 2 2xy cos(xy ) B ) ;Cy cos(xy D y cos( xy ) .4. 设函数 z 3xy, 则z( D )x( A ) 3xy( ) xy ; (C ) xy 1 ; (D ) 3xyln 3y ; 3 ln3 xy3 y .B5. 设函数 z1 , 则 z( C )xyy( A )1 ; ( ) 1 ; (C ) 12 ; ( ) 1 2 .2Bx 2yxyDxyx y6. 设函数 z sin xy , 则2z( A )x2( A )y 2sin xy ;2sin xy ;( ) 2 sin xy ; ( D ) x 2sin xy .( B ) yCx 7. 设二元函数 zx y, 则 dz ( B )x y( A )2( xdx ydy) ; (B )2( xdy ydx) ;( C )2( ydyxdx) ; (D )2( ydx xdy) .(x y)2( x y) 2( x y)2( x y)28. 设函数 y f ( x) 是由方程 y xeyx 0 确定 , 则dy(B )dx( A ) e y y;(B ) ey1y ;(C ) ey1y ;(D ) e yy.1 xe 1 xe1 xe1 xe9. 设函数 zf (x, y) 是由方程 x2y3xyz20 确定 , 则z( B)x( A )2x yz 2 ; ( B )2x yz 2; (C )3y 2xz 2; ( D ) 3y 2xz 2 .2xyz2xyz2xyz2xyz 10. 若函数 f ( x, y) 在点 ( x 0 , y 0 ) 处不连续,则 ( C)( A ) lim f (x, y) 必不存在;(B )0 , y 0 ) 必不存在;xx 0 yy 0( C ) f (x, y) 在点 (x 0 , y 0 ) 必不可微;( D ) f x ( x 0 , y 0 ), f y (x 0, y 0 ) 必不存在 .f(x11.考虑二元函数 f (x, y) 的下面 4 条性质:①函数 f ( x, y) 在点 ( x 0 , y 0 ) 处连续;②函数 f ( x, y) 在点 ( x 0 , y 0 ) 处两个偏导数连续;③函数 f ( x, y) 在点 ( x 0 , y 0 ) 处可微;④函数 f ( x, y) 在点 ( x 0 , y 0 ) 处两个偏导数存在 .则下面结论正确的是(A )(A )②③ ①;( B )③ ②①;(C )③ ④ ①;D )③ ① ④。
第八章多元函数微分法及其应用自测题与答案.doc
第八章多元函数微分法及其应用A组1、填空题1)设/(»)=兀2+),2‘ gky) = /_y2,则f[g(x9y\y2 = ______________________2)设z = x + y + /(x- y),且当y = 0时,z = ,则z= ______________3)ix f(x, y) = x2 - arctan y - y2 arctan —,贝'J^-|(() v) = ____________y dx l4)设z = 1 + x + (1 + x2\p{ax + y),若己知:当x = 0时,z - \n(ey2\则虫= _________5)设z = /(兀,y),由z5 +xz4 +yz3 = 1 所确定,则f x(0,0)= ___________6)设z = y + ln-,则在点M°(l,l,l)的法线方程为 ___________27)曲血,+2y2 +3# =12上点(1,一2,1)处的切平面方程为__________—> —> —> —>8)设/(x,y,z) =兀+ +必,则f(x,y,z)在(1,0,1)沿方向1 = 2 i-2 j+k的方向导数为_______2、下列函数的定义域并图示、1 11)2 = / — + /Qx + y y]x-y2) z = ln(y - 兀)+arccos3、求下列各极限1)(枫启2) lim匕逅卫(儿沪(O・O)xy3) lim 如(x』)_>(2,()) yv2 + 2Y4、问函数"匕在何处间断.5.求下列函数的偏导数uv2 z = sin(秽)+ cos2(xy)3)z = In tan —y2 2_ x + y6、曲线―4 —在点(2,4,5)处的切线对于x轴的倾角是多少?y = 4■ ■7、设/(x, y) = x + (y- l)arcsin Jy ,求人(兀」)•8、求下列函数的与,与,空dx1 dy2 dxd)^y1)z = arctan —x9、求下列函数的全微分2) u = x yz10、求函数£= / Q 当兀=2, y = l, Ar = 0.01, Ay = 0.03时的全增量和全微分.11、计算』0。
(完整版)多元函数微分学及其应用习题解答
1 / 28习题8-11. 求下列函数的定义域: (1) y x z -= ;解:0,0x y D ≥≥⇒=(){,0,x y y x ≥≥(2) 221)ln(yx xx y z --+-=;解:220,0,1y x x x y D -≥≥--⇒=(){}22,01x y y x xy >≥+<且(3) )0(122222222>>-+++---=r R rz y x z y x R u ;解:222222220R x y z x y z r ≤---<++-⇒,0D ⇒=(){}22222,,x y z rx y z R <++≤(4) 22arccosyx z u +=。
221,0x y D ≤+≠⇒=(){}22,0x y z x y ≤+≠2. 求下列多元函数的极限:: (1) 22y 01)e ln(limyx x y x ++→→;解:y 1ln 2x y →→== (2) xy xy y x 42lim0+-→→;解:令t=xy,1200001(4)12lim 14x t t y t -→→→→-+===-2 / 28(3) x xyy x sin lim50→→;解:0050sin sin lim5lim 55x x y y xy xyx x →→→→==(4) 22x 222200e)()cos(1limy y x y x y x ++-→→;解:22222222222x 001cos()11cos()2(sin ),lim 20022()ey x y x y x y x y x y →→+-+-+=∴=⋅⋅=+Q (5) xyy x y x )(lim 220+→→。
解:0,xy >设22ln()xy x y +两边取对数,由夹逼定理2200222222lim ln()2222000ln()()ln()0lim ln()0,lim()1x y xy x y xyx x y y xy x y x y x y xy xy x y x y e→→+→→→→≤+≤++<+=∴+==xylnxy 当时同理可得,3. 证明下列极限不存在: (1) y x yx y x -+→→00lim;证明:(1)(,)(,)(,)(1)m x x y y mx f x y f x mx m x+===-当沿直线趋于原点(0,0)时.001lim,1x y x y mm x y m →→++=--不同时,极值也不同,所以极限不存在。
0809习题课(第8章多元函数微分法及其应用)
练习 解答或提示
六、求螺旋线 x = a cosθ , y = a sinθ , z = bθ 在点(a ,0,0) t 曲 t t
处的切线与法平面方程 .
t x′ = −asinθ , y′ = acosθ , t
(a,0,0) →θ = 0, T t
(a,0,0)
z′ = b,
= (0, a, b),
练习 解答或提示
∂z ∂ z 五、设 x = e cos v , y = e sin v , z = uv ,求 , . ∂ x , ∂y Qzx = vux + uvx , z y = vuy + uv y ,
u u
1 = eu cos v ⋅ ux − eu sinv ⋅ vx 0 = eu sinv ⋅ ux + eu cos v ⋅ vx
∂z ∂ z 五、设 x = e cos v , y = e sin v , z = uv ,求 , . ∂ x , ∂y
u u
六、求螺旋线 x = a cosθ , y = a sinθ , z = bθ 在点(a ,0,0) 处的切线与法平面方程 . 七、求曲面 x + y + z = 1在点 1,2,−2)处切平面方程. ( 八、求函数z = f ( x, y) = x2 − xy + y2的极值.
( ∴在点 0,0)处: AC − B2 = 3 > 0, 且A = 2 > 0,
∴函数有极小值 f (0,0) = 0.
所确定的函数 , 求 du. ∂z ∂z ′ ux = f1 + f2 ⋅ , uy = f2 ⋅ , 令F( x, y, z) = z − x − yϕ(z), ′ ′ ∂y ∂x Fy Fx 1 ∂z ∂z ϕ(z) , , =− = =− = Fz 1 − yϕ′(z) ∂y Fz 1 − yϕ′(z) ∂x
经济数学(多元函数的微分法及其应用习题及答案)
第八章 多元函数的微分法及其应用习题 8-11. 指出下列平面位置的特殊性质:(1)23200x y -+= (2)320x -=(3)470y z -= (4)0x y z ++= 解 (1)因为方程中缺变量z , 所以该平面平行于z 轴.(2)因为方程中缺变量y 、z , 所以该平面平行于yz 平面即垂直于x 轴.(3)因为方程中缺变量x 且不含常数项, 所以该平面平行于x 轴且经过原点(0,0,0). (4)因为方程中缺常数, 所以该平面通过原点(0,0,0).2. 求下列轨迹的方程:(1)与点(3,0,2)-的距离为4个单位的点的轨迹;(2)与两定点)0,0,(c P 和)0,0,(c Q -的距离之和等于2(0)a a >的点的轨迹; (3)与z 轴和点(1,3,1)-等距离的点之轨迹;(4)与yz 平面的距离为4,且与点)1,2,5(-的距离为3的点之轨迹.。
解 设动点为),,(z y x M ,则(1)点(,,)M x y z 与点(3,0,2)-的距离为4 整理得动点),,(z y x M 的轨迹为2226430x y z x z ++-+-=.(2)动点),,(z y x M 与两定点)0,0,(c P 和)0,0,(c Q -的距离之和等于a 2,即2a整理得动点),,(z y x M 的轨迹为2222222222()()0a c x a y a z a a c -++--=.(3) 动点),,(z y x M 与z 轴和点)1,3,1(-等距离为整理得动点),,(z y x M 的轨迹为2262110z x y z --++=.(4) 由动点),,(z y x M 与yz 平面的距离为4,得4||=x , 由动点),,(z y x M 与点)1,2,5(-的距离为3, 得3=故),,(z y x M 点的轨迹为⎩⎨⎧=++-=8)1()2(422z y x . 3. 求下列各曲面的方程:(1) 中心在点)2,3,1(--且通过点)1,1,1(-的球面方程;(2) 过点)1,1,2(-而在x 轴和y 轴上的截距分别为2和1的平面方程; (3) 平行于xz 平面并过点(2,-5,3)的平面方程;(4) 一动点与点)0,0,1(的距离是与平面4=x 的距离之一半,求该动点之方程.解 (1)设),,(z y x 为所求球面上的任意一点且球面半径为R ,则 2222(1)(3)(2)x y z R ++++-=将点)1,1,1(-代入上式,得3=R . 故所求球面方程为 9)2()3()1(222=-++++z y x .(2)设所求的平面方程为0=+++D Cz By Ax (*)将点)0,0,2(,)0,1,0(,)1,1,2(-代入上式,得20020A D B D A B C D +=⎧⎪+=⎨⎪+-+=⎩解得0.5,,A D B D C D =-=-=-. 代入方程(*)整理得平面方程为2220x y z ++-=.(3)设所求平面方程为0By D += (**)将点)3,5,2(-代入上式,得B D 5=.代入方程(**)整理得平面方程为 50y +=.(4) (4) 设动点为),,(z y x ,则0.5|4|x =-22234412x y z ++=.4.作出下列方程之图形:(1)01=-+-z y x (2)03=-z y(3)02=x (4)12=y(5)1222=++z y x (6)022=-y x(7)223049y x z +-= (8)22149y x +=解 (1) (2)(图8-1) (图8-2)(3) (4)4)(图8-3) (图8-4)(5) (6)(图8-5) (图8-6)(7) (8)习题 8-21. 已知y xxy y x y x f tan),(22-+=,求),(ty tx f .解2222(,)()()tantx f tx ty t x t y tx ty ty =+-2222(tan )(,)xt x y xy t f x y y =+-=.2.已知vu wwu w v u f ++=),,(,求),,(xy y x y x f -+.解 ),,(xy y x y x f -+=yx y x xy xy y x -++++)()(=xxy xy y x 2)()(++.3. 已知2332),(y xy x y x f +-=,求),(xy y x f .解 32(()x x f y y =-+333x xyy =-+.4*.设)(y x f y z --=且1=y 时x z =,试求)(x f 和z .解 由1=y 时x z =,得 )1(1--=x f x令1-=x t ,则)(1)1(2t f t -=+,即22()1(1)2f t t t t =-+=--所以 2()(2)f x x x =-+222)[))] 22 )).z f y y y x y yy y ==---=+-=+-5 .(1)2ln(21)z y x =-+ (2)z =+(3)ln(1)z x y =-- (4)z =解 (1)当2210y x -+>时, 函数有意义, 故函数的定义域(如图8-9所示)为2{(,)|210}D x y y x =-+>.(2)当0,0x y x y +>->时, 函数有意义,故函数的定义域(如图8-10所示)为 图8-9 {(,)|00}D x y x y x y =+>->且(3)当240x y -≥和0122>--y x 且2211x y --≠时, 函数有意义, 故函数的定义域(如图8-11所示)为222{(,)|401}D x y y x x y =≤<+<,(4)当0,0y x ≥,即0,0x y ≥≥且2x y ≥时, 函数有意义, 故函数的定义域(如图8-12所示)为 图8-10|),{(y x D =0≥x ,0≥y ,y x ≥2}.图8-11图8-126. 求下列各极限:(,)limy x y →(1)22(,)(0,1)1limx y xyx y →-+ (2)(3)(,)limx y → (4)(,)(2,0)sin limx y xyy →解(1))1,0(),(lim→y x 221y x xy +-=1.(2))0,1(),(lim→y x 22)ln(y x e x y ++=2ln . (3))0,0(),(lim→y x 11-+xy xy=)0,0(),(lim →y x xy xy xy )11(++=2.(4) )0,2(),(lim→y x y xy sin =)0,2(),(lim→y x xy xyx sin =2.7. 证明下列极限不存在:(1))0,0(),(lim →y x y x yx -+ (2))0,0(),(lim →y x 222)(y x y x - 证 (1)因为当点(,)x y 沿直线x y 2=趋向)0,0(点,得020lim →=→x y x y x yx -+=0lim→x x x x x 22-+=3- 当点(,)x y 沿直线y x 2=趋向)0,0(点,得020limy x y x y x y →=→+-=0lim →y yy3=3所以 )0,0(),(lim→y x y x yx -+不存在.(2)因为当点(,)x y 沿直线kx y =)1(≠k 趋向)0,0(点,得00lim→=→kx y x 222)(y x y x -=00lim →=→kx y x 222)()(kx x kx x -=0lim →x 22)1()(k kx -=0当点(,)x y 沿曲线x x y +=2趋向)0,0(点,得x x y x +=→20l i m222)(y x y x -=x x y x +=→20lim 22222)()(x x x x x x --+=0lim →x 2)1(x +=1所以)0,0(),(lim →y x 222)(y x y x -不存在. 8. 求下列函数的不连续点:(1)221y x z +=(2)y x xy z +=(3)xy z 1sin = 解 (1)因为在)0,0(点处, 函数无意义, 所以函数不连续点为)0,0(.(2)因为当0x y +=时, 函数无意义, 所以函数不连续点为直线0x y +=上的一切点.(3)因为当00x y ==或时, 函数无意义, 所以函数不连续点为坐标轴上的一切点. 9.求函数(,)ln(1)f x y x y =--的定义域及1(,)(,0)2lim (,)x y f x y →.解 要使该函数有意义,则恒有22222401011x y x y x y ⎧-≥⎪⎪-->⎨⎪--≠⎪⎩成立, 则函数的定义域为222{(,)|4001}D x y x y x y =-≥<+<,又因为函数),(y x f 是初等函数且在1(,0)2点处有定义, 所以函数),(y x f 在点1(,0)2处连续.故1(,)(,0)21lim(,)(,0)2x y f x y f →==.习题 8-31. 求下列函数的偏导数:(1)33xy y x z -= (2))ln(xy z =(3))(cos )arcsin(2xy xy z += (4)yxy z )1(+=解 (1)23323, 3z z x y y x xy x y ∂∂=-=-∂∂.(2)z x x ∂∂==∂∂同理z y ∂=∂(3)sin(2)z y xy x ∂=-∂同理sin(2)z x xy y ∂-∂.(4) 21(1)y zy xy x -∂=+∂设在已知函数两端取对数,有 l n l n (1)z y x y =+ 两边对y 求导,得11ln(1)1z xy y x z y xy ∂⋅=++⋅⋅∂+故 =∂∂y zyxy )1(+]1)1[ln(xy xy xy +++. 2.设ln x y y u x y x -=+,验证0u ux y x y ∂∂+=∂∂.证 因为221ln ()y y x y u x x x x y x y -∂=-⋅∂++221ln ()y x y u x y x y x y x y -∂=-+⋅∂++所以0u u xy x y ∂∂+=∂∂.3.设)11(yx ez +-=,验证+∂∂x z x 2z y z y 22=∂∂.证 因为 1111()()22, x y x y z z e x e y x y -+-+--∂∂==∂∂所以+∂∂xz x 2=∂∂y z y 2)11(y x e +-+)11(y x e +-=)11(2y x e +-z 2=. 4. 设=),(y x f y xy x arcsin)1(-+,求'(,1)x f x .解 因为=),('y x fx 11y +=所以 '(,1)1x f x =.5.设=),(y x f 22y x y x +-+,求)4,3('x f . 解 因为'(,)x f x y ==-所以'2(3,4)5x f =. 6.求下列函数的二阶偏导: (1)x yz arctan= (2)xy z =解 (1)22221()1()y y z y xx x y x ∂=⋅-=-∂++22211()1()z x y y x x y x ∂=⋅=∂++22222222222()2()()y y xy z x x x x y x y x y -∂∂=-=-⋅=∂∂+++22222222()()xy z xy y x y x y ∂∂==-∂∂++22222222()()y x z xx y y x y x y -∂∂==∂∂∂++.(2) ''1ln , x x x y z y y z xy -== ''2''2(ln ), (1)x x xx yy z y y z x x y -==-=''xy z 1-x xy y ln +y y x1= 1-x y )1ln (+y x .7. 设=),,(z y x f z x yz xy 222++,求)1,0,0('x f ,)0,1,0('y f , ''(0,0,1)x x f ,''(1,0,2)x z f ,''(0,1,0)y z f -和'''(2,0,1)z z x f .解 因为'2'2'22,2,2x y zf y x z fx yzf y z x=+=+=+'''''''''''2,2,2,2,0xx xz yz zz zzx f z f x f z f y f ===== 所以 ''''(0,0,1)0,(0,1,0)0,(0,0,1)2x y x x f f f === '''''''(1,0,2)2,(0,1,0)0,(2,0,1)x z y z z z xf f f=-==. 8. 设)ln(xy x z =,求32z x y ∂∂∂与32zx y ∂∂∂.解 因为 1l n ()l n ()1z x y x y x y x x y ∂=+⋅⋅=+∂22211(ln 1)11(ln 1)z xy y x xy xx z xy x x y yxy y ∂∂=+=⋅=∂∂∂∂=+=⋅=∂∂∂ 所以 3322210,z z x yx y y ∂∂==-∂∂∂∂. 9. 验证2sin kn ty e nx -=满足22x yk t y ∂∂=∂∂. 证 因为=∂∂t y2222sin ()sin kn t kn t e nx kn kn e nx ---=- 22222cos , sin kn t kn t y y ne nx n e nxx x --∂∂==-∂∂=∂∂22xy k 22sin kn t kn e nx --=t y∂∂ 所以22x y k t y ∂∂=∂∂. 10. 设),(y x u 有一阶连续偏导数,且x x u=∂∂, 2(,)(,)|1x x u x y =, 求y u ∂∂.解 由x x u =∂∂,两边对x 积分,得21(,)()2u x y x g y =+?? 由 2(,)(,)|1x x u x y =,得 =),(2x x u 1)(2122=+x g x即=)(2x g 2211x - 于是 ),(y x u =+221x y211-故 12u y∂=-∂. 11. 设33222222,0(,)0, 0x y x y f x y x yx y ⎧-+≠⎪=+⎨⎪+=⎩,求)0,0('xf )0,0('y f . 解 由在一点的偏导数定义,得'00(0,0)(0,0)(0,0)lim lim 1x x x f x f xf x x ∆→∆→+∆-∆===∆∆'00(0,0)(0,0)(0,0)lim lim 1y y y f y f yf y y ∆→∆→+∆--∆===-∆∆. 12 .设1()()y z f xy xf y x =+,f 具有连续二阶偏导数,求''x y z .解 设,y u xy v x ==, 则1()()z f u xf v y =+于是'''21()()()()x u v y z f u y f v xf v y x =⋅⋅++⋅-''()()()u v y f u f v f v x =+=-故''''''''111()()()()xy y z f u x f v f v f v x x x x =+⋅-⋅-⋅⋅''''2()()y yf xy x f x x =⋅-⋅.习题 8-41. 求下列函数的全微分:(1)xz xy y =+(2)y x e z 2-= (3)z (4)y z u x =(5)2ln()z x xy = (6)221z x y =- 解 (1)因为 21, z z x y x xy y y ∂∂=+=-∂∂ 所以 21d ()d ()d xz y x x yy y =++-.(2)因为 =∂∂x z yx e 2-,=∂∂y z y x e 22--所以 222d d 2d (d 2d ).x yx y x y z ex e y e x y ---=-=- (3)因为223222()y xy zx x y x y ∂=-=-∂++23222()z x y x y ∂==∂+ 所以233222222d d d ()()xy x z x yx y x y =-+++3222(d d ).()x y x x y x y =--+(4)因为=∂∂x u 1y z yzx -, =∂∂y u ln y z zx x , =∂∂zu ln y z yx x 所以 1d d ln d ln d y z y z y z u yzxx zx x y yx x z -=++. (5)因为 22l n ()2l n ()y zx x y x x x y x x x y ∂=+=+∂22z x x x y xy y ∂=⋅=∂ 所以 2d [2ln()]d d x z x xy x x yy =++.(6) 因为 22222222, ()()y z x zxy x y x y ∂∂=-=∂∂--所以22222222d d d ()()y x z x yx y x y =-+--2222(d d ).()x x y y x y =---2 .求函数)1ln(22y x z ++=在1,2x y ==的全微分.解 因为 2221z x x x y ∂=∂++, 2221y zy x y ∂=∂++所以 1213x y z x==∂=∂, 1223x y z y==∂=∂故1212d d d 33x y z x y ===+.3. 求函数x yz =, 当2,1x y ==、0.1x ∆=、0.2y ∆=-的全增量z ∆和全微分d z . 解 因为 x y x x y y z -∆+∆+=∆, 21d y z x y x x =-∆+∆所以, 当2,2x y ==、0.1x ∆=、0.2y ∆=-时1(0.2)10.11920.12z +-∆=-=-+ 11d 0.1(0.2)0.12542z =-⨯+⨯-=-.*4. 已知(cos )d (sin )d ay by x x x x y +++是函数(,)u x y 的全微分,求,a b 及(,)u x y .解 因为 d u =(c o s )d a y b y x x +(s i n )d x x y ++所以 x by ay u x cos '+=, ='y u x x sin +则 =''xy u x b a cos +, =''yx u x c o s 1+ 而''xy u 与''yx u 均为连续函数,则必有≡+x b a cos x cos 1+ 解得 1,1==b a .故 ),(y x u =d ux x ∂∂⎰=(cos )d y y x x +⎰=c x y xy ++sin (c 为任意常数).5.在例3的条件下, 求产品B 的边际成本,并阐明其经济意义.解 因为 30.010.04Cx y y ∂=++∂所以 (100,50)30.011000.04506Cy ∂=+⨯+⨯=∂其经济意义为:当产品A 的产量x = 100不变时, 产品B 的产量在y = 50的基础上, 再增加一个单位, 成本C 将增加6个单位.6.已知某商品的需求量Q 是该商品的价格p 1、另一相关商品的价格p 2及消费者收入y的函数, 且325852121200Q p p y--=,试求需求量分别关于自身价格p 1、、相关价格p 2及消费者收入y 的弹性, 并阐明其经济意义.解1112511852121133()20088p p p Q p p y Q p Q η--∂=⋅=⋅⋅-=-∂375228522122122()20055p p p Q p p y Q p Q η--∂=⋅=⋅⋅-=-∂32385212155()20022y y Q y p p y Q y Q η--∂=⋅=⋅⋅=∂其经济意义分别为:在相关商品的价格p 2及消费者收入y 不变时, 该商品的价格p 1上涨(或下降)1%,需求量下降(或上升)37.5%; 在某商品的价格p 1及消费者收入y 不变时, 相关商品的价格p 2上涨(或下降)1%,需求量下降(或上升)40%; 在某商品的价格p 1及相关商品的价格p 2不变时, 消费者收入y 上涨(或下降)1%, 需求量上升 (或下降)250%.7*. 在边长为6,8x m y m ==的矩形中,若x 增加5cm ,y 减少10cm ,试求该矩形的对角线和面积变化的近似值.解 设对角线长为l ,面积为s ,则有22y x l +=, xy s = 于是d )z z l l x y x x y y x y ∂∂∆≈=∆+∆=∆+∆∂∂d ()s s y x x y ∆≈=∆+∆当6,8,0.05,0.1x m y m x m y m ==∆=∆=-时,有680.05(0.1)0.051010l m ∆≈⨯+-=-280.056(0.01)0.2s m ∆≈⨯+⨯-=- .8*. 设有一无盖圆柱形容器, 其壁与底厚均为0.1cm, 内高为20cm, 内半径为4cm, 求该容器外壳体积的近似值.解 设容器的内半径为r ,高为h ,体积为V , 则圆柱体的体积为 2V r h π=因为圆柱形容器的外壳就是圆柱体积的增量V ∆,所以2d 2V V rh r r h ππ∆≈=∆+∆ 于是当4,20,0.1r h r h ==∆=∆=,时, 有2324200.140.155.3()V cm πππ∆≈⨯⨯⨯⨯+⨯⨯≈.故该容器外壳体积大约为355.3().cm π9*. 求下列各式的近似值:(2) 1.05(1.07)(ln 20.693)=(3) 00sin 29tan 46解 (1)设(,)f x y =2f x ∂=∂,2f y ∂=∂于是(,)f x x y y +∆+∆f fx yx y ∂∂≈+∆+∆∂∂22=+当1,2,x y x ==∆=时, 有(1.02,1.97)f =2 2.95≈=.(2) 设(,)f x y =yx ,则'1y x f yx -=, 'ln y yf x x =于是 (,)f x x y y +∆+∆()y y x x +∆=+∆≈y x ''x y f x f y +∆+∆=yx 1ln y y yx x x x y -+∆+∆当1,1,0.07,0.05x y x y ==∆=∆=时, 有(1.07,1.05)10.07 1.07f =+=. (3) 设(,)f x y =sin tan x y ,则'cos tan x f x y =,'2sin sec y f x y = 于是00sin 29tan 46sin()tan()61804180ππππ=-+ 当,,,64180180x y x y ππππ==∆=-∆=时, 有00''(29,46)(,)(,)(,)646464x y f f f x f y ππππππ=+∆+∆2sintancostan()sinsec646418064180ππππππππ=+-+ = 0.50235.10*. 设222232222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪⎪=⎨+⎪⎪+=⎩ 求证:(,)f x y 在点(0,0)处连续且偏导数存在,但不可微分.证 设cos sin x r y r θθ=⎧⎨=⎩, 则43(,)(0,0)cos sin lim (,)lim0(0,0)x y r r f x y f r θθ→→===故(,)f x y 在点(0,0)处连续. 而'0(0,0)(0,0)(0,0)limx x f x f f x →+-==同理 '(0,0)0y f =故(,)f x y 在点(0,0)处偏导数存在.由函数可微的定义和性质可知:f 可微的充要条件是''()x y f f x f y o ρ∆-∆-∆=其中ρ=而''0(0,0)(0,0)limx y f f x f yρρ→∆-∆-∆''0(,)(0,0)(0,0)(0,0)limx y f x y f f x f yρρ→∆∆--∆-∆=2222222222000()limlim[][()]x x y y k x x y x k x x y x k x ∆→∆→∆→∆=∆→∆∆∆∆==∆+∆∆+∆222lim0(0)(1)x y k x k k k ∆→∆=∆→=≠≠+故(,)f x y 在点(0,0)处不可微.习题 8-51. 设2ln ,32x z u v u v x y y ===-而求,.z z x y ∂∂∂∂ 解 212l n 3z z u z v u u v x u x v x y v ∂∂∂∂∂=⋅+⋅=⋅+⋅∂∂∂∂∂22223ln(32)(32)x x x y yx y y =⋅-+- 222ln ()(2)z z u z v x u u v y u y v y v y ∂∂∂∂∂=⋅+⋅=⋅-+⋅-∂∂∂∂∂223222ln(32)(32)x x x y y x y y =-⋅---. 2.设2x yz e -=,而sin x t =, 3y t =,求d z .解 因为 3sin 2t t z e-=所以 3sin 23d d(sin 2)t tz et t -=- 32sin 2(cos 6)d t t t t et -=-.3. 设arctan()z xy =,而xy e =, 求d d zx .解d d d d d d d d y y z z z x z z x y x x x x y x ∂∂∂∂=⋅+⋅=+⋅∂∂∂∂22222222111(1).11xx x x xy x e x y x y x e xe e x yx e=+⋅++++==++4.设2()1ax e y z u a -=+, 而sin ,cos y a x z x ==, 求d d u x . 解 d d d d d d d d u u x u y u z x x x y x z x ∂∂∂=⋅+⋅+⋅∂∂∂=222()cos (sin )111ax ax ax ae y z e e a x x a a a -=+⋅-⋅-+++=22(sin cos cos sin )1axe a x a x a x x a -+++=sin axe x .5.设arctanxz y =,而x u v =+,y u v =-,求证:z z u v ∂∂+=∂∂22u v u v -+.证 因为''22222221()()11x y xy x x xy y u y uy y x z ux x y x yy ∂∂-⋅+⋅∂∂-∂===∂+++''22222221()(1)()()11x y xy x x xy y v y vyy x z vx x y x y y ∂∂+-⋅-⋅+⋅∂∂+∂===∂+++所以 2222222y xy x y z zu v y xy x y x -+∂∂+=+=∂∂+++ 22222()()()u v u v u v u v u v --==++-+.6. 设f 具有一阶连续偏导数, 求下列函数的一阶偏导数: (1)222()u f x y z =++ (2) 22(,)xyu f x y e =-(3) (,)x y u f y z = (4) (,,)u f x xy xyz = 解 (1)'''2',2',,2'.x y z u xf u yf u zf === (2) ''22'''1212()()2xy xy x u f x y f e xf ye f x x ∂∂=⋅-+⋅=+∂∂ ''22'''1212()()2.xy xy y u f x y f e yf xe f y y ∂∂=⋅-+⋅=-+∂∂'''11'''''12122'''2221(3)()1()() ().x y z x u f f x y y x x x u f f f f y y y y z yyy u f f z z z∂==∂∂∂=+=-+∂∂∂==-∂, ,.'''''''123123'''''2323'''33(4)1 .x y z u f f y f yz f yf yzf u f x f xz xf xzf u f xy xyf =⋅+⋅+⋅=++=⋅+⋅=+=⋅= .7. 设f 具有二阶连续偏导数, 求下列函数的二阶偏导数:(1)(,)z f xy y = (2) (,)xz f x y =解 (1) '''11(),x z f xy yf x ∂=⋅=∂'''''1212d ()()d y y z f xy f xy xf f y y ∂=⋅+⋅=+∂ '''''2''11111()()xx z yf yf xy y f x x ∂∂==⋅=∂∂''''''''111112'''''11112d ()[()]d xy y z yf f y f xy f y x yf xyf yf ∂∂==+⋅+⋅∂∂=++''''12''''''''11122122''''''''''''2''211122122111222()d d [()][()]d d 2.yy z xf f yy y x f xy f f xy f y y y y x f xf xf f x f xf f ∂=+∂∂∂=⋅+⋅+⋅+⋅∂∂=+++=++(2)'''''1212d 1()d x x x z f f f f x x y y ∂=⋅+⋅=+∂, '''222()y x x z f f y y y ∂=⋅=-∂ ''''12''''''''11122122''''''''''''''11122122111222221[]d 1d ()[()]d d 11121 .xx z f f x yx x x x f f f f x x y y x x y f f f f f f f y y y y y ∂=+∂∂∂=⋅+⋅+⋅+⋅∂∂=+++=++ ''''12'''''''''2111221222'''''21222222'''''212222231[]11 ()()[()()]11 ()1xy z f f y yx x f x f f f x f y y y y y y y y x x f f f y y yy x xf f f y y y ∂=+∂∂∂∂∂=⋅+⋅-+⋅+⋅∂∂∂∂=--+-=---''''''''2221222322''''''222222322342()[()()]22 ().yyx x x x z f f f x f y y y y y y y x x x x x f f f f y y y y y ∂∂∂=-=⋅-⋅+⋅∂∂∂=⋅+⋅=⋅+⋅8 .设()z xy xF u =+,而()F u 为可导函数且yu x =, 求证:z z x y z xy x y ∂∂+=+∂∂.证 因为 ''2()()()u u y y zy F u x F y F u F xx x ∂=++⋅-⋅=+-∂''1u u z x x F x F y x ∂=+⋅⋅=+∂ 所以''()u u z zxy xy x F u y F xy y F x y ∂∂+=+⋅-⋅++⋅∂∂=2().xy xF u z xy =+=+9. 设2()3y z xy x ϕ=+, 验证:220z z x xy y x y ∂∂-+=∂∂.证 因为 2''22, 33y yz z y x x y x x ϕϕ∂∂=-+⋅=+⋅∂∂所以 2222''222()()33y y z z x xy y x y xy x yx y x x ϕϕ∂∂⋅-+=⋅-+-⋅++∂∂22'22'2233y x y y x y y ϕϕ=-+--+=10. 设sin()(,)xz xy x y ϕ=+,(,)u v ϕ有二阶偏导数, 求''xy z .解'''121cos()()x z y xy y ϕϕ=++⋅'''''''2122222211cos()sin()()()x y x xz xy xy xy y yy y ϕϕϕ=-+⋅--⋅+⋅-'''''222122231cos()sin().x x xy xy xy y y y ϕϕϕ=--⋅-⋅-⋅11. 设(,)()y xz f xy y x ϕ=+,且f 与ϕ具有二阶连续偏导数, 求''xy z .解 ''''1221x y z yf f y x ϕ=+⋅-⋅'''''''''''11211212222''2222'''''''''12112223321()()111 "11 .xy x x z f y f x f f x f y y yyf x y x xy x f xy f f f y y x x ϕϕϕϕ=+⋅-+⋅---⋅⋅-=+⋅-⋅-⋅-⋅-⋅习题 8-61 .设下列方程所确定的函数为()y f x =,求d d yx .(1)ln 0xy y -= (2)2sin 0x y e xy +-= (3)ln ln 0xy x y ++=解 (1)设(,)ln F x y xy y =-, 则'x F y =,'1y F x y =-故'2'd .1d 1x yF yyy x xy F x y =-=-=--(2) 设2(,)sin xF x y y e xy =+-, 则'2',cos 2x x y F e y F y xy =-=-故'22'd d cos 2cos 2x xx yF y e y y e x y xy y xy F --=-=-=--.(3) 设(,)ln ln F x y xy x y =++, 则''11, x y F y F x x y =+=+故 ''1d .1d x yy F y y x x x F x y +=-=-=-+2. 对下列隐函数, 求,,z z x x y y ∂∂∂∂∂∂及d z .(1)20x y z ++-= (2)0ze xyz -= (3)lnx z zy = 解 (1)设(,)2F x y x y z =++-, 则'121x F =-='222y F =-=-'zF=1-于是''x z F zx F∂=-=∂''y z F zy F ∂=-=∂''y x F xy F ∂=-=∂ 故d d d z z z x yx y ∂∂=+∂∂(2) 设(,)zF x y e xyz =-, 则'x F yz =-, 'y F xz =-, 'z F =z e xy -于是 ''x zz F z yz xF e xy ∂=-=∂- ''y z z F z xz y F e xy ∂=-=∂-''y x F x xz y yz F ∂=-=-∂ 故(d d )d d d zz z z y x x y z x y x y e xy ∂∂+=+=∂∂-. (3) 设(,)ln x zF x y z y =-, 则'''2111, , x y z x F F F z y z z===--, 于是 ''x z F z z xx z F ∂=-=∂+, '2'()y z F z z y y x z F ∂=-=∂+ ''y xF x z y y F ∂=-=-∂ 故 2d d d ()z z z x yx z y x z =+++.3 .设333z xyz a -=, 求2z x y ∂∂∂.解 设33(,,)3F x y z z xyz a =--, 则'''23,3,33x y z F yz F xz F z xy =-=-=-于是 ''22333x z F yz yz zxF z xy z xy -∂=-=-=∂-- ''22333y z F z xz xz y F z xy z xy ∂-=-=-=∂--故 22()()z z yzx y y x y z xy ∂∂∂∂==∂∂∂∂∂-222()()(2)()z zz y z xy yz z x y yz xy ∂∂+---∂∂=-2222222()()()()xyz xz z z xy yz x z xyz xyz xy +-----=-422223(2)()z z xyz x y z xy --=-.4.设0x e xyz -=, 求22zx ∂∂.解 设(,,)xF x y z e xyz =-, 则 'x x F e yz =-, 'y F xz =-, 'z F =xy -于是 z x ∂∂=''x z F F -=x e yz xy ---=xe yzxy - 故 222()()()()x x ze yxy e yz y zz xx xxxy ∂---∂∂∂∂==∂∂∂22()()(2)2()x xx x e yze y xy e yz yxyx e yzxy x y-----+==.5.设2sin(23)23x y z x y z +-=+-, 求证:1z z x y ∂∂+=∂∂. 证 设(,,)2sin(23)23F x y z x y z x y z =+---+, 则'2cos(23)1x F x y z =+--, '4cos(23)2y F x y z =+--'6cos(23)3z F x y z =-+-+于是''2cos(23)116cos(23)33x z F x y z zx x y z F +--∂=-=-=∂-+-+ ''4cos(23)226cos(23)33y zF x y z zy x y z F +--∂=-=-=∂-+-+ 故 1z z x y ∂∂+=∂∂.6 .设(,)x x y z =, (,)y y x z =, (,)z z x y =,都是由方程(,,)0F x y z =所确定的具有连续偏导数的函数, 求证:1y x zy z x ∂∂∂⋅⋅=-∂∂∂.证 因为 ''y x F x y F ∂=-∂, ''z y F y z F ∂=-∂,''x z F z x F ∂=-∂ 所以''''''()()()1y x z x y zF F F y x zy z x F F F ∂∂∂⋅⋅=-⋅-⋅-=-∂∂∂.7. 设(,)u v ϕ具有连续偏导数,证明由方程(,)0cx az cy bz ϕ--=所确定的函数(,)z f x y =满足 z z a b cx y ∂∂+=∂∂.证 设(,,)(,)F x y z cx az cy bz ϕ=--, 则''1x F c ϕ=, ''2y F c ϕ=, '''12z F a b ϕϕ=--于是 z x ∂∂=''1'''12x z F c F a b ϕϕϕ-=---='1''12c a b ϕϕϕ+zy ∂∂=''y z F F -='2''12c a b ϕϕϕ---='2''12c a b ϕϕϕ+ 故 ''12''''1212c c z za b a b c x y a b a b ϕϕϕϕϕϕ∂∂+=+=∂∂++.习题 8-71.在点(1,2)-的邻域内, 根据泰勒公式, 展开函数22(,)2635f x y x xy y x y =----+解 因为''(1,2) 5 , 46, 23x y f f x y f x y -==--=--- ''''''4, 1, 2xx xy yy f f f ==-=-则(,)f x y 的3阶及3阶以上的各偏导数均为0, 且''(1,2)0 , (1,2)0x y f f -=-= 故函数(,)f x y 在点(1,2)-的邻域内的泰勒公式为(,)[1(1),2(2)]f x y f x y =+--++''2''''2''2222(1,2)(1)(1,2)(2)(1,2)1[(1)(1,2)2(1)(2)(1,2)2!(2)(1,2)]15[4(1)2(1)(2)2(2)]2!52(1)(1)(2)(2).x y xx xy yy f x f y f x f x y f y f x x y y x x y y =-+--++-+--+-+-++-=+---+-+=+---+-+2 .当自变量从5,6x y ==,变到115,6x h y k =+=+时,求函数32(,)639184f x y x y xy x y =+--++的增量.解 因为 (5,6)(5,6f f h k f ∆=++- 23639, 2618f f x y y x x y ∂∂=--=-+∂∂22232236, 6, 2, 6ff f fx x y x y x ∂∂∂∂==-==∂∂∂∂∂3332230, 0, 0f f fx y x y y ∂∂∂===∂∂∂∂∂则(,)f x y 的4阶及4阶以上的各阶偏导数均为0, 且225556660,8,30x x x y y y fff xyx======∂∂∂===∂∂∂故223110(8)[302(6)2]62!3!f h k h hk k h∆=⋅+-+⋅+-++⋅223156h hk k h=-++.3.设||x与||y均很小,求coscosxy的准确到二次项的近似表达式. 解设cos(,)cosxf x yy=, 则22sin cos,cos cosf fx xx y yx∂∂=-=-∂∂22cos sin1cos()(sin)cos cosf x yx yy y y∂=-⋅-=∂222sin sin1sin()(sin)cos cosf x yx yx y y y∂=--⋅-=-∂∂222423cos cos sin2cos(sin)coscoscos(cos2sin)cosf y y y y yxy yx y yy∂-⋅-=⋅∂+=于是()(0,0)(0,0)(0,0)0f fx y f x yx y x y∂∂∂∂+=+=∂∂∂∂2()(0,0)x y fx y∂∂+∂∂222222222(0,0)(0,0)(0,0)2f f fx xy yx yx yy x∂∂∂=++∂∂∂∂=-故2(,)(0,0)()(0,0)()(0,0)f x y f x y f x y fx y x y∂∂∂∂≈++++∂∂∂∂2222110()12!2y xy x-=++-=+.4. 按1x-和2yπ-的正整数幂, 展开函数(,)sinf x y xy=, 到二次项为止. 解因为c o s,c o sf fy xy x xyx y∂∂==∂∂2222222sin,cos sin,sinf f fy xy xy xy xy x xyx yx y∂∂∂=-=-=-∂∂∂∂于是[(1)()](1,)22x y fx yππ∂∂-+-∂∂(1,)(1,)22(1)()02f fx yx yπππ∂∂=-+-=∂∂2[(1)()](1,)22x y f x y ππ∂∂-+-∂∂2222(1,)(1,)22(1)2(1)()2f f x x y x y x πππ∂∂=-+--∂∂∂ 222(1,)2()2f y y ππ∂+-∂ 222(1)2(1)()()()(1)4222x x y y ππππ=--+---+--故将(,)sin f x y xy =在(1,)2π处展开成含有2次幂的泰勒多项式为2222(,)(1,)[(1)()](1,)2221 [(1)()](1,)2!221 1[(1)(1)()()]2422f x y f x y f x y x y f x y x x y y πππππππππ∂∂=+-+-∂∂∂∂+-+-∂∂=+------- 22211 1(1)(1)()().82222x x y y ππππ=-------5.按x 和y 的乘幂展开函数(,)ln(1)xf x y e y =+到三次项为止.解 因为l n (1), 1x xf f e e y x y y ∂∂=+=∂∂+ 222222ln(1), , 1(1)x x xff f e e e y x y y x y y ∂∂∂=+==-∂∂+∂∂+3333222ln(1), , 1(1)x x xf f f e e e y y x x y x y y ∂∂∂=+==-+∂∂∂∂∂+3332(1)xf e y y ∂=∂+于是 (0,0)(0,0)[](0,0)f f x y f x y y x y x y ∂∂∂∂+=+=∂∂∂∂ 2222222223333332233223223[](0,0)(0,0)(0,0)(0,0) 22[](0,0)(0,0)(0,0)(0,0)(0,0) 33 332x y f x yf f f x xy y xy y x y x yxy f x y f f f f xx yxyyxx yx yy x y xy y ∂∂+∂∂∂∂∂=++=-∂∂∂∂∂∂+∂∂∂∂∂∂=+++∂∂∂∂∂∂=-+故 2223311(,)(2)(332)()2!3!f x y y xy y x y xy y R θ=+-+-++(01)θ<<.综合习题八1.选择题:(1) 设(,)ln ,(,)ln ln ,f x y xy g x y x y ==+则(,)f x y ( )(,).g x y ① > ② < ③ = ④ ≠ (2) 设00(,)(,)f x y x y 在点的偏导数存在,则00(,)( ).x f x y '=① 00000(,)(,)limx f x x y y f x y x ∆→+∆+∆-∆② 00000(,)(,)limx f x x y f x y x ∆→+∆-∆③ 0000(,)(,)limx x f x y f x y x x →--④ 00000(,)(,)limx x f x y f x y x x →--(3) 设0000(,)(,)0,x y f x y f x y ''==则( ).① 00(,)x y 为极值点 ② 00(,)x y 为驻点 ③ (,)f x y 在00(,)x y 有定义 ④ 00(,)x y 为连续点(4) 在空间中,下列方程( )为球面, ( )为抛物面, ( )为柱面.① 2425x y z -+= ② 2221444y x z ++=③ 2y x = ④ 221x y +=⑤ 2z y = ⑥ 22222x y y x z ++=-(5) 设(,)f x y 在00(,)x y 处偏导数存在,则(,)f x y 在该点( ).① 极限存在 ② 连续③ 可微 ④ 以上结论均不成立 解 (1) ④; (2) ②④; (3) ②③; (4) ②⑥、①③⑤、④; (5) ④.2.设(,)f x y 的定义域为1,1,x y <<试求(,)xf x y y 的定义域并在xy 平面上画出该定义域的图形.解 因(,)f x y 的定义域为11x y <<且所以(,)x f x y y 中的,x y 必须满足||1||1xy xy ⎧<⎪⎨⎪<⎩则函数(,)xf x y y 的定义域为(,)11,11xD x y xy y ⎧⎫=-<<-<<⎨⎬⎩⎭且D 在xy 平面上的图形如图8-13. 图8-133.计算下列极限:222(,)(0,0)22(,)(0,1)ln(2)(1) lim 1cos sin cos (2) limx y x y x y x y e y xyxy xy x x y x +→→+-+-解 222222(,)(0,0)(,)(0,0)2ln(2)ln(2)(1)lim lim 11cos ()2x y x y x y x y x y e y x y e y xyxy ++→→++=-2(,)(0,0)lim2ln(2)2ln 2.xyx y e y +→=+=22(,)(0,1)2(,)(0,1)(,)(0,1)(,)(0,1)(,)(0,1)sin cos (2) limsin lim lim cos lim sin lim 1 2.x y x y x y x y x y xy xy x x y xxyy x xy xxyy xy →→→→→+-=+-=⋅+= 4.已知()(),()()0,(,x y x f z y g z x f z y g z z z x y ''=++≠=且x y 是和 的函数.求证:())(()).z zx g z y f z x y ∂∂-=-∂∂(证 (,,)()(),F x y z xy xf z yg z =--令则(), (), ()()x y z F y f z F x g z F xf z yg z '''''=-=-=--于是 ()()()()()()x z F y f z y f z zxF xf z yg z xf z yg z '--∂=-=-='''''∂--+ ()()()()()()y z F x g z x g z z yF xf z yg z xf z yg z '--∂=-=-='''''∂--+ 故()[()][()]()()y f z zx g z x g z x xf z yg z -∂-=-''∂+ ()[()]()()[()].x g z y f z xf z yg z zy f z y -=-''+∂=-∂ 125. ,)0F x z y z F F z ''+++-≠设(可微且,求方程 2221,)()22F x z y z x y z ++-++=((,)d .z z x y z =所确定的函数的微分解 2221(,,),)()2,2G x y z F x z y z x y z =++-++-令(则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元函数微分法及其应用习题及参考答案第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。
14.设y ye z x cos 2+=,求全微分dz 。
15.求函数()222ln y x z ++=在点()2,1的全微分。
16.利用全微分求()()2201.498.2+的近似值。
17.求抛物面22y x z +=与抛物柱面2x y =的交线上的点()2,1,1P 处的切线方程和平面方程。
18.求曲面3914222=++z y x 上点()3,1,2-P 处的切平面方程和法线方程。
19.求曲线t x 34=,2t y =,3t z =上点()0000,,z y x M ,使在该点处曲线的切线平行于平面62=++z y x 。
20.求函数()()224,y x y x y x f -=-=的极值。
21.求函数()()y y x e y x f x 2,22++=的极值。
22.要建造一个容积为10立方米的无盖长方体贮水池,底面材料单价每平方米20元,侧面材料单价每平方米8元。
问应如何设计尺寸,方便材料造价最省?(B)1.求下列函数的定义域(1)()()[]222410ln ln arcsin yx y x z --+-=;(2)222241y x y x u ---+=2.(1)设22,y x x y y x f -=⎪⎭⎫ ⎝⎛+,求()y x f ,,()xy y x f ,-。
(2)设()y x y x f 2,+=,求()()y x f xy f ,, 3.求下列函数的极限(1)()2222221lim y x y x y x +∞→∞→⎪⎪⎭⎫⎝⎛+-;(2) ⎪⎪⎭⎫ ⎝⎛+-+→→2222110sin lim yx yx y x e e4.设()()()()⎪⎩⎪⎨⎧=≠+=0,0,,00,0),(,,24y x y x y x xyy x f 当当,问()y x f y x ,lim 0→→是否存在?5.讨论函数的连续性,其中()()⎪⎩⎪⎨⎧=≠--=y x y x y x y x x y x f 2,02,22sin ,。
6.二元函数()()()()()⎪⎩⎪⎨⎧=≠+=0,0,,00,0,,,22y x y x y x xyy x f 在点()0,0处:①连续,偏导数存在;②连续,偏导数不存在;③不连续,偏导数存在;④不连续,偏导数不存在。
7.设()yy x z 21+=,求xz∂∂,y z ∂∂。
8.设()z y x f u 23223++=,求x f∂∂,22xf ∂∂。
9.设()z y x f u 2,3,223=,求zf∂∂,x z f ∂∂∂2。
10.设()2222,y x y x xyf z -+=,f 可微,求dt 。
11.设()0,,=+xz z y xy f ,求xz∂∂,y z ∂∂。
12.设0=-z x y z ,求111===z y x dz 。
13.设()θθsin ,cos r r f z =可微,求全微分dz 。
14.设()y x f z ,=是由方程()0,=-yz z x f 所确定的隐函数,其中f 具有连续的偏导数,求dz ,并由此求xz∂∂和y z ∂∂。
15.求()xyy x z 22+=的偏导数。
16.设⎩⎨⎧=++=++10222z y x z y x ,求dz dx ,dz dy。
17.设xyze u =,求zy x u∂∂∂∂3。
18.求函数xyz u =在点()2,1,5处沿从点()2,1,5到点()14,4,9方向的方向导数。
19.求函数222z y x x u ++=在点()2,2,1-M 沿t x =,22t y =,42t z -=在此 点的切线方向上的方向导数。
20.求函数z y x u 2286+=在点P 处沿方向n的方向导数。
21.判断题:(简单说明理由) (1)()()00,,y x y y x f ∂∂就是()y x f ,在()00,y x 处沿y 轴的方向导数。
(2)若()y x f ,在()00,y x 处的偏导数y f ∂∂,yf ∂∂存在,则沿任一方向l 的方向导数均存在。
22.证明曲面4323232=++z y x 上任意一点的切平面在坐标轴上的截距的平方为常数。
23.证明:球面∑:1222=++z y x 上任意一点()c b a ,,处的法线都经过球心。
24.求椭球面163222=++z y x 上的一点()3,2,1--处的切平面与平面0=z 的交角。
25.设u ,v 都是x ,y ,z 的函数,u ,v 的各偏导数都存在且连续,证明: 26.问函数z xy u 2=在()2,1,1-P 处沿什么方向的方向导最大,并求此方向导数的最大值。
27.求内接于椭球面122222=++2cz b y a x 的最大长方体的体积。
28.某公司通过报纸和电视传媒做某种产品的促销广告,根据统计资料,销售收入R 与报纸广告费x 及电视广告费y (单位:万元)之间的关系有如下经验公式:221028311415y x xy y x R ---++=,在限定广告费为1.5万元的情况下,求相应的最优广告策略。
29.求函数()y x e y x f +=,的n 阶麦克劳林公式,并写出余项。
30.利用函数()y x y x f =,的2阶泰勒公式,计算02.111⋅的近似值。
(C)1.证明0lim220=+→→yx xy y x 。
2.设()()y x y x y x f ,||,ϕ-=,其中()y x ,ϕ在点()0,0,邻域内连续,问(1)()y x ,ϕ在什么条件下,偏导数()0,0x f ',()0,0y f '存在;(2)()y x ,ϕ在什么条件下,()y x f ,在()0,0处可微。
3.设()t x f y ,=而t 为由方程()0,,=t y x ϕ所决定的函数,且()t y x ,,ϕ是可微的,试求dxdy 。
4.设()y x z z ,=由0ln 2=-+⎰-dt e z z xy t 确定,求yx t∂∂∂2。
5.从方程组⎩⎨⎧=++++=++++1122222v u z y x v u z y x 中求出x u ,x v ,2x u ,2x v 。
6.设()byax ey x u z +=,,且02=∂∂∂yx u,试确定常数a ,b ,使函数()y x z z ,=能满足方程:02=+∂∂-∂∂-∂∂∂z yzx z y x z 。
7.证明:旋转曲面()22y xfz +=)0(≠'f 上任一点处的法线与旋转轴相交。
8.试证曲面a z y x =++(0>a )上任何点处的切平面在各坐标轴上的截距之和等于a 。
9.抛物面22y x z +=被平面1=++z y x 截成一椭圆,求原点到这椭圆的最长与最短距离。
10.设x 轴正向到方向l 的转角为ϕ,求函数()22,y xy x y x f +-=在点()1,1沿方向l 的方向导数,并分别确定转角ϕ,使这导数有(1)最大值;(2)最小值;(3)等于0。
第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 连续 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 必要 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 充分 条件。
2.求下列函数的定义域(1)y x z -= 解:设定义域为D ,由0≥y 和0≥-y x ,即02>≥y x ,0≥x得(){}y x y x y x D ≥≥≥=2,0,0|,,如图1所示 (2)22arccosyx z u +=解:设定义域为D ,由022≠+y x ,即x ,y 不同时为零,且122≤+y x z ,即 222y x z +≤,得(){}0,|,,22222≠++≤=y x y x z z y x D 。
3.求下列各极限 (1)x xy y x sin lim00→→ (2)11lim 00-+→→xy xyy x解:原式⎪⎪⎭⎫⎝⎛⋅=→→y xy xy y x sin lim 00 解:原式)11)(11()11(lim 00-+++++=→→xy xy xy xy y x 001=⋅= ()211l i m 0=++=→→xy y x(3)22222200)()cos(1lim y x y x y x y x ++-→→ 解:原式⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⋅⎪⎪⎭⎫ ⎝⎛++=→→222222222200422sin 2lim y x y x y x y x y x +∞=⎪⎪⎭⎫⎝⎛+=→→220011lim 21y x y x 4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂ 解:()()1ln ln +=⋅+=∂∂xy xyyx xy x z x xy y xz 122==∂∂,023=∂∂∂y x z , y xy x y x z 12==∂∂∂,2231y y x z -=∂∂∂ 5.求下列函数的偏导数 (1)x y arctgz = 解:222222211y x y y x y x x x y x x y xz+-=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛+=∂∂ 类似地22211y x xx y y x y xz +=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛+=∂∂ (2)()xy z ln = 解:xyx x y x y x x x z ln 211ln ln 121ln ln =⋅+=+∂∂=∂∂同理可证得:xyy y z ln 21=∂∂ (3)32z xy e u = 解:()32323232z xy z xy e z y z xy xe x z=∂∂=∂∂ ()3223322z xy z xy e xyz z xy ye y u =∂∂=∂∂()323222323z xy z xy e z xy z xy ze z u=∂∂=∂∂ 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dtdz。